时间:2023-03-20 16:27:53
引言:寻求写作上的突破?我们特意为您精选了4篇超分子化学论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
化学科学是研究原子、分子片、分子、超分子、生物大分子到分子的各种不同尺度和不同复杂程度的聚集态的合成反应、分离和分析、结构形态、物理性能和生物活性及其规律和应用的科学。随着新世纪脚步的不断加快,作为物质科学组成之一的化学科学将愈来愈引起世界各国的关注。化学中的前沿科学也将成为化学工作者关注的焦点。
从一定意义上讲,科学论文的发表是科学成果被人们承认的唯一形式。一定频次的引用反映了某篇论文重要性的程度,超高频次的引用,常可认为其研究成果引发了科学研究的热点或在科学研究中取得突破。因此,近期化学科研论文的引用情况也体现了化学学科前沿的科学研究成果,以及当前国际化学前沿的特点和变化趋势和研究方向。据中科院文献情报中心的报道,90年代的化学研究前沿领域有:
(1)富勒烯C60的研究导致发现了自然界一类新的物质――碳的另一种存在形式,并对宇宙内碳循环和经典芳香性的关系这一理论化学的关键问题有了全新的认识,开辟了新的化学研究领域。
(2)模拟程序和密度泛函理论的发展引起整个化学领域的革命,使量子化学成为成千上万化学家手中的工具,可用以预测和阐明物质的化学性质。
(3)对不同管径和缠绕角的单壁碳纳米管的结构和导电性质的研究展示了单壁碳纳米管在纳米分子电子学领域的应用前景。
(4)人工合成新药的发展:天然抗癌药物的人工合成以及用以开发新药的组合化学方法。
(5)组合化学新研究领域的发展打破了传统药物开发的模式,可同时合成和筛选大批生物活性物质,大大缩短了新药开发的时间。组合化学技术还被广泛应用于催化剂的筛选、手性化合物合成等材料科学领域。
(6)仿生聚合物是一种先进材料,它的人工合成向模仿机体功能的“目标”迈进了一步。
(7)分析化学在这一阶段已不再仅仅是化学家手中的工具,它已发展为一门分析科学。它一方面为人们提供关于物质,特别是构成生命的基本物质的组成和结构甚至生命过程的信息;另一方面,在精密分析仪器本身的研制上不断获得进展。
(8)计算机技术的飞速发展使化学家的研究手段产生巨大变革。有关生物大分子(如蛋白质、核酸)多维结构图像实现和精细结构表达的程序及软件包的研究受到化学界的极大关注。
(9)有机反应、不对称合成及催化是90年代以来的持续热点。这是一个有工业应用前景和巨大市场潜力的、一直很活跃的研究领域。
在经历了20世纪的空前繁荣发展后,进入21世纪,化学学科面临着四大难题。第一,合成化学难题――化学反应理论;第二,功能结构化学难题――结构和性能的定量关系;第三,生命现象的化学机制――生命化学难题;第四,纳米尺度难题。徐光宪院士等科学家认为21世纪是信息科学、合成化学和生命科学共同繁荣的世纪,化学的微观方法和宏观方法相互结合,相互渗透这一潮流将进一步向前发展,并提出了新世纪的化学科学包含了对下列八个层次的物质对象的研究:
(1)原子层次的化学:其中包括核化学、放射化学、同位素化学、sp区元素化学、d区元素化学、4p区元素化学、5f区元素化学、超5f区元素化学、单原子操纵和检测化学等。
(2)分子层次的化学:现已合成的2000余万种分子和化合物,通常分为无机、有机和高分子化合物。但近30余年来合成的众多化合物,如金属有机化合物、元素有机化合物、原子簇化合物、金属酶、金属硫蛋白、富勒烯、团簇、配位高分子等很难适应老的分类法。21世纪将研究分子的多元分类法,如按照分子片结合方式和生成的分子结构类型分类,可分为0维、1维、2维、3维分子等。
(3)分子片层次的化学:原子只有110余种,但分子数目已超过2000万种,因此有必要在原子和分子之间引入一个“分子片”的新层次,在21世纪应该开展分子片化学的研究。
(4)超分子层次的化学:其中包括受体和给体的化学、锁和钥匙的化学、分子间的非共价作用力、范德华引力、各种不同类型的氢键、疏水-疏水基团相互作用、疏水-亲水基团相互作用、亲水-亲水基团相互作用、分子的堆积组装、位阻和各种空间效应等。
(5)宏观聚集态化学:其中包括固体化学、晶体化学、非晶态化学、流体和溶液化学、等离子体化学、胶体化学和界面化学等。
(6)介观聚集态化学:包括纳米化学、微乳化学、溶胶-凝胶化学、软物质化学、胶团-胶束化学和气溶胶化学等。
(7)生物分子层次的化学:包括生物化学、分子生物学、化学生物学、酶化学、脑化学、神经化学、基团化学、生命调控化学、药物化学、手性化学、环境化学、生命起源、认知化学和从生物分子到分子生物的飞跃等。
(8)复杂分子体系的化学。从以上分类可以看出,新世纪化学别值得关注的有化学信息学、分子片化学、超分子化学、生命化学、纳米化学、理论化学和复杂分子体系的化学等。
随着化学分支学科的重组及其它学科的交叉、融合和不断渗透,21世纪初化学学科的前沿方向与优先领域有:绿色化学与环境化学中的基本化学问题、材料科学中的基本化学问题、合成化学、化学反应动态学、分子聚集体化学、理论化学、分析化学测试原理和检测技术新方法建立、生命体系中的化学过程、能源中的基本化学问题、化学工程的发展与化学基础等。
参考文献:
[1]刘春万.研讨我国理论化学跨入新千年发展的一次盛会[J].化学进展,2000, 36(2): 230-232.
1.启发式教学
目前,学生对结构化学的学习兴趣普遍不高,启发式教学能够帮助学生加深对结构化学的理解,掌握所学到的结构化学知识,最大限度地调动学生学习的积极性和主动性,获得良好的教学效果。此外,为了激发学生的兴趣,教师可以以层出不穷的国内外科研成果为例,给学生以“结构决定性质”的思想,常常给学生举一些例子,生动形象,加深了学生对知识的理解。
2.参与式教学
参与式教学在狭义上可以说是学校课堂教学,教师可在课堂上设置开放性的问题,让学生参与其中,从而进行参与式教学;而广义上的参与式教学可以看成是大课堂学习,即学习不仅是在课堂上,学生也可以通过其他的渠道获得知识,达成学习的效果。学生学习结构化学会经历一个吸收、思考、疑问、接受、再思考、理解、深化、掌握等的过程。结构化学与计算联系紧密,以往的结构化学推导和演算往往显得枯燥无味,教师讲授起来非常难,不易调动学生学习的积极性,学生的学也是一味重复式的机械练习,这样就失去了获取知识的真正意义和动力,并且也降低了趣味性。教师可以设置开放性的课后作业,例如,在讲授配位场理论和配合物的结构和性质时,给学生布置查阅有关超分子科学的论文,促使学生利用课后时间,到图书馆或者是其他数据库查阅相关资料文献等方式对感兴趣的课题展开探讨,尤其是要结合学生毕业设计的选题进行有针对性的研究,可以以小组的形式上交论文,并且每组选出来一名代表做一次PPT报告,然后根据论文和报告内容计入平时成绩。这样的教学方式,锻炼了学生的科研写作能力,激发了学生的求知欲望。总之,这种开放的参与式教学能给每个学生提供更多的参与机会和成功机会,让每个学生在参与中得到发展。
3.探究式教学
探究式教学是指在探究活动时,学生必须自己独立完成所有的探究任务,强调了每个学生个体的独立性。自由探究的研究和学习方法类似于“搞”科学、“搞”科研。结构化学课件有大量的图片,当学生看到这些图片时,就对微观结构有了一个基本的认识,然后他们可以利用电脑,自己构造一些简单的分子模型等,通过结构分析它们的性质,在最短的时间内获得大量知识,自主探究和协作研究,提高学习效率。教学实践证明,以微观模型引领学生进入微观的物质世界,自主构建模型,研究微观粒子运动规律,既提高了学生的学习积极性,又提高了学生的探究意识和创新精神。
环糊精(Cyclodextrin,CD)是一种水溶性、非还原性、不易被酸水解的白色晶体,无毒,可食用,具有多孔性。β-环糊精“内疏水,外亲水”的分子结构使其具有很多化学特性和用途。能与CD形成包合物的客体非常广泛,如有机分子、无机离子、生物小分子、配合物、聚合物甚至惰性气体[1]。分子大小适于其洞穴尺寸的客体分子,只要极性小于水,就有可能代替小分子而进入CD空腔形成包合物。我国环糊精的研究始于20世纪70年代末,发展到现在β-环糊精已经工业化生产。
环糊精化学基础研究最早涉及的范围包括:催化高选择反应、类酶催化反应和不对称催化反应。各种新的分析技术的完善和新仪器的出台,吸引了各领域科学家的关注,推动环糊精化学的发展。
包合物的形成条件
能够形成包合物是环糊精最重要的性质之一,在包合物中,被包结的化合物分子常被称为“客体”,环糊精分子被称为“主体”。环糊精包合物能否形成受内在因素和外在条件的影响。内在因素取决于环糊精和其客体的基本性质。归纳起来主要有以下三方面[2] :主客体之间疏水亲酯相互作用;主客体符合空间匹配效应;氢键与释出高能水。上述三个因素不但影响着环糊精包合物能否形成,而且还直接影响着形成物的稳定性。即包合物的稳定性也取决于客体分子基团的性质、空腔尺寸、分子大小及空间构型等。A' genes Buvari-Barcza[3]讨论了客体性质、β-环糊精取代度对包合物形成的影响。认为包合物的稳定性依赖于客体分子的空间匹配性,即客体的尺寸和形状。另外,包合物的形成还受反应时间、反应温度、搅拌(或超声波震荡)时间、反应物浓度等外在条件的影响。
包合物的制备方法
包合物制备方法较多,在实际研究应用中应根据主客分子的性质、投料比例,选择适应的制备方法。
超声波法
β-环糊精饱和溶液加入客体分子药物,混合后立即用超声波破碎仪或超声波清洗机,选择合适强度,超声震荡处理适当时间,代替搅拌力,将析出的沉淀如饱和溶液法处理得包合物。
饱和溶液法
饱和溶液法也称重结晶法,先将β-环糊精制成饱和水溶液,加入客体分子药物,对于水不溶性药物,可先溶于适当有机溶剂,再注入β-环糊精饱和水溶液,搅拌直到成为包合物为止。用适当方法使包合物析出,再将得到的固体包合物过滤、洗涤、干燥即可。将挥发油的提取工艺与β-CD包合工艺偶合,形成了两种新的包合工艺:液一液包合法和气一液包合法,从而简化了工艺,提高了制备效率。
研磨法
如肉桂油β-CD的制备中,将β-CD加蒸馏水研匀后,加入肉桂油或肉桂油的乙醇溶液混匀,置胶体磨中,充分研磨至糊状,过滤,冷风吹干即得。
浆状法
即CD和客体分子不需要溶解,只是在室温条件下通过剧烈搅拌,将它们悬浮于少量水中。若使用超声波,可促进固相的分散。
揉捏法
此法的特点是所需的水比浆状法更少。CD先与少量的水揉捏混合,然后将计算好配比的客体分子直接加入,不需要任何溶剂。
冷冻干燥法
易溶于水的环糊精包合物,不易结晶沉淀,或在加热干燥时易分解、变色的包合物,可用冷冻干燥法干燥。冷冻干燥法使包合物外形疏松,溶解性能好,可制成粉针剂。
喷雾干燥法
如制得的包合物易溶于水,遇热性质稳定,可用喷雾干燥法制备,干燥温度高温受热时间短,产率较高。
包合物的鉴定
研究环糊精包合物常在固态和液态两种状态下进行。用于检测固态包合物的手段有很多,例如X射线衍射、差热分析、薄层色谱、红外光谱和核磁共振等。
β-环糊精包合物的应用进展
β-CD在医药、日化、食品、轻工、农业和其它工业方面有广泛的用途[4],在此主要介绍以下两个方面:β-CD可与有机化合物生成包合化合物,具有独特的能吸附各种物质的包合性质,可以起到稳定、缓解、乳化、提高溶解度和减少药物的刺激性和毒副作用等多种作用。将β-CD用于食品业,具有抗氧化作用,可保持食品稳定,改良和提高组织结构,去除和减轻苦涩味,并保持食品的风味。
综上所述,环糊精及其衍生物在生物医药、食品、环境保护等领域有着广泛的应用前景。
参考文献
[1]宋乐新,孟庆金,游效曾.环糊精和环糊精包合物.无机化学学报.1997, 13(4): 368-374.
将本课题组已发表的SCI论文“一锅法合成氮杂螺芴氧杂蒽有机半导体材料”[5]改为本科实验,主要根据以下原则:
1.1 新颖性原则
螺芴类分子砌块具有共轭打断效应、刚性十字交叉构象和空间位阻效应,被广泛用于有机电致发光二极管、场效应晶体管以及太阳能染料敏化电池等领域[6],成为一类重要的有机半导体材料。氮杂芴螺环芳烃由芴基螺环芳烃发展而来在继承螺芴的各类优势的基础上增加了氮杂芴基团的功能特性包括电子受体、金属配位、质子化以及超分子弱作用等。因此,具有广阔的发展前景[7-9]。
1.2 可行性原?t
所选的科研成果的反应类型是最经典的傅克反应,与学生所学的有机化学课本紧密联系。通过实验预习、讲解、操作以及总结,进一步巩固与加深对傅克反应的理解和运用。另外,该反应原料易得,合成步骤简单易行,无毒安全性高,可以在本科实验室开展。
1.3 综合性原则
氮杂螺芴氧杂蒽的合成操作涉及反应装置的搭建、TLC点样、柱层析等各类操作。在整个操作过程中,重点学习TLC点样和柱层析。产品表征利用核磁共振。
1.4 环保性原则
目前氮杂螺芴氧杂蒽大部分合成方法具有如下缺点:(1)底物范围拓展的限制和前体合成的困难;(2)合成步骤的冗长。我们课题组发展了一锅法合成氮杂螺芴氧杂蒽有机半导体材料。反应过程中依次构建了C-C, C-O和 C-C三支化学键,并高效合成了氮杂芴螺环芳烃,符合绿色化学的理念。
2 实验内容
实验名称:一锅法合成氮杂螺芴氧杂蒽有机半导体材料
实验仪器:磁力搅拌器,圆底烧瓶,回流冷凝管、电子天平、分液漏斗、锥形瓶、层析柱、核磁共振波谱仪。
药品:氮杂芴酮,对甲基苯酚,三氟甲磺酸,1,2-二氯苯,碳酸钾,二氯甲烷,无水硫酸镁,乙酸乙酯。
2.1 实验原理
该反应是典型的傅里德-克拉夫茨反应,简称傅-克反应,英文Friedel?CCrafts reaction,是一类芳香族亲电取代反应,1877年由法国化学家查尔斯?傅里德和美国化学家詹姆斯?克拉夫茨共同发现。本实验在酸性条件下反应,首先通过氮杂芴酮与苯酚的傅克反应生成中间体I,紧接着脱水形成三正电型超亲电体II,由于电荷间的排斥作用,导致氮杂芴9 号位的正电荷会通过共振方式迁移至酚羟基上,活化酚羟基的反应活性。随后另一苯酚分子以亲核进攻的方式与中间体III 发生反应,形成醚键。紧接着分子内的质子转移与脱水过程在苯环上再次生成碳正离子V。最后碳正离子重新迁移到氮杂芴的9 号位发生分子内的傅克合环反应,得到最终的目标产物氮杂螺芴氧杂蒽。
2.2 实验步骤
2.2.1 氮杂螺芴氧杂蒽的合成
先向圆底烧瓶中加入0.18克的氮杂芴酮,再分别加入2ml 1,2-二氯苯与0.8ml三氟甲磺酸。在室温下搅拌大约半小时后,向其中加入0.54克的对甲基苯酚。随后升高温度至 85度。通过TLC 板监控反应至氮杂芴酮反应完全。将反应降温至室温,用碳酸钾溶液淬灭此反应,之后用二氯甲烷萃取,收集有机相并用无水硫酸镁干燥,抽滤。最后柱层析分离提纯得到氮杂螺芴氧杂蒽。
2.2.2 螺环氧杂蒽的结构表征
使用核磁共振(NMR)对所得到的产物进行结构表征。通过与标准的氮杂螺芴氧杂蒽的氢谱和碳谱进行对比确认结构
2.2.3 实验报告
实验报告要全面总结实验,特别强调实验结果的分析,并对实验结果提出自己的观点。
3 教学效果
3.1 理论联系实际,深化理论知识
体现有机化学基础知识的综合性,在所设计的实验中涉及《有机化学》中典型的傅克反应。通过TLC板监测反应进度,有助于理解反应现象以及反应过程。通过核磁共振表征产物,可以了解核磁测试过程以及核磁共振表征原理。通过对氢谱的解析,理解化学位移、耦合常数以及自旋裂分等理论知识。
3.2 科研和教学结合,强化创新思维
将科研和教学相结合,促进了教学方法的改革和教学方式的创新,也培养了适应社会发展需要的高素质人才。实践证明,从事科学研究的教师能更准确地把握教学内容,更好地把科?W研究的方法贯穿到教学实践之中,是培养学生的创新思维和创新能力的重要途径。同时高水平、高层次的科研项目和平台也为本科生的培养创造了优越的条件。
3.3 实验与生活相结合,激发学习兴致
将制备的氮杂螺芴氧杂蒽作为电致发光材料,应用于有机电致发光二极管、存储器以及太阳能电池中。在整个实验过程中,详细说明每个操作与所学专业的内在联系,
让学生深刻体会到所学专业知识的重要性和必要性,激发学生的学习兴趣以及求知欲望和积极探索精神。在实验操作过程中,锻炼了学生的动手能力以及实践操作能力。通过科学实验报告的撰写,锻炼并加强了学生的写作能力。