时间:2023-03-21 17:17:13
引言:寻求写作上的突破?我们特意为您精选了12篇数理统计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
2注意数学命题的转换命题转换
简单地说就是把一个命题转换为另一个命题.命题转换本质上就是变换问题,通过改变问题的叙述和形式,改变观察和分析问题的角度,使问题呈现出新的面貌,引发新的思考和联想,从而使问题获得解答.命题转换是数学命题理解的一种重要方法,对数学命题的学习具有非常重要的意义.命题转换不仅可以深化对原有命题的理解,优化学习者的认知结构,而且有利于学生创造性思维能力的培养以及良好数学素养的形成.在概率统计的教学中,有时需要将严谨的数学语言转换成通俗语言.如在讲授参数估计中点估计问题时,教材是这样描述的:所谓点估计问题就是要构造一个适当的统计量12ˆ,,,nXXX,用它的观测值12ˆ,,,nxxx来估计未知参数.通过提问发现,学生对点估计并不十分理解,但看了例题后不用知道这个概念也会做相关习题.其实完全可以将点估计概念换一种方式叙述,即所谓点估计就是通过构造样本函数的方法将未知参数的值估计出来.这样一来,学生对点估计理解就会很容易了.由于形象记忆比抽象记忆更容易被学生接受,因此,在授课过程中有时也需要将代数语言与几何语言做转换.如在讲授连续型随机变量的概率密度函数的性质时,概率密度函数有2个基本的性质:转换成几何语言就是:概率密度函数f(x)几何上表示一条位于x轴上方的曲线并且此曲线与x轴之间所围图形的面积是1.如果学生能记住这样一个几何印象,那么对于概率密度函数的性质就会牢记于心了.另外,在概率统计课程的教学中有时也需要注意数学命题的逻辑转换.如在讲授随机变量的数学期望的性质时,有命题:如果2个随机变量X和Y相互独立,由于原命题与逆否命题是等价的,因此,则一定可以推出随机变量X和Y不独立.数值反映了随机变量X和Y之间的某种关系,这就是后面要学习的协方差概念.
3注重对概念的正确理解
数学学习的关键是理解,概率统计的学习也不例外.理解与记忆是相互渗透、相互促进的.就一本教材而言,它的内容无非主要是概念、性质以及例题和习题等.其中,对概念的正确理解是第一步的,是理解性质、例题和习题的基础,如果对概念能正确理解,那么对性质、例题、习题的理解也会融会贯通.相反,如果学生从一开始就通过死记硬背的方式把概念记下来,那么学生就只能从头背到尾,无法深入地理解和掌握所学的知识.所以,正确地理解数学概念是非常重要的.如在讲授随机变量的数字特征方差时,随机变量X的方差D(X)定义为:随机变量X的期望E(X)表示随机变量X的平均取值,这样2(XE(X))的大小可以表示随机变量X的取值与其平均取值的偏离程度,再取期望后偏离程度就变成平均偏离程度了,因此随机变量X的方差2D(X)E(XE(X))表示随机变量X的取值与其平均取值的平均偏离程度.在讲授点估计量的评价标准时,课本对有效性的定义为:设1ˆ和2ˆ都是参数的无偏估计量,则称1ˆ较2ˆ有效.在讲完有效性定义后,可以向学生提出问题:为什么称一个方差小的无偏估计量比方差大的无偏估计量更有效.这时有的学生就会觉得这个问题有些奇怪,因为他们觉得这就是一个定义没有为什么.在他们看来定义就是一个一成不变的东西,其实不然,作为教师应该向学生阐明定义总是有根据的,既然称1ˆ较2ˆ有效,就一定有其缘由的.方差刻画的是随机变量取值偏离其平均取值的平均偏离程度.由于1ˆ和2ˆ都是参数的无偏估计量,故1ˆ和2ˆ的平均取值都是参数的真值,所以方差小意味着其与参数的真值偏离来得小,从而方差小的无偏估计量更有效.通过这样的解释,学生对这个定义的理解就相当透彻,也无需刻意对这个定义进行记忆.
2推行“过程式”考核方式研究
讲课中引入”探究式”教学法,从以教师为主转变成转换到以学生为主,教师设置的探究的问题可以是从学科领域或现实生活中选择和确定研究统计案例,以小组为单位,在教学中创设一种类似于学术研究的情境,通过学生自主、独立地发现问题、实验、操作、调查、信息收集与处理、表达与交流等探索活动,有助于真正让学生获得知识、技能、情感与态度的发展,特别是探索精神和创新能力的发展。而为更好的提高教学效果,应在“探究”的过程中进行“过程式”考核方式,通过教学过程中的一系列考核方式的改革,一方面可以激发学生对《医药数理统计》这门课程学习的兴趣和热情,培养学生学习的独立性与主动性;另一方面又能培养学生对知识的融会贯通和灵活应用能力,这是培养学生创新素质的有效途径。首先,因为考核的主要依据是应使学生基础知识和基本技能不断充实,自主学习内容和运用知识能力逐步增强,更加注重学生学习效果的评价。因此在授课过程中应重点考核学生的学习态度、学风与学习的主动性、创新性,增加统计软件、实际调查和文献纠错等内容考核,加强统计理论和实践的联系,重视考查学生分析问题、解决问题的能力,提高学生综合创新素质。其次,“过程式”考核的形式应该更加多样,在探究式教学的过程中应注意对各知识点的考核,在考核过程中,根据专业和学生层次的不同,灵活采用笔试、口试、答辩式、专题报告式、论文式、实践技能操作等多种考核方式。最后除传统考核手段之外,建立统计辅助教学与考核平台,将过去仅能通过一张试卷考计算,理论推导的考核方式,改变为通过统计辅助教学与考核平台进行计算机考核的方式,提高学生动手能力,进行数据分析解决实际问题的能力,提高学生综合创新素质。
2问题的解决方案
2.1从整体内容上把握教材
根据《概率论与数理统计》教材,该课程整体上是讲述三个大的问题:一是概率论部分,介绍必要的理论基础;二是数理统计部分,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析的方法;三是随机过程部分,在讲清基本知识的基础上主要讨论了平稳随机过程,是随机变量的集合,能完全揭示概率的本质。课本上的很多问题都是围绕这三个问题来讲述的,因此,要打破“重理论,轻应用”“重概率,轻统计”的教学思想,且从整体上完整地对这三个问题进行讲授。由于概率论与数理统计的知识点多而零散,初学者对知识点不容易全面系统地把握,所以老师在教学中要经常引导学生进行简单复习回顾,从而使学生能够高效而快速地理解所学知识,系统掌握这有机结合的三部分内容。
2.2在讲授中要有其客观背景
很多学生虽然在中学接触过概率知识,但那只是皮毛,大学更注重的是思想的培养,而且本课程从内容到方法与其它数学课程都有本质的区别。因此,老师在讲解基本概念时,一定要把来龙去脉讲清楚。比如在评价棉花的质量时,“既需要注意纤维的平均长度,又需要注意纤维长度与平均长度的偏离程度,平均长度较大,偏离较小,质量较好”,这些常识性知识容易理解,学生也有兴趣听,然后就此引入概念———这是由随机变量的分布所确定的,能刻画随机变量某一方面的特征的常数统称为数字特征,它在理论和实际应用中都很重要。由此就很自然地引出了数字特征、数学期望、方差、相关系数和矩,这样学生就很好地理解了概念的实际背景。也就是说,在概念定理的教学中,首先应该在概念、定理产生的背景上下功夫,找出每个概念的实例,用大量事实来说明提出这些概念定理的客观依据是什么,它在实际应用中有什么意义。比如,一个随机变量由大量的相互独立的随机因素综合影响而形成,而且其中每一个个别因素在总的影响中所起的作用都是微小的,这种随机变量往往近似服从正态分布,那么这种现象正是中心极限定理的客观背景;再如,在介绍随机过程时,不妨从随机过程实例出发,如股票和汇率的波动、语音信号、视频信号、体温的变化等等。如果忽视了概念与定理产生的实际背景,离开实际去讲概念和定理,学生会觉得学习内容枯燥,而且也很难理解,更不会应用于解决实际问题,这样就降低了学习的积极性,也没有发挥该课程的功能。
2.3在教学过程中使用案例教学
案例教学的主角是学生,通过学生之间对概念、定义、定理、标注、例题积极主动的讨论,以达到更深入理解和掌握的目的。在教学中引入的案例,要能够激发学生的学习兴趣、学习积极性和参与讨论的主动性。如何选取案例,就要求教师在备课当中多花时间找资料、思考,在教学案例中尽可能选取社会热点、先进的科技信息为案例素材,尤其财经类院校应尽可能编写一些涉及财经信息方面的案例。比如,讲到随机变量内容部分,定要在金融经济学中编写涉及到的随机变量的案例;讲到中心极限定理部分,投资学中期权定价理论就是一个很好的案例;讲到参数估计和评价时,保险精算中对平均寿命函数的估计和评价则是很好的案例;随机过程部分,分数布朗运动投资组合的风险度量都是很好的案例等等。如此教学,才能激发学生的学习兴趣,在讨论中逐步体会基本概念、定义、定理的来龙去脉,实现了有效学习,培养了学生解决实际问题的能力和抽象概括、推理论证的能力。
2.4重视引导学生主动思考问题
培养创新思维“在教学过程中提出一些思考性和启发性都很强的问题,让学生分析、研究和讨论,引导学生去发现问题,分析问题,然后解决问题。”学生的学习要自觉要靠自己,不是由教师牵着走,而是由教师引导走,“授人与鱼,只供一日之炊;授人与渔,使人受益终身”,所以教师应多引导、鼓励学生主动思考问题。比如,教师在每次课结束前5分钟进行下堂课新知识的介绍时,对本堂课学的知识点和前面学过的知识做个串联,最好能随手画出知识点“网络状”图,引导学生积极思考,引出下次课要讲的内容,勾起学生的预习兴趣。再如,在讲课时,教师可以针对本节课的内容设计一系列“问题链”,用“问题链”带动和完成课堂教学,可很好地引导学生主动思考、创造性思维,引导学生思考、发现问题,讨论、做出结论,从而逐步地使教学由“灌输式教育”向“创新型教育”转变,教学互动,教学相长。同时,教师一定要想方设法改变“学生被动接受知识”为自主、有兴趣地去学习知识,引导和组织学生展开讨论,鼓励学生提出大胆的猜想,及时解决学生提出的问题,激发学生的求知欲,注重教学方法的灵活运用,鼓励学生动手探究和创新,这样教学效果才会明显。
2设计趣味案例,激发学生学习兴趣2015年1月5日
随着互联网的迅猛发展、电脑的普及、各种游戏软件的开发,很多大学生喜欢在网上玩游戏。教师可以抓住大学生爱玩游戏这一特点,况且概率论的起源就来源于赌博游戏,教师可以在讲授知识时,由一个游戏出发,循循诱导学生从兴趣中学到知识,再应用到生活中去。例如,在讲解期望定义时,可以设计这样的一个游戏案例:假设手中有两枚硬币,一枚是正常的硬币,一枚是包装好的双面相同的硬币(即要么都是正面,要么都是反面,在抛之后才可以拆开看属于哪种)。现在让学生拿着这两枚硬币共抛10次,一次只能抛一枚,抛到正面就可以获利1元钱,反面没有获利,问学生选择怎样一种抛掷组合,才能使预期收益最大?教师留给学生思考的时间,然后随机抽一位同学回答,并解释其理由。大部分学生选择先抛后面那枚硬币,如果发现两面都是正面,那么后面9次都抛这枚,如果是反面,那后面9次都抛前面那枚硬币。这种抛掷组合确实是最优的,但总是说不清其中的道理来。这时教师可以向学生解释,其实大家在潜意识中已经用到了期望,然后利用期望的定义为大家验算不同抛掷组合的期望值来说明大家选的组合确实是最优的,这时学生豁然开朗,理解了期望的真正含义。游戏可以继续,如果将若干个包装好的非正常硬币装入一个盒子里,比如将5枚双面都是反面的、1枚双面都是正面的硬币装入盒子里,学生从中摸一个硬币出来,再和原来那枚正常的硬币一起共抛10次,也可以选择不摸硬币,直接用手中正常硬币抛10次。这个时候,原来那种抛掷组合还是最优的吗;如果再改变箱子中两种硬币的比例,比如9枚双面是反的,1枚双面都是正的,结果又是怎样等等,这些问题可以留给学生课后思考,并作为案例分析测试题。按照上述设计教学案例,不仅让学生轻松学到知识,激发学生学习的能动性,还可以提高学生自己动手解决实际问题的能力,培养学生的创新能力。
3精选实用型案例,引导学生学以致用
如在讲解全概率公式时引入摸彩模型,中奖的概率是否与抽奖的先后顺序有关。利用全概率公式可以证明与顺序无关,大家机会是平等的。又如讲解事件独立性可以引入比赛局数制定的案例,如果你是强势的一方,是采取三局两胜制还是五局三胜制,这个例子也可以用大数定理来解释,n越大,越能反映真实的水平。又如设计车门高度问题,公共汽车车门的高度是按成年男性与车门顶头碰头机会在0.01以下来设计的:设某地区成年男性身高(单位:cm)X~N(170,36),问车门高度应如何确定?这个用正态分布标准化查表可解决。合理配备维修工人问题:为了保证设备正常工作,需配备适量的维修工人(工人配备多了就浪费,配备少了又要影响生产),现有同类型设备300台,各台工作是相互独立的,发生故障的概率都是0.01。在通常情况下一台设备的故障可由一个人来处理(我们也只考虑这种情况),问至少需配备多少工人,才能保证设备发生故障不能及时维修的概率小于0.01?这样的问题在企业和公司经常会出现,我们用泊松定理或中心极限定理就可以求出。学生参与到实际问题中去,解决了问题又学到了知识,从而有成就感,学习就有了主动性。
4运用多媒体及统计软件进行经典案例分析
在概率统计教学中,实际题目信息及文字很多,需要利用统计软件及现代化媒体技术。其一,采用多媒体教学手段进行辅助教学,可以使教师节省大量的文字板书,避免很多不必要的重复性劳动中,从而教师就可以将更多的精力和时间用于阐释问题解决的思路,提高课堂效率和学生学习的实际效果,有效地进行课堂交流。其二,使用图形动画和模拟实验作为辅助教学手段,可以让学生更直观地理解一些抽象的概念和公式。如采用多媒体教学手段介绍投币试验、高尔顿板钉实验时,可以使用小动画,在不占用过多课堂教学时间的同时,又能增添课堂的趣味性。而在分析与讲解泊松定理时,利用软件演示二项分布逼近泊松分布,既形象又生动。如果在课堂教学中使用Mathematica软件演示大数定律和中心极限定理时,就可将复杂而抽象的定理转化为学生对形象的直观认识,以使教学效果显著提高。在处理概率统计问题过程中,我们经常会面对大量的数据需要处理,可以利用Excel,SPSS,Matlab,SAS等软件简化计算过程,从而降低理论难度。不仅如此,在教师使用与演示软件的过程中,学生了解到应用计算机软件能够将所学概率论与数理统计知识用于解决实际问题,从而强烈激发学生学习概率知识的兴趣。
1.2适当布置思考题当今是一个信息大爆炸的时代,学生大多思维活跃,善于动脑,部分学生会觉得老师都是在照本宣科,毫无新意,学习没有挑战性。教师可以适当布置一些相关的思考题,以便满足不同层次学生的需求。例如,在讲授几何概型时,可以将著名的“贝特朗”奇论抛给学生。此问题有三种不同的解答。教师可以先与学生共同探讨出一种解法,剩余的解法留给学生思考。也可以鼓励学生挖掘出新的解法,甚至新的结果,让学生去思考贝特朗奇论出现的根本原因是什么。这样既满足了部分学生的求知欲,又可以活跃课堂气氛,提高教学效果。
2注重与生活的联系,让学生感受到学习的重要
2.1体验生活常识“概率论与数理统计”是应用性很强的一门数学学科,它在众多领域都有广泛的应用。如果仅仅是这样跟学生讲,学生可能没有任何感觉,甚至有些反感。事实上,它在我们的日常生活中也是随处可见的。如果在讲授相关知识时,能够结合我们的日常生活,从学生身边熟悉的事物出发,相信可以收到事半功倍的效果。下面将给出几个具体实例:例1:在讲授古典概率或者数学期望时,可以路边摊的“摸球游戏”为例。袋子中装有12个除颜色外,大小形状均相同的6个红球,6个白球,现从中不放回的摸取6个球,若所摸到的球为6红则奖励100元,5红1白奖励50元,4红2白奖励20元,3红3白罚款100元,2红4白奖励20元,1红5白奖励50元,6白奖励100元,你会心动吗?这个游戏貌似是稳赚不赔,但是利用古典概率计算会发现,3红3白的概率远远大于其他情况的概率。类似的街边中奖游戏很多,如果我们学习了概率论的相关知识,就会大大减少上当的机会。
例2:在讲解古典概率中的“盒子模型”时,可以“生日问题”为例。比如,授课班级有50名学生,那么可以让学生猜一下至少有两个人同一天生日的概率有多大。这个概率乍看很小,但是通过“盒子模型”计算出来的结果却令人匪夷所思,当班级有50个人时,至少两个人同一天生日的概率居然达到0.9704!在此可以让学生进一步思考,在大街上至少两个人是老乡的概率又会有多大呢?肯定也是相当大的,因此可借此提醒学生在陌生场合一定要小心陌生人以“老乡”“、有缘”之类的话搭讪,谨防上当受骗。除此以外,身边还有很多的例子,比如在讲授贝叶斯公式时可以寓言故事“狼来了”为例,让学生分析一下为什么狼真的来了之后却没人来救;在讲授复杂的全概率公式时,可以“抽签问题”为例。假设在10根签中,1根有奖,现有10个人轮流抽签,问这样抽签是否公平呢?这个问题是在我们日常生活中经常见到,很多学生认为第一个抽签的人中奖率一定是高于最后一个人的,然而事实并非如此。利用全概率公式得出的结果却是第十个人与第一个人的中奖概率是一样的,都是0.1。这些问题既生动有趣又贴近生活,从而能够激发学生探究的兴趣,充分调动学生学习的主动性和积极性,培养学生娴熟应用以往学过的各种知识来分析问题、解决问题的能力,最终达到提高学生综合素质的目的。
2.2感悟人生哲理师者,传道授业解惑也。大学的课堂上传授的不仅仅是知识,更要教会学生学会做人,做事,感悟人生。概率论与数理统计虽然是一门抽象的数学课程,其中也蕴含了很多人生哲理。教师在授课时若予以适当点拨,不仅能够激发学生的学习兴趣,加深对知识点的理解,更能够体会一些为人处世之道。比如,在讲授伯努利概型时,经常会举下面的例题:某人进行射击,设每次命中的概率是0.02,独立射击400次,试求至少命中两次的概率。学生很容易列式求解出此概率为0.9972。在此可以向学生提出问题:从这道题里面你得到了什么启示?学生可能一头雾水,这就是一道普通的数学题,怎么还会有启示?教师可进一步引导,这位射击队员的命中率很低,但是经过400次射击,至少可以击中两次的概率就达到了0.9972。如果把击中目标看成实现自己的人生理想,只要坚持不懈,最终实现理想的概率也一定是很大的。“坚持就是胜利”绝不是一句空话,希望大家坚持不懈。
再比如,在讲授概率的加法公式时,可以“诸葛亮问题”为例。假设诸葛亮解出问题的概率为0.8,3个臭皮匠A、B、C独立解出问题的概率分别为0.5、0.48、0.45,且每个臭皮匠能否解出问题是相互独立的,并提示:3个臭皮匠中,至少有一人解出问题,问题就被解决了。那么三个臭皮匠是否真的能赛过诸葛亮呢?由此,大部分学生都会想到用概率的加法公式来解决此问题。并且可以很容易求出3个臭皮匠中至少有一人解出问题的概率是0.857>0.8,即3个并不聪明的臭皮匠确实可以赛过聪明的诸葛亮。更进一步,若不是3个臭皮匠,而是4个,5个,…,结论又是如何?以1O个臭皮匠为例,假设诸葛亮解出问题的概率仍为0.8,每个臭皮匠独立解出问题的概率都为0.45,且假设每个臭皮匠能否解出问题是相互独立的。则利用对立事件概率的计算公式,可方便地算得1O个臭皮匠中至少有一人解出问题的概率为:1-0.5510≈O.9975>0.8。也就是说,问题基本上都能解出,从而远远赛过聪明的诸葛亮。因此我们在日常生活中一定要团结合作,集思广益,充分发挥集体的力量。经过这样的适当点拨,不仅能够使学生更快地掌握知识,而且能够帮助学生树立正确的人生观与价值观。
高职医药数理统计课程的知识目标为掌握x2分布、t分布及F分布的定义和正态总体的统计量的分布;掌握常用统计描述指标的计算方法、正态总体的均值和方差的置信区间的求法及假设检验方差分析的基本方法;掌握回归分析的基本方法;掌握使用正交表设计实验的方法。熟悉数理统计的基本概念、一元函数微积分及概率论的性质,运算法则;熟悉数据的统计整理方法,以及统计表与直方图的适用范围与绘制方法。高职医药数理统计课程的技能目标为能熟练运用所学知识,科学地搜集、整理、判断数据的性质,对统计数据作区间估计,假设检验,方差分析,相关分析与回归分析,能熟练使用Excel进行统计数据的处理,正确绘制统计表与直方图。会应用加法公式和乘法公式计算随机事件的概率;会计算随机变量的数学期望与方差;学会使用统计分析软件SPSS。
1.2高中数学与高职医药数理统计课程目标的区别与联系
高中数学课程的总体目标是使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。虽然高中数学课程标准中也有获得必要的数学基础知识和基本技能,提高抽象概括、推理论证、数据搜集处理等基本能力,发展数学应用意识和创新意识等条文,但受到应试教育的影响,为了高分通过大量的练习使学生形成“条件反射”,这样使数学的思维属性丧失殆尽,还易导致学生讨厌数学。因此数学学习能力、数学学习中的态度、意志、兴趣、应用意识和创新意识等数学素养的培养是高职医药数理统计所要具备的必要条件。高职医药数理统计虽然也有提高数学素养的目标,但更强调其为后续专业课程的学习奠定必要的基础,更强调课程为专业服务的工具作用,更强调课程的目标的职业导向。两门课程目标虽有所差异,但从数学研究的对象性质、所涉及的概念原理、思想方法以及逻辑思维规律几个方面来看仍然有着不可分割的联系。
2.高中数学与医药数理统计内容衔接现状
2.1高中阶段概率统计教学内容
在新课改下,高中数学均分必修与选修,但各地区高中数学所用版本不一,下面均以人民教育出版社A版为例《。必修3》、《选修2-3》《选修1-2》涵盖了高中概率统计内容。高中阶段主要是引导学生体会统计的基本思想,通过统计案例教学,培养学生对数据的直观感觉,认识到统计结果的随机性。基本概念,多是通过实例给出描述性说明,没有具体的定义。强调对基本概念和基本思想的理解和掌握,重点培养学生的运算、作图、推理、处理数据以及使用科学计算器等基本技能。在《选修2-3》中,学生通过实例了解条件概率的概念,理解离散型随机变量及其分布列、离散型随机变量均值和方差的概念,学会计算简单的离散型随机变量的均值和方差。但没有涉及条件概率的基本性质,没有明确给出概率的乘法公式,没有给出随机变量的严格定义,离散型随机变量未扩充到可列个,未涉及连续型随机变量的定义和分布函数的概念。正态分布也仅通过直观的方法引入其密度曲线,掌握它的特点及表示的意义,并没有给出正态分布的分布函数表、没有介绍标准正态分布,也不需计算正态分布随机变量落到任意区间的概率。未涉及泊松(Poisson)分布、均匀分布与指数分布、参数估计、假设检验、方差分析、相关分析与回归分析等内容,未要学会应用非专业统计软件如:SPSS、SAS等。
2.2高中概率统计与医药数理统计教学内容的安排
为符合学生认知螺旋式“上升”的特点,高中数学《必修3》是先教统计再教概率,在《选修2-3》中先讲概率分布再讲统计案例。因学生在初中已经具备了的一些概率常识,这些对于学习的统计一些基础理论已经够用了,且概率理论较为抽象,统计则与生产生活密切相关,用统计带动概率的学习,用统计的思想理解随机变量的概念,学生更加容易接受。医药数理统计教学更注重学科的系统性与严谨性,先安排高等数学与概率论的基本知识,再进行统计的教学,并对定理给出必要的证明。
2.3高中数学与医药数理统计教学内容的重复与脱节
2.3.1教学内容重复
文理科高中生都学习频数分布表、频率分布直方图、算术均数、中位数、中位数、线性回归方程等统计学中的概念,随机事件、概率、古典概型等概率论中的概念。对于理科高中生来说,总共学习了46学时的概率统计知识,对于文科高中生来说,总共学习了34学时的概率统计知识。这些知识大约覆盖了医药数理统计课程的10%以上教学内容。
2.3.2教学内容脱节
基础知识点缺失。文科高中数学对不定积分与定积分、排列组合等知识不作要求,但它们却是医药数理统计学习所必需的前期基础知识。
3.高中数学与医药数理统计顺利衔接的措施
3.1教学内容的衔接
教师的教和学生的学在很大程度上取决于教学内容,教学内容的顺利衔接对教学质量的提高起着关键作用.在医药数理统计的教学中,教师有意识地引导、启发学生用严谨科学的态度,用统计学的理论、观点、方法去分析与之相关生产、生活中的案例,使学生意识到高中数学教材中一些不能讲解“深刻”的内容,可以通过医药数理统计的学习,给予相应的解释,使这些统计案例能得到应有高度来认识。大学数学教师把教材中的抽象内容具体化的同时,要考虑到学生的理解与接受能力,使其范围、深度、速度能同学生的实际水平相适应。关于医药数理统计教材内容改革,许多数学教学工作者都作出了尝试,但医药数理统计内容的改革必须依据循序渐进原则或有序性原则,要依据科学的逻辑顺序和学生不同年龄阶段发展的顺序特点编写。改革时,必须密切联系学生学习实际,了解学生学习高中数学情况,关注高中数学教材改革动向,对教学内容的处理应建立在高中数学平台上,较好地把握教学的深度和广度。对于明显重复的部分,进行适当的删减,对于需要加深、扩展的内容,应加以强调和重视。对于因某些高中未教或是文理分科,或者涉及的角度和侧重点不同,应及时补充以免形成空白造成脱节,使医药数理统计教学内容与高中数学教学内容顺利衔接。
二、统计模型的建立与求解
上一例题中,试验结果可以用服从两点分布随机变量来表示,X=1取到白球0{取到红球,X~B(1,p),p为白球的比例,p的可能取值为:{05,15,25,35,45,55}.而试验的结果是:白球、红球、白球的可能性为p(X1=1,X2=0,X3=1)=p2(1-p),如果要使这一结果的出现可能性最大,即p2(1-p)要取值最大,则估计p^=35,即估计白球有3个。把这一模型用更抽象语言来描述就是X1,X2,…Xn为一个容量为n的简单随机样本,来自总体分布F(θ),其中θ为未知参数,在θ的取值空间上找到一点^θ,使的样本取值发生的概率最大,则^θ为θ的极大似然估计值。其中样本取值的发生的概率,离散型的数据用样本的联合分布率来表示,连续型的数据用样本联合密度函数来表示,统称为似然函数。最后模型求解就转化为在θ的取值空间上求似然函数的极大值问题,常见的求函数极值方法有:如上一例题中的代入法;考虑函数单调性,导数为零的点有可能是极值点;函数定义域的边界点有可能是极值点,等等。
三、容易出现的理解误区
极大似然估计方法中,在求似然函数极大值时候,由于似然函数是边缘分布的连乘形式,因此在对似然函数直接求导讨论其单调性时,其求导结果较为复杂,不容易直接讨论。往往需要先对似然函数取对数,把连乘形式改成连加形式,然后再求导,求导结果相对简单,利于讨论单调性。这样做只是数学上的一个处理技巧,因为对数似然函数是一个复合函数,外层对数函数是单增函数,不改变里层似然函数的单调性。而同学们可能对这个数学处理技巧理解出现误区,把极大似然估计理解为一套算法,一组公式,死记硬背,时间长了就没有印象了。这样的学习效果对以后的进一步学习或应用此方法解决问题起不到良好的作用。相反的是,应让同学对极大似然估计的基本思想掌握牢固,并且极大似然估计的想法本身也很自然直接,而求似然函数的极值问题只不过是数学上的处理技巧,各种手段都可能用上,多加锻炼几次即可。如果同学对极大似然估计的想法理解透彻,不拘于具体数学解法,则有助于长时间和进一步地理解更为深刻的知识点,为将来学习和工作需要打下良好的基础。
随着科技的进步和计算机的发展,数学的思想和思维方法在越来越多的领域中得到了广泛的应用,数学在现代科学中发挥着巨大的作用,将数学思维方法应用到医药学领域,培养学生的应用能力,解决医学实际问题是医学院校数学教育的主要目的。《医药数理统计》是为医学生开设的一门必修基础课,是一门应用性较强的课程,旨在开阔学生视野,培养学生科研意识,用数理统计方法去分析和解决医药学中实际问题。从数理统计这门学科本身来说它是研究随机现象的科学,它有自己独特的处理问题的思想方法,与以往学生学过的高等数学思考方式不同,两者思想体系差别较大,基本理论比较抽象,描述性色彩比较浓厚,学生除具备《高等数学》基本知识外,还应具备语文、逻辑学知识,是公认的一门较难课程。为了提高学生的学习兴趣,消除畏难情绪,我们对这门课程进行了教学改革,以下是我们的一些思考与体会。
1联系医药学专业基础,优化教学内容
长期以来,在医药学专业教学过程中形成了专业课和非专业课的观点,而《数理统计》课是公共基础课、非专业课得不到应有的重视。针对这种情况,我们首先要明确培养目标,转变数学观念,我们认为医学院校的数学教育应以数学的应用为主要目的,以培养学生的应用能力为目标。应改变传统的重知识传授,重技能计算技巧训练,轻能力培养忽视应用,我们应把教学重点转到通过讲解数学概念、定理,思想方法引导学生理解数学思想并应用思想方法解决实际问题,达到培养应用能力,学以致用。为此,我们教学改革第一步就是要根据一般本科医学院校教学定位和医学生的专业特点,改革教学内容,优化教材体系,使教材尽可能体现应用数学的特点,使其知识结构更具实用性、可读性,更具医科的特点。
对教材体系、内容增减方面作了以下探索:
①本门课程是应用性较强的课程,主要应用部分在统计学部分,在不影响本课程体系完整性条件下,压缩概率部分内容,减弱概率论部分理论难度。
②改变重概率轻统计重理论轻应用的现象,淡化定理证明和计算技巧训练,加强统计思想和统计方法的讲解,重点介绍如何用统计方法解决实际问题,突出应用。增加一些常用统计软件简介。
③增加与医药学紧密联系的例题和习题。适当配置一些临床案例,学生通过学习这些案例来体会这门课程的重要性,激发学生的学习兴趣。
2改革教学方法,培养学生应用能力
传统的教学方式是一种封闭型的教学方法,教师讲、学生记的“填鸭型”不利于培养学生的思维能力,其要害在于用教师的思维活动代替学生的思维活动,使学生的智力发展受到束缚,不能用所学知识去分析和解决实际问题,更谈不上有创新能力。根据《数理统计》课程偏难应用性又较强的特点,我们采用多种教学方法灵活运用,努力培养学生分析问题、解决问题的能力。
2.1讨论式教学法,增强学生积极向上参与意识,培养互相沟通合作的精神
传统教学法偏重于“教”,忽视学生的“学”,课堂教学大多是教师的“一言堂”。我们都知道应重视互动教学,重视教师与学生之间的互动,但往往忽略学生与学生之间的相互影响。讨论式教学法是在师生之间双向信息交流基础上,增加学生之间的协助和交流的一种教学方法。根据《数理统计》课程特点,对一些较难理解的内容或富有争议性问题,采用教师讲授与讨论相结合。教师在备课过程中就要拟定好要讨论的问题,可以进行课堂提问、讨论、回答,也可以小组讨论,留问题课后讨论等多种讨论形式。例如,我们在讲完区间估计概念后,为了准确理解这个概念,我们出了这样一个思考题让学生讨论,P{θ1<θ<θ2}=1-α能否说参数θ落入区间(θ1,θ2)的概率为1-α?经过讨论,绝大多数同学认为此说法是错误的,回答正确。但仍有一小部分同学坚持此说法正确,教师及时总结、释疑说明回答错误的同学是把参数θ当成随机变量了。学生围绕某一问题进行讨论,不仅解答了自己的疑问,同时在解决其它同学疑问的同时对自己所掌握的问题有了进一步的深化。在课堂教学即将结束时,我们往往会留下思考题让学生回去讨论,给学生提问,留下新疑使教学在“有疑”中结束,使学生感到学习这门课程有趣味性,从而激发学习的主动性。实践证明,讨论式教学法对于学生的智力因素和情感因素的开发和发展都会产生积极的影响,激发了学生的学习热情,有效地培养了学生创新意识和合作精神。同时这种方法也督促教师不断更新知识,积极学习,提高讲课素质。
2.2案例式教学法,培养学生解决实际问题能力和决策技能
案例是一个实际情况的描述,它一般要涉及一个决策问题。教学案例是适应教学目标的需要,围绕一个或几个问题,在对实际调查后所作的客观书面的描述。案例式教学法又称“苏格拉底式”教学法,主要采用对话式、讨论式和启发式。这种教学方法是在教师指导下,组织案例,把学生引导到实际问题中去,进行学习、研究、通过分析、讨论找到解决问题的方法。在备课中,注意选取医药学真实案例,一旦选定某个案例作为教学方法,首先要熟悉案例内容,找出案例涉及的重要问题,寻找该案例相关资料,将案例要求学生事先阅读,拟定解决问题的步骤,教师引导学生讨论,在学生充分发表了观点后,教师及时总结答疑。例如:在讲假设检验内容时,我们主要采用案例教学法阐述基本概念、基本原理及推理方法,将理论教学与实际案例结合起来,使课堂讲解生动,激发了学生学习兴趣,提高了教学效果。
《数理统计》这门课是公认的一门较难课程,学生学习起来确实存在畏难情绪,而案例教学法采用的案例是来源于现实的医药学实际问题,有可能就是学生将来步入工作岗位要面临的实际问题,这样对学生来说就有一种吸引力,提高了学生参与的积极性,案例教学法采取以学生为主进行课堂讨论方式,有效地培养了学生分析问题、解决问题能力和决策技能。在这个过程中同学们切身感受到数学应用的奇妙作用。
案例教学法虽然在培养学生能力方面具有明显优势,但我们也看到它的不足之处,案例教学是对某一方面问题的描述,它不能代替系统的理论教学,只有掌握了一定的理论知识,才能分析案例,理论教学是基础,案例教学是补充,只有把两者有机结合好,才能达到好的教学效果。
2.3开展计算机辅助教学,创设良好的教学环境,提高授课效果
21世纪,教育现代化已经成为大势所趋,教育的现代化既包括教育理念、教育管理的现代化,也包括教学手段的现代化。对于学生来说,《数理统计》这门课程要比以往学过的高数难学,基本理论比较抽象,描述性色彩比较浓厚,为了消除畏难情绪,增强课堂学习内容的感染力,在课堂上恰当地使用多媒体教学课件,能提高学生的学习兴趣,因为通过图形显示配上文字说明,能创设一个图文并茂,声像并举,生动直观的教学环境。使教学的表现形式更加形象化、多样化、视觉化。。在使用多媒体教学时,我们应该注意到CAI教学是一种辅助手段,不能取代教师在课堂中的主导地位。教师的人格魅力和语言魅力是任何机器所无法取代的,一节课是否能吸引学生,不在于CAI课件的趣味性,而在于教师的语言魅力,用语言吸引学生,而不是课件吸引学生。教师不可过多地用课件进行授课,也更不适合应用在教学的全部过程,因为它的条理性较强,不易更改,使教师在课堂上的随机应变,融会贯通受到限制。只有把计算机辅助教学技术和传统的教学手段有机地结合起来,才能更好地提高教学效果和教学质量。
3改革考试方式和内容,注重对学生能力的考察
教学改革的一项重要内容就是考试改革,它与教学内容、教学方法的改革相辅相成,互相促进,前者对后者具有强烈的导向作用,后者为前者打下了基础。对于《数理统计》这门课程,除了改革教学内容、教学方法,对考试改革不可忽视。通过改革考试,更好地促进学生能力的培养和教学质量的提高。考试改革主要从以下3个方面进行。
①改革考试内容。考试内容如果局限于教材,划范围、定重点,这样助长了一部分学生死背硬记也能得高分,伤害了认真学习学生的积极性,不利于培养学生的创新能力。考试内容应体现出对基本理论、基本统计方法的掌握,淡化计算技巧,注重对分析问题解决问题能力的考察,适当出一、二道能考察创新能力的题目。
②避免考试方式单一。考试模式多样化,平时要有测验,要提交读书报告,增大平时考试成绩的比例。学生的成绩应根据平时成绩、读书报告和期末卷面成绩综合评定。
③改革考试题型。应减少客观性试题比例,多出些综合性思考、分析题,以达到培养学生的综合素质和创新能力。
总之,《医药数理统计》教学改革的目的就是提高学生的学习兴趣,提升学生应用数学能力和分析问题解决实际问题的能力,培养学生的科研意识。本研究是针对一般本科医学院校的教学定位进行的一些思索和实践,还有一些方法不够完善,但我们相信在以后的教学中将不断改进,为培养21世纪应用创新型医学人才贡献力量。
二、数理统计学的主要内容与研究形式数理统计学中推断
统计学内容被分为两个方面内容,其中一项就是抽样分布,在这一部分中首先需要研究抽样分布,弄清楚抽样分布的基本概念,也就是总体、样本以及统计量方面的内容。并且推断统计中常用的分布形态有t分布、F分布等,后面分布内容主要是受到正态统计影响的,这些内容都是随着变量函数分布变化的。在抽样分布状态中一定要有效领会它们之间的概念,掌握各种分布曲线状态特点,熟练概率分布表的使用;其次,就是统计估值以及假设检验,这一部分内容主要是数理统计学习中重难点问题。并且统计估值主要包含区间估计与点估计方面的内容。假设检验中包含的内容较多,就能够将其划分为非正态总体与正态总体方面的内容,就其划分内容包含总体参数与概率分布方面的内容,并且这两个总体中包含多个总体假设检验,概率检验分布也分为不同发展形势,从这一点来看,其内容较为繁杂,不容易进行改良。但是,在现实生活环境中,一些随机现象对应产生的随机变量大多数都是服从正常分布状况进行,对于一些不能够服从正态分布的随机变量来说,其对应大样本也能够依照服从正态分布状况进行。
概率论以及数学统计这门课程具有较强的实践性,因此,在教学课程上,教师需要在教学的基本内容中加入更多的实例教学,帮助学生理解这门学科的基本知识点,加深学生对基本理论的记忆。例如:在讲概率学中最基本的加法公式时,加入数学建模的基本思想,利用俗语“三个臭皮匠”的相关内容作为教学实例。俗语中有三个臭皮匠的想法能够比的上一个诸葛亮,意思就是说多个人共同合作的效果比较大,可以将这种实际中的问题引入到数学概率论的教学中,从科学的概率论中证明这种想法是否正确。首先需要根据具体的问题建立相应的数学模型,想要证明三个臭皮匠能否胜过诸葛亮,这个问题主要是讨论多个人与一个人在解决问题的能力上是否存在较大的差别,在概率论中计算解决问题的概率。用c表示问题中诸葛亮解决问题的能力,ai表示其中(ii=1,2,3)个臭皮匠解决问题的能力,每一个臭皮匠单独解决问题存在的概率是P(a1)=0.45,P(a2)=0.6,P(a3)=0.45,诸葛亮解决问题存在的概率是P(c)=0.9,事件b表示顺利解决问题,那么诸葛亮顺利解决问题的概率P(b)=P(c)=0.9,三个臭皮匠能够顺利解决问题的概率是P(b)=P(a1)+P(a2)+P(a3)。按照概率论中的基本加法公式得P(b)=P(a1+a2+a3)=P(a1)+P(a2)+P(a3)-P(a1a2)-P(a2a3)-P(a1a3)+P(a1a2a3)解得P(b)=0.901。因此,得出结论三个臭皮匠顺利解决问题存在的准确概率大于90%,这种概率大于诸葛亮独自顺利解决问题的概率,提出的问题被证实。在解决这一问题过程中,大部分学生都能够在数学建模找到学习的乐趣,在轻松的课堂氛围中学到了基本的概率学知识。这种教学方式更贴近学生的生活,有效的提高了学生学习概率论以及数学统计这一课程的兴趣,培养学生积极主动的学习。
2.课设数学教学的实验课
一般情况下,数学的实验课程都需要结合数学建模的基本思想,将各种数学软件作为教学的平台,模拟相应的实验环境。随着科学技术的不断发展,计算机软件应用到教学中已经越来越普遍,一般概率论以及数学统计中的计算都可以利用先进的计算机软件进行计算。教学中经常使用的教学软件有SPSS以及MABTE等,对于一些数据量非常大的教学案例,比如数据模拟技术等问题,都能够利用各种软件进行准确的处理。在数学实验的教学课程中,学生能够真实的体会到数学建模的整个过程,提高学生的实际应用能力,促进学生自发的主动探索概率论以及数学统计的相关知识内容。通过专业软件的学习和应用,增强学生实际动手以及解决问题的能力。
3.利用新的教学方法
传统数学说教式的教学方法并不能取得较高的教学效果,这种传统的教学也已经无法满足现代教学的基本要求。在概率论以及数学统计的教学中融入数学建模的基本思想并采用新的教学方法,能够有效的提高课堂教学效果。将讲述教学与课堂讨论相互结合,在讲述基本概念时穿插各种讨论的环节,能够激发学生主动思考。启发式教学法,通过已经掌握的知识对新的知识内容进行启发,引导学生发现问题解决问题,自觉探索新的知识。案例教学法,实践教学证明,这也是在概率论中融入数学建模基本思想最有效的教学方法。在学习新的知识概念时,首先引入适当的教学案例,并且,案例的选择要新颖具有针对性,从浅到深,教学的内容从具体到抽象,对学生起到良好的启发作用。学生在学习的过程中改变了以往被动学习的状态,开始主动探索,案例的教学贴近学生的生活学生更容易接受。这种教学方法加深了学生对概率论相关知识的理解,发散思维,并利用概率论以及数学统计的基本内容解决现实中的实际问题,激发了学生的学习兴趣,同时提高了学生解决实际问题的综合能力。在运用各种新的教学方法时,应该更加注重学生的参与性,只有参与到教学活动中,才能够真正理解知识的内涵。
4.有效的学习方式
对于概率论以及数学统计的相关内容在教学的过程中不能只是照本宣科,而数学建模的基本思想并没有固定不变的模式,需要多种技能的相互结合,综合利用。在实际的教学中,教师不应该一味的参照课本的内容进行教学,而是引导学生学会走出课本自主解决现实中的各种问题,鼓励学生查阅相关的资料背景,提高学生自主学习的能力。在教学前,教师首先补充一些启发式的数学知识,传授教学中新的观念以及新的学习方法,拓展学生的知识面。在进行课后的习题练习时,教师需要适当的引入一部分条件并不充分的问题,改变以往课后训练的模式,注重培养学生自己动手,自己思考,在得到基本数据后,建立数学模型的能力。还可以在教学中加入专题讨论的内容,鼓励学生能够勇敢的表达自己的想法和见解,促进学生之间的讨论和交流。改变以往教师传授知识,学生被动接受的学习方式,学会自主学习,自主探究,勇于提出自己的看法并通过理论知识的学习验证自己的想法。有效的学习方式能够调动学生学习的积极性,加深对知识的理解。
5.将数学建模的基本思想融入课后习题中
课后作业的练习是巩固课堂所学知识的重要环节,也是教学内容中不可忽视的过程。概率论统计课程内容具有较强的实用性,针对这一特点,在教学中组织学生更多的参与各种社会实践活动,重在实际应用所学的知识。对于课后习题的布置,可以将数学建模的思想融入其中,并让这种思想真正的解决现实中的各种问题,在实践中学会应用,不仅能够巩固课堂学到的理论知识,还能够提高学生的实践能力。例如:课后的习题可以布置为测量男女同学的身高,并用概率统计学的相关知识分析身高存在的各种差异,或者是分析中午不同时间段食堂的拥挤程度,根据实际情况提出解决方案,或者是分析某种水果具体的销售情况与季节变化存在的内在关系等。在解决课后习题时,学生可以进行分组,利用团队的合作共同完成作业的任务,通过实践活动完成训练。在学生完成作业的过程中,不仅领会到了数学建模的基本思想,还能够将概率统计的相关知识应用到实际的问题中,并通过科学的统计和分析解决实际问题,培养了学生自主探究以及实际操作的综合能力。
1.2富水性地层的电阻率阈值为了使电法划分的相对富水区与水文地质上的富水区相对应,使物探成果更好的应用于实际。依据不同地层的整体富水性,按视电阻率异常值划分强中弱富水区。在水文地质上,依据钻孔的单位涌水量,将含水层划分为四个等级:弱富水性:q≤0.1L(/s·m);中等富水性:0.1<q≤1L(/s·m);强富水性:1<q≤5L(/s·m);极强富水性:q>5L(/s·m)。(钻孔单位涌水量以孔径91mm,抽水水位降深10m为准)。电法勘探对低阻体反应灵敏的特性,强富水和极强富水在视电阻率平面图上的表现均为明显的低阻异常,故将其归为一类,将富水性划分为3个级别:强富水性、中等富水性、弱富水性。在进行富水性划分时,首先依据其电阻率背景值确定地层的富水性,对于富水性不同的地层以不同的阈值进行富水区域划分。对于整体富水性弱的地层,以视电阻率值>μ-13σ为弱富水区,μ-13σ~μ-σ为中等富水区,<μ-σ为强富水区。对于整体富水性中等的地层,以视电阻率值>μ+σ为弱富水区,μ-σ~μ+σ为中等富水区,<μ-σ为强富水区。对于整体富水性强的地层,以视电阻率值>μ+σ为弱富水区,μ+13σ~μ+σ为中等富水区,<μ+13σ为强富水区。视电阻率平面图富水性划分见表1。
2实例分析
2.1A1矿东部区强裂隙含水层富水性分区A1矿位于黑龙江省双鸭山市,地势平坦,地面标高+100m。主要地层由上到下为新生界新近系和第四系、白垩系穆棱组和城子河组、元古界麻山群。主要含水层有第四系孔隙含水层、白垩系强裂隙含水层和白垩系弱裂隙含水层,强弱裂隙含水层界限为深度160m。第四系孔隙含水层主要岩性为粗砂、细砂和砂质粘土,白垩系强裂隙和弱裂隙含水层主要岩性均为细砂岩和粉砂岩,强裂隙含水层的富水性较下层弱裂隙含水层强。因整体地层的岩性差异并不大,故视电阻率差异不明显,但随着深度的加深,地层的富水性逐渐减弱,视电阻率值相应升高。图2为A1矿东部区强裂隙含水层富水性分区图,左图为不采用数理统计法,只依据经验划分出的相对富水异常区,右图为依据本文提出的数理统计异常划分标准划分的富水区。A1矿东部区强裂隙含水层主要地层为白垩系穆棱组和城子河组,岩性变化不大,均以砂岩为主,视电阻率均值为189Ω·m,标准偏差值为92Ω·m,整体富水性弱。
在无异常划分标准的情况下,只能依据整体的视电阻率分布特征,凭借经验划分相对富水区,富水区的范围受人为影响较大(图2左图以60Ω·m作为划分阈值)。依据经验划分的相对富水区仅能表示相对富水区范围内的富水性较其他区域的富水性强,无法与水文地质上的强中弱富水区相对应,且划分阈值判断较为困难,准确度低。而采用本文异常划分标准划分富水区,既降低了划分的难度,也提高了划分的准确性,还能与水文地质划分的富水区相对应。依据本文异常划分标准,划分视电阻率值<92Ω·m为强富水区,92Ω·m~158Ω·m为中等富水区,>158Ω·m为弱富水区,分别以蓝、绿、红填充见图2。对比水文孔资料,SY13单位涌水量0.0724L(/s·m),SY14单位涌水量0.0346L(/s·m),SY15单位涌水量2.1669L/(s·m)。图中SY14位于弱富水区,SY15位于强富水区,均与水文孔资料相吻合。而SY13孔单位涌水量值接近于中等和弱富水临界值,富水性分区图中位于中等富水区和弱富水区边界处,这也反映出划分位置较为准确。
2.2B1矿I区穆棱组裂隙含水层富水性分区B1矿位于黑龙江省鸡西市,地表在海拔+190m~+300m之间。主要地层由上到下为新生界第四系冲积层、白垩系穆棱组和城子河组、元古界麻山群。第四系冲积层较薄,全区厚约20m,主要岩性为砂砾石。白垩系穆棱组和城子河组主要岩性均为砂岩。主要含水层有第四系孔隙含水层、穆棱组砂岩裂隙含水层、城子河组砂岩裂隙含水层。第四系孔隙含水层、白垩系穆棱组砂岩裂隙含水层和城子河组砂岩裂隙含水层主要岩性均为砂岩。因整体地层的岩性差异不大,故视电阻率差异不明显。图3为B1矿I区K1m含水层富水性分区图,上图为不采用数理统计异常划分法,只依据经验划分出的相对富水异常区,下图为依据本文提出的数理统计异常划分标准划分的富水区。在无异常划分标准的情况下,只能依据整体的视电阻率分布特征,凭借经验划分相对富水区,富水区的范围受人为影响大(图3上图以50Ω·m作为划分阈值)。依据经验划分的相对富水区仅能表示相对富水区范围内的富水性较其他区域的富水性强,无法与水文地质上的强中弱富水区相对应(如图中无法区分出中等富水区和弱富水区,导致划分的富水区和钻孔抽水单位涌水量无法对应),而且较难确定划分阈值,增加了解释难度。B1矿I区穆棱组含水层主要岩性为砂岩,视电阻率均值为78Ω·m,标准偏差值为22Ω·m,整体富水性弱,依据本文异常划分标准,划分视电阻率值<56Ω·m为强富水区,56Ω·m~70Ω·m为中等富水区,>70Ω·m为弱富水区划分富水区见图3。由水文孔资料知,补1孔单位涌水量0.1484L(/s·m),补7单位涌水量0.0616L(/s·m)。图中补1孔位于中等富水区,补7孔位于弱富水区,与水文孔资料相吻合。补1和补7单位涌水量均在中等富水和弱富水划分界限0.1L(/s·m)附近,视电阻率平面图中亦在中等富水区和弱富水区划分界限两侧且相近,表明按本文划分标准划分的弱富水区和中等富水区较为准确。
3数理统计分析
为了验证数理统计方法的有效性,收集了7个矿11个物探区内27个水文孔共34个层位抽水资料,根据不同层位不同电阻率阈值划分富水区,共有32个层位与水文划分的富水区相吻合,吻合度94.1%。分析2个不吻合孔,B1矿III区补水3孔位置人文干扰较为严重,数据质量差,致使出现异常。去除补水3孔,按照本文异常划分划分的富水区与水文划分的富水区吻合度可达到97%,一致性较高。可见,采用数理统计的异常划分原则划分的物探富水区与水文孔资料的富水性吻合度高,表明在没有已知水文资料的情况下,按照本文的异常划分标准划分的富水区基本准确。在有已知水文地质资料的情况下,适当的调整标准差系数,可提高富水性划分的准确性。合的俯冲带铅范围内,并且呈良好的线性关系;B区有三个点靠近于地幔源铅,C区有一个点靠近于上地壳源铅,且从图中可以发现,铅同位素以B区-索拉吉尔矿区-C区的顺序,从地幔源铅向上地壳源铅进行演化。将铅同位素图解和铅同位素分类图解结果对比可发现,二者得到的结果一致,卡尔却卡矿石铅来源具有壳幔混合的特点,与造山运动有关。通过对A区的流体包裹体激光拉曼分析结果表明,流体包裹体气相成分和富K、Na高盐度流体来源应以岩浆来源为主。索拉吉尔铜钼矿床辉钼矿Re含量为(73791~98454)×10-9,与壳幔混合源岩浆矿床的辉钼矿Re含量相近,也具有壳幔混合源的特征。
应用数理统计是对随机现象的统计规律进行演绎和归纳的科学,已经成为越来越多专业的学生必修的一门基础课。但是学生在学习掌握这门课的过程中普遍感到概念难以理解,思维难以展开,问题难以入手,方法难以掌握,习题难做。如何解决这一问题?具体可以概括成以下几种方法。
1引经据典,消除学生的畏惧心理
应用数理统计作为数学的一门有特色的分支学科,所以比较抽象,很多学生对该门课都有畏惧心理,因此在每学期的第一次课,首先可以向学生介绍应用数理统计的起源和发展,增强学习的趣味性,然后还可以介绍应用数理统计的一些热门运用。
概率论起源于博弈问题。15~16世纪,意大利数学家帕乔利、塔塔利亚和卡尔丹的著作中曾讨论过"如果两人赌博提前结束,该如何分配赌金"等概率问题。而数理统计的发展史相对简单一些,在19世纪20、30年代,费希尔提出了许多重要的统计方法,开辟了一系列统计学的分支领域,如相关分析、回归分析、试验设计、多元正态总体的统计分析等。
在教学过程中,我们特别注意这些知识背景的补充介绍,一方面让学生了角前后知识的联系,同时也在无形之中向他们灌输了研究问题的思想方法。更重要的是,了解这些知识使他们能更好地理解课程内容之间的内在联系,学习的时候不再孤立地看待这些知识点。
2理论联系实际,加强实践教学
传统的教学方式是知识传授型的,教师是教学的主体,只重视教的过程,忽视了教学是教与学互动的过程,教师在课堂上满堂灌,注入式的教学方法不能充分调动学生学习的主动性,没有立足于培养学生的学习能力和不同学生的个性发展,现代教学方法主要是挖掘学生的学习潜能,以最大限度地发挥和发展学生的聪明才智为追求目标。因此,在应用数理统计教学中,教师在注重传授课程内容思想方法和应用背景的同时,充分调动学生学习的主动性,布置一些灵活的题目,让学生亲自实践、亲自收集和处理数据,利用应用数理统计方法解决一些实际的小问题。
案例教学法就是一种很好的实践教学方法。案例教学法是把案例作为一种教学工具,把学生引导到实际问题中去,通过分析与互相讨论调动学生的主动性和积极性,并提出解决问题的基本方法和途径的一种教学方法。教师应结合应用数理统计应用性较强的特点,在课堂教学中,注意收集日常生活中的一些实例,并根据各章节的内容选择适当的案例服务于教学,利用多媒体设备及真实材料再现实际案例活动,将理论教学与实际案例有机的结合起来,使得课堂讲解生动清晰,收到良好的教学效果。
3注重师生间交流,加强启发教学
应用数理统计的传统教学是学生忙于应付大量公式的记忆和复杂的计算,没有时间去进行创造性思考,同时这种教法也不可能让人有所创新。要想获得最佳的教学效果,师生间的交流是必须的。教学不是你教我学,更不是你讲我听,而是师生双方互动的结果,师生双方都给对方提供信息。教师的输出对学生来说是信息的输入,学生通过感知、理解、归纳、记忆等活动,接受、处理储存信息;学生的反馈作为信息输出对教师和其他同学来说又是信息输入。教学活动就是为促进这种交流,让这种交流更有意义。
在课堂交流中,应鼓励学生积极发言,参与到教学中来,引导学生了解问题的直观和背景,教会他们如何运用数理统计方法去思考问题和分析问题。此外,还有课前交流、课间交流和课后交流。通过交流随时了解学生对课堂教学的意见和建议,掌握学生接受知识的程度,及时调整教学内容与进度。这样不仅有利于激发学生的学习兴趣,也密切了师生关系,还有助于带来积极的教学效果。
4利用一题多解,培养学生创新思维能力
应用数理统计这门课学习的目的并不是要求学生仅仅会做几道题,而是为了能够解决实际问题,而实际问题是千变万化的,不是用一两个公式就能解决的,这就需要学生的创新。所以对学生的创新能力的培养是相当重要的。实践表明,通过一题多解的锻炼,不但可以加深学生对概念的理解,使学生将所学知识相互联系起来,还可以培养学生灵活多样运用知识的能力,达到培养学生的创新能力的目的。所以在讲题时,可以鼓励学生试着用多种思路去分析题,开发学生的智力,使学生掌握更多的分析问题的方法,以便在今后的学习过程中,更好地去分析问题和解决实际问题。
总之,要加强教师和学生的交流与配合,灵活运用多种教学手段,激发学生的学习积极性,通过具体的实例把抽象的概念形象化,不断培养学生分析问题和解决问题的能力,让应用数理统计的学习变得容易起来。