生产技术论文范文

时间:2023-03-21 17:18:11

引言:寻求写作上的突破?我们特意为您精选了12篇生产技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

生产技术论文

篇1

1.1物料平衡

实际生产中,正常的物料平衡一旦受到破坏,气液相平衡也就达不到理想效果。一定状态下,物料平衡是精馏塔生产能力的重要标志。通常物料平衡是通过进料量及塔顶和塔底的馏出量来调节的。当精馏塔的操作不符合物料平衡时,这些变化可以通过塔的压差直接体现出来,进料量多馏出量少,则塔压差上升。通常压差应在一定范围之内,压差过大说明塔内上升的蒸汽速度过快,雾沫夹带严重,甚至会发生液泛与返混现象;而压差过小则表明塔内上升蒸汽的速度过小,塔板上气液交换的量过低且传质效果差,塔板产生漏液最终使塔板效率降低。生产中物料平衡异常通常体现在以下2个方面:

(1)轻组分馏出量超过了物料平衡量。塔内重组分物料量急剧增加,进而导致塔温逐渐升高,塔顶馏出物中重组分含量增加,得到的产品质量不合格。

(2)重组分的馏出量超过了物料平衡量。塔内重组分物料量急剧下降,相应地导致塔温逐渐降低,使釜液中轻组分含量增加,得到的产品质量不合格。这2种现象的发生,均会使整个精馏塔的操作处于混乱状态而达不到分离效果。如果正常的物料平衡被打破,那么气液相也达不到分离效果,随之影响热量平衡。在实际控制中,在保证工艺指标的同时要使塔釜液面趋于稳定,最终达到动态的物料平衡。

1.2液位的控制

一般通过调节塔釜再沸器热水给水量来调节塔釜液位,有时也采用排放釜液来降低液位的办法。实际生产中会出现以下5种情况。

(1)塔釜釜液组分变化。在压力不变的前提下,降低釜温就改变了塔釜气液平衡组成,相应地加大了釜液量及釜液中轻组分的浓度;在釜液排出量不变的情况下,将使塔釜液位升高,此时应及时提高釜温。对低沸塔来说,这种情况会使乙炔等轻组分含量上升,导致最终氯乙烯产品中低沸物含量上升;而对高沸塔来说,则会使氯乙烯分离不及时,不但造成高沸塔分离能力下降,而且排放的釜液中氯乙烯含量会急剧增加。

(2)进料组分变化。当进料中重组分的含量增加时,釜液量也增加,此时应加大塔釜排液量或提高釜温,否则液位会上升。若保持正常的釜液排出量,以加大釜温来控制塔釜液位,则塔釜蒸发量相应增加,极易在塔板之间产生雾沫夹带,并随着气体的流动馏出塔顶,造成产品质量下降。这种现象表现在高沸塔就是会将部分高沸物带出塔顶,最终进入成品氯乙烯中。

(3)进料量的变化。当进料量增大时,釜液排出量也要相应增加,才能维持液位,一般通过提高釜温来解决,但若只提高釜温,会造成成品中高沸物的增加;相反,当进料量减小时,则需降低温度、减少釜液排出量来控制液位,此时则会造成成品中乙炔含量增加。

(4)调节阀失控。调节阀失控是极为严重的生产异常,通常该阀设定为气开阀,目的是防止系统阻力增大而造成不安全事故的发生。一旦阀门失控应通知现场进行手动排液,并联系仪表部门进行校正。

(5)开停车。在开车初期,塔板上液体的量较少,还没有达到良好的气液接触状态,大量的轻组分进入塔釜后,被塔釜汽化的量还满足不了混合液之间的热传递要求。因此,对于刚开车的精馏塔,应在进料之前提前升温,在塔釜有液面显示时加大热水的循环量,否则塔釜温度不易提高,易导致塔釜液位升高甚至淹塔,这时釜液排出量就会增大,混合液中轻组分损耗就会增加。保持稳定的液面是维持精馏塔釜温恒定的首要条件。塔釜液面的变化主要取决于塔釜排液量的多少。当塔釜排液量过多时,会造成塔釜液位降低或将塔蒸干,此时再沸器的釜液循环量减少,从而导致传热效果差,轻组分蒸不出去,产品质量不合格;如果塔釜排液量过少,将会造成塔釜液位过高,增加釜液循环负荷。塔顶馏出量也是影响产品质量的一个重要因素,其主要取决于进料量的变化。当进料量不变时,塔顶馏出量增大,则回流比就会减少,从而造成塔板上的回流液量减少,气液接触面积小,传质效果差,塔板效率低,同时精馏塔压力也会下降,各塔板上的液体组成发生变化,重组分馏出塔顶,造成产品质量不合格。

1.3气液平衡

气液平衡主要靠调节塔的操作条件(温度、压力)及塔板上气液接触的情况来达到,只有在温度、压力一定时,才能确保气液平衡。当温度、压力发生变化时,气液组成就发生了改变,产品的质量或损耗也发生了变化。但是,气液平衡的组成又取决于每块塔板上的气液传质和传热情况,即气液相平衡和物料平衡是相互影响的。物料平衡控制得好,塔内上升蒸汽的速度合适,气液接触好,则传质效率高,每块塔板上的气液组成就越接近于平衡相,塔板效率也就越高。当然,温度、压力也会随着物料平衡的改变而变化。总之,气液平衡的组成与物料平衡有着密不可分的关系。反过来,温度、压力的改变又可造成塔板上气相和液相相对量的改变,从而破坏原来的物料平衡。例如,釜温低于指标,会使塔底的蒸发量减少,塔板上的液体量增加,釜液量增加,塔顶馏出量减少;当塔顶温度高于指标时,就会使塔板上的气体量增加,液体量减少,塔顶馏出量增加,釜液量减少。理论上,液体汽化要吸收热量,气体冷凝要放出热量,为了合理利用这部分热量,可以把气体冷凝时放出的热量供给液体汽化时使用,也就是使气液两相直接接触,在同一平行空间内进行传质、传热的过程。气液动态平衡具有以下特点:

(1)气液两相进行热交换。利用部分汽化所得的温度较高的气体来加热部分冷凝所得到的液体混合物。

(2)气液两相进行传质交换。温度低的液体混合物被温度高的气体混合物部分加热汽化,此时,混合物中各组分的沸点不同,表现为挥发能力的差异,低沸物要比高沸物易挥发得多,因而低沸物更易从液相转变为气相,气相中低沸物浓度增加;同理,温度较高的汽相混合物,因加热了温度较低的液相混合物而部分冷凝,同样因为挥发能力的差异,使高沸物从气相转为液相,这样液相中高沸物浓度就会增加。

1.4热量平衡

热量平衡是物料平衡和气液相平衡得以实现的基础。没有塔釜提供热量就没有上升蒸气,没有塔顶冷凝就没有回流液。热量平衡又是依附于物料平衡和气液相平衡的,例如,若进料量或组分发生了改变,则塔釜耗热量和塔顶冷凝量都会发生相应变化;若塔的操作压力、温度发生了改变,则每块板上气相冷凝的放热量和液体汽化吸收的热量也会发生改变。如果再沸器的循环量不够,就会造成釜温不达标,其对生产的影响表现在以下2个方面。

(1)物料平衡破坏,塔釜排液量增多,塔顶馏出量减少,塔的生产能力降低。

(2)气液平衡破坏,塔内上升蒸气量减少,气液接触面积变小,传质效率降低;同时,气相中重组分含量减少,液相中轻组分含量增加,生产过程中轻组分损耗增大。

篇2

基本培养基为PP,添加6-BA0.05mg/L、白砂糖20g/L、琼脂粉4.5g/L,将各种物质混合后定容,pH调节至6.0,分装到350mL广口瓶中,每瓶装50mL,在压力0.1MPa、温度121℃下灭菌15min,冷却后备用。

1.2材料采集和消毒

本试验取尚未木质化的亳菊茎尖作外植体。选取长2cm左右的嫩芽,去掉外边叶片后,用洗衣粉水浸洗1~2min,然后用流水冲洗30min。在超净工作台上用75%酒精消毒30s,再用0.05%升汞溶液消毒10min,无菌水冲洗6次,用无菌纱布把材料表面水吸干后,置于已消毒的烧杯中备用。

1.3茎尖剥取和培养

在解剖显微镜下,左手拿镊子将芽夹住,右手用解剖针逐层剥取外层叶片,直至留1~2个叶原基。将茎尖迅速切下,接种到茎尖生长培养基PP+6-BA0.05mg/L+2%糖上,每瓶接种1个茎尖。为确保茎尖的成活率,整个剥取过程应在较短时间内完成。茎尖培养分2个过程,先置于温度23~25℃下暗培养3d,再在光照强度2200~2500lux的培养室中培养,光照时间12h/d。培养10d后,茎尖开始长大,并逐渐转绿,30d后长成小植株,每个成活的茎尖单独建系。

2增殖培养

亳菊组培苗增殖采用2种方式。第1种方式是采用芽繁芽的方式进行增殖,将启动培养中获得的小芽接种到培养基PP+6-BA0.1~0.5mg/L+2%糖中,在温度23~25℃、光照强度2200~2500lux、光照时间12h/d的条件下培养30d,增殖比例达1∶4以上。这种增殖方法使培养基中的细胞分裂素含量相对较高,极易出现弱苗,且玻璃苗的比例较高。第2种增殖方式是通过单株切段的方式进行微扦插,将培养的单株切割成1cm左右的顶芽和茎段,茎段带1~2片叶,接种到培养基PP+6-BA0.02mg/L+2%糖中,顶芽和茎段分开接种。顶芽接种7d后开始生长,30d后芽生长至5~6cm;茎段接种后10d左右,侧芽开始生长,培养30~35d后,侧芽生长至4~5cm,然后进行重复微扦插,平均继代增殖比例可达1∶3.5以上。在实际生产中一般采取第2种增殖方式。

3生根培养

将顶芽或茎段接种到生根培养基PP+IBA0.05mg/L+2%糖中,接种后10d开始陆续长根,同时芽开始生长,培养30d后,长至高度4~5cm、根3~5条、根长2~3cm,生根率可达100%。

4脱毒组培苗移栽

将长好根的试管苗取出,洗掉根部的培养基,再移栽到装好基质(泥炭和珍珠岩以体积比3∶1拌匀)的50孔穴盘中。组培苗移栽至穴盘后浇透水,苗床应搭小管棚覆膜,保持80%~90%的空气湿度,并覆盖防虫网。7d后逐渐掀开薄膜放风,然后浇1次透水,15d后完全除去薄膜,并视基质的干湿程度浇水。30d左右完成组培苗的驯化过程,使成活率达90%以上。

篇3

技术效率分析

篇4

1.1原种筛选及固定

人工选育或在林区选定被菌粉感染的僵虫或僵蛹,通过培养、分离和转种,即可得到高品质菌原种。

1.2原种培养

1.2.1营养料的配制

取米粉35份、糖4份、琼脂4份、水适量(pH值自然),将米粉放入清水中煮沸,继之选用干净纱布过滤去剩余物残渣,然后加入琼脂、糖,经过充分搅拌,等待琼脂溶化后再装入试管内,盖好试管塞;营养料灌入量以试管容积的1/5为宜,5~10支一捆放人高压灭菌锅中进行高温灭菌30min,并将其趁热摆成斜面,以便于后面的接种。

1.2.2转种和培养

严格要求在无菌条件下操作,于配制好的试管培养基中接入高品质菌原种,将其置于25℃温度下培养。经过1~2d后,菌丝即可基本布满料面;3~5d后开始形成孢子,此时可适当调高培养室温度,以加速其高品质菌原种孢子的形成,大约有6~8d的时间即可完成孢子发育。

1.2.3质量检查

高品质菌原种,其菌丝呈白色茸毛状,生长丰满,菌苔光滑平坦,孢子形成快且孢子层厚实,轻轻碰敲试管壁可发现有很多孢子粉掉落或飞扬。

1.3初级菌种培养

营养料的配制与前期相同,将培养好的菌原种接入三角烧瓶中,放在摇床上震动,温度控制在25~28℃,培养48h。

1.4中期菌液扩大

1.4.1营养液的配制

按照玉米面∶麦麸∶水=2∶3∶10的比例,放入铁制培养罐中搅拌均匀后煮熟、过滤,再将其装入60只铝制罐中(每只铝制罐10~12kg),采用高压灭菌30min后备用。

1.4.2转种培养

在确保无杂菌污染的条件下,将优质菌种接入已经准备好的营养液中,完成接种后将瓶子放置于25~28℃条件下进行培养,环境温度不得超过32℃,否则易造成所接种的菌种死亡;培养48h待菌丝长满瓶壁,良好的菌液呈显酱红色、粘稠状,此时结束培养,将其移放到比较安全的地方待用。

1.5固体转种生产

1.5.1固体基料的配制

按麸皮∶谷壳∶大米=4∶4∶2比例,拌匀后装入线制麻袋(每袋15~25kg为宜)扎紧袋口,加温加压灭菌(100℃、2~3h)。

1.5.2转种生产

将灭菌后的固体基料,放入已经过充分消毒的培养生产室内,待料温下降至到25~28℃之间,可在一般的自然环境中进行接种。接种量:菌种和固体基料的比例通常控制在15∶100。接种时需要多人配合,1人操作倒出菌种,多人辅助进行手工拌料,菌种和固体基料经过充分手工拌匀后倒入木质或塑料盘中拌好、铺平,厚度要求控制在3~4cm之间。

1.5.3白僵菌生长期间管理

白僵菌生长期间,根据其不同的生长阶段,要合理控制好温度,这是大床发酵成败与否的关键,适时进行上下调盘,保证菌丝生长均衡匀称。

1.5.3.1孢子产生期间

其孢子产生前期最合适的温度是在24~26℃,在生长的第1阶段(即孢子萌芽前期),必须将环境温度控制在21~23℃范围内,因为此阶段不产生热量,所以室温约高于料温2~3℃,从而满足了此期间对温度的要求。到了孢子萌芽阶段,特别是在转种24h之内,一定要严格控制料温,维持在25℃以下就能有效地阻止杂菌污染。

1.5.3.2菌丝生长中期

当孢子萌芽后,其芽管迅速增长而转入菌丝生长中期,若条件适宜接种48h菌丝快速生长,可以布满整个料盘,此时固体料开始凝结成块;由于菌丝生长产生较多热量,会导致料温快速上升,48h达30~35℃,达到最高峰值;以后稳定至72h左右,菌丝生长基本结束。料盘内外都呈现出一片白色菌丝层。此阶段应严格控制温度在33℃以下,一旦超过33℃虽然菌丝生长旺盛,但会导致菌丝死亡或固化,不产生孢子或孢子量少。

1.5.3.3孢子生长阶段

菌丝生长发育结束(即接种72h)后,很快转入孢子生长阶段。孢子产生的最适温度为26℃左右,此阶段培养室温度应控制在26~28℃;因为此时料温已经恒定,约高于室温2~3℃,固体菌料会逐渐变干,通常在第7d即可出料。将固体菌料倒扣在铺有报纸的竹席上,放置于室温30~35℃的干燥通风房间内,至第10d孢子达到充分发育,固料呈现白色松散状态,即可进行下一步的干燥处理。

1.6高孢粉干燥

通常放在室内或大棚通风处阴干,或在室内低温干燥,时间约为7~10d。

1.7原粉提取

利用负压原理,将干燥好的混合菌料进行一、二、三级提取,一级分离稻壳、麦麸,二级分离破碎稻壳、麦麸及其它细料,三级收集高孢粉(孢子含量1000亿个/g)

1.8产品质量检查

1.8.1直观检查

用手指接触到高孢粉产品时有光滑感,白色略黄粉雾飞扬,粉雾越浓,说明孢子含量越高、质量越好。

1.8.2镜检

在显微镜下检查高孢粉产品的孢子含量,成品含活孢子数1000亿/g以上为好。

1.9产品包装

高孢粉产品干燥后,要求用双层塑料袋密封包装,以防其回潮;要将其放在低温干燥处或冷藏,不能多层叠放,以免因孢子的吸呼作用增温而引起孢子死亡。

2白僵菌高孢粉在生物防治中的应用

利用白僵菌高孢粉防治或预防农林业害虫,已有较长的历史。白僵菌的孢子能够在任何条件通过感染达到杀灭害虫的目的。据调查,白僵菌在我国可寄生15个目、159个科的800余种昆虫,对自然环境比较安全,长期使用害虫也产生不了抗药性,并可与许多化学农药(杀虫剂、杀螨剂、杀菌剂等)同时或混合使用。目前白僵菌已广泛用于松毛虫、玉米螟、蛴螬、蝗虫、马铃薯甲虫、松褐天牛、茶蝉、桃小食心虫等农林害虫防治。

2.1白僵菌对森林害虫的感染机理

白僵菌感染害虫的方式主要通过皮肤而进入体内,但个别也通过消化道或气孔感染虫体。白僵菌孢子附着于寄主表皮,当满足条件时就开始感染,生出芽管,同时分泌胞外蛋白酶等多种酶溶解昆虫表皮,以利于芽管的侵入。渐渐生长为菌丝,直接吸取昆虫体内养分而生长,菌丝又生长出新的孢子。如此反复感染、循环,使昆虫血淋巴中到处游离着这种菌丝和孢子,从而中断昆虫体内的血液循环。菌丝代谢产物草酸盐类在血液中渐渐积累,造成血液的酸碱度下降,引起理化性质的改变,最终导致昆虫的死亡和干枯。

2.2白僵菌高孢粉在林业害虫防治中应用(以皖东马尾松毛虫防治为例)

2.2.1施菌季节和天气

白僵菌在22~28℃、相对湿度80%的条件下生长、发育良好,为此皖东地区主要选择在4月份至越冬代幼虫期使用,以及第一代幼虫(6月上旬)、第二代幼虫(9月下旬)发生时使用。施菌时间一般在阴雨天后或早晨露水未干时或傍晚时分,微风有利于菌粉扩散、释放。

2.2.2施菌方式和用量

白僵菌可重复扩散、感染、蔓延,施菌时,首先要摸清虫情,找准虫源地,根据虫口密度和虫株率大小,分别采取机械或人工全面喷洒、带状喷洒、点状喷洒,原粉用量10~15g/667m2,可稀释后使用。

2.2.3防治效果

根据滁州市采用我厂生产的白僵菌高孢粉防治马尾松毛虫试验,松毛虫能持续、重复感染,造成不同虫龄的活体松毛虫大量死亡,并且安全、无污染,对人蓄无害,防治效果一般可达85%以上,局部可达100%,连续使用效果更佳。可用于长期防治大面积、低虫口密度马尾松林松毛虫危害,做到有虫不成灾。

2.3白僵菌高孢粉在农业害虫防治中的应用(以吉林玉米螟防治为例)

2.3.1菌种剂型筛选

根据不同地区玉米螟田间发生、危害规律及各种因素的影响,可选择不同的剂型。目前有4种粉、液剂剂型可用于大田玉米种植区选择;有2种粉、液剂剂型可供玉米(甜、粘玉米)分期播种田防治玉米螟选择。

2.3.2防治方法

防治方法有2种,分别是喷粉和喷雾。一是封垛(秸秆垛)防治法,主要是针对玉米秸秆垛内的越冬代老熟幼虫,杀死越冬玉米螟老熟幼虫,降低化蛹率。在冬末春初越冬幼虫刚刚复苏化蛹前(有越冬幼虫爬出洞动中),对残存的秸秆,逐垛喷撒高孢原粉封垛进行防治。用量是每m2垛面用含1000亿/g孢子的菌粉10~15g喷一个点,方法是将喷粉管插入垛内,摇动,当垛面冒出菌粉即可。也可用含1000亿/g孢子的白僵菌粉加滑石粉或草木灰按1∶100充分混匀,每667m22~3kg,用机动或手摇喷粉器喷粉。二是在玉米生长心叶末期,应用高孢粉粉剂或液剂向植株喷粉或喷雾,防治玉米螟第一代幼虫。三是释放颗粒剂防治,在田间玉米螟幼虫蛀茎危害前释放,以达到杀死田间玉米螟幼虫的目的。2.3.3防治效果使用高孢粉原粉防治玉米螟防治效果可达80%以上,方法简单易行,防治效果极佳,能保护害虫天敌,无环境污染,对人蓄安全,同时节约成本,增产显著。

篇5

1选用良种

主推皖麦38、烟农19、皖麦50、周麦18、西农979等5个品种。

1.1皖麦38

该品种属半冬性,抗寒性强,中熟,全生育期230d左右。株高80~85cm,较抗倒伏。穗纺锤形,长芒,白壳。籽粒卵圆形,白粒,角质,千粒重38g。中感条锈病(慢锈)、白粉病、赤霉病,中感纹枯病。蛋白质含量14.2%,湿面筋含量36%,沉降值51.8mL,吸水率60.9%,稳定时间9.7min。

1.2烟农19

该品种属半冬偏冬性多穗型中晚熟品种。幼苗半匍匐,叶窄长,叶色深绿,苗壮;株型紧凑,叶片上冲,株高85~90cm;分蘖力强,成穗率高,抗寒性好,耐瘠耐渍;后期活力好,熟相好;中抗白粉病、纹枯病;穗近长方形,长芒、白壳、白粒;小穗排列紧,每穗结实30~35粒;籽粒饱满度好,角质,千粒重40~42g,粗蛋白含量13.8%,湿面筋含量37.5%,属优质蒸煮类小麦品种。

1.3皖麦50

该品种为半冬性的中筋小麦品种,生育期235d左右,比对照皖麦19早熟2d。幼苗半匍匐,叶色浓绿,叶片宽厚,抗寒性较强;苗期起身略晚,两极分化快,分蘖力强,成穗率较高;株型紧凑,叶片上冲,株高83cm左右,茎秆坚硬抗倒,产量三因素协调,落黄性好。穗长方形,长芒、白壳、白粒、半角质。中抗纹枯病,中感白粉病,高感赤霉病。

1.4周麦18

该品种为半冬性中熟品种。幼苗半匍匐,苗期长势较壮,叶细长,分蘖力中等,成穗率高;株型半紧凑,叶片上冲,株高80cm,根系活力强,耐旱、耐渍,抗倒伏;长纺锤形穗,小穗排列较密,大穗,结实性好;籽粒均匀、饱满、有黑胚;成穗数570~600万穗/hm2,穗粒数35~40粒,千粒重45~50g;丰产性好,抗干热风,成熟落黄好。高抗叶锈病,中抗白粉病、条锈病和叶枯病,感纹枯病。

1.5西农979

该品种属半冬性,早熟。幼苗匍匐,叶片较窄,分蘖力强,成穗率较高。株高75cm左右,茎秆弹性好,株型略松散,穗层整齐,旗叶窄长、上冲。穗纺锤形,长芒、白壳、白粒,籽粒角质,较饱满,色泽光亮,黑胚率低。越冬抗寒性好,抗倒春寒能力稍弱,抗倒伏能力强,不耐后期高温,有早衰现象,熟相一般。中抗至高抗条锈病,慢感锈病,中感赤霉病和纹枯病,高感叶锈病和白粉病。田间自然鉴定,高感叶枯病。

2精细整地

前茬作物收获后,要及时深耕,耕深20~25cm。并耙透耙匀,特别是旋耕的地块,一定要耙实,做到上虚下实,以利种子萌发和根系生长。同时对于地下害虫较多的地块,要采取土壤处理的方法杀灭地下害虫,可用40%辛硫磷或40%的毒死蜱4.5kg/hm2,拌干细土300kg随犁撒施。

3种子处理

播前要精选种子和晒种,并进行药剂拌种。药剂拌种:每50kg种子可用40%的甲基异柳磷或40%的辛硫磷100mL,对水2.5~3.0kg拌种,拌种后闷3~4h,再拌20%三唑酮乳油75mL,阴干后即可播种。

4平衡施肥

施肥原则:有机无机结合,氮磷钾和微量元素平衡配比,氮素化肥在保证总氮量的基础上,注意落实前氮后移。高产田块底施有机肥30t/hm2以上,纯氮225~240kg/hm2(尿素487.5~525.0kg/hm2,其中70%作基肥施用,30%拔节期追施),五氧化二磷112.5~135.0kg/hm2(普钙937.5~1125kg/hm2),氧化钾90~135.0kg/hm2(氯化钾150~225kg/hm2),硫酸锌、硫酸锰各15kg/hm2,也可根据各乡镇取土化验结果,确定各乡镇肥料配方。

5适期早播,足墒下种

皖麦38、烟农19适播期10月1~20日,皖麦50、周麦18、西农979适播期10月8~20日,在适播期内尽量早播。播种时一定要做到足墒下种,保证一播全苗。

6精细播种

推广精量半精量播种,皖麦38、烟农19播量90~135kg/hm2,皖麦50、周麦18、西农979播量105~150kg/hm2,晚播适当加大播量,行距23~25cm,播深3~5cm,切忌播种过深。

7科学管理

7.1适时灌溉

适时浇好越冬水、起身拔节水和孕穗水。遇到连阴雨天气田间积水时要及时排涝。

7.2防冻保苗

根据天气变化情况,采取追施腊肥、灌水等措施,防止越冬期冻害和倒春寒的危害。

7.3控旺防倒

2月下旬至3月上旬,用5%的烯效唑525~600g/hm2,或15%的多效唑750~1050g/hm2对水喷雾,防止旺长和后期倒伏。

7.4化学除草

小麦越冬前或返青至拔节前开展化学除草,药剂可选用75%杜邦巨星15~18g/hm2、5.8%麦喜150mL/hm2、40%快灭灵30~60g/hm2等,对水450kg喷雾。

7.5防病治虫

重点防治纹枯病、赤霉病、白粉病、锈病、穗蚜、麦蜘蛛、吸浆虫。防治纹枯病,可选用20%的井冈霉素375~750g/hm2或30%戊唑醇悬浮剂150mL/hm2对水喷雾;防治赤霉病,可选用80%的多菌灵超微粉1.125~1.500kg/hm2对水喷雾;防治白粉病、锈病,可选用30%戊唑醇悬浮剂150mL/hm2对水喷雾。防治穗蚜,可选用10%的吡虫啉225~300g/hm2,或24%的添丰225~300g/hm2对水喷雾;防治麦蜘蛛,可选用40%的氧化乐果1125mL/hm2对水喷雾;防治吸浆虫,蛹期可用40%的辛硫磷3.00~3.75kg/hm2,或40%的毒死蜱3.00kg/hm2,拌干细土撒施,成虫期用40%的毒死蜱1.125~1.500kg/hm2,或4.5%的高效氯氰菊酯750g/hm2对水喷雾。

7.6追肥保优

在3月中下旬至4月上旬追施拔节肥尿素150kg/hm2左右。无灌溉条件的,拔节肥应根据雪雨情况,适当提前。

7.7叶面喷肥

篇6

贵州山地和丘陵面积占92.5%,种植红薯的大多是梯田、梯土和坡耕地,地块小,细碎分散,机械作业空行程多、效率低。贵州土壤以红壤、黄壤、黄棕壤为主,土壤普遍粘重。如遇多雨潮湿的天气,马铃薯机械播种时,开沟、起垄不易成型,覆土困难;马铃薯机械收获时,壅土、缠草时有发生,升运、分离、铺放等环节都会受到影响,严重时土壤、杂草、根茎等会拥堵在一起,不能作业。如遇少雨干旱天气,土壤容易板结,土块大,红薯机械收获时,入土阻力大,小机具常常不能入土,在升运、筛分过程中容易伤薯,机械作业效果差。

1.2农艺

贵州小气候特点明显,各地红薯种植习惯不一,栽培方式多样。如有净作、套作,有覆盖栽培、露地栽培,有平作、垄作,有穴播、条播,垄作有单垄单行、单垄双行等。即使是同一栽培方式,行距、行向、株距等也不尽相同。贵州红薯栽培方式的复杂多样性给机械化生产带来了很大难度,要求机械化作业技术及机具都要有较强的适应性。根据2006年以来贵州实施红薯机械化生产试验示范情况,贵州毕节西北部的威宁中西部、北部(草海、双龙、小海、麻乍、凉山、哈啦、秀水、观风海、迤那等20多个乡镇),赫章(兴发、珠市、可乐等)局部,是典型的高山平原,耕地连片成块,坡度小,土壤沙性,红薯种植分布集中连片,种植规模大,套种少或无套种,播种、收获季节少雨,红薯生产机械化作业效果好,效率高,是机械化作业适宜区,可配套中型、小型机具实行全程机械化生产。遵义、安顺大部,毕节中部(七星关、大方、黔西)、毕节西北部(威宁、赫章、纳雍局部),六盘水水城、盘县局部缓坡地春薯区,黔南、黔西南、黔东南、铜仁大部分地势较低的河套、山间坝地及水田冬薯区,红薯种植相对集中连片成规模,属机械化作业基本适宜区,可配套小型、微型机具实行半机械化生产。

2适宜贵州红薯机械化生产技术模式

目前贵州试验示范成功的红薯生产机械化技术模式有全程生产机械化技术和分段(半程)机械化技术两种模式。

2.1全程生产机械化技术模式

该模式的主要内容是以机械化种植和机械化收获为主体技术,以机械化深松整地、中耕施肥培土、植物保护等技术相配套。其生产技术流程为:施有机肥机械耕整地机械施肥播种机械中耕培土机械植保机械割秧机械收获。这种方式适宜于地势平缓、地块成型、壤土或细沙壤土的红薯栽培。机械化施肥播种作业涉及工序多,要选择好种子和肥料,结合后续作出规划好线路。整地后及时播种。播种机宜选用单垄双行或双垄双行联合播种机。第一次培土可用红薯上土机培土,第二次培土宜选用小型中耕培土机培土。植保首择背负式喷雾器,也可选用与拖拉机、微耕机配套的喷雾器或高地隙植保机作业。收获作业根据单行垄宽或播幅选择挖幅适宜的红薯挖掘机收获。

2.2分段(半程)机械化技术模式

该模式的主体内容是以机械化整地和机械化收获为主体技术,以人工施肥播种和中耕相配套。其工艺流程为:机械耕整地人工施肥播种机械或人工中耕培土机械植保机械收获。这种方式适宜于地块小、坡度相对较大,土壤粘性、砾石多,又要施农家肥,联合播种机作业效果差,甚至不能作业的红薯栽培。机械耕整地可用培土机或开沟机先开沟,施肥播种后再覆土起垄,也可以先起垄,垄上开沟,施肥播种后再覆土成型。培土、植保、收获作业按。

3贵州红薯机械化生产作业的技术要点

3.1机械化耕整地

红薯机械化耕整地是指使用各种机械进行耕地和整地,以改善土壤结构,为播种和薯苗生长创造良好的土壤环境条件的作业过程。耕地作业包括翻土、松土、掩埋杂草等;整地作业是指耕后播前对表层土壤进行的松碎、平整、镇压、开沟、作畦、起垄等作业。耕整地应适时进行,要结合土壤干湿度和种植季节综合考虑,以保证土壤含水率(12%~15%)和农时。贵州大部分薯区可采用秋冬季铧式犁深翻越冬、播种前整地的方式耕整地,以利于土壤熟化保墒,并达到杀虫、灭草和抢农时之目的。耕整地可单项顺序作业,也可采用联合作业机具一次性完成多项作业。薯田机械化耕整地作业方式主要有铧式犁犁耕、旋耕机旋耕和起垄(培土)机起垄等。犁耕是用各种铧式犁对耕层土壤进行的耕翻作业。铧式犁深翻犁耕能增加耕作层、覆盖杂草、灭茬灭虫、渗水透气、保墒保肥,使下层土壤熟化、上层土壤恢复团粒结构,利于红薯根系发育。铧式犁翻耕后的地表常留有墒沟和垄背,土壤不够细碎,还需经过整地作业才能达到播种要求。机械化犁耕要求耕地相对平缓,机手要有一定的操作技术。双向犁(亦称翻转犁)可左右翻土,机动性好,窄地块也能有效作业,应优先选用。旋耕是用各种旋耕机对耕层土壤进行的松碎作业。旋耕机旋耕能细碎疏松土壤、混拌土肥、细碎杂草、增加有机质和肥力、平整土壤表层,为机播红薯创造条件。旋耕对耕地适应性相对较强,操作简便,效率较高,但耕深相对较浅。培土成垄作业称为起垄。对于壤土和粘性土,垄作可提高红薯品质,增加产量。当采用半机械化播种或人畜力播种时,可先用起垄机、培土机起垄;用联合播种机播种时,不必先起垄。机耕时要选择好作业路线,要综合考虑作业的可靠性、稳定性和效率等。一般提倡选择掉头少、易掉头、顺坡的作业路线。对于疏松的熟土,播前直接整地,以减少耕作环节;对于生地,一般要求先犁耕,播种前整地。

3.2机械化播种

贵州红薯机械化播种作业方式主要有两种。一种是用联合播种机一次性完成开沟、施肥、下种、覆土、起垄、镇压(覆膜)的联合播种。这种方式劳动强度小、效率高,株距、行距稳定,能保持垄体均匀一致。缺点是不能施农家肥,易漏播。另一种是分段式半机械化播种。这种方式是开沟、覆土、起垄用机械(培土机)作业,施肥、播种由人工作业。特点是可施农家肥,株行距、播种量、施肥量能灵活掌握,漏播、漏施率低。分段式播种又分先播后垄和先垄后播。先播后垄是先用培土机、开沟机等机具开沟,然后由人工播种施肥,再用培土机或起垄机覆土起垄。这种方式行距、株距不稳定,垄型较差。先垄后播是先用起垄机把垄起好,垄上开沟,人工摆种、施肥后覆土合垄,这种方式垄形好、稳定,行距标准,株距不稳定。不管用哪种方式,红薯机播最好选择顺坡、长向作业,便于操作,保障质量,也利于后续作业。

3.3机械化田间管理

红薯机械化中耕的主要内容是机械锄草、追肥和培土。贵州气候多雨潮湿,抓好田间管理,及时培土、锄草、排涝,有利于增加土壤透气性,促进薯块发育生长,避免薯块青头。作业方式及技术要求。中耕松土深度、培土高度及厚度要视具体情况按农艺要求进行。对于垄作,要求垄帮、垄顶都要有一定的厚土层;对于平作,薯苗周围应适量覆土。机械化收获红薯机械化收获作业量占红薯生产作业量的30%~35%,是红薯机械化生产的重点环节。红薯机械化收获一般是利用薯类收获机具一次性完成挖掘、升运、分离、铺薯等作业工序,联合收获机还可以进一步完成薯块收集、装运等作业。贵州薯区适宜采用单一的挖掘机完成薯块的挖掘、分离、铺放即可。

4贵州红薯机械化生产技术应用需解决的问题

4.1强化对红薯机械化生产的政策支持力度

受山地条件限制,贵州红薯种植地块小,投资机械利用率低,回收成本周期长,导致贵州红薯生产机械化起点低,发展滞后,需要进一步加大政策扶持和财政投入力度。一方面,要充分发挥政策导向作用,引导农村土地流转,重点培育龙头企业、农机大户、农机合作组织等新型农业主体,促进红薯生产规模化、机械化、标准化种植。另一方面,出台促进红薯机械化生产的奖励(补贴)政策,加大财政投入力度,特别要强化农机购置补贴向红薯适宜机械化生产区的倾斜力度,提高红薯生产机具的补贴比例。

4.2强化对红薯机械化生产机具的引进开发

贵州山多,地势不平,土壤多数为粘度较大的黄土,对农机具性能、质量要求较高。但市场上销售的大多数机型与作业条件不适应,性能不够稳定,价格昂贵。例如,四行红薯播种机作业效率高,但山地坡度大,播种不均匀,很多时候不得不弃而选择双行播种机;一些振动式红薯收获机焊接不过关,作业中常有开焊现象发生,影响作业效果;近几年,贵州虽尝试引进了一些成熟机型,但几乎全部要进行改良,符合生产需求的机具较少。红薯机械化要走“技术引进一二次研发———推广应用”的道路,先引进外地成熟先进的机具,再根据当地自然条件进行二次研发,重点在生产工艺、制造材料上下功夫,既降低研发成本,又提高工作效率,以尽快研发制造出符合贵州生产实际的红薯机具,满足红薯生产对适用机具的迫切需求。

篇7

在田间选取健壮不带病的甘薯藤植株,用1‰高锰酸钾溶液浸泡过的剪刀剪取甘薯藤。将剪好的甘薯藤带回试验室,用自来水冲洗5~8min,用现配制的1‰优氯净溶液浸泡已清洗干净的甘薯藤2min,浸泡结束后将甘薯藤摊晾于事先消毒好的塑料筐内备用。将摊晾于塑料筐内的甘薯藤用被1‰高锰酸钾溶液浸泡过的剪刀剪成带3~4个节或3~4个叶片的茎段(剪去最上端的茎尖),将剪好的甘薯藤茎尖扦插在大棚苗床或育苗盘上进行培养,浇足水。大约14d后扦插的甘薯藤将长出新的甘薯腋芽。

1.2组培用甘薯外植体的消毒、接种、培养

用1‰高锰酸钾溶液浸泡过的剪刀剪取新长出的甘薯腋芽作为组培甘薯的外植体,剪好的甘薯腋芽放入培养瓶中用自来水冲洗5min放到超净工作台上,在无菌条件下用3‰砷汞溶液浸泡30~40min,浸泡之后用无菌水清洗4~5次。将已消毒灭菌好的甘薯腋芽剪成带1个生长点的茎段,接种于准备好的培养基上,通过前期培养基筛选试验,笔者获得甘薯藤茎尖组培的较优配方,诱导培养基配方:MS+6-BA1.0mg/L+IBA0.2mg/L+白糖30g/L+琼脂7g/L,pH值5.8;增殖培养基配方:MS+6-BA0.5mg/L+NAA0.5mg/L+白糖30g/L+琼脂7g/L,pH值5.8;生根培养基配方:MS+6-BA1.05mg/L+IBA0.35mg/L+白糖30g/L+琼脂7g/L,pH值5.8。培养温度:23~25℃,光照强度2000LX。在培养过程中丢弃感菌的甘薯材料。

2利用甘薯块根作为外植体的组培苗生产技术

2.1甘薯块根外植体的预处理

选取健壮无病而且休眠期已过的甘薯块根作为外植体,用自来水冲洗,毛刷轻刷,洗净甘薯表面杂质,放入已消毒的塑料筐内摊晾2~3d;用0.5‰优氯净溶液浸泡晾干的甘薯块根5~8min,继续摊晾1d,移入催芽室内高温催芽,催芽室内用石英炉加热,保持温度38~40℃,用灭菌好的牛皮纸覆盖遮光。15d以后,甘薯块根将长出新芽。

2.2甘薯块根外植体的消毒、接种、培养

用1‰高锰酸钾溶液浸泡过的剪刀剪取甘薯块根上长出的不定芽,放入培养瓶中,移入超净工作台上,在无菌条件下用3‰砷汞溶液浸泡10~15min,浸泡完后用无菌水清洗4~5次。将已消毒灭菌好的不定芽剪成带1个生长点的芽段,接种于准备好的培养基上,经笔者筛选获得较适宜的诱导培养基配方:MS+6-BA0.1mg/L+NAA0.01mg/L+白糖30g/L+琼脂7g/L+肌醇100mg/L+活性炭1g/L,pH值5.8,培养温度为23~25℃,光照强度2000LX。甘薯块根作外植体的增殖、生根培养基配方与用甘薯藤茎尖培养的相同。在培养过程中丢弃感菌的甘薯材料。

篇8

在煤矿机电技术的创新与安全管理中,要结合传统管理理念与安全模式的应用基础上,创新机电技术的综合管理方式,尤其是在机电技术与实际运营的结合中,打破传统的高风险管理,减少安全事故的发生,并注重机电技术在安全生产中的综合作用,对于提升煤矿的综合管理都将有很大的实际意义。

1煤矿机电技术管理应用存在的相关问题

1.1机电技术管理体系有待加强

在煤矿机电技术的综合管理中,通过建立相应的管理制度,并在严格执行中形成了一定的产业链发展模式,因此,在综合管理的过程中,对于整体运行都有很大的推动性。其中,在当前也存在一些不容忽视的问题,比如,机电设备管理体系不健全,煤矿安全运行与管理机制不科学,没有制定出现场安全管理的综合模式,也没有形成现场管理的综合管理机制,在机电管理体系的运行中,没有全面落实到实际安全生产之中,从而导致机电技术与煤矿安全生产运行秩序上的混乱[1]。

1.2机电设备综合管理不到位

在机电设备的综合管理中,没有充分考虑煤矿安全生产中的每一个因素,尤其是在矿井的安全生产过程中,对于机电设备管理的综合措施没有严格执行,机电基础管理的效率也相对较差,在注重煤矿地下采掘现场的设备管理中,没有形成科学化的管理模式,存在诸多的安全隐患,因此,由于机电设备运行不规范、安全措施不到位产生的事故相对比较多,其中,在运输设备的安装、运行以及检修与调试的过程中出现相应的人员触电事故,因为没有严格进行设备的检修,也没有做到详细的综合管理。

1.3机电管理技术人员素质不到位

机电安全技术管理是一项综合技术的运用过程,因此,在生产实践过程中,煤矿企业要注重对人员素质的整体培育。但是,有一些机电技术人员综合素质不全面,管理水平也不是很高,煤矿企业也没有组织专门的培训,因此,在整个技术管理与运用中就会出现与实际管理相脱节的现象。同时,在坚持相应的考察抽查管理中,也没有对整个管理形成科学化的模式,因此,在机电设备操作路径中,技术人员的业务水平与综合能力对于整个管理都将有很大的反作用。在多种机械操作的过程中,如果有技术人员责任心不强、操作技能不强等影响,就会给整个安全事故的发生带来不同程度的误差,不利于煤矿的安全生产[2]。

2构建机电技术在煤矿安全生产中的运用方式

2.1加强管理,突出机电设备的综合运用效果

在机电设备的综合管理中,要形成多样化的管理方式,在全面构建规范化的管理路径中,严格执行相应的法律条文,严格按照法律规定的相关政策,在机电设备的管理中全面落实管理机制的相关责任,解决现场实际操作中可能出现的相关问题。一是要落实责任。将管理责任落实到每一个员工身上,在加强监督管理的基础上,形成奖惩分明的管理机制,煤矿企业结合自身的实际情况,制定出相应的管理机制,通过奖罚等机制,对于安全意识强、机电技术强、责任心强的员工,要给予积极的奖励。二是要加大对设备的综合投入。在不断加大对机电设备的投入过程中,形成机电设备维修管理等方面的费用开支,对于机电设备的主要维修以及相应的改造,在加大资金投入的基础上,形成设备更新管理模式,并适应煤矿安全生产的需要。三是要结合实际需要更新设备。在煤矿开采的过程中,要注重新技术、新设备的推广应用,并加强对新技术的管理,增强机电设备的综合管理能力,从而有效提升煤矿安全生产的综合效益。

2.2提升素质,加强对人员的综合培养

在机电技术的综合管理过程中,要进行定期培训之外,还要进行相应的技术培养。因此,在具体操作的过程中要全面实现机电技术人员的业务素质,在进行岗前培训、岗中培训的基础上,更好的为机电设备技术的安全运行提供有力的帮助。因此,煤矿企业要根据实际需要,制定出相应的培训方案,在注重综合培训的基础上,定期选拔优秀的人次进行技术培训,在全面提升专业技术能力的基础上,围绕整个专业技能以及基本业务素质训练,在安全生产的过程中,构建多样化的培训体系,注重理论与实践相结合的培训方式,将操作人员的理论知识不断转化为成果的运用。在加强专业技术培训的路径中,强调实践操作水平的提升。同时,为了更好的拓展整个技术工作思路,在邀请专业技术人员进行专业技术培训与指导的基础上,形成讲座、现场指导等培训模式,并加强与高校专业技术人才之间的沟通,注重人才的全面培养,注重好宣传,营造良好的管理氛围,采取积极有效的绩效评定方式,形成相应的奖励管理机制,更好的调动操作人员的工作积极性,培养出更多的技术骨干人才,更加有利于提升煤矿机电技术在安全生产中的综合作用[3]。

2.3落实制度,形成全程跟踪管理模式

首先,煤矿企业要制定出技术管理针对性考核文件,并严格落实该考核文件中所规定内容,使机电技术管理操作更具规范性,从而提升整体管理质量,降低设备发生故障的概率。其次,针对机电设备相关检查制度方面,可采取上岗检查制,将煤矿机电技术管理重点定位于各关键岗点及要害场所,当岗位轮换之后,需实施全方位检查,确保设备始终处于完好状态。此外,煤矿企业还需制定严密的管理计划,对于煤矿安全生产的所有工序均要编写安全管理计划与具体管理流程,并指派专业管理人员对生产现场实施跟踪全程管理,而对于部分重点生产区域,还应由相关领导深入到现场进行指导与监督,确保所有的生产工序都与相关流程标准相符合,以此方式提升煤矿机电技术管理整体质量水平[4]。

3结语

在煤矿安全管理的路径中,要注重对煤矿综合管理效能的全面运用,在注重机电设备综合效能的基础上,形成安全第一的管理理念,注重将安全文化注入到每一个管理之中,同时,对于整个管理的综合应用,要搭建有效的管理方式,才能更好的推动煤矿生产的安全运行。

作者:苏飞 单位:山西兰花同宝煤业有限公司

【参考文献】

[1]李帅彪.煤矿机电技术管理在煤矿安全生产中的应用研究[J].河南科技,2014,(03):237.

篇9

1、溶液聚合工艺

1.1技术状况

60年代初实现工业化,经不断完善和改进,技术己成熟,为许多新建装置所使用,是工业生产的主导技术,约占FPR总生产能力的77.6%。

该工艺是在既可以溶解产品、又可以溶解单体和催化剂体系的溶剂中进行的均相反应,通常以直链烷烃如正己烷为溶剂,采用V一A1催化剂体系,聚合温度为30~50C,聚合压力为0.4~0.8MPa,反应产物中聚合物的质量分数一般为8%~10%。工艺过程基本上由原材料准备、化学品配制、聚合、催化剂脱除、单体和溶剂回收精制以及凝聚、干燥和

包装等工序组成,但由于各公司在某部分或控制方面有自己的专利技术,因而各具独特的工艺实施方法。代表性的公司有DSM、Exxon、uniroya1、DuPont、日本三井石化和JSR公司。其中最典型的代表是DSM公司,它不仅是全球最大的EPR生产者,而且在荷兰、美国、日本、巴西所拥有的四套装置均是采用溶液聚合工艺,占世界溶液聚合工艺生产EPR总能力的1/4.下面将以该公司为例进行说明。

DSM公司采用己烷为溶剂,乙叉降冰片烯(ENB)或双环戊二烯(DCPD)为第三单体,氢气为分子量调节剂,VOCL3一1/2AL2Et3CL3为催化剂。此外,为提高催化剂活性及降低其用量,还加入了促进剂。催化剂的配比用量、预处理方式、促进剂类型是DSM公司的专有技术。反应物料二级预冷到一500C,根据生产的牌号,单釜或两釜串联操作。聚合釜容积大约为6m3.聚合反应条件为:温度低于650C,压力低于2.5MPa,反应热用于反应器绝热升温。在碱性脱钒剂和热水作用下,聚合物胶液中残留的钒催化剂进入水相,经两次转相过程被彻底脱除。未反应单体经二次减压闪蒸回收并循环使用。此时向胶液中加入稳定剂等助剂(生产充油牌号时加入填充油)。汽提蒸出残存的乙烯、丙烯和大部分溶剂

后撇液送至两台串联的凝聚釜进行凝聚,并进一步蒸出回收残余己烷溶剂循环使用,JC胶粒浆液脱水后进入干燥系统,然后压块或粉料包装。含ENB的废热空气送至焚烧炉焚烧,含钒污水送至污水脱钒单元,在脱钒剂的中和絮凝作用下,钒进入钒渣中,定期送堆埋场掩埋,经脱钒的污水排至污水处理厂处理。

DSM公司EPR溶液聚合工艺技术成熟,比较先进,有下列优点:

(1)投资低,工艺最佳化。反应器的优比设计能满足反应物料混合要求,能准确控制聚合反应工艺参数和产品质量,聚合物胶液浓度高而循环溶剂量少,聚合釜体积小但生产强度高,原料和循环单体不需要精制,催化剂效率高,三废中钒含量低,生产弹性大。

(2)生产操作费用低,装置年操作时间长,原料和催比剂的消耗低,采用先进控制系统对生产进行控制。

(3)产品质量具有极强的竞争力。产品中催化剂残渣含量低,生产中次品少,产品牌号切换灵活,切换废品量少,产品特性能够按用户要求进行调整,产品牌号多,门尼值可在20~160宽范围内调节,质量稳定,重复性好,产品规格指标变化幅度窄和产品加工性能优异。

1.2技术特点

技术比较成熟,操作稳定,是工业生产EPR的主要方法;产品品种牌号较多,质量均匀,灰分含量较少,应用范围广泛;产品电绝缘性能好。但是由于聚合是在溶剂中进行,传质传热受到限制,聚合物的质过分数一般控制在6%~9%,最高仅达11%~14%,聚合效率低。同时,由于溶剂需回收精制,生产流程长,设备多,建设投资及操作成本较高。

2、悬浮聚合工艺

2.1技术状况

EPR悬浮聚合工艺产品牌号不多,其用途有局限性,主要用作聚烯烃改性,目前只有Enichem公司和Bayer公司两家使用,占EPR总生产能力的13.4%.该工艺是根据丙烯在共聚反应中活性较低的原理,将乙烯溶解在液态丙烯中进行共聚合。丙烯既是单体又兼作反应介质,靠其本身的蒸发致冷作明控制反应温度,维持反应压力。生成的共聚物不溶于液态丙烯,而呈悬浮于其中的细粒淤浆。又可分为一般悬浮聚合工艺和简化悬浮聚合工艺。

2.1.1一般悬浮聚合工艺

Enichem公司采用此工艺:以乙酰丙酮钒和AlEt2Cl为催化剂,二氯丙二酸二乙酯为活化剂,HNB或DCPD为第三单体,二乙基锌和氢气为分子量调节剂。视所生产产品牌号的不同,将乙烯、丙烯、第三单体以及催化剂加入具有多桨式搅拌器的夹套式聚合釜中,反应条件为:温度一20~20oC,压力0.35~1.05MPa.反应热借反应相的单体蒸发移除。反应相中悬浮聚合物的质量分数控制在30%~35%,整个聚合反应在高度自动控制下进行,生成的聚合物丙烯淤浆间歇地(10~15次/h)送入洗涤器,用聚丙二醇使催化剂失活,再用NaOH水溶液洗涤。悬浮液送入汽提塔汽提,未反应的乙烯、丙烯和ENB分别经回收系统精制后循环使用。胶粒一水浆液经振动筛脱水、挤压干燥、压块和包装即得成品胶。该工艺特点是聚合精制不使用溶剂,聚合物浓度高,强化了设备生产能力,同时省略了溶剂循环和回收,节省了能量。

2.1.2简化悬浮聚合工艺

该工艺是在一般悬浮聚合工艺基础上开发成功的,主要是采用高效钛系催化体系,不必进行催化剂的脱除,未反应单体不需处理即可返回使用。通常用于生产EPM,这是因为闪蒸不易脱除未反应的第三单体。其工艺流程为:反应在带夹套的搅拌釜中进行,采用TiC1、一MgC12一A1(i一Bu),催化剂体系,催化剂效率为50kg聚合物/g钛,反应温度27C,压力1.3MPa,聚合物的质量分数为33%。反应釜出来的蒸汽物料压缩到2.7MPa并冷却后返口反应釜。聚合物淤浆经闪蒸脱除未反应单体,不需精制处理,压缩和冷却后直接循环到反应釜使用。脱除单体的聚合物不必净化处理即可作为成品。产品可以为粉状、片状或颗粒状。近年来,Enichem公司采用改进后的V一A1催化体系,催化剂效率提高到30~50kg聚合物/g钒,省去了洗涤脱除催化剂工序,同样简化了工艺流程。

2.2技术特点

EPR悬浮聚合工艺的特点是:聚合产物不溶于反应介质丙烯,体系粘度较低,提高了转化率,聚合物的质量分数高达30%~35%,因而其生产能力是溶液法的4~5倍;无溶剂回收精制和凝聚等工序,工艺流程简化,基建投资少;可生产很高分子量的品种;产品成本比溶液法低。而其不足之处是:由于不用溶剂,从聚合物中脱离残留催化剂比较困难;产品

品种牌号少,质量均匀性差,灰分含量较高;聚合物是不溶于液态丙烯的悬浮粒子,使之保持悬浮状态较难,尤其当聚合物浓度较高和出现少量凝胶时,反应釜易于挂胶,甚至发生设备管道堵塞现象;产品的电绝缘性能较差。

3、气相聚合工艺

3.1技术状况

EPR的气相聚合工艺是由Himont公司率先于20世纪80年代后期实施工业化的。UCC公司则于90年代初宣布气相法EPR中试装置投入试生产,其9.1万吨/年的气相法EPR工业装置于1999年正式投产。目前,该工艺占EPR总生产能力的9%。UCC公司的EPR气相聚合工艺最具代表性,它分为聚合、分离净化和包装三个工序。质量分数为60%的乙烯、35.5%的丙烯、4.5%的ENB同催化剂、氢气、氮气和炭黑一起加入流比床反应器,在50~65C和绝对压力2.07kPa下进行气相聚合反应。乙烯、丙烯和ENB的单程转化率分别为5.2%。0.58%和0.4%。来自反应器的未反应单体经循环气压缩机压缩后进入循环气冷却器除去反应热,与新鲜原料气一起循环回反应器。从反应器排出的EPR粉未经脱气降压后进入净化塔,用氮气脱除残留烃类。来自净化塔顶部的气体经冷凝回收ENB后用泵送回流比床反应器。生成的微粒状产品进入包装工序。

3.2技术特点

与前两种工艺相比,气相聚合工艺有其突出的优点:工艺流程简短,仅三道工序,而传统工艺有七道工序;不需要溶剂或稀释剂,毋需溶剂回收和精制工序;几乎无三暖排放,有利于生态环境保护。但其产品通用性较差,所有的产品皆为黑色。这是由于为

避免聚合物过粘,采用炭黑作为流态化助剂之故。虽然开发成功了用硅烷粘土和云母代替炭黑生产的白色和有色产品,但第一套工业化生产装置仍然只能生产黑色FPR.

4、各种生产工艺的技术经济比较

在FPR的各种生产工艺路线中,溶液聚合工艺投资和成本最高。投资高是因为流程长,高粘度散热难,设备生产强度低,反应后聚合物流浓度太稀(仅为6%~14%,悬浮聚合工艺为33%),单体、溶剂回收需较高的费用;成本高主要是因为公用工程费、折旧费、固定成本费用高。这是由于生产过程中消耗较高的电和蒸汽所致。超级秘书网

悬浮聚合工艺的投资与成本工艺分别相当于相同规模溶液聚合工艺的77%和88%,具有投资少、原料消耗和能耗低、生产成本低、三废处理费用少等特点。

气相聚合工艺的投资和产品成本最低,分别相当于同等规模溶液聚合工艺的42%和68%。

篇10

2煤矿井下的采煤生产技术

在煤矿井下生产实践中,我们需要从技术角度上来强化采矿方法,应用这些开采技术:

2.1深矿井开采技术

在深矿井开采技术的应用中,有诸多的环节都需要引起人们的重视,如严格控制开采矿压,科学布置井巷,防治冲击地压以及防治瓦斯和火灾等等。在具体实践中,我们发现深矿井开采技术还不够成熟,有诸多的问题出现,需要进一步研究,涉及到很多方面的内容,如深井作业环境变化、巷道支护技术以及掘进技术等等。

2.2巷道布置开采技术

在煤矿井下生产中,非常重要的一个环节就是巷道布置,巷道布置情况将会对煤矿井下的生产产生直接影响,同时,煤矿井下巷道布置也关系到了煤矿开采成本,因此,就需要对其产生足够的重视。煤矿企业需要结合自身具体情况,对煤矿井下深入考察,并且将选择的采煤方式和采煤技术给充分纳入考虑范围,对煤矿井下巷道科学合理的布置。为了促使煤矿生产效益得到提高,还需要优化煤矿巷道布置;深入研究煤矿巷道布置技术,保证其能够有机结合其他方面的因素,如煤矿开采技术、煤矿井下作业条件等,这样矸石运输方面花费的时间和成本都可以得到减少。结合优化之后的巷道布置,来对开采技术合理应用,边挖掘边开采能够实现,采矿效率得到了较大程度的提升。

2.3采场围岩控制技术

要严格控制采场围岩,如果采场围岩稳定性不够,那么就会在较大程度上威胁到采矿作业人员的生命财产安全;依据相关的开采经验,有机结合现代化的理论以及先进的计算机测量技术,可以将地质构造情况给准确探测出来,这样可以更加顺利的进行煤矿开采,还可以全方面掌握煤矿采场的岩层情况。对于煤矿井下顶板,一般可以将其划分为两种类型,分别是坚硬岩层顶板和破碎岩层顶板,对于岩层控制技术的选择,需要充分依据煤矿井下顶板情况来进行,这样方可以获得较好的成效,并且降低生产成本。在处理岩层顶板时,过去通常将高压注水处理技术、深孔预裂爆理技术等应用过来,这些技术比较的复杂,并且需要较高的成本,在时代飞速发展的今天,这些技术逐渐暴露出来了诸多的问题,那么就需要对岩层顶板处理技术不断的研发和创新。将优化后的开采技术给应用过来,可以促使生产效率得到显著提升。同时,还需要深入研究高产高效的矿井,以便能够全方位的优化矿井内部的巷道和开拓等各个方面。

篇11

青海省的气候条件很适合甘蓝型优质油菜的生产。生产的油菜产量高,平均产量可达3750kg/hm2,最高产量达到5250kg/hm2;产值高,每生产1kg油菜籽的产值,比生产1kg春小麦的产值高2~3倍;品质优,需用量大。

甘蓝型油菜生产全机械化技术包括整地、播种、育苗移栽、植保、收获、秸秆还田、脱粒等环节,核心内容是机械化播种、育苗移栽和收获。推广普及先进适用的油菜生产技术装备,是提高油菜生产技术水平,实现甘蓝型油菜生产机械化的必由之路。

1栽培技术要求

油菜直播通常采用条播和点播,要求下种均匀,无明显断条,行距相同,行向笔直,播种深度2~3cm,播量5.25kg/hm2,行距25~35cm。

2整地技术要求

耕地深度应在20cm左右,深浅一致,翻垡良好,地表植物残株覆盖严密;整地平整,土壤松碎,墒性好,上虚下实,底肥覆盖严密。

3机械化育苗移栽技术要求

一般采用育苗装置,将种子播入营养钵内,在一定条件下集中育苗,然后将育好的钵苗用移栽机移栽到大田。育苗移栽的种子必须进行精选,经过包衣处理,制钵机制取营养钵时,需按要求配制好营养土。根据不同品种和耕作制度,按一定的株距和行距,移栽油菜小苗,用土压实,不产生萎根、伤苗现象。

4油菜机械化直播技术要求

播种前3d喷施除草剂,播种机进行播量、行距调整。播种量按5.25~6.00kg/hm2,与22.5kg/hm2尿素、5.25kg/hm2二铵和37.5kg/hm23911颗粒剂混合调匀,使总播量达到97.5~105.0kg/hm2。其调整方法可按不同类型播种机的调整要求进行。

5农艺管理措施

甘蓝型油菜种植区的气候特点表现为苗期气温低、蕾薹期干旱、花期以后气温升高,进入雨季。往往造成苗期生长缓慢、营养积累量小;蕾薹期以前花芽分化水平低,无效枝和无效果多;花期以后,枝叶徒长,打乱生殖生长过程,造成落花落果、秕粒率高、千粒重小。应根据高原气候影响状况,用农艺措施调节和控制。

早期开始争取获得较多的田间生长时间,增加油菜对外界水、肥、气、热资源的吸收量,播种、松土、间苗、定苗、防治病虫害、追肥、浇水要提前,实行秋耕、秋施肥和冬灌栽培措施。

重点促根、促叶,前期增水、肥,中期控制水、肥和中耕,减缓生长速度,延长花期分化发育时间,保证后期落花落果少,无效果比率降低,角粒数增加,无倒伏,实现丰产丰收。

6病虫害防治技术要求

6.1病害防治要求

选用抗病品种,采用休闲轮作制,同时注意种植密度适宜,灌溉恰当,施肥量科学合理。

6.2虫害防治要求

甘蓝型春油菜的苗期害虫主要是黄条跳甲成虫和茎龟象幼虫。一般用22.5kg/hm23911拌种或进行毒土处理,能防治上述2种害虫。若处理效果不好,可在盛花期前用药剂喷杀。

6.3草害防治要求

甘蓝型春油菜的苗期草荒治理,主要是针对野燕麦、香薷、微孔草、灰绿黎、荠草等杂草,一般用48%的氟乐灵乳剂2250~2550mL/hm2,以尿素或砂土为稀释剂,进行混合拌匀,于播种前撒于土壤表面,立即用圆盘耙或旋耕机将药剂带翻入表土下6~8cm处可以基本防治苗期草害。

7油菜收获技术要求

7.1分段收获

在油菜80%角果呈黄色时,用割晒机收割铺放田间,边割边捆,即时堆垛,以防裂角落粒。放置7~15d,待油菜后熟干燥后,再用联合收割机或脱粒机脱粒。用收割机拣拾时,应将联合收割机割刀部分换成拣拾器,同时更换凹板网筛,调低清选风扇的风速,调小脱粒滚筒与凹板之间的间隙,拣拾脱粒。

7.2联合收获

篇12

数控技术,也就是通过计算机编码的形式,实现同设备的对接,并且进行自动化操作和远程运行过程的技术。这是一个将机械化同信息化相结合的技术,可以说比较广泛的运用在工业生产的过程中。而现阶段,由于信息技术的进一步发展,计算机的操作水平也有了飞跃性的提高,数控技术的复杂程度和精密程度也有了进一步的增强,在工业生产实践过程中能够发挥作用的领域也越来越广,因而能够进一步的在生产生活的过程中发挥自己的作用。

1.2数控技术的运用状况

现阶段的数控技术已经不仅仅是机床加工而已了,可以说从机械制造到使用方面,都可以有数控技术的具体应用。相对而言,自动化运行的成果,也是由于数控技术的产生而带来的,因而机械自动化方面,可以说是运用比较广泛的领域。就我国的现实情况来说,在工业生产方面本身已经达到世界先进水平,但就技术水平来说,还具有一定的差距。数控技术实际上也处于这样的状况,发展迅速但是距离高端水平尚有距离,因而在重视程度方面的加强,以及我国信息技术的发展,都可以说从环境方面加强了数控技术的发展空间。

2数控技术在煤炭工业中的意义

2.1对于精度和效率的提高

应当说在精度方面的提高也是很明显的,数控技术之下实现了机械的自动化运作,因而实际上误差相对于一般的人工操作就会有很大的缓解。由于自动化操作本身只是对于指令的重复执行,基本上只会因为机械本身为误差而出现问题,就精度来说,可以有效地避免人工操作失误的状况,对于精度也是有提升的。效率方面同样也是如此,数控技术本身的传导和操作都运转自如,也可以说是浑然一体,因而从煤的采集到输送方面实际上都是完全的数字控制,对于生产效率来说,必然的也是大幅度地进行了节约的功能。

2.2对于安全生产的促进

安全性的提升可以说也是显而易见的,由于数控技术的运用,使得操作人员能够相对远离操作一线,从而使得相对有一定危险性的采煤行业在对于人员的威胁方面有显著的下降。数控技术一般而言更加适用于露天的煤矿开采,在露天开采方面的使用也更加广泛,因而就这方面来说,对于开采的本身危险性的降低,以及通过精密化的操作来减少运行风险,都可以说不可忽视[1]。即使在井下开采,数控技术的运用同样对于及时的预警以及危险操作的替代,有着不可忽视的作用。即使需要特定人员对于数控系统进行监控,也并非亲临一线,靠近生产的最前沿,因而在环境方面也可以说有一定的安全保障。再加上自动监测系统的出现,也进一步使得生产系统的故障排除有了更多的依靠。

2.3对于采煤成本的节约

成本方面也可以说有相当的结约。首先是人力成本方面,在机械大量使用之前可以说是典型的人力密集型产业需要大量的人力成本,而在机械使用之后则会对于人力成本有明显的需求降低。而在数控技术发展普及之后,需要进行操作的人员需求则会进一步降低,从而更多的减少人力资源成本。而在技术成本上也可以这么说,大量的设备操作被简化到计算机控制,可以对于机械操作方面作出很大的节约。而智能控制之下也能够提高采煤的效率,从而减少对于原煤的筛选工作,进一步的减少成本支出。

3数控技术在采煤生产中的具体实用

3.1采煤机械制造方面

在机械制造方面,可以说数控机床的出现以及大范围的使用进一步加强了采煤机械制造的效能,从而可以在重工业的源头方面有着更进一步的发展。就采煤行业来说,采煤机是其主要的工作机械,而数控技术运用在机械制造方面,最主要的还是加强了机械本身的精密程度,并且能够进一步将一些需要更高精度的技术运用在新的机械方面,从而加强采煤机械的效能[2]。比如说对于气割的控制就属于数控运用的典型方面,通过这些方面的使用,可以说对于采煤行业本身来说,作用是不可忽视的。

3.2采煤机械运行方面

而在采煤机械的运用方面,可以说数控技术的使用则是更加的广泛,通过数控技术的有效使用,可以使得采煤机械真正的实现系统化的运转,并且完全实现自动化的效率使用。可以说对于控制来说,最主要的几方面包括对于数控的自动关停、以及对于采用量的控制以及传输的一体化方面都是可以看得见的。而同样的,在数控技术的自动故障检测方面,也可以说是大幅度的排除了安全风险,使得效率和安全水平有了进一步的提高。

友情链接