时间:2023-03-21 17:16:35
引言:寻求写作上的突破?我们特意为您精选了12篇大数据技术范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
中图分类号:TP334 文献标识码:A 文章编号:1674-098X(2014)02(a)-0048-01
“大数据”是从英语“Big Data”一词翻译而来的,是当前IT界热议和追逐的对象,是继物联网、云计算技术后世界又一热议的信息技术,发展迅速。截至2011年年底,全球互联网总数据存储量已达100亿TB以上,并且以59%以上的年增长率递增。麦肯锡公司在2011年的报告(Bigdata:the Next FrontierforInnovation)中,对这种密集型数据爆炸的现象称为“大数据”时代的到来。大数据领域出现的许多新技术,是大数据采集、存储、处理和呈现的有力武器。
1 大数据概念
大数据概念的前身是海量数据,但两者有很大的区别。海量数据主要强调了数据量的规模,对其特性并没有特别关注。而大数据对传播速率、体积、特征等数据的各种特性进行了描述。目前对大数据最广泛的定义是:大数据是无法在一定时间内用通常的软件工具进行收集、分析、管理的大量数据的集合。大数据的特点一般用“4V”概括,即:Volume:数据量大,目前大数据的最小单位一般被认为是10~20TB的量级;Variety:数据类型多,包括了结构化、非结构化和半结构化数据;value:数据的价值密度很低;velocity:数据产生和处理的速度非常快。
2 大数据相关技术
2.1 大数据处理通用技术架构
大数据的基本处理流程与传统数据处理流程的主要区别在于:由于大数据要处理大量、非结构化的数据,所以在各个处理环节中都可以采用并行处理。目前,MapReduce等分布式处理方式已经成为大数据处理各环节的通用处理方法。
MapReduce分布式方法最先由谷歌设计并实现,包括分布式文件系统GFS、MapReduce分布式编程环境以及分布式大规模数据库管理系统Bigrable。MapReduce是一套软件框架,包括Map和Reduce两个阶段,可以进行海量数据分割、任务分解与结果汇总,从而完成海量数据的并行处理。MapReduce的工作原理是先分后合的数据处理方式。Map即“分解”,把海量数据分割成若干部分,分给多台处理器并行处理;Reduce即“合并”,把各台处理器处理后的结果进行汇总操作,以得到最终结果。用户只需要提供自己的Map函数以及Reduce函数就可以在集群上进行大规模的分布式数据处理。MapReduce将处理任务分配到不同的处理节点,因此具有更强的并行处理能力。
2.2 大数据采集
大数据的采集是指利用数据库等方式接收发自客户端(Web、App或者传感器形式等)的数据。大数据采集的主要特点是并发访问量大,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站的并发访问量在峰值时达到上百万,这时传统的数据采集工具很容易失效。大数据采集方法主要包括:系统日志采集、网络数据采集、数据库采集、其他数据采集等四种。
2.3 大数据分享
目前数据分享主要通过数据集市和开放数据平台等方法实现。开放数据平台可以提供涵盖本地服务、娱乐、教育和医疗等方方面面的数据集合,用户不但可以通过API访问,还可以很方便地通过SDK集成到移动应用当中。在线数据集市除了提供下载数据的功能外,还为用户提供上传和交流数据的场所。数据平台和数据集市不但吸引有数据需求用户,还能够吸引很多数据开发者在平台上进行开发。
2.4 大数据预处理
数据预处理就是对采集的数据进行清洗、填补、平滑、合并、规格化以及检查一致性等处理,并对数据的多种属性进行初步组织,从而为数据的存储、分析和挖掘做好准备。通常数据预处理包含三个部分:数据清理、数据集成和变换和数据规约。
2.5 大数据存储及管理
大数据需要行之有效的存储和管理,否则人们不能处理和利用数据,更不能从数据中得到有用的信息。目前,大数据的存储和管理技术主要分三类:分布式文件系统、数据仓库和非关系型数据库(NoSOL)。
2.6 大数据分析及挖掘
大数据的分析和挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、数据挖掘、统计学、数据库等技术,高度自动化地分析大数据,做出归纳性的推理,从中挖掘出潜在的模式,从而在大数据中提取有用信息。大数据的分析和挖掘与传统的数据挖掘比较有两个特点:一是通常采用并行处理的方式;二是大数据分析对实时处理的要求很高,流处理等实时处理技术受到人们欢迎。常用的方法有:机器学习、数据挖掘、模式识别、统计分析、并行处理。
2.7 大数据检索
①数据库实时检索:在数据仓库或者NoSOL等大数据存储平台上,或者多个不同结构的数据存储平台之间快速、实时地查询和检索不同结构的数据。②实时搜索引擎:对互联网上的大量数据和信息进行即时、快速搜索,实现即搜即得的效果。目前各大搜索引擎都在致力于实时搜索的实现。
2.8 大数据可视化
可以提供更为清晰直观的数据感官,将错综复杂的数据和数据之间的关系,通过图片、映射关系或表格,以简单、友好、易用的图形化、智能化的形式呈现给用户供其分析使用,可通过数据访问接口或商业智能门户实现,通过直观的方式表达出来。可视化与可视分析通过交互可视界面来进行分析、推理和决策;从海量、动态、不确定甚至相互冲突的数据中整合信息,获取对复杂情景的更深层的理解;可供人们检验已有预测,探索未知信息,同时提供快速、可检验、易理解.的评估和更有效的交流手段。可视化是人们理解复杂现象,诊释复杂数据的重要手段和途径。
2.9 大数据应用
①视频搜索;②内容分析;③理赔分析;④社交网络分析;⑤社会分析;⑥社交媒体监控。
一、分布集群数据库在大数据中的应用
目前,许多数据增长率很高的大型数据库系统正被用于改善全球人类活动,如通信、社交网络、交易、银行等,分布集群数据库已成为提高数据访问速度的解决方案之一。为多种类型的用户在多个存储中组织数据访问,分布集群数据库的问题不仅在于如何管理大量的数据,而且在于如何组织分布式存储中的数据模式。智能数据组织是提高检索速度、减少磁盘I/O数量、缩短查询响应时间的最佳方法之一。基于规则的聚类是提供数据库自动聚类和数据存储模式解释的解决方案之一,基于规则的集群通过分析属性和记录上的数据库结构,将数据模式表示为规则。使用不同规则池分区的每个集群,每个规则与内部集群中的规则相似,与外部集群中的规则不同。分布集群数据库是一种有向图结构的进化优化技术,用于数据分类,在紧凑的程序中具有显著的表示能力,这源于节点的可重用性,而节点本身就是图形结构的功能。为了实现基于规则的集群,分布集群数据库可以通过分析记录来处理数据集的规则提取。分布集群数据库的图形结构由三种节点组成:起始节点、判断节点和处理节点。开始节点表示节点转换的开始位置;判断节点表示要在数据库中检查的属性。分布集群数据库规则提取的节点准备包括两个阶段:节点定义和节点排列。节点定义的目的是准备创建规则,节点排列是选择重要的节点,以便高效地提取大量规则。节点排列由以下两个顺序过程执行,第一个过程是查找模板规则,第二个过程是结合第一个过程中创建的模板生成规则。提取模板以获得数据集中经常发生的属性组合。在模板提取过程中,分布集群数据库规则提取中只使用了少数几个属性,它旨在增加获得高支持模板的可能性。与没有模板规则的方法相比,该节点排列方法具有更好的聚类结果,这两个过程中的规则生成都是通过图结构的演化来实现。
二、在线规则更新系统的应用
在线规则更新系统用于通过分析所有记录从数据集中提取规则,在大数据应用中,每个节点都有自己的节点号,描述每个节点号的节点信息。程序大小取决于节点的数量,这会影响程序创建的规则的数量。起始节点表示根据连接顺序执行的判断节点序列的起始点,开始节点的多个位置将允许一个人提取各种规则。判断节点表示数据集的属性,显示属性索引。在大数据应用环节,从每个起始节点开始的节点序列用虚线a、b和c表示,节点序列流动,直到支持判断节点的下一个组合不满足阈值。在节点序列中,如果具有已出现在上一个节点序列,将跳过这些节点。在更新每个集群中的规则时,重要的是要找到与最新数据不匹配的属性。因此,规则更新中要考虑的属性由以下过程确定。当计算集群中每个属性和数据之间的轮廓值时,阈值设置为0.85,只有轮廓值低于0.85的属性。将为规则更新过程中的判断节点的属性选择。一些数据的库存值和权重值低于0.85,因此这些值不包括在国民生产总值的规则更新中。在线规则更新系统中包含用于更新规则的属性,每个集群都具有属性的主要值,这些属性是集群质量的锚定点,进而影响轮廓值。在线规则更新系统应用中,完成主要的规则提取过程,这是一个标准的规则提取,在线规则更新系统考虑到数据集中的所有属性。执行该过程,对初始数据集进行初始集群;改善规则更新过程,仅对轮廓值低于阈值的数据执行。
三、大规模并行处理技术的应用
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2016)03-0019-02
1 概述
当前,互联网的发展已经进入到一个全新阶段,互联网的应用已经深入到人们的日常生活中,尤其是移动互联网技术的发展和运用已经日益成熟,传统企业都已经开始自觉地运用移动互联网技术和概念拓展新业务和方向[1]。在此背景下,大数据技术应运而生,针对大数据这一新兴概念,麦肯锡全球研究所曾给出这样的定义:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
2 分布集群数据库
组成分布集群数据库系统的每台计算机可单独放在一个地方,其中每台计算机都可能保存一份数据库的完整拷贝副本,或者是部分副本,每台计算机单元具有自己局部的数据库,位于不同地点。这些计算机之间通过网络进行连接,共同组成一个完整的、全局的逻辑上集中、物理上分布的大型数据库。
在分布式集群系统中,数据库对用户来说是一个逻辑上的数据库整体,数据库的一致性、完整性及安全性都是对这一逻辑整体进行管理控制的。分布集群服务器对共享的数据进行统一的管理,但是非数据库的处理操作可以由客户机来完成。
在分布式集群系统中,通常采用外部链接技术进行数据库的远程控制。组成分布式集群的各计算机之间可以通过网络进行相互通讯,用户可以远程透明地单独访问远程各数据库单元的数据,也可以组合多个数据库的数据以满足多工作组、部门的复杂应用需求。远程数据库链接技术连接了各分散的数据库单元,逻辑的将他们组合为一个整体,从应用视图的角度来看,分布集中数据库系统就是一个整体的数据库服务系统。用户对此系统的单一逻辑的数据库访问请求都被自动分解、自动寻址、自动转换为网络请求,并在相应数据库结点上实现相应的操作请求。
分布集群数据库系统支持混合的网络拓扑结构,并采用混合的网络协议,自动地进行网络协议的转换。在分布集群数据库系统中,在保证海量数据存储的基础上,混合了高可用集群和高可靠集群,提高了数据库系统的可用性和可靠性,满足了现代互联网应用的需求。
物化视图是从一个或几个基表导出的表,同视图相比,它存储了导出表的真实数据。当基表中的数据发生变化时,物化视图所存储的数据将变得陈旧,用户可以通过手动刷新或自动刷新来对数据进行同步。物化视图包括了查询结果的数据对象,是远程数据的本地副本快照。物化视图允许你在本地维护远程数据的副本,但是只能读取这些副本[2]。
3 高可用集群
数据库高可用集群通过缓存交换技术实现,它基于同一份数据文件、但提供了多个数据库实例,即数据库服务进程。高可用性首要确保数据不丢失,数据不丢失是高可靠性的最基本的要求,是必须要保证的;其次是使数据库一直维持在正常的运行状态,确保不停机,以避免给客户造成损失。
在大数据应用环境下,数据库系统的停机分为两类,即计划性停机和非计划性停机。计划性停机一般在数据库管理软件升级、系统维护或者硬件维护的情况下进行,是有计划地安排节点或者系统的停机。非计划性停机是异常突然停机,具有不可预见性,这种情况一般是数据库管理系统缺陷或系统故障或硬件故障等[3]。
高可用集群数据库技术主要包含如下几点:
1)负载均衡技术:支持静态和动态负载均衡技术,实现系统范围内各节点负载均匀,避免出现单一节点或者部分节点负载过重而影响整体性能。
2)全局事务并发控制技术:通过高速缓存复制技术,各节点保持字典数据一致,同时能够看到全局锁和事务视图,使得能够正常实现事务的ACID特性。
3)多节点并发访问文件控制技术:由于多个节点共享同一份数据,控制好各节点对同一份数据的更新操作,避免出现错误的文件读写导致的数据不一致的问题。
4)动态增加和移除节点技术:在高可用集群环境中,能够在不中断服务的情况下,通过增加节点来提升系统性能,同时也能够在节点出现故障时,从集群中自动移除该节点,并且不影响整个集群系统对外提供服务。
4 高可靠集群
一般采用数据复制技术来保证数据库系统的高可靠性,数据复制同时也是一种分担系统访问压力、加快异地访问响应速的技术,数据复制具有物理和逻辑之分。通过将一个服务器实例上的数据变更复制到另外的服务器实例。可以用于解决大、中型应用中出现的因来自不同地域、不同部门、不同类型的数据访问、请求导致数据库服务器超负荷运行、网络阻塞、远程用户的数据响应迟缓的问题。
高可靠集群提供数据库的容灾、数据保护、故障恢复等,实现数据库快速切换与灾难性恢复。在生产数据库的保证"事务一致性"时,使用生产库的物理全备份创建备库,备库能够通过生产库传输过来的归档日志或重做条目自动维护备用数据库。
高可靠集群的数据同步技术有以下优势:
1)数据库自身内置的功能;
2)配置管理较简单,不需要熟悉其他第三方的软件产品。
3)物理Standby数据库支持任何类型的数据对象和数据类型;
4)逻辑Standby数据库处于打开状态,可以在保持数据同步的同时执行查询等操作。
5)在最大保护模式下,可确保数据的零丢失。
5 MPP技术的应用
MPP 架构采用统一的并行操作数据库引擎,将数据分散在不同的数据库节点上,在高速的内部网络环境下,对于海量数据的并发查询可极大地减少 I/O,提高查询效率。MPP 系统工作起来就像是一台单独的计算机,由于采用自动化的并行处理,在分析型数据仓库等 OLAP 应用中,查询性能比传统的单节点数据库大大提高。MPP 系统为新一代数据仓库所需的大规模数据和复杂查询提供了先进的软件级解决方案,具有业界先进的架构和高度的可靠性,能帮助企业管理好数据,使之更好地服务于企业,推动数据依赖型企业的发展。
6 大数据中的应用
基于数据库管理系统,搭建高可用、高可靠的分布集群数据库系统,结构如图 1所示。
在此环境中,高可用集群之间可搭建成主备关系,与任意高可靠集群或任意单机数据库服务器通过外部链接构成逻辑上统一的分布集群数据库系统。对于用户而言,仍然是单一的数据库服务。
单机数据库服务器、高可用集群、高可靠集群都可通过外部链接作为单独节点加入到分布集群数据库系统中,利用数据库系统的分布集群事务机制,既保留了局部数据库的自治特性,又可以作为全局分布集群系统中的一员参与到整个海量数据分析中。
解决了海量规模数据存储的问题后,针对快速的数据流转、多样的数据类型和价值密度低问题,数据库技术还实现了以下功能:
1)物化视图技术和高级复制技术解决分布集群系统中数据流转速度慢的问题。
2)支持面相对象、xml数据类型,满足数据类型多样化的需求。
3)数据挖掘技术,是决策分析技术的一个更高层次,数据挖掘技术采用人工智能的决策分析方法,按照用户既定的业务目标,对数据进行筛选,揭示其中的规律,并进一步将其模型化。
7 结束语
随着计算机技术的发展,数据库管理系统作为处理数据的核心之一,在大数据中的应用不应被忽视。因此,加强数据库新技术的研发,对于各个国家在大数据时代的信息战中都显得尤为重要。
参考文献:
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2013)22-5002-02
1 概述
随着产生数据的设备使用数量越来越多,使用范围越来越广,大量的非结构化数据每秒钟都被产生出来,比如视频、照片、社交媒体评论以及网站评述等数据都是这样的数据。这意味着越来越多的数据不能被存储在预定义的结构化表格中,相反,这类数据往往由形式自由的文本、日期、数字适时组成。某些数据源生成速度非常快,甚至来不及分析就进行存储。这也是无法单纯依靠传统数据管理和分析工具来存储、管理、处理和分析大数据的原因。为了从这些大数据中获取和分析特定的需求信息,就需要对大数据的技术进行研究。
2 大数据介绍
大数据近几年来新出现的一个名词,它相比传统的数据描述,有自己的四个特性[1],分别是:Volume(大的数据量)、Velocity(输入和处理速度快)、Variety(数据多种多样)、Veracity(真实有价值)。因此,大数据需要新的处理模式来取代传统的数据处理方法,它同时包含数据量巨大和快速的处理速度两层含义。
云计算是一种大数据的处理技术平台,综合了各种资源之后提供一些虚拟技术服务。这样的方式可以很大程度降低用户维护、处理、使用数据以及其他计算资源的成本。数据单位已不再是用GB,TB能够满足的描述需要,而是步入了PB级别的时代。传统的数据存储方式已经不能满足这些数据的存储和处理,只有依托云平台存储技术的方式来解决这个当前已经面临的问题。
3 大数据技术分析
3.1 大数据的处理方式
大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。
数据流处理的方式适合用于对实时性要求比较高的场合之中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。
批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务分别单独进行处理,并且形成小任务的过程中不时进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并化简)作用到这些数据块最终得到结果。
3.2 大数据技术模型
大数据的技术模型目前主要研究的是图1的模型。
图1是一种描述复杂关系的数据结构,它并不像线性链表和树那样看上去结构简单和清晰,但它能描述一些更为错综复杂的层次和关系。对实际关系的描述使用范围和频率都更多更广。采用一些数学方法和算法工具来对图进行处理,是处理大数据的一个前提。存储图结构数据的时候一般选用邻接矩阵或邻接表的方式来进行,这在数据结构这门学科里面已经有所研究。图的两个顶点之间用边进行连接,这个可以看作网络结构里面,相邻两个节点之间有传输消息的通路。一个复杂的网络结构对应出来的也是复杂的图结构,处理的时候需要将该图进行分割处理,采用分而治之的办法来解决问题。
如果节点A和B之间的所有通路都被C阻塞了,就意味着C有向分割了A和B,即A和B在给定条件C时独立。
这种方法就降低了条件限制的复杂性,有效地将问题利用数学模型求解出来。
3.3 大数据处理系统应用
开源是现在很多大型国际IT公司倡导的服务方式,这个理念拥有很多拥护者。虽然它最初的出现和商业搭不上边,但已为具有现展理念的国际大型商业IT公司所接受,他们所认同的是面向服务的开源,进而出现了新的经济增长方式。
目前有一些较为前沿的公司已经研发开源的大数据处理技术,比较典型的是推特研发的Storm系统和谷歌研发的MapReduce模型。前者是以数据流方式进行数据处理而后者是采用批量数据的处理方式。
MapReduce是目前用得比较多的方法,其核心思想就是两个步骤:Map和Reduce。Map过程就是一个映射过程,完成这一步之后再对其进行Reduce过程处理,也即是精简的过程。最后将处理的最终结果进行输出。
3.4 大数据技术发展趋势
传统的关系型数据库和新兴的数据处理技术目前是并存状态,它们之间将来会相互学习,相互渗透,相互影响,互相融合,最终形成对数据分析有利的格局,能够更好地为大数据处理服务,从庞大巨量的数据当中找到需要的数据并对之进行处理、分析乃至决策。
4 结束语
大数据是当今越来越多的数据源每分每秒不断产生新数据后的一个产物,对他它的研究和利用是紧迫的事情。目前研究的一些大数据技术都有其优缺点,技术种类也不是很多,还处于一个上升的阶段。研究大数据的处理、分析、利用技术和方法,对今后这一分支的发展起到关键性的作用,对后来的科技产品乃至我们的日常生活都会带来巨大的影响。
参考文献:
[1] Grobelink M.Big-data computing: Creating revolutionary breakthroughs in commerce, science, and society[R/OL].2012.10.02. http:///eswc2012_grobelink_big_data/
[2] 戎翔,李玲娟.基于MapReduce的频繁项集挖掘方法[J].西安邮电学院学报,2011(4).
显然,这三大经典的技术信条在大数据时代面临动摇,
技术信徒的思维模式也即将发生颠覆。
那么,大数据对技术信徒意味着什么?
他们又将如何面对这一颠覆性的变革?
“技术汇成一条大河,一波推动另外一波。”IBM中国开发中心首席技术官兼新技术研发中心总经理毛新生带着对技术的满腔痴迷这样形容道。
一波未平一波又起,移动、社交商务、云计算、大数据等先后涌现的新趋势正在融合成一股巨大的潮流,将所有的行业IT化,进而推动商业和社会的演进。这也就意味着“科技是第一生产力”在当下有了更深层次的涵义——“IBM认为,在由新一代技术组成的智慧运算时代,中国的企业家们需要更为战略地思考信息科技的定位,将其运用到自身的变革转型之中。” IBM全球副总裁兼大中华区软件集团总经理胡世忠为企业新发展出谋献策。
由2012年的“软件技术峰会”改名为2013年的“技术峰会”,在这么一个盛会上,IBM试图展示的内容涵盖范围更为广泛——移动应用、大数据、云计算、DevOps软件持续交付、应用整合、社交商务、专家集成系统等热议话题,上百场技术主题演讲、28场分论坛、22场动手实验室和80个未来产品的现场演示,再加上被誉为“大数据时代的预言家”的《大数据时代》作者维克托·迈尔-舍恩伯格以及数十位来自IBM的院士、杰出工程师、相关领域的全球首席技术官和首席架构师的现场分享,IBM 2013技术峰会再次成为技术精英们关注的焦点。 大数据的新信条
《大数据时代》作者、牛津大学网络学院互联网治理与监管专业教授维克托·迈尔-舍恩伯格的出现着实让场内数以万计的技术信徒激动了一把。作为深刻洞察大数据给人类生活、工作和思维带来的大变革的第一人,维克托以价格预测网站的例子作为开场白,论证了大数据已经悄然在大众的身边出现并给他们的生活带来改变。
“全体性、混杂性和相关性是大数据的三个主要特点,而且这三个特点是互相加强的。”维克托归纳出了大数据对应的思维变革。收集和分析更多的数据才能获取足够的数据隐含的细节,这些细节恰恰是随机抽样所错失的。“干净”的、高质量的数据不再是标的,大数据需要我们摒弃对宏观上精确性的追求,转而获得微观上的准确性,即接受混杂的数据。最重要的是,人们不再沉迷于追寻数据之间的因果关系,即不再纠结于为什么,而是直接获得“是什么”的答案,并通过应用相关关系,更好地捕捉现在和预测未来——抽样因错失细节得不偿失,盲目追求精确性已经过时,执着于因果关系丧失机遇。
如何在大数据时代生存?维克托指出了两个关键点:一是意识到技术或者规模并不是成功的充分条件。遗忘规模经济,因为它的效益会逐渐淡化。20年前,一个公司只有拥有上十万台的服务器才能提供搜索服务,但在大数据时代,由于云计算的便利性,不拥有实体服务器的公司,如前文提到的,它只有30个员工,但它有能力为其上10亿的用户提供数据分析。二是为了在大数据时代获得胜利,大数据的思维模式不可或缺,工具的力量不容小视,分析能力是必要的。蓝色被谷歌选为搜索窗口的色彩,但蓝色实际上有51种,而且这51种蓝色人依靠裸眼无法明确区分,却能在心理层面给人带来不同的感受。经过大数据分析,谷歌发现原本由人工选出来的蓝色会导致谷歌损失200亿~300亿美元的收入,因为这一种蓝色并不最具备诱惑力,无法激起人们点击的欲望。
大数据的力量需要具备大数据的思维模式,并有效利用大数据的工具去发掘。IBM杰出工程师、InfoSphere Stream高级开发经理James R Giles阐述了IBM对大数据的看法:“我们正一步步走到了一个新纪元——大数据时代。如同对待自然资源一样,我们需要开掘、转变、销售、保护大数据资源;不同的是,大数据资源是无穷无尽的,我们不能任由大数据淹没自己,而应该在获得洞察需求的驱使下获得价值。”
大数据的类型广义而言有移动数据和静态数据,还有结构性数据和非结构性数据,这对应着不同的处理方式。“技术人员的责任是,能够去管理这些数据,能够理解这些从不同的数据源而来、不同类型的数据,能够分析这些数据,得出结论,让其提供决策支持,为企业拥抱新的大数据时代提供技术支撑,以保证管理、安全、商业的持续性。” James R Giles号召技术人员积极行动,以大数据的思维模式展现技术的价值和魅力。
找到内在联系
技术的趋势总是融合,也只有有机融合才能形成合力,发挥更大的威力,而实现这一合力的前提是明确各个趋势之间的内在联系。
“实际上,社交商务、移动、大数据、云计算是一体化的。”毛新生建议技术人员用一个全面的、融合的范式来沉着看待和应对纷繁的热点技术,理解这些热点会如何影响整个IT的走向,进而明晰IT如何可以很好地支持各行各业的业务转型和创新,“让每个行业都可以从新的技术转型当中获得足够的原动力”。
从贴近最终用户的角度来看,移动技术、社交技术改变了商业机构与其雇员、客户进行互动的方式。“就我个人的经历而言,航空公司的移动应用可以提供更好的客户交互。我是西北航空公司的粉丝,因为它家的移动应用服务很贴心,比如查询航班信息、根据我的喜好预留位置、定制化地进行社交推荐等。”毛新生以一个普通消费者的感受证明了企业通过移动应用收集并利用用户行为数据所带来的服务质量的提升。
移动催生了“一种崭新的服务交付端点”,即为用户提供了更多样化的服务体验点,让用户随时随地可以利用碎片化的时间去获得业务服务,也为企业带来了全新的服务交付渠道。移动这个渠道提供了更为丰富的全样性数据,在此基础上,大数据分析就更可信。“移动所具备的碎片化特点会带来更大量的用户行为信息。当把所有的人的行为结合在一起,就可以做群体的社会性分析。社会性分析会得到比较准确的群体特征。而群体特征足以获得很好的交叉销售与线上销售机会。”毛新生认为移动与大数据结合给企业提供了新的商业机会。
移动的设备无处不在。人、汽车,甚至建筑物、道路、桥梁,它们无时无刻不在提供数据,这就是新的数据源,是它们引领我们来到维克托所描述的更为广阔的大数据世界。
移动和社交商务的便捷性使得企业的整个业务流程变得非常自动化,用户可以享受自助服务,对应到企业端就意味着业务流程对前端的需求要反应得更为迅速,也意味着各个业务系统之间无缝连接,否则没有办法支撑以最终用户为中心的服务体验,但跨部门和跨应用的整合实属不易。进一步延伸开来,对用户体验的追求是无止境的,合作伙伴的API和服务可以作为补充,这即是“跨企业边界”的行为。这种行为必然导致大规模的用户访问。这些整合和外部拓展都需要云计算提供灵活有效的基础。没有云计算,移动前端的体验、大数据分析的效果都会大打折扣。“云的基础设施使大规模互动、大规模数据处理、大规模应用可以更好地服务我们。”毛新生指出。
环境变化加速,竞争更加激烈,要求企业的反应速度越来越快,应用以及端到端解决方案快速改变。毛新生饶有兴致地介绍道:“这个改变有多快呢?我们有的客户尝试以天为周期去改变,这意味着应用和业务流程的设计、开发、部署、测试、维护的整个过程要大大加快,也就是所谓的DevOps。只有把敏捷的开发和运维结合起来,生命周期变得以天为周期,才能响应新的商业环境。”
“移动、云计算、大数据、社交商务之间的紧密联系让我们应该以整体的眼光来审视它们。”胡世忠坚信,它们的组合可以创造可持续的竞争优势,可以迸发变革的力量。
至于一个企业应该从哪里下手来实现这一幅宏伟蓝图?毛新生给出的答案是:“每一个企业,因为它所处的行业或者特定的情况而拥有不同的切入点,有一些企业需要从移动开始,有一些企业需要从云计算开始,有一些企业需要从大数据开始,但是它们是不可分割的整体,只有综合地运用它们,找到适合自己的切入点,一步一步脚踏实地,才能掌握先机,打造竞争力。在这个过程中,要拥有正确的思维,改变既有思维,理解趋势,制定策略。”
例如,银行、保险、零售业这一类和最终消费者打交道的服务业在很大概率上需要先从移动、社交商务入手,从而使其有机会改善和用户交互的过程。而以数据为生的行业会琢磨如何将自己的内容和资源数据增值,而传统的运营基础设施的重资产企业,会追求将资产数字化,得到数据并进行分析,以优化资产的生命周期管理来预防性地降低维护成本,这些企业是以大数据作为切入点的。还有一些企业希望跨行业整合进行业务创新,背后牵扯到它们自身现有的业务模式和新业务模式的整合,这种情况下需要以云的方式构建新的应用、服务、商业流程。
毛新生认为切入点不同只是表象,每一种场景到最后都是综合性的运用,要把这几个技术综合运用起来。从前端开始,首先是利用移动,并借助社交渠道交流,很快这些渠道会得到新的数据,这些新的数据和原有的交易数据和积累的数据结合起来做进一步的数据分析,这就是大数据分析。大数据分析以后可以做社交推荐、关联推荐了。随后,能不能跨界再实现更广泛的销售?跟别的价值链上的合作伙伴合作,那么引入云是解决之道。数据量增大,用户数增多,云的基础设施可以让成本更合理。“所以说,到最后都是综合性的应用,尽管起点不一样”,毛新生说。
对技术人员而言,IT就是交付业务流程的基础,是信息化的工具。它的目标无非是优化业务流程或者创新业务流程。创新到达一定程度后,业务流程的量变会导致质变。“这就解释了为何全球越来越多的CEO将技术视为驱动企业发展的首要因素。” IBM软件集团大中华区中间件集团总经理李红焰强调,技术人员有能力,也有责任将“看不见的技术转变为看得见的享受”。
移动开发的转变
在大数据的带领下我们进入移动时代,企业有了新机遇,技术人员却有了新挑战。为什么移动开发和之前不一样呢?有什么不一样呢?这成为了萦绕在技术人员脑子里最主要的两个问题。
IBM杰出工程师及IBM移动平台首席架构师Greg Truty解答了这两个疑问。他认为,很多企业现在所做的事情与在移动的状态下做的事情是不一样的,移动状态下的任务和规划更具有战略性。移动应用是在不稳定的网络上运行的,所占用的资源更少。用户在移动设备上和非移动设备上的体验是完全不一样的,他们会希望在不稳定的网络上仍然能够获得良好的体验。企业现在需要思考的是,怎么样把大量数据、大量体验变成一些有意义的体验。同时,移动管理的需求也不一样了,开发的特性也不一样了。比如对一个企业来说,移动开发周期更短,有更多设备需要支持,有更多开发方法可供选择,也有更多的工具和库可供选择,这时候企业就需要仔细斟酌,哪些开发方法和工具是自己需要的。
自然而然,对于设备的管理也有了变化,因为应用变化了。“一直以来,客户端服务器的应用架构是企业在使用的。你需要协调在服务器端的服务以及在客户端的服务,挑战非常大。你不可能强迫客户运行你的应用,而必须能协调和兼容原有的系统。这是非常关键的一点。” Greg Truty强调了设备管理的重要性。
引言
在现今信息技术发展中,数据同计算可以说是信息技术发展过程中的两个重要主题,在这两个主题的基础上,信息技术也逐渐出现了大数据技术概念。从严格意义来说,所谓大数据技术,即是针对于海量数据的分析、存储以及技术。对于这部分海量数据来说,我们很难直接对其进行应用,在获得数据之后,需要在经过一定处理后才能够获得有用的数据,如何能够实现大数据时代下数据同计算的科学协作、并能够将其形成一种机制,则成为了目前非常重要的一项问题。
1 计算同数据协作机制对比
对于面对数据系统来说,其一般为分布式系统类型,即通过将计算向数据进行迁移对系统中数据传递代价进行降低,可以说是一种通过计算对数据进行寻找的方式。要想对数据进行计算,实现数据的定位可以说是一项重要的前提,而数据切分以及存储方式情况也将对计算的模式以及处理效率产生影响。对此,要想对数据同计算间的科学协作进行实现,就需要对数据在分布式文件系统中的存储方式进行研究。而由于在分布式系统当中,需要对数据冗余、节点失效以及备份等问题进行解决,就对数据同计算协作价值的研究带来了较大的挑战。在两者协作机制研究中,数据同计算的一致性可以说是研究重点,需要首先从该方面进行讨论与解决。
1.1 位置一致性映射模型
对于分布式系统中数据同计算的一致性问题,我们可以将其理解为将两者在同一节点位置映射,即在数据存储区域发起计算。以网格计算系统为例,其到达客户节点的数据是计算先于数据,并根据客户端请求将数据映射到客户端中进行处理。对于Hadoop系统来说,就是先将数据存储到系统的一个节点当中,当系统发起计算时,再对元数据进行查询后对数据存储位置进行获得,并将计算任务映射到节点当中进行处理。根据此种情况,我们可以将计算同数据间的映射比作是数据到节点的映射过程,在该过程中,数据片同计算程序在按照一定规则到节点进行定位之后将两者注入到节点当中,而到该节点失效时,数据片则会按照相应的规则进行数据备份以及迁移,并重新按照规则实现到节点的对应。
在上述模型中,我们可以将计算视作是一种具有特殊特征的数据类型,这是因为对于计算而言,其自身就是程序语言设计的可执行程序片,在系统映射过程中,可以将其同数据进行同等的看待,且在程序中一般也将包括相关数据的逻辑位置信息。在分布式文件中,其中的定位算法也正是数据同节点间的映射功能,即要想对两者的一致性位置进行实现,就离不开分布式文件系统的支持。同时,由于在分布式系统中计算迁移、存储迁移以及数据冗余问题的存在,在具体功能实现时,也将对存储冗余以及均衡调度等技术进行结合性的应用,以此对两者科学协作、且具有稳定健壮特征的系统进行实现。映射方式方面,则有哈希映射以及元数据映射等。
1.2 元数据映射算法
对于该类算法来说,其可以说是最为基础的对存储位置同计算一致性进行实现的方法,在实际应用中,该方式通过数据块存储位置的查找使该位置能够同指定的存储节点进行映射,在其对计算同数据的定位实现中,同网络路由表原理较为类似,即两者通过对有路由的查询保证数据能够同计算被分配到同一个节点当中。对于应用该方式的系统来说,其一般为主从结构类型,如果其中出现单点失效情况,则将对整个系统产生较大的影响。对于HDFS以及GFS结构来说,就是以该数据方式构建的。在实际对数据进行存储时,其一般会根据节点目前存储负载情况进行判断,而为了避免结构对失效情况具有过高的敏感性,也有学者通过对元数据进行复制的方式提升系统可用性。
通过该方式的应用,则能够以较为便利的方式对机群系统目前状态进行利用,在以其为依据的基础上对系统的负载均衡进行实现。此时,系统主节点则会通过一定调度算法的应用对数据计算以及存储进行分配,在对系统负载均衡进行实现的同将分配信息作为元数据进行保存。目前,很多针对集群负载均衡算法都能够在元数据方法中进行应用、并将其作为对柱节点资源进行分配的依据。在实际应用中,虽然该方式在网络信息搜索以及大量复杂均衡算法的应用方面具有较好的表现,但当系统具有较多数量小文件时,则需要对路由数据进行大量的维护,并因此对数据的查询效果产生影响。
1.3 哈希映射算法
哈希算法是一种从稀疏到紧密值的映射方式,在计算以及存储定位时,可以将其视作路由算法的一种,通过该方式的应用,则能够将目标定位到节点位置。对于传统的哈希算法,其在扩展性以及容错性方面的表现都一般,并不能够较为有效的对面向数据系统节点的动态变化相适应,1997年,学者David Karger提出了使用一致性哈希算法对数据进行定位,并在后续的改进中逐渐使其成为了分布式存储中的标准技术类型。当系统对该方式进行应用之后,则不需要对中心节点元数据进行维护,可以说对普通元数据服务器性能瓶颈以及单点失效问题进行了较好的解决,其实现过程为:首先通过Key值的应用将MD5算法变换成一个32位长度的16进制数值,在以该数值进行232取模后将其映射到环状哈希空间,并以相同的方式将节点映射到环状哈希空间当中,此时Key则会在哈希空间中寻找到节点值作为路由值。
2 计算同数据的流式拓朴协作机制
2.1 Storm系统
流水线技术是对高性能数据进行处理的重要技术类型,其主要技术思想即将一个任务分解成多个具有前后关系的子任务,在流水线模式中,各个子任务的启动同之前顺序任务的完成情况具有依赖,对具有先后相关性数据分析方面具有较好的实用性特征。目前,以分布式系统以及流式技术为协作的框架机制已经在应用中表现出了较好的生命力以及灵活性,在本研究中,将以Storm系统为例进行简单的介绍。
Storm是由Twitter所推出的一种流式分布式系统,在该集群中,由多个工作节点以及一个主节点组成,其中,主节点可以说是系统的核心,具有任务布置、代码分配以及故障检测等作用。在该系统中,当其要对实时计算任务进行完成时,需要对一个Topology进行建立,并由该模块对数据处理进行规划。在Storm系统中,元组是基本的数据流单位,可以将其看作是一个被封装的数据结构类型,在Storm系统中,Topology可以说是最高级别的执行单元,其是由很多个节点所组成的拓扑,在拓扑中,由不同节点对相应的计算逻辑进行完成。在该系统中,Spout是系统的数据流生成器,而Bolt则为不同的处理位置。对于数据流来说,由于Spout为数据源头,在实际运行中,其在对数据进行读取之后则会实现向Bolt的传送,其不仅能够对多个输入流进行接收,且能够较好的对数据进行特定处理。在Storm系统对Topology进行应用之后,其则具有了更为强大以及更为灵活的数据处理能力,节点在根据Topology逻辑对任务进行分配之后将任务分配到相应物理节点之上。而从整个架构情况看来,在数据以及计算协作处理方面,系统主要是通过Topology进行分配,并在按照其描述之后由对应的节点程序进行处理,并由主节点将根据一个逻辑实现物理节点的映射。
2.2 流式拓朴映射模型
在Storm系统中,其通过Topology结构的应用,则能够对较为复杂的分布式数据处理任务进行实现,在整个过程中,对于不同计算任务,Topology好比是逻辑规划,并没有对相应的物理节点进行对应,在系统主节点中,可能具有数量较多的该种结构,而对于每一个结构都可以将其视作为对特殊问题进行处理的逻辑规划,可以说,通过Topology结构的应用,则能够对大多数问题的处理方式进行描述。其整个过程可以抽象如图1所示。
在图1中,每一个操作就可以将其是作为Bolt,而数据发生器则为Spout,在该系统中,同样由主节点对很多个处理节点进行管理与监控,对于每个任务的逻辑规划,主节点都会在一定策略的基础上对物理节点进行分配,以此对相关的计算恩物进行完成。如上图中,主节点为操作1分配物理节点1,为操作2分配物理节点2,为操作3分配物理节点3,为操作4分配物理节点1,在以该种方式进行分配之后,Topology则能够被映射为集群物理结构,并能够对相应的计算任务进行完成。而作为编程人员,在工作当中仅仅需要对Topology的逻辑结构进行定义即可,其后续相关工作则完全由系统进行维护,作为设计人员,在整个操作过程中也不需要对失效问题进行担心,这是因为当某个节点出现失效情况时,主节点将根据对应操作将其对一个好的物理节点进行重新的映射,以此保证整个规划能够得到顺利的实现。
通过上述的分析可以了解到,通过流式拓朴映射方法的应用,则能够使系统根据Topology描述的情况对不同的集群计算结构进行自动组合,以此以更为灵活的方式对复杂问题进行处理。在整个过程中,系统的主节点具有数据路由以及计算的作用,并通过Topology的描述对协作机制的跟踪定位进行实现。
在此,我们以MPS对Topology到物理的映射过程进行模拟,在节点间,将通过Mpi_Send()函数的应用将流数据元组注入到节点当中,并在该节点上对相关操作进行发起,之后,通过MPI_Recv()函数的应用对前端数据进行接收,以此对节点间通讯进行实现。对于该种方式来说,其能够对不同数据系统仅仅能够进行非实时数据批处理的问题进行了较好的避免,具有较好的应用效果。
3 结束语
在现今大数据时代背景下,数据同计算间的协作具有了更为重要的意义。在上文章,我们对大数据技术中计算与数据的协作机制进行了一定的研究,需要能够联系实际进行系统模式的选择与应用,以此更好的对数据处理任务进行实现。
参考文献
中图分类号:TP311 文献标识码:A 文章编号:1007-9416(2016)04-0000-00
20世纪80年代,计算机和互联网技术的发展使得数据量飞速增长,大数据是互联网技术发展到一定程度后必然出现的一种现象。
1数据挖掘的概念及功能
1.1 数据挖掘概念
数据挖掘是从大量的随机、模糊并带有噪声的数据集合中通过采用一定的算法对信息进行提取,发现规律和有用的价值信息的过程。一个完整的数据库挖掘系统主要包括了:数据库、数据库服务器、知识库、数据库挖掘引擎、模式评估模块、可视化用户界面。
1.2 数据挖掘方法和步骤
数据库挖掘的主要方法有基于遗传算法,粗集方法,决策树方法和神经网络方法。数据挖掘的一般步骤为:分析问题,判定源数据库是否满足数据挖掘的标准;提取、清洗和校验数据,去除数据中的噪声,得到数据完整、格式统一的数据;创建和调试模型,将选用的数据挖掘算法应用到数据中创建模型,通过数据来对模型进行校验和调整,得到满足使用要求的数据模型;维护数据挖掘模型,随着数据量的增加,需要对模型进行调整和维护,一些关键信息的改变有可能严重模型的精度,模型维护是数据挖掘的重要环节,通过模型维护可以保持模型的活力,不断完善模型。
1.3 数据挖掘的主要功能
数据挖掘的功能主要可以分为五大类:自动预测趋势和行为,关联分析,聚类分析,概念描述,偏差检测。采用数据挖掘技术在大型的数据库中寻找预测性信息,市场预测就是数据挖掘技术在自动预测趋势和行为方面的典型应用;关联分析是采用数据挖掘技术研究数据空中自变量和因变量之间的某种规律,找出数据库中存在的隐藏的关联网;聚类分析通过数据挖掘定义具有共同特征的子集,增强人们对于客观事实的理解和认识,数据挖掘技术避免了传统的模式识别和数学分类方法的片面性,是一个更加先进的聚类分析方法;概念描述建立在聚类分析的基础上,提取对象的特征,形成对概念的描述;偏差检测,数据库中的数据很可能存在着异常记录或者是数据噪声,通过偏差检测提出异常数据。
2数据挖掘技术的应用
数据挖掘技术已经应用在了各个行业中,数据量巨大的互联网行业、天文学、气象学、生物技术,以及医疗保健、银行、金融、零售等行业。通过数据挖掘技术将大数据融合在各种社会应用中,数据挖掘的结果参与到政府、企业、个人的决策中,发挥数据挖掘的社会价值,改变人们的生活方式,最大化数据挖掘的积极作用。以互联网行业为例,探究数据挖掘技术在社交网络中的应用。
互联网时代的信息爆炸给互联网用户的使用需求带来了一定的不便,用户如何快速获取有用信息,网站如何快速定位用户需求成为了研究课题。以社交网络为例,社区中的视频、音频、图片、文字等信息各式各样,每个人的兴趣、习惯不同,要得到的内容也不同。采用数据挖掘技术对社交网络数据分析,通过细分用户,挖掘不同用户的需求,开出出符合不同用户个性特征的服务和产品,满足WEB2.0时代对于网络个性化智能化的要求。
数据的采集和预处理是数据挖掘技术实现的前提,数据的预处理内容主要包括数据收集与录入、数据清洗与净化、用户识别、会话识别、文本提取。数据收集与预处理的系统结构图如图1所示。采集的数据一般会存放在数据库中,数据库中的数据具有组织性、结构性、易存取的特点,数据为了达到数据挖掘的要求还需要进行数据清洗、数据集成、数据转换和数据简化。
数据挖掘器的设计目的是对文本数据的内容进行分析与挖掘,提取能够代表和概括整个文本内容的标签。文本挖掘的步骤包括识别中文词,去除停用词,检测短语,检查同义词,创建单词向量。中文中字、句、段之间都有间隔,只有词之间没有,本文采用机械分词法进行识别处理,通过扫面句中字符串,将其余词典词语进行匹配,识别出词汇。去除停用词是将文本中常用的词汇去除,这些词汇在文本数据挖掘中属于无用词汇,去除后能够减小数据处理的复杂程度。检测短语和检测同义词的方法类似,都是通过类来实现,检测短语通过类PhrasesCache实现,检测同义词通过类SynonymousCache实现,通过词汇和记号词的匹配实现短语和同义词的识别。构建单词向量,通过单词向量来表示一个项目,单词向量是通过文本单词及其权重来构成的,通过单词检索可以得到用户想要获得的文档和信息。
3结语
本文主要分析了大数据的含义和特点,数据挖掘的概念和主要功能,着重探究了数据挖掘技术的主要应用,并结合数据挖掘技术在互联网社交网络中的应用进行了实例分析,通过数据挖掘技术更好的匹配用户想要得到的信息。
参考文献
[1]郭春.基于数据挖掘的网络入侵检测关键技术研究[D].北京邮电大学,2014.
1.大数据技术现状
当前许多企业都已基本实现了信息化建设,企业积累了海量数据。同时企业间的竞争日益加剧,企业为了生存及发展需要保证自身能够更加准确、快速和个性化地为客户提品及服务。而大数据技术能够从海量的数据中获取传统数据分析手段无法获知的价值和模式,帮助企业更加迅速、科学、准确地进行决策和预测。
1.1大数据技术现状
广大企业的迫切需求反之也促进了大数据技术的飞速发展,涌现出了诸如Hadoop、Spark等实用的架构平台。其中,目前最主流的就是Hadoop。Hadoop的分布式处理架构支持大规模的集群,允许使用简单的编程模型进行跨计算机集群的分布式大数据处理。通过使用专门为分布式计算设计的文件系统HDFS,计算的时候只需要将计算代码推送到存储节点上,即可在存储节点上完成数据本地化计算。因此,Hadoop实现了高可靠性、高可拓展性、高容错性和高效性,可以轻松应对PB级别的数据处理。
1.2大数据技术对烟草数据中心建设的影响
当前,烟草企业基于多年的信息化建设已经积累了海量数据,同时每天还不断有新的各种数据产生。在高并发、大体量的情况下,需要在数据采集、存储和运算方面采用与以往完全不同的计算存储模式,这就不可避免地需要采用大数据技术。同时,除了购进单、卷烟交易数据、货源投放数据等结构化数据外,还产生越来越多的非结构化数据,利用大数据技术,对非结构化数据进行预处理,可为人工判断和机器学缩减范围。对海量数据以及非结构化的信息进行分析统计,仅仅依靠传统的技术手段很难实现,只有引入大数据技术才能充分的将所有的数据资源利用起来,成为企业决策的助力。
2.江苏烟草数据中心应用现状
2.1江苏烟草数据中心体系架构
目前江苏烟草数据中心以一体化数据中心、一体化数据管理和一体化数据分析三个部分为核心,构建了一套完整的数据中心架构。一体化数据中心是整个数据中心最核心的部分。通过数据仓库模型、数据存储、ETL工具等组成部分,构建了业务数据的收集、加工、存储、分发的总体架构。建立了按ODS(SODS、UODS)、DW、DM三层结构设计建设的数据仓库。一体化数据管理通过主数据管理、信息代码管理、ESB平台构建了企业主数据收集、标准化、同步分发过程。结合指标管理,全面管控企业的公用基础信息。通过数据质量管理,全面有效管控数据质量。通过数据服务管理,有效提升数据中心的对外服务能力与水平。通过元数据管理来管理数据中心元数据。一体化数据分析通过构建移动信息、业务分析、数据挖掘三大模块,针对性解决当前不同人员的决策、管理以及操作需求,发挥数据中心的数据、技术、平台优势。通过移动信息模块为各级领导提供决策支持;通过业务分析模块为业务人员的日常工作提供支撑;通过数据挖掘模块,发掘数据所蕴含的隐性价值。基于上述一整套架构的支撑,目前数据中心构建了全省范围的数据集成、交换体系,一方面提升了全省基础数据、业务数据的规范化程度和数据质量,另一方面为在建业务系统的实施、已有系统的改造提供了标准化的高质量数据保障。
2.2大数据技术的应用场景分析
随着江苏数据中心的不断运行,一些基于传统技术架构的功能逐渐暴露出种种问题。其中较为突出的问题有:一是使用者对于大数据量数据的查询需求。基于传统技术架构的查询功能响应较慢;二是分析支持灵活性的不足。传统统计分析应用的数据结构大多是预先定义好的,面对灵活的非传统的统计查询需求难以支撑,需要进行额外的加工处理。江苏烟草数据中心结合互联网大数据技术特性,引入Hadoop平台以及Impala等工具,搭建基于大数据的自定义数据查询平台,以补充基于传统技术架构的功能不足,并为未来进一步发展建设基于大数据技术和云环境的数据中心做好准备。
3.基于大数据的自定义数据查询平台实现
3.1设计思路及架构
基于大数据的自定义数据查询平台是在现有数据中心的建设成果之上,以数据中心的数据存储为基础,以Hadoop、Hive、Impala等大数据技术工具为手段,以简单灵活、快速高效的查询展现为目标,建立的数据查询分析支持平台。
3.2技术方案
自定义数据查询平台的建设主要涉及数据存储架构、后台数据加工准备、前端展现三块内容。自定义数据查询平台的数据存储分为两部分。一部分为KETTLE、Impala等工具以及自定义查询相关的元数据存储,另一部分则是查询所需的各种统计数据的存储。元数据的存储根据元数据库的不同主要分为两部分。第一部分为基于Mysql数据库的元数据存储。这部分元数据主要包括有ETL工具KETTLE的元数据,以及前端自定义查询需要定义的权限、数据源、表、列和表列关系等信息。第二部分为基于Hive的元数据存储。这部分存储的是前端查询需要使用的Impala工具的元数据。统计数据的存储则是使用Hadoop的HDFS实现的。根据Hadoop平台架构,自定义数据查询平台的HDFS建立在6台虚拟主机构建的集群上的。其中:2台虚拟主机作为NameNode,一台为主节点,另一台为备份节点;其余4台虚拟主机都作为DataNode用于存储数据。所有数据将会统一分块自动分配存储到4个DataNode上。自定义数据查询平台的数据加工,是通过开源ETL工具KETTLE实现的。通过KETTLE从数据中心现有数据仓库及数据集市中读取需要的数据,根据自定义数据查询平台的数据模型定义对数据进行处理,最终加载到Hadoop的HDFS文件系统中。自定义数据查询平台的前端展现功能,主要是基于JSP技术实现页面开发,通过JDBC或者ODBC对后台Mysql数据库进行访问。使用者在查询页面中组织定义查询的内容,查询服务自动根据获取的元数据信息将定义的查询内容拼接转换成为查询SQL,之后通过Impala执行查询SQL对HDFS文件系统中的统计数据进行查询。
3.3系统实现效果
利用大数据技术,自定义数据查询平台较好地解决了目前数据中心所面对的问题,满足了使用人员对于大数据量以及分析灵活性的需求。面对使用人员层出不穷的查询需求,自定义数据查询平台通过预先梳理、分类定义各种维度以及统计指标。使用者可以自由的根据实际需求选择分析所需的维度及统计指标,同时还可以基于这些基础的内容更进一步自定义过滤条件以及计算公式,并指定其展现形式。在大数据量查询效率方面,自定义查询平台相比传统架构的查询功能有了较大提升。
4.结束语
大数据技术的发展方兴未艾,应用前景无比广阔,对各行各业的巨大作用正在逐步展现。江苏烟草数据中心的建设既要看到大数据技术未来的前景,更需要明确地认识到大数据平台的建设并非一朝一夕,需要有明确而长远的规划,不断完善数据环境建设、云计算环境的构建以及数据服务的扩展。
参考文献
[1]陈鹏.大数据时代下的信息安全问题研究[J].电子制,2015,18:48
中图分类号:TP311 文献标识码:A 文章编号:1007-9416(2016)05-0000-00
1数据挖掘与数据挖掘技术的方法分析
“数据海量、信息缺乏”是相当多企业在数据大集中之后面临的尴尬问题,由此而诞生的数据挖掘技术其实就是用以处理这一尴尬问题的技术。数据挖掘实际上是相对比较新型的一门学科,在几十年的发展过程中,已经不可同日而语。其实数据挖掘技术的本质就是人工智能技术,而数据挖掘技术的利用相对应的就是指人工智能技术的开发与应用,也就是说数据挖掘其实是依赖技术的提升来实现数据的整体创新的技术,所以,整个数据挖掘技术实际上是非常具有信息价值的,它能够帮助决策者更快的得到重要信息并作出决策,提高效率和准确率,是非常重要的知识凭证,能够在一定程度上提高当下企业的整体竞争力。
数据挖掘技术的核心就是分析,通过分析方法的不同来解决不同类别的问题,以实现数据挖掘的潜在内容。简单来说就是对症下药以保证药到病除。
1.1聚类分析法
简单来说聚类分析就是通过将数据对象进行聚类分组,然后形成板块,将毫无逻辑的数据变成了有联系性的分组数据,然后从其中获取具有一定价值的数据内容进行进一步的利用。由于这种分析方法不能够较好的就数据类别、属性进行分类,所以聚类分析法一般都运用在心理学、统计学、数据识别等方面。
1.2人工神经网络
人工神经网络是通过大批量的数据进行分析,而这种数据分析方式本身是建立在一定的数据模型基础上的,因此通常都可以随时根据数据需求进行分类,所以人工神经网络也是当下数据挖掘技术中最常用的一种数据分析方式之一。
1.3关联性分析法
有时数据本身存在一定的隐蔽性使得很难通过普通的数据分析法进行数据挖掘和利用,这就需要通过关联性分析法完成对于数据信息的关联性识别,来帮助人力完成对于数据分辨的任务,这种数据分析方法通常是带着某种目的性进行的,因此比较适用于对数据精准度相对较高的信息管理工作。
1.4特征性数据分析法
网络数据随着信息时代的到来变成了数据爆炸式,其数据资源十分广泛并且得到了一定的普及,如何就网络爆炸式数据进行关于特性的分类就成为了当下数据整理分类的主要内容。在上文中提到的人工神经网络数据分析也属于这其中的一种,此外还有很多方法都是通过计算机来进行虚拟数据的分类,寻找数据之间存在的普遍规律性完成数据的特性分析从而进行进一步分类。
2大数据时代下数据挖掘技术的具体应用
数据挖掘技术的具体流程就是先通过对于海量数据的保存,然后就已有数据中进行分析、整理、选择、转换等,数据的准备工作是数据挖掘技术的前提,也是决定数据挖掘技术效率及质量的主要因素。在完成数据准备工作后进一步对数据进行挖掘,然后对数据进行评估,最后实现运用。因此,数据挖掘能够运用到很多方面。
2.1市场营销领域
市场营销其实就是数据挖掘技术最早运用的领域,通常根据客户的具体需求,进行客户分析,将不同的消费习惯和消费特点的客户进行简单的分类管理,以此来保证商品能够顺利销售,并提高个人销售的成功率和业绩。而销售的范围也从最初的超市购物扩展到了包括保险、银行、电信等各个方面。
2.2科学研究领域
科学研究与实验测试等都需要对数据进行关系分析为进一步的实验和总结失败做准备,而实验测试和科学研究产生的数据往往是巨大的,因此数据挖掘技术在科学研究领域也得以广泛运用。通常都是通过科学研究内容选择数据挖掘技术分析法进行计算来找到数据中存在的规律,实现数据挖掘的部分价值――科学知识的分析与运用。
2.3电信业领域
随着信息化时代的到来,电信产业也飞速发展起来,到目前为止,电信产业已经形成了一个巨大的网络信息载体,如何将其中信息数据进行整合就成为电信产业发展过程中的重要问题。而数据挖掘技术的运用则在一定程度上解决了这一问题,大量的数据通过数据挖掘技术得到了有效分类,并在这个过程中通过运算得出数据之间的关联性,运用规律进一步进行数据分类。
2.4教育教学领域
教学评价、教学资源、学生个人基本信息等组成了教育教学领域的数据库,利用数据挖掘技术来实现教学资源的优化配置,对学生的个人信息整理归档,从而保证教育教学领域中数据整理的良好运作。
3结语
综上所述,数据挖掘技术对于当今社会的发展有着不可替代的作用,而如何改善当下数据挖掘技术中存在的问题,进一步提高数据挖掘技术的质量和效率就成为了数据挖掘技术进步的方向。本文通过对于数据挖掘与数据挖掘技术的方法分析和大数据时代下数据挖掘技术的具体应用两个方面对于数据挖掘技术进行了简要的阐述和分析,相信在未来伴随着科学技术的进一步发展,数据挖掘技术也将更加强大。
参考文献
大数据与数据仓库的异同
大数据时代的到来,确实对传统的数据仓库认知产生了重大的影响。什么是大数据?大数据的“大”实际上并不是最令人关注的特征。大数据是很多不同格式的结构化、半结构化、非结构化和原始数据,在某些情况下看起来与过去 30 年来我们存储在数据仓库中清一色的标量数字和文本完全不同。从另外一个角度来讲,小数据比较简单,有比较成熟的技术应对它。大数据是多种类型数据的组成,需要使用多种技术对待它。每一个识别和监测它的手段和方法是不一样的。
然而,很多大数据不能使用任何类似 SQL 这样的工具进行分析。对于企业及应用来说,数据仓库应用更加有效。两者并不形成替代,特别是银行业等行业里面,更多的是互为补充。
数据仓库的技术特点
被称为数据仓库之父的BillInmon在其著作《(Building the Data Warehouse))一书这样描述:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化(Time Variant)的数据集合,用于支持管理决策。可以从两个层面对数据仓库的概念进行理解,一是数据仓库是面向分析处理的,主要用来支持决策制定;二是数据仓库包含历史数据,是对多个异构的数据源数据按照主题的集成,它的数据相对固定,不会经常改动。
面向主题的:数据仓库的数据都是按照一定的业务主题进行组织的,面向主题体现在数据仓库的建设中,而且还包含在业务数据分析和存储上。
集成的:数据仓库中的数据来自各个不同的分散数据库中,它并不是对源数据库数据的简单拷贝,而是按照划分好的主题和数据分析要求,经过数据抽取、清理、汇总和整理等步骤,消除源数据中的错误和不一致的数据,保证数据仓库中数据的正确性和可用性。所以,它是整合集成的。
相对稳定的:数据仓库的稳定性体现在它的非易失性上,由于数据仓库是面向分析的,其中的数据是从业务数据中加载过来的历史数据,所进行的主要操作是查询和分析,供决策分析使用,所以其修改和删除操作很少,只需要定期的增量加载,所以具有相对稳定特征。
反映历史变化:数据仓库必须能够不断地捕捉业务系统中的变化数据,记录企业生产过程的各个阶段的信息,以满足决策分析的需要,所以必须实时地把新变化的业务数据追加到数据仓库中去,通过数据随时问变化的研究和分析,可以对企业的发展历程和未来趋势做出定量分析和预测。
选择实施方法
企业级数据仓库的实现通常有两种途径:一种是从建造某个部门特定的数据集市开始,逐步扩充数据仓库所包含的主题和范围,最后形成一个能够完全反应企业全貌的企业级数据仓库;另外一种则是从一开始就从企业的整体来考虑数据仓库的主题和实施。前一种方法是各个击破,投资少、周期短且易于见到成果,但由于该设计开始时是以特定的部门级主题为框架的,向其他的主题和部门扩充往往非常困难。而后一种方法恰恰相反:投资大、周期长,但是易于扩展。
以哪种方法进行实施,主要取决于各个行业和客户的实际情况。如电信和银行业,采用第二种方法比较可行,这是因为这两个行业业务发展变化快,为了能够适应将来的变化,整个数据仓库架构必须是可扩展的和易于维护的。如果只是基于部门级的需求去设计,将来肯定无法适应变化。如果重新设计,势必造成前期投入的浪费。对其他一些行业,如制造业和零售业,本着“急用先行”的原则,可以先从某一局部入手,慢慢扩展为数据仓库。
从技术上讲,以部门需求作为主要考虑因素建立的系统,它的数据量不会太大,会影响对将来数据膨胀风险的正确估计,当数据集市扩展到企业范围的时候,由于原有技术无法支撑新的数据规模,会造成数据装载和数据分析速度的降低,甚至达到不可用的地步。企业级的数据仓库会涉及更多的额业务系统,只有充分研究各业务系统,才能了解如何对不同格式、不同标准、不同接口的数据进行集成。
当然,对于第二种方法,也不是说把摊子铺的越大越好。合理的做法是“统筹规划,分步实施”。根据业务需求,把业务的主要方面都涵盖进去,确定彼此之间的联系;对于次要的需求,可以预留一些接口,以备将来细化。否则,如果整个调研周期拖得太长,等进入实施阶段,业务又发生变化,不得不重新修改设计,同样会造成浪费。
所以,先搭建好一个易于扩展且稳定的架构,在此基础上逐步实施,是一个兼顾长远发展与合理投入的最佳方式。此外,分步实施还可以减少风险:前一阶段的经验教训可以为下一阶段提供有益的借鉴,从而使得数据仓库的建设不断完善,不断发展。
结合先进技术 从业务需求出发
和其他的应用系统相比,数据仓库对于需求分析和系统设计等前期工作要求更高,其重要性也更加突出。可以说,分析和设计阶段决定了数据仓库最终的失败。因为需求不明确、设计不合理造成的根本性缺陷是以后实施阶段所无法弥补的。因此在分析和设计阶段,对相关的业务部门和技术部门要进行详细的调研,在用户和开发人员之间的迭代和反馈是必须和重要的,它决定了数据仓库最终的成功与否。
由于数据仓库是面向业务分析的,所以最主要的需求应该从业务部门获取和收集,因为数据仓库最终是要服务于业务部门的。需求抓的不准,导致将来将无法解决业务部门的问题,这个数据仓库项目就是失败的,技术再先进也没有用。这是衡量数据仓库成败与否的唯一尺度。
实施的过程中,最好能够把行业专家的经验,与企业现有的需求进行整合,以期得到一个更加全面的需求范围,有利于适应将来业务的变化和扩展。
从技术角度来讲,必须建立一个可伸缩、可扩展、高性能的数据仓库平台,才能为将来不断的完善、不断发展打下一个良好的基础;由于数据仓库项目要涉及多个业务系统,数据量非常庞大,所以本身的投入也是很大的,在保证系统高效稳定的前提下,尽量降低成本是非常重要的。
相关链接
数据仓库的类型
根据数据仓库所管理的数据类型和它们所解决的企业问题范围,一般可将数据仓库分为下列3种类型:操作型数据库(ODS)、数据仓库(Data Warehouse)和数据集市(Data Mart)。
操作型数据库(ODS)
既可以被用来针对工作数据做决策支持,又可用做将数据加载到数据仓库时的过渡区域。与 DW 相比较,ODS 有下列特点:ODS 是面向主题和面向综合的;ODS 是易变的;ODS 仅仅含有目前的、详细的数据,不含有累计的、历史性的数据。
数据仓库(Data Warehouse)
在当前的时代背景下,很多的行业都引入了大数据挖掘的理念,这既给计算机产业带来了发展机遇,也带来了挑战。因为想要做好大数据挖掘的相关工作,就一定要掌握数据分类算法,而数据分类算法可称得上是数据挖掘中的一道难关。随着数据分析的研究不断深入,人们开发了多种多样的分类算法,用以不断减轻其难度。通常都是以数据分类器为基准,进行相应的数据分类,包括决策树类、Bayes类、基于关联规则类以及利用数据库技术类,本文将对它们进行简单的阐述。
1 决策树分类算法
1.1 传统算法
C4.5算法作为传统的数据分类算法,有着很明显的优点,如规则简单易懂,实际操作易于上手。但是随着计算机的不断普及,数据的规模变的越来越庞大,其复杂程度也是日渐增长。C4.5已经逐渐无法满足新时期的数据分类处理工作了。并且由于决策树分类算法的规则,决定了在数据分类的过程中,要对数据进行多次重复的扫描和排序。特别是在构造树的时候,这种缺点更加明显。这不仅会影响数据分析的速度,也浪费了更多的系统资源。对于大数据挖掘来说,C4.5更加无法胜任,因为C4.5算法的适用范围十分有限,只能够处理小于系统内存数量的数据,对于内存无法保留的过于庞大的数据集,C4.5甚至会出现无法运行的情况。
1.2 衍生算法
(1)SLIQ算法和SPRINT算法都是由C4.5算法改良而来,在其基础上做了一些技术性的完善,例如增强了数据的排序技术,并采取了广度优先的处理策略。这使得SLIQ算法能够很好地记录数据处理的个数,并具有相当优秀的可扩展性,为处理大数据提供了基础条件。但是SLIQ算法也存在一些缺点,由于它是以C4.5算法为基础的,因此在进行数据处理时,仍需要将数据集保留在内存中,这就导致SLIQ算法的可处理数据集的大小受到了限制。即数据记录的长度一旦超过了排序的预定长度,SLIQ算法就很难完成数据处理和排序的工作。
(2)SPRINT 算法是为了解决SLIQ算法中数据集大小受到内存限制的问题而开发出来的。SPRINT 算法重新定义了决策树算法的数据分析结构,改变了传统算法将数据集停留在内存中的做法。值得一提的是,它没有像SLIQ 算法那样讲数据列表存储在内存当中,而是将其融合到了每个数据集的属性列表中,这样既避免了数据查询时重复扫描造成的速度缓慢,又释放了内存的压力。特别是在进行大数据挖掘时,由于数据的基数过大,在每个数据集的属性列表内寻找所需数据能够大大节省分析的时间,对数据进行分类的工作也变得更加便捷。但是SPRIT算法同样存在一些缺点,对于不具有可分裂属性的数据列表,由于它只能在数据集内进行分析,结果可能不是十分准确,导致其拓展性受到了限制。
2 其他分类算法
2.1 Bayes分类算法
Bayes分类算法是利用概率统计学而开发出来的一种算法,在目前数据分类中应用比较广泛。但是其缺点也比较明显,由于Bayes分类算法需要在分析之前对数据的特性做出一定的假设,而这种假设往往缺少实际数据的理论支持,因此在数据分析过程中就很难做到准确有效。在此之上,TAN算法又被开发出来,它是为了提高Bayes分类算法的假设命题的准确率,也就是降低了NB任意属性之间独立的假设。
2.2 CBA分类数据算法
基于关联规则的分类算法就是CBA分类数据算法。这种算法一般需要用到数据构造分类器,在数据分析的过程中,先搜索到所有的右部为类别的类别关联规则,这被称为CAR;然后再从CAR中选择合适的数据集。CBA算法中主要用到的是Apriori算法技术,它能够使潜在的数据关联规则呈现到表面,方便进行归纳整理。但是由于其在进行数据分类时容易出现疏漏,因此经常采用设置最小支持度为0的办法来减少遗漏的数据,这就造成了算法的优化作用不能完全发挥,降低了运行效率。
2.3 MIND和GAC-RDB算法分类算法
在大数据挖掘的背景下,未来数据分类算法的发展方向应当是以数据库技术为基础的的分类算法。尽管很久之前就已经有一些专门研究数据库的人员发现并提出了基于数据库技术的分类算法,但是并没有得到实际运用。因为在进行数据挖掘和数据分析的时候,很难将其与数据库的系统集成,目前来说,MIND和GAC-RDB算法还能够较好地解决这个问题。
2.3.1 MIND算法
MIND算法与决策树算法有些相似,都是通过构造数据分类器来进行数据分析。但是MIND算法采用了UDF方法和SQL语句来与数据库系统实现关联。在进行数据分析时,UDF方法能够大大缩短对每个节点的数据特性进行分析的时间,这样就在为数据库的集成提供了理论基础。SQL语句是通过对数据集的属性进行分析,以便从中选择出最合适的分裂属性,然后给数据排序,这样就节省了数据分类的时间。但是MIND算法还不能直接在数据库系统中实现查询功能,更重要的是,该算法的维护成本过高,不利于普及。
2.3.2 GAR-RDB算法
GAR-RDB算法在MIND算法的基础上进行了更多的改进,能够充分利用数据库系统进行聚集运算,也就是实现了数据库系统的集成。该算法拥有分类准确,分析迅速,执行更快的优点,同时可拓展性也比较出色。更重要的是,它可以充分利用数据库提供的查询功能,从而避免了重复扫描数据集的现象,缩短了分析的时间,节约了系统资源。只要在自动确定参数取值的技术上进行一些改进,该算法就能很好地胜任大数据挖掘的数据处理工作。
3 总结
大数据挖掘是时展的潮流,因此数据分类算法的重要性也将随着显现。通过分析几种不同的算法,能够在数据分析速度、可扩展性和结果的准确性上进行比较,从而选择最适合的数据分类算法。它们都在不同程度上有着各自的优缺点,因此要继续深入研究以开发出更好的分类算法。
参考文献
[1]钱双艳.关于数据挖掘中的数据分类算法的综述,2014(13).
1 引言
随着电信网络的不断演进,全省数据网、交换网、接入网设备单月产生告警原始日志近亿条。以上告警通过网元网管、专业综合网管、智能网管系统[1]三层收敛,监控人员每月需处理影响业务或网络质量的告警事件为20万条,但一些对网络可能造成隐患的告警信息被过滤掉。如何从海量告警数据中获取与网络性能指标、运维效率相关的有价值的数据,对于传统的关系型数据库架构而言,似乎是一个不可能完成的任务。
在一般告警量情况下,ORACLE数据处理能力基本可以满足分析需求,但当告警分析量上升到亿级,如果采用传统的数据存储和计算方式,一方面数据量过大,表的管理、维护开销过大,要做到每个字段建索引,存储浪费巨大;另一方面计算分析过程耗时过长,无法满足实时和准实时分析需求。因此必须采用新的技术架构来分析处理海量告警信息,支撑主动维护工作显得尤为必要,为此我们引入了大数据技术。
2 分析目标
(1)数据源:电信运营商网络设备告警日志数据,每天50 G。
(2)数据分析目标:完成高频翻转类(瞬断)告警分析;完成自定义网元、自定义告警等可定制告警分析;完成被过滤掉的告警分析、TOPN告警分析;核心设备和重要业务监控。
(3)分析平台硬件配置:云计算平台分配8台虚拟机,每台虚机配置CPU16核;内存32 G;硬盘2 T。
3 制定方案
进入大数据时代,行业内涌现了大量的数据挖掘技术,数据处理和分析更高效、更有价值。Google、Facebook等公司提供可行的思路是通过类似Hadoop[2]的分布式计算、MapReduce[3]、Spark[4]算法等构造而成的新型架构,挖掘有价值信息。
Hadoop是Apache基金会用JAVA语言开发的分布式框架,通过利用计算机集群对大规模数据进行分布式计算分析。Hadoop框架最重要的两个核心是HDFS和MapReduce,HDFS用于分布式存储,MapReduce则实现分布式任务计算。
一个HDFS集群包含元数据节点(NameNode)、若干数据节点(DataNode)和客户端(Client)。NameNode管理HDFS的文件系统,DataNode存储数据块文件。HDFS将一个文件划分成若干个数据块,这些数据块存储DataNode节点上。
MapReduce是Google公司提出的针对大数据的编程模型。核心思想是将计算过程分解成Map(映射)和Reduce(归约)两个过程,也就是将一个大的计算任务拆分为多个小任务,MapReduce框架化繁为简,轻松地解决了数据分布式存储的计算问题,让不熟悉并行编程的程序员也能轻松写出分布式计算程序。MapReduce最大的不足则在于Map和Reduce都是以进程为单位调度、运行、结束的,磁盘I/O开销大、效率低,无法满足实时计算需求。
Spark是由加州伯克利大学AMP实验室开发的类Hadoop MapReduce的分布式并行计算框架,主要特点是弹性分布式数据集RDD[5],中间输出结果可以保存在内存中,节省了大量的磁盘I/O操作。Spark除拥有Hadoop MapReduce所具有的优点外,还支持多次迭代计算,特别适合流计算和图计算。
基于成本、效率、复杂性等因素,我们选择了HDFS+Spark实现对告警数据的挖掘分析。
4 分析平台设计
4.1 Hadoop集群搭建
基于CentOS-6.5系统环境搭建Hadoop集群,配置如表1所示。
4.2 Spark参数设置[6]
Spark参数设置如表2所示。
4.3 数据采集层
数据采集:由于需采集的告警设备种类繁多,故采取分布式的告警采集,数据网设备、交换网设备、接入网设备分别通过IP综合网管、天元综合网管、PON综合网管进行采集,采集周期5分钟一次。采集机先将采集到的告警日志文件,通过FTP接口上传到智能网管系统文件服务器上,再对文件进行校验,通过Sqoop推送到Hadoop集群上。
4.4 逻辑处理层
(1)建立高频翻转告警监控工作流程
先将海量告警进行初步删选,通过数量、位置和时间三个维度的分析,得出高频翻转类告警清单列表,最后由专业工程师甄别确认,对某类告警进行重点关注和监控。
(2)差异化定制方案
按组网架构细分,针对核心重要节点的所有告警均纳入实时监控方案;
按业务网络细分,针对不同业务网络设计个性化的监控方案;
按客户业务细分,针对客户数字出租电路设计个性化的监控方案。
4.5 数据分析层
Spark读取Hive[7]表的告警数据,然后在Spark引擎中进行SQL统计分析。Spark SQL模K在进行分析时,将外部告警数据源转化为DataFrame[8],并像操作RDD或者将其注册为临时表的方式处理和分析这些数据。一旦将DataFrame注册成临时表,就可以使用类SQL的方式操作查询分析告警数据。表3是利用Spark SQL对告警工单做的一个简单分析:
5 平台实践应用
探索运维数据分析的新方法,利用大数据分析技术,分析可能影响业务/设备整体性能的设备告警,结合网络性能数据,找到网络隐患,实现主动维护的工作目标。
5.1 高频翻转类告警监控
首先制定了高频翻转类告警分析规则,将连续7天每天原始告警发生24次以上定义为高频翻转类告警,并基于大数据平台开发了相应的分析脚本,目前已实现全专业所有告警类型的分析。表4是全省高频翻转类TOP10排名。
5.2 核心设备和重要业务监控
目前以设备厂商或专家经验评定告警监控级别往往会与实际形成偏差,主要表现在以下几个方面:监控级别的差异化设定基于已知的告警类型,一旦网络重大故障上报未知的告警类型就无法在第一时间有效监控到;同一类型的故障告警出现在不同网络层面可能影响业务的程度是完全不同的;不同保障级别的客户对故障告警监控的实时性要求也是不同的。
通过大数据分析平台对差异化监控提供了灵活的定制手段,可根据告警关键字,分专业、地市、网管、机房、告警频次等维度自主定制需要的告警数据,实现日、周、月、某个时间区等统计分析。
应用案例:省NOC通过大数据分析出一条编号为CTVPN80113的中国平安大客户电路在一段时间内频繁产生线路劣化告警,但用户未申告,省NOC随即预警给政企支撑工程师,政支工程师与用户沟通后,派维护人员至现场处理,发现线路接头松动,紧急处理后告警消除、业务恢复。
5.3 被过滤告警分析
全省每天网络告警数据300万条~500万条,其中99%都会根据告警过滤规则进行过滤筛选,把过滤后的告警呈现给网络监控人员。过滤规则的准确性直接影响告警数据的质量。一般来说告警过滤规则可以从具有丰富运维经验的网络维护人员获得,但是这个过程非常繁琐,而且通过人工途径获得的告警过滤规则在不同的应用环境可能存在差异,无法满足网络维护的整体需要。采用大数据技术对被过滤的告警进行分析可以很好地完善过滤规则,让真正急迫需要处理的告警优先呈现给维护人员及时处理,真正做到先于客户发现故障。表5是动环专业被过滤的告警情况分布。
5.4 动环深放电分析
动环网管通过C接口采集蓄电池电压数据,在停电告警产生之后,电压数据首次下降到45 V,表示该局站电池出现深放电现象,通过计算这一放电过程的持续时间,记为深放电时长,该时长可以初步反映电池的放电性能。一个局站每天产生几十万条电压等动环实时数据。
在告警数据分析的基础上,实现对蓄电池电压变化数据的分析,提醒分公司关注那些深放电次数过多和放电时长过短的局站,核查蓄电池、油机配置、发电安排等,并进行整治。利用Spark SQL统计了一个月内抚州、赣州、吉安三分公司几十亿条动环数据,分析了其中深放电的情况如表6所示。
6 结论
本文利用HDFS+Spark技术,实验性地解决告警数据存储和分析等相关问题:一是通过数据分析,从海量告警数据中发现潜在的网络隐患;二是结合资源信息和不同专业的告警,最终为用户提供综合预警;三是转变网络监控思路和方式,通过数据汇聚、数据相关性分析、数据可视化展示,提高了网络监控效率;最后还扩展到对动环实时数据、信令数据进行分析。
从实际运行效果来看,HDFS和Spark完全可以取代传统的数据存储和计算方式,满足电信运营商主动运维的需求。
参考文献:
[1] 中国电信股份有限公司. 中国电信智能网管技术规范-总体分册[Z]. 2015.
[2] Tom white. Hadoop权威指南[M]. 4版. 南京: 东南大学出版社, 2015.
[3] RP Raji. MapReduce: Simplified Data Processing on Large Clusters[Z]. 2004.
[4] Spark. Apache Spark?[EB/OL]. [2016-11-27]. http:///.
[5] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing[J]. Usenix Conference on Networked Systems Design & Implementation, 2012,70(2): 141-146.
[6] S鹏. Apache Spark源码剖析[M]. 北京: 电子工业出版社, 2015.
[7] Hive. Apache HiveTM[EB/OL]. [2016-11-27]. http:///.
[8] Holden Karau, Andy Konwinski, Patrick Wendell, et al. Learning Spark: Lightning-Fast Big Data Analysis[M]. Oreilly & Associates Inc, 2015.