大数据论文范文

时间:2023-03-22 17:47:05

引言:寻求写作上的突破?我们特意为您精选了12篇大数据论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

大数据论文

篇1

1循证医学与数据证据

循证医学,简之就是“遵循证据的医学”,又被称为实证医学。循证医学重视医生的临床经验,即传统意义上的经验医学,同时又强调诊断、治疗等决策应在临床证据最为符合病症的基础上作出[1]。在循证医学的创立、发展与传播方面,英国的科克伦(ArchiebaldL.Cochrane)、美国的费恩斯坦(AlvanR.Feinstein)以及萨克特(DavidL.Sackett)做出了重大贡献,成为循证医学的奠基人。科克伦强调大规模随机临床试验的重要性。他认为只有在大规模临床试验中使用随机分组策略,才能避免因样本分组而产生的选择性偏差,保持对照组和试验组样本的背景因素平衡,从而才能做出最终正确的比较与评价。他建议及时将切实医学证据传播给使用者,接受专家评估并对可信度进行适当分级,以使医学证据能被及时整理、归纳与更新。费恩斯坦奠定了现代流行病学的数理统计与逻辑基础。从1970年到1981年,他在美国《临床药理学与治疗学》杂志(ClinicalPharmacologyandTherapeutics)上,以“临床生物统计学”(ClinicalBiostatistics)为题连续发表了57篇论文,将数理统计学和逻辑学导入到临床流行病学,科学系统地建立了临床流行病学的有关理论体系。萨科特则为循证医学的传播与发展做出了巨大贡献。他发起并主编了与循证医学有关的两本著名杂志:《美国内科医师学会杂志俱乐部》和《循证医学》。

1997年,他还主编出版了《循证医学》一书,该书被译为多种文字并在世界上广为传播。正是在《美国内科医师学会杂志俱乐部》上,加拿大盖亚特(rdonH.Guyatt)于1991年首次提出了循证医学一词[3]。从循证医学与数理统计和逻辑学的渊源,便可以看出循证医学注重证据的内涵。它是一门非常强调证据制作的学科,同时又非常重视医学证据的传播和评估,这正是它区别于以往医学的特点。通过评估产生可信证据,通过传播发挥证据价值。医生在诊断与治疗过程中,不仅基于经验直观判断,而且结合证据科学决策,更加客观地进行诊断与治疗。短短十多年的时间,在世界各国医学研究与临床实践中,循证医学得到了广泛深入的应用。科克伦最初创建的世界循证医学协作网已经包括约50个专业协作小组,所收集的医疗证据几乎覆盖所有临床医学领域。1996年,我国华西医科大学建立了中国循证医学中心,并于1999年正式加入世界循证医学协作网;2001年,中国循证医学中心创办了《循证医学》杂志,发表在各类杂志的循证研究论文达45842篇。但是,循证医学也有其面临的问题,如对证据进行科学评价等问题。临床证据目前还没有完整、科学的定义,证据评价标准及推荐级别尚未完全统一,不同国家不同疾病的证据质量分级不尽相同。而且,随着人类对疾病认识的加深以及诊疗手段的革新,评价标准还会随这些因素的变化而变化。

循证医学的基础是数理统计学,要求RCT的实验样本及环境一致,以便排除个体差异及环境干扰,但这在现有条件下近乎不可能实现。号称大规模随机对照实验的样本偏少,对照组和试验组难有条件一致的个体,环境随时间空间变化造成实验对照控制困难。目前,大规模的医学样本采集困难,几百个样本已经算是比较大的样本了;而根据统计理论如要达到90%的敏感度,至少需要约1300个的数据样本。为了克服RCT样本不足的问题,Meta分析方法得到了广泛应用:通过综合已有研究多个样本集的结果,可以推得大规模样本集的综合结果。Meta分析取得了很多有价值的研究成果,但是,Meta分析的基础也是数理统计学,其运用的前提是样本及实验环境一致,正是在这一点上它备受质疑。首先,不同样本集的权重控制难于完全公正,因为其实验环境难于恰当评价和把控,实验结果难免有过度包装和偏颇之嫌。Meta分析存在的另一个问题是:它所依赖的数据往往不是最新的即时案例,制作的证据可能因环境与气候的变化而失去应用价值。总之,循证医学所面临的问题包括:证据的稀缺性、偏倚性、可靠性、及时性、公正性,以及环境的一致性等方面的问题。由于证据的一致性和及时性存在问题,基于历史数据进行Meta分析备受质疑。2014年,《英国医学杂志》在名为《循证医学濒临破产》的文章中指出[5]:循证医学的证据属于间接证据,基础建立在已经发表的研究文献上,利益冲突容易影响证据的公正性,证据环境与临床决策环境存在距离;循证医学助长了过度诊断、过度治疗,并可能存在沦落为利益集团代言人的危险。

2大数据对循证医学的影响

大数据(Bigdata)又称巨量或海量数据,是指数据规模巨大以至在合理时间内,无法通过当前主流软件工具,获取、处理、分析以便决策的结构复杂的数据[6]。大数据如下具有4V特点:Volume(巨量)、Velocity(瞬速)、Variety(多样)、Value(价值)。巨量是指已经不能再用GB(即1024MB)和TB(即1024GB)为单位,来衡量大数据的存储容量或规模,而要以PB(即1024TB)、EB(即1024PB)乃至ZB(即1024EB)为单位来计量数据容量。在巨量的医疗大数据中,各种条件的样本都会存在,因此,证据的稀缺已经不是问题。瞬速是指兼具方向的快速变化,即数据随时间和空间快速变化。大数据中的样本通常是全空间的、多维度的、全时间的及瞬时变化的。由于大数据地域环境广,数据样本量巨大、正反样本齐全,证据的“制作”已不再必要,而是随时随地客观地存在。瞬速性通过可佩戴健康监测设备体现,这为及时获取病患信息提供了极大便利。多样是指数据的种类繁多、结构复杂、因果并存、甚至同一数据表现出不同形式。数据的多样性对数据的理解和分析是一个巨大挑战,但同时也为样本分析结果的验证带来便利。因此,在医疗大数据环境下,不仅随时可以采集样本进行分析处理,还能对分析得到的结果马上进行验证,从而能够保证医学证据的可靠与可信。

价值是指相比小规模、历史数据而言,大数据具有更高的研究和使用价值。由于任意时刻任意地点都有大量样本,样本的稀缺性和及时性已经不是问题,这为医学研究扫清了采样障碍;同时由于样本丰富冗余多样,也为研究结果的验证提供了便利;大数据除具有巨量历史数据外,还有不同地域环境的巨量即时数据,这使循证决策更具应用价值和时效性。大数据将首先改变医学数据的采集方式。大数据的形成往往依靠自动采集技术,随着可佩戴监测设备如iWatch等的出现,医学数据的采集及积累速度将出现爆炸性的增长。以往的数据同大数据相比,如同沧海之一粟。且以往的数据往往靠手工采集完成,普遍存在稀缺、偏倚、可靠、及时、公正等问题,这样采集的证据必然会影响医学研究的结论。基于手工证据进行决策,其结论未必准确及时公正可靠。医疗大数据不间断地在不同地点同时采集,不仅包含历史数据以及即时数据,甚至还可能包含未来需求信息,例如,ogle就是通过人们对感冒药品的搜索来预测流感的。大数据的出现将改变医学数据的管理方式。在网络数字化高度发达的今天,尽管已经出现了电子病历,但纸张病历在数据管理中仍然重要。然而,纸张病历有其固有缺陷,如容易破损或丢失、整理归档的周期过长、借阅的时间成本极高、研究采样的工作量巨大等等。伴随大数据出现的数据融合技术能将不同医院的电子病历整合在一起,并同可佩戴健康监测设备的数据及时集成,大大减少了电子病历的整理、借阅和数据采集时间,这不仅对病人的疾病诊断和预警监控更加有利,同时也对医生的临床及医学研究更有帮助。通过语音和可视眼镜等现代化的数据浏览设备,医生在查房间隙就能获知下一病人既往病情,从而能大大减少医生的劳动强度,使医生有更多时间治疗病人,有更多的时间进行医学研究。

大数据的出现将改变医学数据的分析方式。以往在收集样本数据以后,通常使用SAS或SPSS等软件,对采集的数据进行统计分析,发现相关病因或建立决策模型。这些软件受计算能力及内存容量的限制,只能处理样本量不大的数据,并且处理的数据维数有限,例如,SPSS不能超过40维,而医疗大数据的维数成千上万。通过手工或统计软件的计算方法,将无法满足医疗大数据的分析需要。

当维数超过30个致病因素时,可能要考虑230种因素组合,普通统计软件已无法计算和处理,必须依靠内存及速度“无限”的云计算。必须研究与开发基于大数据和云计算的分析与挖掘技术如深度学习技术,使其能够自动完成高维病因数据的分析与主要病因的提取。总之,医疗大数据的采集、整合、分析、处理、研究完全靠人工完成已极其困难,没有利用云计算的统计分析软件也难于完成医疗大数据的分析和处理。在大数据时代,必须借助深度学习等技术完成医疗大数据的分析和挖掘。虽然医疗大数据能够弥补数据样本的不足和不公,但只有借助更为先进的分析工具和软件,才能为循证医学带来进一步的变革和发展。

3大数据对循证医学的变革

证据制作是循证医学的核心,证据能为医生的诊治提供参照,因此,循证医学得到了快速发展。但是,矛盾、偏颇、过时的证据也使循证医学备受质疑。首先是证据及其结论存在大量的矛盾,使人们对循证医治的结果产生怀疑;其次是证据偏颇使其成为利益代言人的工具;其三是证据时过境迁使医治达不到预期效果。而医疗大数据的出现恰好能够弥补以往证据采集与制作的不足。首先,医疗大数据使证据的稀缺问题得到解决;其次,随大数据广泛汇集的医生及病人评价,可有效避免证据成为利益代言人的工具;其三,可穿戴等自动采集设备可保证证据的时效性。这将有助于循证医学同中医的结合。中医的治疗过程通常比西医长,其证据采集及疗效评估存在很大问题,而随着可穿戴健康监测设备等技术的发展,长期持续采集治疗证据及疗效将不再困难,从而有助于循证医学在中医等领域发展壮大。此外,随大数据兴起的先进数据分析与挖掘技术,将对循证医学起到巨大的推进作用。临床决策分析评价是确定循证治疗方案的关键步骤,现有的决策分析评价模型包括决策树、Markov过程等一系列模型,这些模型在面临高维大数据时力不从心,难于继续提供较高的决策精度,使医生对医治方案是否有效失去信心。随着大数据深度学习技术的出现,病因的分析和提取已完全自动化,且大大降低了建立决策分析模型的工作量,提高了治疗方案的决策精度。对于任何疾病诊治方案,考虑的疾病致病因素越多,即证据或特征维数越多,得到的参考信息就越多,诊治的准确性就会相应提高。但是,医生在遇到大量高维的证据数据时,往往面临从中选择少数有效证据的难题。例如,假定要考虑30个致病因素或检验指标,建立决策模型就要考虑230种因素组合,从中筛选一个最优因素组合作为模型输入的工作量是巨大的。因此,要得到由若干最优证据构建的最佳决策分析模型,医生们所投入的研究精力可想而知。

筛选最优因素组合是医生们最费精力的工作,目前这项工作可以被深度学习自动完成了。深度学习最早由Hinton等人在2006年提出,它是一种无监督的特征学习和提取技术,它通过低层特征的组合构建更加抽象的高层特征。2012年,Lecun等人利用卷积神经网络真正实现了高效的多层深度学习。传统的神经网络学习只有单向认知过程,通常只包含一个隐含层,因层数较少而被称为浅层学习。深度学习则包含认知和生成两个过程,并且每个过程都包含多个隐含层,其模型的总体框架如图1的虚框部分所示。如图1所示,深度学习的“输入层”可以理解为各种致病因素以及各种检查化验结果,例如遗传环境因素以及肝功全套指标等;自底向上的箭头表示认知过程,自顶向下的箭头表示生成过程,即深度学习由两个互逆的过程构成;认知权重向量WnT和生成权重向量Wn表示深度模型的知识。原始“输入层”经“隐含层H0”认知得到输出,输出又经“隐含层h0”生成得到新“输入层”,如果原始“输入层”和生成的“输入层”完全一致,则说明认知产生的输出是完全正确的。根据信息论的有关理论,学是会产生损失,新旧输入不可能完全一致。因此,只要两者近乎一致就可以了。认知和生成权重同隐含层的每个输出相关联,wake-sleep深度学习算法用于双向调节权重:(1)利用下层输入和认知权重向量WiT产生输出表示,然后使用梯度下降法调节生成权重向量Wi;(2)利用输出表示和生成权重向量Wi产生输入表示,然后使用梯度下降法调节认知权重向量WiT。通过逐层学习最终得到顶层的认知和生成权重向量WnT、Wn。在深度学习完成后,如果要建立决策分析模型,只需将顶层输出即自动提取的特征,作为分类模型如支持向量机的输入,并用类别标记如肝硬化分级训练支持向量机,就可以得到用于决策分析的精确分类模型,分类模型如图1的虚框外部所示。2014年,香港中文大学汤晓鸥教授领导计算机视觉研究组(mmlab.ie.cuhk.edu.hk),开发了一个名为DeepID的深度学习模型,在LFW数据库上识别5749个人脸的准确率已达99.15%,其精细和准确程度已经超过了人眼和大脑。医疗大数据及深度学习必将为循证医学带来一场新的革命。不仅数据缺失、偏颇以及过时等问题会被迎刃而解,而且证据收集、制作以及诊治方案的决策都将会自动化,这将扩大循证医学在所有领域包括中医等领域的应用范围,大大降低医生在证据制作、治疗方案决策与疗效评估等方面所付出的精力,推动循证医学向更深更广更加现代化的方向发展。

4总结

医疗大数据带来的变革将是全方位的,它不仅为医学研究和证据制作带来便利,同时也将促进中医等替代和补充医学的发展。作为大数据采集的一项关键技术——便携式/可佩戴健康数据自动采集技术,将大大提高医疗数据采集以及证据制作的效率,解决中医等疗效数据需要长期采集观测的难题,弥补循证医学存在的证据偏颇、不公、过时等缺陷,促进循证医学更加客观、公正、可靠地在临床治疗中应用。在循证医学的证据评估以及利用方面,伴随大数据出现的云计算能够提高证据分析与处理的效率,大大节省医生临床应用和医学研究所需要花费的时间;面向大数据的深度学习能够从浩瀚的高维医疗数据中,自动完成疾病致病因素及环境因素等的筛选与提取工作,并能建立精度远远超过人脑的决策分析模型,从而大大提升医生建立和应用循证治疗方案的信心,有助于循证医学被各科医生更加广泛地接受和应用。尽管深度模型包含更多的隐含层,其学习时间要远远长于浅层学习,但两种模型的决策时间相差不大,因此,这并不妨害深度模型的有效应用。特别值得一提的是,深度学习将证据提取与决策分析两个过程合二为一,大大降低了医生在临床及医学研究中应用循证医学的劳动强度。基于大数据、云计算和深度学习的循证医学,由于能够降低劳动强度、提升工作效率、提高决策精度,因而将具有更加广阔的应用前景和发展方向。

篇2

2开发桥梁工程领域大数据资源意义

利用桥梁的静态数据库,可以了解桥梁的基本信息,为全国的桥梁统计、普查与管理提供信息资源。科研数据的开放有助于学术界的交流、创新,取得更为丰富的科研成果。桥梁动态数据包括施工监控数据与成桥运营阶段的监测数据,充分利用与挖掘大数据资源,可以提高桥梁的施工质量、加快施工进度,提前预测和解决施工过程中可能出现的问题,减少质量事故和经济损失。成桥运营阶段的监测数据主要为桥梁的健康状况评估提供依据,掌握桥梁所处的状态,分析、处理数据资源,提高预测、分析、解决问题的能力。可为同类桥梁的施工管理与养护等,提供宝贵经验。同时大数据资源的开放、共享,有助于节约国家资金和社会资源。

3存在问题及解决方法

(1)最先遇到的也是最棘手的问题是数据的去冗、去噪,从海量数据中挖掘大数据资源价值。目前,所列一座特大桥上各类传感器每天采集的数据达到几个GB到几十GB,甚至上百GB,如此海量的数据如何去处理,有效剔除无用的信息,找寻剩余有用的信息,从而产生新的价值、新的资源。这也是在大数据时代有效利用大数据资源要解决的首要问题。解决这一问题的主要途径是编译相关的去冗、去噪的智能分析软件,同时可以利用云计算、云分析、云管理等方法来提高解决这一问题的效率,使大数据变为有用数据,做到真正智能化分析。

(2)现在各政府部门和科研单位,都在做自己的桥梁信息库以及监测研发数据库等,而且大多数数据库都是相类似、重复的。这样造成资源的极大浪费,包括劳动力、资金等。解决这一问题的有效途径是加强政府部门、科研单位内部以及之间的相互合作,开放和共享数据资源,这也是大数据时代的必然趋势。各部门和科研单位可以有步骤、分阶段地开放共享各自所拥有的数据资源,不论是采用付费或免费的方式。

(3)由于大数据具有“4V”等特点,在大数据研究的初期阶段,大数据的价值还未充分体现时,要储存、分析、利用大数据资源,需有软件、硬件等基础设施的投入,国家和科研单位应提供专项资金的支持,同时国家可制定相关鼓励支持政策。

(4)在大数据时代成熟以后,应建立相关法规,规范和保护数据的开发利用,制订相关统一标准,提高数据的使用效率。

篇3

廉库存管理的目标之一是在保证生产或销售经营需要的前提下最大限度地降低库存成本,即对库存合理布局,减少调拨次数。存货不足不能及时满足生产和销售的需要会给企业带来损失,而存货过多将导致储存成本增加,进而影响企业利益。如何对库存管理的成本进行控制对企业的生产经营至关重要。以物联网技术为前端、大数据分析中心为后端的云会计平台,能够在时空分离的环境下预测或获取企业不同区域的仓储信息和客户订货信息,以减少企业的库存管理成本。基于云会计平台,企业能够搜集、分析货物的实时信息,动态了解各仓库的实时库存情况。仓储管理部门在获得大数据分析中心提供的库存数据与客户偏好数据的基础上,能够做到对各仓库库存合理布局,减少调拨次数,节约库存管理成本。

(二)云会计使存货控制系统更精确

为提高企业整体运作效率,很多企业对存货管理采用了ABC控制系统或即时制库存控制系统(JIT)。在ABC控制系统中,如何准确区分ABC三类存货并进行分类控制是企业需要解决的重要问题。JIT管理强调只在使用存货之前才要求供应商送货,从而将存货数量减到最小,实现物资供应、生产、销售连续同步运动。这种方式在提高生产效率、减少储存成本的同时需要考虑到与供应商协同接洽的问题。大数据、云会计技术的应用,能够提高企业ABC控制系统或即时制控制系统的运行效果。在企业的云会计平台上,通过对自身以往所有各种类型存货数据的大数据分析,以及参考同行业、相关行业的历史数据,可以对ABC三类存货进行更为科学合理的区分,使ABC控制系统更加精确。面对JIT即时制更加严格的要求,企业需要考虑到存货的计划需求、与供应商关系、准备成本、电子数据等方面,一旦存货预警就会产生生产线、销售线告急的情况,将为企业带来巨大损失。物联网与大数据技术的发展为解决JIT控制面临的问题提供了解决方案。由供应商提供的存货都带有唯一的产品电子代码(EPC),企业和供应商可以通过物联网同时获得存货的使用情况,在数据显示该批存货需要补充时,物联网得到传感信息的反馈及时提醒企业补给,通知供应商做好供货准备,并给出下一订货批量的预计时间及数量要求。这样就加强了企业与供应商的信息沟通与交流,使JIT控制系统得到更好的实施。

(三)云会计使库存管理更智能

由于各个地区消费者的需求偏好往往存在差异,使得企业在全国布局的仓库库存往往在商品的类型、数量等方面不尽相同。基于云会计平台,通过前端的物联网,企业可以获取各个区域仓库的存货情况。针对库存调拨,通过后端的数据中心进行大数据分析,可以选择在最优的仓库之间进行商品的调配,并根据对调拨结果的分析就以后的商品库存分配进行优化。消费者在网上购买商品时,云会计平台会自动选择就近且有货的库存点进行智能化发货。在存货的运输与存储过程中会涉及到安全问题,尤其是对于高价值的存货,其一旦损失将会对企业造成严重影响。云会计平台下物联网技术的运用,可以做到存货信息流和物流的统一、对存货流向形成监控,具有极强的监测功能。存货信息能够实时反映在云会计平台上,即便出现货物丢失情况,企业也能够即时采取措施应对,确保企业存货的安全性。

二、大数据时代基于云会计的库存管理

框架模型构建库存管理及时准确地反映各种物资的仓储、流向情况,可以为企业的生产管理和成本控制提供依据。通过对货物的各种信息进行即时的采集、分析、处理,可以使企业实时动态的库存管理成为现实。在云会计平台上,前端的物联网技术能够实时采集数据,后端的大数据分析中心对数据进行分析与处理,为企业的库存管理决策提供支持。在分析大数据时代云会计对企业库存管理在成本、控制、管理水平等方面影响的基础上,结合大数据、云会计和物联网的技术特征,考虑企业当前主要的库存管理需求,本文建立了由云会计平台、大数据分析中心、库存管理等核心模块组成的大数据时代基于云会计的企业库存管理框架模型。企业库存管理决策所需的库房信息,如仓库信息、货位信息、物料信息、出入库信息等,可以通过物联网技术借助云会计平台进行实时搜集;决策所需的其他大数据源,可以通过互联网、移动互联网、社会化网络等多种媒介,借助云会计平台从企业内部、交易所、事务所、外部市场、银行等获取。同时,经由大数据处理技术和方法(Hadoop、Storm、PentahoBI等)规范所获取数据,并通过ODS、DW/DM、OLAP等数据挖掘与数据分析技术提取企业进行库存管理决策所需的财务与非财务数据。大数据分析中心对企业库存管理的入库信息、调拨信息、出库信息进行分析,以此来支撑库存管理模块,为采购入库、库房调拨、销售出库阶段实时、准确的决策提供了依据。

(一)采购入库在采购入库阶段

由大数据分析中心结合企业生产情况、外部环境等因素对采购计划、采购数量、采购时间、物流过程等相关采购流程的影响,就公司所接订单、产品或服务的生产周期以及交货的时间等进行分析,并针对企业历史数据的分析以及对供应商信用程度、产品质量、产品价格等的综合分析,制定出《合格供应商名册》向企业推荐最优供应商。采购部门则根据分析结果按照企业需求制定出科学的采购计划与选择适合并满意的供应商。完成供应商选择之后要进行签订采购合同、发出订购单,供应商确认订购单、根据订单交货等步骤,这一过程需注意明确合同内容,明晰产品信息与双方责任。在最后一个部分即进料检验及入库阶段,由射频识别技术(RFID)识别出产品的品牌、规格、型号以及供应商的检验合格标识(在物联网技术下,产品都带有唯一电子标签)之后方可入库,若有检验不合格者,根据标签自带的生产信息退回至供应商处,并根据采购合同的条款或退换货物或进行赔付,退换后的货物同样要进行这一系列的检验过程,直到合格后入库。

(二)库房调拨在库房调拨阶段

模型采用完全共享策略,即某仓库库存水平一旦无法满足当前订单,而采用调拨方式可满足时,可从其他点调拨,要求调拨点的当前库存能满足需求点的订单需求量。由于云会计前端的物联网可以得到企业各仓库的库存信息,这样在任何仓库发生存货预警时,都可以向后端的大数据分析中心实时反馈请求调拨信息。对请求调拨信息进行分析之后,按照最小费用策略确定存货的调拨点与调拨量,并向该仓库调拨信息,以此在各仓库间完成存货的相互补给。在各仓库不能满足库存需要或者调拨成本过高时,库存信息将直接向总部反馈,由总部完成存货的分配。最后将调拨结果经由大数据分析中心向仓储管理部门进行汇报。基于云会计的库存调拨模块将企业的分布式库存连成了一个有机整体,不再是单独的仓库管理,可满足大中型企业库存实时性的问题,便于整体优化及一体化管理。大数据分析中心为各仓库的信息共享提供了技术支撑,物联网技术的运用为掌握各仓库的实时信息提供了有力保障,可为企业节省时间与成本。

(三)销售出库针对企业的销售出库

销售部门根据经由大数据分析中心分析之后的客户订单向指定的仓库下达发货指令,当指定仓库接收到发货指令之后带有RFID的货物将发往指定地点,同时,货物的地理位置信息与其他信息等由带RFID技术的物联网通过大数据分析中心向仓储管理部门实时反馈,以确保货物的安全以及了解物流信息。在货物到达指定地点后,将会再次向大数据分析中心反馈信息,并向仓储管理部门与销售部门发送货物安全送达的信息,从而完成整个出库过程。

篇4

1.1数量大(Volume)。大数据的数据量级已发展至PB(1000T)、EB(100万个T)乃至ZB(10亿个T),可称为海量、巨量乃至超量。

1.2速度快(Velocity)。大数据往往表现为高速实时数据流,时效性非常高。因此对处理工具的要求很苛刻,软件工程、人工智能、机器学习等都应引入。这是区别于传统数据最显著的特征。

1.3多样化(Variety)。数据种类繁多,形式多样。包括各种信息及其网页、图片、音频、视频、图像与位置等存在方式。

1.4价值高(Value)。大数据数量越庞大,价值越高,真实性、可靠性越强。但同时无效信息也越多,需要通过强大的机器算法对数据迅速地“去粗取精”,否则也只能望洋兴叹。

2大数据对科技咨询业发展的影响

2.1拓展业务空间大数据信息对应的是高速实时数据流。这些数据流往往能产生难以想象的作用,其能量也将被层层放大,还有可能在另一个看起来毫不相关的领域得到应用。大数据环境下的科技咨询就将具有全球性、战略性意义,业务范围和服务空间都将得到迅速拓展。科技咨询各相关要素,如科技资源、科技人才、创新需求、创新环境、创新成果等的疆界,将受到大数据浪潮的冲击。同时,落后地区和难以涉猎领域的业务也将在其带动下快速提升。

2.2规范咨询决策大数据将改变科技咨询决策方式,使其进入“数据驱动型”决策模式。因为面对大数据的潜在价值,决策者不仅要使用新的技术,还要改变目前的决策过程,政府也将更有效率、更加开放、更加负责。因为引导政府决策的是基于实证的事实,而不是意识形态,也不是利益集团在政府决策过程中施加的影响。

3大数据环境下科技咨询业发展道路

从上面的分析不难看出,大数据将给科技咨询业带来无限的生机和活力。科技咨询业应抢抓机遇,跨越发展,走规模化、信息化、科学化、现代化的可持续发展道路。

3.1挖掘大数据,促进规模化发展我国科技咨询业规模较小,究其原因,一是咨询市场还没有完全放开,市场主导地位没有显现,资本缺乏信心。二是科技咨询价值没有得到广泛认同,潜在需求得不到释放。三是现有机构没有形成专业分工和自主品牌,无法带来规模效应。然而,在大数据时代,最重要的生产资料———数据将自由地流动起来,推动知识经济和网络经济的发展,传统经济体制机制对科技咨询业的束缚将大大减轻,“得数据者得天下”将成为共识,市场将发挥主导作用,吸引大量资本进入,促使机构快速升级。同时,随着竞争的加剧,咨询质量、咨询价值必将得到提高和认同,潜在的需求必将迸发。

3.2利用大数据,加快信息化进程目前我国科技咨询信息化建设大致经历了计算机初步应用、管理信息系统应用和互联网技术应用三个阶段。随着时代的发展,大数据将掀起新一轮信息化革命。科技咨询业必须充分利用大数据技术,在政府引导下,进一步完善信息化工程,建立基于大数据的科技咨询信息平台,实现在虚拟空间中不同信息资源的快速整合与对接,提高咨询要素使用效率和运行主体工作效率。

3.3凭借大数据,提高科学化水平大数据的客观实在性和真实可靠性并存。对大数据进行深度挖掘,可以提高科技咨询科学化水平。首先,基于大数据,科技咨询信息的真实性有了更大的保障。其次,依据大数据特征,可帮助制定更为科学的咨询战略、方案和计划,同时降低过时咨询、无效咨询的风险。再次,基于大数据,科技咨询具有更强的针对性。咨询师可以深度分析、挖掘最高管理者的知识结构、创业经历、行为习惯等信息,准确把握其管理理念。最后,通过对大数据的分析、挖掘与利用,可最大程度地减少因数据不全而带来的负面作用。

3.4依托大数据,实现现代化转型随着时代的发展,传统的咨询工具、内容、形式、速度、效率等越来越不能满足现代社会发展的需求。依托大数据,可以实现科技咨询向现代化转型。首先,大数据环境促使科技咨询必须运用现代化咨询工具。如,大数据的超大量级迫切要求科技咨询设备现代化、信息数字化。其次,大数据促使科技咨询内容、形式现代化。现代社会工作、生活节奏很快,简洁实用、形式新颖是对科技咨询工作的新要求。形式多样的大数据正好为科技咨询提供了便利。再次,快速、高效是现代化的重要特征,而高速实时的大数据则要求科技咨询处理工具快速演进、高效运行。最后,大数据的基本特征决定了科技咨询必须进行全方位的改革创新,紧跟现代化发展步伐。大、多、真、快、稍纵即逝的大数据要求科技咨询必须借助移动互联、云计算、软件工程、人工智能、机器学习等手段,优化资源配置,建立高智能科技咨询协作平台,向科技咨询现代化迈进。

篇5

(1)信息规模大。大数据的发展是与互联网息息相关的,互联网技术的时时更新与不断发展,无疑产生了海量数据。毫不夸张地说,无时无刻不在产生新的数据。常规数据的存储单位一般为GB或TB,而大数据的单位往往是PB、EB甚至ZB,可见大数据的数据量之大之多。(2)数据的多样性。以前的数据大都是结构化的数据,现在由于信息的采集、加工与传输技术的不断发展,尤其是在互联网络上,产生各种非结构化的数据,代表性的非结构化数据包括音频、视频、传感数据,互联网上的以博客、微博为代表的文本数据等,使得数据的具体形态呈现多样性。(3)复杂关联性。在当今互联网的时代,产生的各种各样的联系,比如在电子商务网站上购物,曾经搜索过的关键词会成为电商网站制定个性化推荐、进行精准营销的最主要依据,个人在不同的社交网站上所提供的个人信息,以及在电商网站购物所留的具体信息都可以转成为有效的商业信息。这就表明了数据之间联系的紧密与密度,也说明了数据间的关联复杂性。(4)价值密度低。当然,海量的数据并不意味着海量的价值,不可能所有的信息都具有价值,如一些冗余信息。需要利用数据挖掘技术,对海量信息进行有效地提取与挖掘,找到具有价值的数据,并将其运用到商业活动中。

2.大数据时代第三方物流企业CRM面临的挑战

在了解了大数据的特征之后,我们便对大数据有了一个清晰的认识。那么在这个以数据为中心的大时代背景下,对第三方物流企业,对现在逐步将客户升级为企业核心竞争力、强调以客户为中心的第三方物流企业CRM带来了什么样的机遇与挑战,值得我们深思。CRM既是一种管理理念,也是一种应用软件,更是一种管理模式。客户一直都是企业非常重视的资源,而且对客户的重视早已从交易进行中扩展为注重潜在客户(即交易尚未发生时)、重视售后管理(即交易发生后),即在整个过程中都强调客户的地位和重要性。当今充满信息的时代,人们更加重视客户的管理,由此可以看出,客户的概念已经发生很大的变化。客户概念的泛化,无疑使客户需求变得具有多样性、多重性和差异性。在这个数据高速增长、信息高度发达的年代,无疑数据是驱动物流企业发展的动力。那么面对海量数据,低密度的价值数据,物流企业的数据“短板”,与客户信息、客户需求之间的矛盾与差距,使得物流企业在大数据时代进行客户关系管理时面临严峻的挑战,主要体现在以下几个方面:(1)数据不足与客户流失控制与预测不足之间的矛盾。客户流失一直以来就是企业面临的重大考验,而如何能够有效的控制与预测客户的流失也一直是长期讨论的热点。针对客户流失的控制与预测,传统的方法是建立在收集客户信息、资料的基础上,对客户的满意度进行分析。而往往这些数据是非常具有局限性的,仅仅是来自第三方物流企业自身积累的客户服务信息,而且在分析时并没有突出分析客户的忠诚度。而现如今客户的需求多种多样,且时时变化,客户的很多信息大多体现在社交网站或商务网站,而且信息的价值密度又比较低,造成物流企业不能很好的去收集、分析客户的信息,去有针对性的满足客户需要,去提高客户的忠诚度。因此,只能用相对少且相对固定的数据制定客户流失控制策略,或进行客户需求预测及市场预测,这些做法往往效果不理想。(2)数据更新不足与客户聚类以及个性化服务不足的矛盾。对客户数据进行聚类分析,是第三方物流企业进行客户关系管理很重要的一个应用方面。第三方物流企业的市场管理、销售服务等都与客户关系管理密切相关,都是强调以客户为中心。而根据数据对不同的客户群体进行聚类分析能够做到有针对性的进行管理,在降低客户关系管理成本的同时,也能够有效的制定实施营销策略。而对于物流行业这样一个数据驱动型的物流企业,数据的更新可以说是至关重要,要求及时将新的信息反馈给管理部门。而普遍的结构化数据,或已有的数据库数据信息相对陈旧,脱离客户不断变化的需求,这必然导致据此制定的各项CRM策略缺少有效性,甚至是营销策略的失误。(3)数据类型单一与关联性分析不足的矛盾。大量单一的客户结构化数据对已有客户的需求分析具有一定作用,然后对潜在客户或提高客户忠诚度上的作用不是很大。当前信息时代,除了传统的结构化数据,可以通过各项技术获得更多的半结构化的如网页、文本等数据,及一些非机构化数据,这些数据往往和客户的已有信息相关联,这些数据的收集与分析,能够为发展潜在客户提供基础。当前第三方物流企业大部分依旧依赖于结构化数据,数据类型比较单一,不能及时了解客户的进一步需求或与当前需求相关的产品或服务,造成对潜在市场的忽略。(4)客户需求变化与CRM模式滞后之间的矛盾。许多第三方物流企业对CRM的认识还停留在传统的与客户互动及管理方式上,虽然认识到了客户的重要性,但是在具体客户关系实施管理上,还存在很多问题,与信息时代的要求严重脱节。同时,在海量数据到来之时,又显得力不从心,无法挖掘出有效的价值信息。这种“迟钝”导致客户需求得不到最大满足,对第三方物流企业而言,面对残酷的市场竞争,时刻把握客户的需求,更好地为客户服务显得尤为重要。反之,则会导致被潜在客户所忽视,被老客户所抛弃,被客户抛弃意味着企业被市场淘汰。

二、大数据在第三方物流企业CRM中的应用

1.大数据下第三方物流企业CRM框架设计

在将大数据技术应用在第三方物流企业CRM的过程中,在整个CRM框架设计中都要明确体现出整个CRM的工作都是围绕客户进行的。各种商业目标定义的来源是客户,数据挖掘与分析的数据来源也是客户,最后具体的商业应用也是作用于客户。同时,数据的正确获取,数据的有效预处理,数据的合理存储,采用优秀的数据处理技术进行数据处理,以及优秀数据挖掘方法和技术的选择与应用,这些工作都离不开信息技术。包括大规模并行处理数据库、数据挖掘、互联网技术、分布式文件系统和可扩展的存储系统等。该模型以客户信息为主线,将第三方物流企业的客户关系管理分为三个层次:客户信息收集层、客户信息分析层、信息输出———客户服务与支持层,在整个过程中都离不开网络技术、数据挖掘等技术层面的支持。具体说,在将大数据应用于第三方物流企业CRM中时,第一步需要通过大数据获取技术得到足够多的各种类型的数据,主要包括从客户和市场等企业的外部环境,以及公司销售记录等内部渠道,收集各种客户信息和市场信息,形成大数据集;第二步需要应用包括数据仓库、数据挖掘和商业智能等技术手段对获取的大数据集进行计算、汇总,通过“聚类分析”、“关联分析”、“数据融合”,实现对客户的个性化分析、竞争情报分析、市场需要变动和产品扩展分析及共性分析,得到应用型数据,这样做的目的主要解决传统CRM中个性化服务不足、市场拓展、市场趋势预测不足的问题;第三步针对第二步的客户分析,围绕这个“中心”,把这些信息输出给客户或企业内部用来制定各种决策及提供服务支持,形成可行性报告,应用于服务管理、市场管理、销售管理及物流企业管理。通过整个CRM系统,不仅成功的对客户信息进行收集、分析、输出,同时将客户各种背景数据和动态数据收集整合在一起,同时将运营数据和外来市场数据经过整合、变换载进数据仓库。不仅重视怎样从技术上实现对大数据应用的过程,并且着重强调的是解决传统CRM的弊端,将大数据时代物流企业CRM所面临的问题在整个流程中进行解决。

篇6

(二)反馈内容全面化云计算的出现,为处理大量不规则的“非结构数据”提供了技术方法。以云计算为基础的物流技术,可以便宜而有效地将物流活动中大量、全面、多变的数据内容存储下来,并随时进行分析和计算。这些技术主要有数据采集技术、数据存储技术、数据交换技术、数据处理技术等。采集技术有传感器、扫描仪等,在物流中移动数据采集器(MDE)经常用于对仓库库存的盘点或者货架上预订数据采集,该技术在运输部门或者外部服务也有重要的价值。另外,电子数据载体如芯片、程序化数据载体(PDP)、移动数据存储器(MDS)及卫星接收发送装置,可以超越数米的距离进行读取、编辑和存储;电子数据交换(EDI)可以节省时间、提高质量和降低成本。物流信息技术是物流现代化的重要标志。

(三)反馈速度迅捷化电商物流服务业不同于传统物流服务业,快速反应是电商物流企业的核心竞争力。电子商务物流重在提供及时的服务、信息和决策反馈。目前,在大型的配送公司里,ECR和JIT系统使得顾客化服务得以快速响应。ECR即有效客户信息反馈,据此可做到客户要什么就生产什么,而不是生产出东西等顾客来买。物流企业快速反应的影响因素主要有信息系统、顾客服务、时间管理、成本控制、物流硬件、协调控制和物流人才等。

(四)反馈信息社会化在我国,企业甚至是上市公司信息披露不足,而数据、信息共享是电商时代的趋势和必然。因此,如何建立信息处理系统,及时获得必要的信息,对电子商务物流企业来讲,是个时代的考验,更是个难题。在将来的物流系统中,“24小时送达”成为物流配送的极致追求,搭建社会化物流平台成为电商企业共同的事业。阿里巴巴从2011年开始规划的天网地网,就是要做一个信息平台,向物流合作伙伴开放相关信息接口以分享数据。数据服务是阿里巴巴物流战略核心,更是未来大物流系统的支撑。未来物流系统的输出内容———信息,可以当作独立的商品或者作为商品成分进行出售。

二、电子商务物流服务业的反馈机理

反馈是大数据时代物流组织受社会需求推动,为了满足企业和消费者的个性化需求,运用收集、存储和融合信息的技术方法,引发的以数据化为核心的物流管理变革。随着互联网在经济与社会活动中的广泛渗透,将电子商务物流产业发展推向新的高度,其发展日益受到政府、企业、消费者和环保主义者的广泛关注。企业和消费者的满意度,取决于快速响应的物流管理系统。

(一)电子商务物流服务流程电子商务物流服务流程,可以用图直观表示,通过流程图可以窥见电子商务物流的反馈流程和反馈形式。图1融合了B2B、B2C、C2C交易的物流服务流程,不同的电子商务模式交易特点不同,但都具备总物流量大、服务范围广的特点,服务内容和服务特点基本相同,物流服务一般都采用第三方物流。B2B和B2C电子商务物流关键在远程运输,而C2C的关注点在末端配送。

(二)电子商务物流反馈内容电子商务物流服务内容涵盖了订单管理和数据分析、仓储与分拣、运输配送与交付、逆向物流服务、回收物流服务和客户服务。可以讲,电子商务物流服务内容有多广,物流系统反馈的信息内容就有多丰富。物流系统会对顾客提交的订单相关数据进行分析,透过分析报告可以帮助制造商以及经销商及时了解市场,便于随时调整市场推广方法;电子商务物流系统可以对仓储和分拣中心进行监测,提供有效的库存管理信息,使制造商或者经销商保持合理的库存;电子商务物流系统通过网络将供应链节点信息进行集成、整合,将实物库存信息化作为虚拟库存;运输配送与交付环节,通过融合多种终端技术采集物流信息并进行综合处理,增强了物流企业对物流配送过程的可控性,消费者则通过互联网对配送企业和商品“宝贝”信息流动实时状态了如指掌;电子商务的逆向物流反馈服务关键在提高顾客满意度。当然,随着环境保护的加强,废弃物处置问题不断受到关注,物流系统必须提供回收服务物流服务,这有利于提高物流企业在电子商务市场上的低碳竞争力。追求客户满意,挖掘潜在需求是电子商务物流企业不断创新的动力。

(三)电子商务物流反馈技术物流技术指物流活动中所采用的自然科学与社会科学方面的理论、方法,以及设施、设备装置与工艺的综合。而电子商务物流反馈技术,主要指物流服务流程中物资信息的收集、存储和融合方法。先进的信息融合技术提高了物流系统的信息处理与控制能力,使物流配送信息的交互和处理跨越时空限制,通过终端物流信息反馈与融合,实现信息到实际操作的高速转换,为物流企业决策层提供信息支持,从而不断提高物流企业的服务能力。常用的物流信息反馈设备有:各种传感器、GPS定位设备、射频识别设备、扫描器等;信息融合方法有:嵌入约束法、证据组合法、人工神经网络法等;信息传输交换技术有:计算机网络技术、电子数据交换技术等。

三、对大数据时代电子商务物流行业发展的建议

大数据作为信息革命的第二个,为电子商务物流行业的发展提供了广阔的空间。电子商务物流行业必须树立并强化数据优化行业的理念,以大数据的眼光,加强大数据研究,为客户提供更先进、增值性的服务。

(一)树立并强化大数据理念现代物流的发展趋势是全球化、信息化、系统化、标准化和多功能化,而数据化则是现代物流的核心。当前电子商务物流体系虽然在业务经营中加强了对数据的分析和应用,但缺乏对大数据应用的战略性思考和主动挖掘意识。信息采集较多,但深度加工挖掘较少,导致大量的数据信息成为“睡眠数据”而不能发挥其应有的价值。客户细分不够精准,没有在业务营销和客户关系管理活动中运用科学模型,缺乏对客户服务需求的偏好判断和消费行为习惯的细分。在大数据时代电子商务物流的发展必须要有效整合大量的数据,通过各种分析模型,将数据转化为信息资源,只有这样才能将大数据作为战略性资产,为行业管理和决策提供强有力依据。

篇7

二、大数据时代的工业设计

互联网打造了全新的社会形态和生活方式,人们的工作、生活已离不开网络,通过网络消费者可实现交友,衣、食、住、行各种所需。谢文认为,未来通过网络有望实现三方面创新,个人数据集成、公共服务数据集成及物质生产集成。如收集消费者在网络上的言谈举止和生活中所有活动产生的数据,建立“数据人”模型,为线下的制造业提供人的需求数据;集成线上的公共服务数据为国家、政府和组织提供服务支持;集成物质生产数据实现制造业的数据化生存。对工业设计而言,网络连接消费者、社会和物质产品组成的三维空间,融合各种大数据,可支持制造业的转型与社会进步。这正是新形势下工业设计的发展方向,即通过设计具体的服务产品,为消费者创造感性价值,实现消费者情感上对个性、品位和身份的追求。这些服务化产品在提供高品质服务的同时,以技术推动组织和社会创新,实现人、组织、社会和环境的可持续发展。此时的工业设计从“提供功能,方便使用”的问题解决方案,转向“讲述故事,创造意义”的“造意”阶段,“造意”正成为当下产品设计新的关注点。借助网络获取用户数据,让产品满足基本功能的同时,更多地向消费者讲述故事,引起消费者的回忆和联想,成为当下产品设计成功的关键。

篇8

大数据时代征信业面临的机遇和挑战

目前,对大数据无公认的定义,一般认为大数据是指所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为服务于经营决策的资讯。大数据的出现,使征信业发展面临的外部环境发生了巨大的变化。

(一)大数据时代征信业面临的机遇。

1.优化征信市场的格局。

随着征信机构市场化运营机制的确立,将会有更多信息资源优势的企业借助互联网、大数据等信息技术的创新进步,从征信业薄弱环节切入,通过服务创新或产品创新打破原有的征信市场格局。一是电商企业将组建征信机构。以阿里巴巴为例,其利用淘宝、天猫、支付宝平台上的行为数据和信用情况,建立成了涵盖数十万企业的数据库,具备了开展网络征信服务的基础和实力。二是金融机构建立征信机构。例如平安集团拟整合网贷信息、银行信贷信息、车辆违章信息等,建立金融数据挖掘中介机构。三是新型征信机构应运而生。一些大数据公司依靠技术手段,以电子商务、社交网络为平台,采集信息,提供信用信息服务,可能成为新型的征信机构。

2.推动征信业的转型升级。

大数据给征信业带来转型升级的历史机遇,未来的征信业将以智能数据分析系统为平台,利用大数据挖掘技术,支持征信业发展创新。大数据支持征信业升级和转型主要体现在二个方面。一方面大数据促成征信业建立全新的风险控制体制,向有效监管转型。大数据技术对客户信用信息进行深度挖掘,实时监控,防范潜在的信用风险。另一方面大数据支持征信机构向精细化管理转变。大数据的核心优势在于信息挖掘,精细化管理的首要条件是充分信息化,包括业务信息化和管理信息化。

3.促进征信业差异化竞争。

征信机构通过采用不同的数据来源,不同的数据处理方式,针对不同的客户,开发出不同的产品,满足不同层次客户的市场需求,实现差异化竞争。例如,金融机构对征信服务的需求将从单个借款主体的信用报告,扩展到运用信用信息拓展网络影响和金融服务渠道。P2P网络借贷、电商金融等业态需要借助信用信息共享防范风险,降低交易成本。

4.拓展征信数据来源。

大数据使征信数据来源呈现多元化、多层化和非结构化的特点,更加全面和真实地反映信息主体的信用情况。征信机构从在政府部门、金融机构等实体机构中采集信息,转向从互联网等虚拟世界中获取信息。在数据采集的广度和深度上,征信数据量将激增,采集包括证券数据、保险数据、商业信用数据、消费交易数据和公共事业缴费数据等,全面地覆盖与信息主体相关的各项因素。

(二)大数据时代征信业面临的挑战。

1.现有征信业务规则与大数据时代不匹配。我国有关征信业的法律法规的规制对象主要是传统金融领域,《征信业管理条例》及其配套制度初步构建了我国征信业的法律法规框架,但是《征信业管理条例》是否满足大数据时代征信业务的规则要求,尚未得到市场验证。目前,缺少对大数据时代征信活动的规范,如有关大数据采集、整理、保存、加工和处理的制度要求。因此,还需要进一步细化和完善征信业务规则,以更好促进大数据时代征信市场的发展。

2.征信业监管技术和水平需改进。大数据时代给征信业发展带来深刻影响,同时也对征信业监管提出了更高的要求。要适应大数据时代的征信监管需求,征信监管水平要能跟上大数据征信的发展水平,监管政策要符合大数据的基本规律,监管人员要具有适应大数据的知识和能力。在行业自律监管方面,我国行业监管尚未发育成熟,行业标准尚未统一,行业规范以及行业职业道德等内容尚未完善。

3.信息安全和隐私保护形势严峻。随着数据的进一步集中和数据量的急剧增长,对海量数据进行安全防护变得更加困难,数据的分布式处理也加大了数据泄露的风险,隐私保护和数据安全成为制约大数据发展的瓶颈。大数据时代下的征信业同时具有了大数据和征信两个特性,对隐私保护和数据安全的要求更高。

4.数据处理能力亟待提高。如何有效处理大数据,是大数据发挥作用的重要环节。益百利等大型征信机构在数据处理方面已经采取多层次数据挖掘等先进技术,利用私有云平台,对系统中海量数据进行处理和研发,减少主观判断,提高风险预测的准确性。但是目前我国征信机构发展起步较晚,缺少对数据处理的核心技术,导致数据分析结果不能够准确的识别个体或组织的行为。

5.硬件基础设施需要全面升级。过去征信机构存储征信数据主要是在本地建立数据库,大数据时代随着数据量呈几何级数的增加,征信机构硬件技术的发展已经跟不上数据容量的增长速度,数据存储面临较大压力。

大数据时代征信业发展的措施与建议

随着大数据时代的到来,未来征信业发展要从制度设计、技术进步、信息共享、监督管理、隐私保护等方面不断创新,促进征信业在大数据背景下的跨越式发展。

(一)建立符合大数据的征信法律制度和业务规则体系。现有的征信法律体系都是基于传统数据模式下制定的,难以满足大数据等新技术条件下征信业发展的制度需求。在征信业务开展过程中,大数据的收集使用可能涉及国家信息安全、企业商业秘密、公民隐私等,为了给大数据条件下征信业发展提供制度保障,需要从征信立法层面完善信息安全和数据管理的法律制度,明确大数据背景下数据采集、整理、加工、分析、使用的规则,确保大数据时代征信业发展有法可依。

(二)加强征信产品创新。随着可获得的数据量呈几何倍数的增加,征信机构通过深度挖掘和使用这些数据,就可以极大地拓展征信产品的种类,不仅能够提供信用报告查询等基础服务和产品,还可以提供其他综合性产品,满足社会各界的需求。从征信产品的满足层次高低的不同,可以分为宏观、中观和微观的征信产品。宏观层面,征信机构通过大数据分析可以对系统性、全局性的风险信息进行预测。中观层面,征信机构的海量数据包含大量时效性和政策含义都很强的信息,可以灵活多样地进行多维度组合分析。把这些信息整理和挖掘出来,建立对应的指数体系,有助于行业监管。微观层面,在信用主体(包括企业和个人)同意的前提下,征信机构可以提供每一个信用主体的信用报告、信用评分、身份验证、欺诈检测、风险预警、关联分析等多种数据服务。

(三)提高大数据技术处理能力。大数据价值的完整体现需要多种技术的协同。数据抽取与集成、数据分析以及数据解释,是大数据时代征信数据处理的三个重要环节,在数据处理过程中搜索引擎、云计算、数据挖掘等新技术使用必不可少。因此,征信机构要加大数据处理分析专业人才队伍的培养,同时要引进大数据处理的专业方法和工具,建立前瞻性的征信业务分析模型,更好的把握、预测市场和信息主体的行为。

篇9

2大数据与企业会计信息化

会计信息化是我国“十二五”期间会计改革与发展的重要内容之一,也是很多企业提高会计系统效率的有效途径.会计信息化是信息社会的产物,是将计算机、网络通讯等先进的信息技术引入会计学科,促进企业会计系统网络化发展的过程.大数据的兴起、云计算的增速和以云计算为基础的云会计的应用为会计信息化的发展提供了技术支持和平台.企业会计信息化的深度发展对于大数据的需要与日俱增.

2.1企业会计信息化的现状

1、会计信息披露具有偏向性,导致信息不对称.传统的会计信息系统会诱使企业选择特定的会计方法而造成企业管理人员利用自身是信息提供者这一优势,不断地美化会计报表,这对于外部使用者而言是非常不公平的.2、内部自我约束能力弱,导致数据不真实.在传统会计信息系统下,一些企业为了眼前经济指标的提升或者任务的完成,常常通过人为调整会计报表来应付各机构的检查,自我约束能力弱,数据失真.还有很多企业对现有的政策法规钻空子、打球的现象屡禁不止.聘请的第三方审计机构也本着“企业利益最大化”的审计目标,对企业不真实的数据进行舞弊,以点盖面.3、核算量大,导致信息披露不完全.传统的会计信息系统下,会计的信息系统发展越来越不能适应高速发展的经济业务,很容易造成信息披露不完全.信息经济时代下,应该更多的提供企业未来价值的知识资源,而不是沉浸在企业过去的财务数据中.4、企业信息数据单一,导致信息缺少指导性.传统的会计信息系统主要是对企业财务信息的反映,往往忽视了非财务信息.企业自身变化的社会经济形势要求我们不能只依靠过去的财务数据对未来发展做出预测.对企业未来的发展预测用某些非财务信息可能会更加合理.如企业的环境成本、社会责任等信息都需要非财务信息的提供.5、信息传递滞后,导致会计信息缺乏时效性.传统的会计信息系统采用先发生交易事项后进行记录的程序,无法满足当代企业对信息时效性的要求.企业以及社会各机构、投资者越来越需要了解随时发生的财务信息,对其进行更好的决策,这就要求企业不定期的提供会计信息,对于会计期间的定义也不再以年为单位了.因此,现有的会计信息滞后的时效性严重影响使用者的需求和投资者的决策.综上可知,传统的会计信息系统逐渐出现了不适应当今经济发展的事态,高效、全面的信息化系统变得越来越重要.在大数据时代下会计信息的不断创新,快速发展势在必行.

2.2大数据对企业会计信息化的促进作用

大数据时代下,对会计信息化的促进作用主要表现在:信息结构更加客观,既强调了会计信息的精准性,又不失相关性;财务会计信息管理的程序化;会计人员工作转向宏观信息管理;多元化的计量单位.在大数据时代下非结构化数据成为主导,在会计信息中可以更好的融合结构化和非结构化数据,更好的提高数据的相关性,并且不会人为的进行舞弊.程序化的会计信息管理也将出现,财务部门逐渐将不再作为一个部门,而是作为一个类似于“企业”的独立个体,数据的获取可以不通过部门的上报来实现,而是通过财务部门设定的独立软件获取,这也提升了财务本身的独立性,同时也可以为其他部门提供共享服务;财务部门不需要对数据进行处理,而是转变成为数据的使用和管理者.在大数据时代下,多元化的计量单位将会出现,会计计量单位会出现相关的时间、数量单位等.

2.3大数据时代下会计信息化面临的挑战

篇10

对于大数据时代,目前通常认为有下述四大特征,称为“四V”特征:第一,数据体量巨大(VolumeBig):数据量级已从TB(1TB=210GB)发展至PB(1PB=210TB)乃至ZB(1ZB=220PB),可称海量、巨量乃至超量;第二,数据类型繁多:越来越多的为视频、位置信息、图像与图片等半结构化和非结构化数据信息;第三,价值密度低,商业价值高:以视频为例,连续不间断监控过程中有价值的数据可能仅为一两秒的数据流;第四,处理速度快,处理工具演进快:数据流往往为高速实时数据流,而且往往需要快速、持续的实时处理。[2,3]

2.大数据时代对人才的需求

2013年3月,IDC数字宇宙报告《大数据,更大的数字身影,最大增长在远东》预计到2020年数字宇宙规模将达到40ZB。这意味着需要大量的人力和技术对如此庞大的数据进行处理、分析和管理。在此情况下,对于大数据环境下新型人才的培养问题在近年逐渐受到重视。未来对具有大数据管理和分析能力的人才需求将快速增长,这些人员除了具备相应的技术能力、管理能力、社交能力、系统分析和开发的能力外,还需要具备深度分析数据的能力。同时,一些和大数据相关的职位也会应运而生,例如数据分析师、数据架构师等。2011年麦肯锡全球研究所给出的一份报告预测,美国到2018年对具有良好信息素养的经理人才的需求量大约在150万人,此外,还需要14万~19万数据分析方面的资深专家。[4]在我国,互联网企业、电子商务、金融机构、医疗卫生、零售、保险等行业及政府数据中心对大数据专业人才的需求量都很大。

二、大数据时代下山东理工大学信管专业培养模式

大数据时代产生对相关人才的巨大需求,因此,山东理工大学(以后简称“我校”)信管专业提出了新的培养标准和课程设置体系,培养具有我校特色的信息管理专业人才。

1.培养目标和培养标准

在大数据环境下,重新定位信管专业的培养目标和标准,以适应“大数据”对专业人才提出的新要求,是信管专业建设的首要议题。我校信管专业突破国内高校信息管理专业人才培养的三种主要模式(一是强调IT技术,弱化了现代管理理论与方法;二是强调管理又过于弱化了IT技术;三是IT技术与管理相融合,但实际效果不理想),[5]强调学生不但要掌握现代信息系统的规划、分析、设计、实施和运维等方面的方法与技术,更要具有现代管理科学思想和较强的信息系统开发利用以及数据分析处理能力。我校信管专业还制定了全新的培养标准矩阵(如表1所示),从五大方面28个小方面更为详实地阐述了信管专业学生需具备的技能和能力,并为课程的设置提供了依据。

2.课程设置体系

为了满足大数据时代对人才提出的新要求,我校信管专业课程设置围绕主干学科(管理学、经济学、计算机科学与技术、管理科学与工程)不仅设置了国内高校信管专业常设的管理学、统计学、管理信息系统、数据库原理与应用、数据结构与算法分析、计算机网络基础与应用、Java程序设计、电子商务等课程外,还设置了数据仓库与数据挖掘、商务智能与人工智能等相关课程,使学生在理解新兴数据处理模式的同时,智能化数据分析处理及决策支持能力得到训练。与此同时,还设置了基于移动终端的APP开发、企业信息系统构建与仿真、电子商务平台架构设计等课程,使信管专业的学生成为拥有合理知识结构的复合型人才。大数据时代下新型的信息管理与信息系统专业人才的培养既要高度重视理论知识的学习,又要加强实践能力的培养。为此,我校信管专业还设置了工程实训、软件实习等实践项目,以及为期10周的IM&IS应用实践环节,为学生搭建实践平台,拓宽实践渠道。通过3年在校学习及总计约1年的实践锻炼(如图1所示),我校信管毕业生不仅具有良好的管理知识基础、信息技术应用能力,现代信息系统的开发利用的能力,还具备智能数据分析处理工具的操作能力以及综合数据分析处理能力。

3.特色

大数据时代下,我校信管专业制定了具有自身特色的培养模式,即:培养目标和标准与行业发展结合,适应大数据对人才能力需求的变化;培养具有综合分析和管理能力,强调动手能力的新型信管人才。

篇11

(二)当前流量经营的价值困境

流量是当今数字世界运转的基础。“客观属性”是对“流量”这一认识客体固有属性的客观描述,不因经营主体和经营方式而异。流量属性包括以下方面:1)流量的规模性,指流量可用同一量纲进行规模比较,比如联通单用户流量规模要高于移动,百度流量规模要高于google中国,基于中国移动网络发生的流量规模要高于基于百度服务发生的流量规模;2)流量的层次性,指流量与用户真实行为(主体)的接近程度。流量蕴含着反映主体行为的信息,但程度有所不同。比如淘宝网所承载的流量直接反应用户的网购行为,而电信网所承载的流量只是经过IP协议封装的比特流,前者显然更接近用户真实行为因而被称为表层流量,后者则被称为底层流量;3)流量的异质性,指流量对用户消费目的(客体)的涵盖范围。流量蕴含着反映客观世界的信息,但范围有所不同。比如文本、话音、图片、音乐、视频等不同类型之间,垂直应用与平台式应用等不同类型之间,社交类、娱乐类与生产类应用等不同业务类型之间,其流量映射客观世界的能力就各有差异和侧重;4)流量的不可分性,虽然底层流量和表层流量在概念上区分了,但在实体上是紧密依赖的,是同一事物在不同经营层面上的不同投影。比如,淘宝的表层流量离不开运营商底层流量的依托,运营商底层流量也离不开淘宝等表层流量的呈现,同时,淘宝可推知用户使用了多少底层流量,运营商也可部分解析出用户的购物行为。

可见,流量是一个充满想象空间的市场,而电信运营商似乎占据有利地位。综合流量的层次性和异质性,流量被赋予了主体行为和客体存在在信息层面上统一投影的属性,是信息社会不断流动的血液,具备极大的社会价值和经济价值。从流量的不可分割性来看,上层服务提供商与基础运营商之间的相互依赖、相互制约将是长期的基本格局。从流量的规模性来看,至少在本地市场,由于基础设施市场集中度高,电信运营商很容易就可获得超过任何单一玩家(如apple和facebook)的规模优势。

但现实情况中,流量规模的暴涨对电信运营商是一把双刃剑,情况不容乐观。流量在呈现客观属性的同时,在特定的经营主体及经营方式下,还会表现出影响甚至决定经营绩效的经营特征。本文认为,固然客观属性有利于电信运营商开展新一轮价值创造,但在当前经营模式下,流量应有的价值并未得到充分挖掘,无法支撑电信运营商的可持续发展。

当前的流量经营模式是,通过提供同质化的、以M为价值衡量单位的流量产品来满足用户的接入需求,然后通过向用户收取按照使用量计算的费用来补偿网络成本、运维成本和营销成本。在这种模式体现出三大属性:一是面向手段性需求。用户向运营商购买流量不是为了流量本身,而是为了流量所承载的个性化互联网应用。流量仅仅是服务于互联网消费的手段,因此,与面向目的性需求的互联网服务提供商争夺用户界面时,电信运营商天然地处于劣势;二是无直接网络效应,电信运营商无法将网络效应内化从而无法实现业务的边际效应递增。流量用户之间并未像话音用户之间和短信用户之间那样构成彼此连接的网络,用户之间的网络是通过业务构成的,而业务网却控制在OTT手中。换言之,网络效应主要存在于OTT业务层,而非管道层。因此,随着使用OTT业务的用户越来越多,以及用户使用OTT的业务次数越来越多,OTT业务的边际效用递增,但电信运营商流量的边际效用基本持平;三是边际成本下降有限,面对指数级增长的流量需求,运营商不断追加投资扩容、升级只能勉强跟上。上期投资刚进入边际成本下降阶段新的投资又追加进来,下降趋势被中止。在投资压力下,设备商又勾画了美妙的技术前景,许诺平均成本将极大地降低,勾引运营商全面投资新技术。这样多次循环和叠加,在相当长一段时间内,运营商都处于初始成本投资阶段,流量边际成本下降的周期被压缩到很短。反观OTT,一旦业务上线,在运营成本增长与业务量增长相比可忽略不计的前提下,业务边际成本很快就会下降到接近于0。某种程度上,信息产品边际成本为0规则的成立,是建立在电信运营商的牺牲之上的。

图OTT业务与电信运营商流量业务的边际效用/成本对比

电信业本是新经济的鼻祖,网络效应理论就是70年代从对话音网络的研究中发展起来的。然而,在当前经营模式下,运营商的流量业务失去了网络效应、边际成本趋于0、边际效用递增等信息产品的新经济特征,用工业经济时代的经营模式去与新经济时代的经营模式争夺价值,注定是落于新型竞争对手的。这是仅在流量规模上做文章,没有深入挖掘流量价值形成的后果,运营商由此陷入流量价值困境。

(三)大数据经营破解价值困境

大数据的定义众说纷纭,从技术特征上它通常具备数据量大(volume)、数据类型多(variety)和数据处理和响应速度快(velocity)的特征,麦肯锡将大数据定义为超过了常规数据库软件所能搜集/存储/管理和分析的规模的数据集。大数据概念具有深刻的IT烙印,正如“流量”概念具有深刻的电信烙印。通信与计算是信息的不同处理环节,在ICT端到端融合的背景下,流量和大数据完全可以统一在“信息”概念下,是信息全生命周期不同阶段的称谓。流量有表层底层之分,数据也有信息、知识、智慧之谓,流量经营和大数据经营均可理解为信息经营。

然而,仅仅揭示大数据本身的属性是远远不够的,如果脱离了正确的经营模式,一切价值都是虚妄。在这方面,电子科技大学周涛教授的观点很有价值。他认为,大数据1.0是利用内部数据解决内部问题,大数据2.0是利用内部数据去解决外部问题,或利用外部数据解决内部问题,大数据3.0意味着大数据进入了一个以共享交易为特征的时代,出现了大数据公共平台运营商(以下简称大数据运营商)。从1.0到3.0,大数据的工具属性逐步减弱,目的属性逐步增强,直至“大数据”像货币一样在全社会范围被收集、交换、处理、传输和应用,使得大数据可以真正成为时代的标签。在这个意义上,大数据之“大”,就是不断增强数据的透明性、不断扩大数据的共享范围、不断提升数据的流动性,在更大范围内解决信息不对称以创造更大的价值。否则,无论数据多丰富,技术多先进,都较过去无本质突破,大数据之“大”盛名难副。这个过程,是大数据经营环境不断完善和经营模式不断演进的过程。

大数据经营模式严格来说是指大数据运营商的经营模式。大数据运营商采取双边平台模式,一方面向消费者提供普遍服务,另一方面向企业客户提供以大数据为中心的服务。可以形象地将这种经营模式比喻为“数据银行”。1)大数据运营商自身掌握独特而雄厚的数据资产,这往往是一个通过提供消费者服务集腋成裘的过程,正如银行通过吸纳个人存款掌握雄厚的现金等资产;2)这些数据的使用权和支配权归大数据运营商但所有权属于消费者,正如银行可以自行决定吸纳的存款如何使用,但储户拥有随时要求提现的权力;3)大数据运营商以免费或部分免费提供服务为代价,换取消费者在使用该服务时产生大数据的支配权,正如银行承诺利息收益换取现金存入或委托理财,并默认获得资金支配权;4)这些大数据被用到千百万家企业的生产服务流程中,为大数据运营商的企业客户创造价值,为大数据运营商赚取收益,正如银行吸纳的存款被贷给各行各业的企业,融入经济生活的角角落落。为了进一步理解该模式,下面描述一些细节:

细节一:场景举例。风险控制是保险公司商业模式的核心环节,如果能够更准确地获知投保客户的风险系数,保险公司就可能设计更有竞争力的保险险种和更丰厚的收益。比如车险,如果能对某潜在客户的出行和驾驶行为数据如车速、车程、违规记录等进行分析,保险公司就能更精确地推知该用户在投保期内出现安全事故的概率,从而制定更为有利的保费和理赔政策,比如避免对高危客户(通过各种指标定义)保费过低或保额过高,而对“安全系数”较高的客户则可以在常规保费基础上打折以提升产品的吸引力。同样,对于疾病险,如果能够对潜在客户每天身体健康指标如血压、心跳、卡路里消耗、睡眠时间等,保险公司就能识别优质客户并针对性地设计相关疾病险种。在这个简单的例子里,大数据产生于用户使用的车联网、移动健康等服务,大数据运营商需要向用户提供这些服务,并承诺他们的个人数据不会被滥用。对于保险公司或其他中小型企业客户,大数据运营商提供的核心产品是数据,但更可提供大数据基础设施租用、承担大数据分析任务甚至基于分析结果的营销执行等附加服务。

细节二:如何规避隐私争议。个人数据的隐私问题是大数据商业价值受到质疑的主因。实际上,这个问题可以从理念上和模式上给予回答。理念上,隐私问题自人类社会形成之初就存在,用户心中总是存在一架权衡隐私顾虑和业务价值的天平。当前的隐私争议不在于隐私被使用了,而在于被滥用了,没为用户带来便利/效率/等正面价值甚至反而带来负面价值。因隐私顾虑而扼杀业务创新只会在竞争中被淘汰,将注意力集中到利用个人数据创造更智能的业务,使用户心中的天平偏向业务价值,这才是解决之道。模式上,大数据运营商扮演的是银行角色,受消费者委托管理数据,基于数据所有者与数据使用者之间的契约关系执行数据开放动作,具体由双边平台的双方自愿谈判商定。比如,保险公司若需要使用个人数据可向个人提供保费折扣,达成协议后大数据运营商则执行这一契约,按照协议开放指定数据,并全程监督数据使用。上述过程并不涉及隐私侵犯。对于那些无需识别个人身份的大数据应用,交易成本可以更低,正如银行没有必要向每个储户说明他/她的存款被用于哪一笔放贷或投资,而只需履行利息承诺即可。

细节三:如何获得网络效应。在上述经营模式下,大数据运营商将获得网络效应,这种效应源于该平台上各行各业的企业。与话音业务类似,企业使用该平台提供的数据的同时,也在为该平台增加更多的数据资产。比如,“用户A在facebook上的Like行为记录”这一数据,若被WSJ网站使用,除了为WSJ产生“内容精准推荐”的价值外,用户A对该内容的浏览行为和评论(如果有)也会被平台记录,从而提升原数据质量(如置信度评价)、丰富了关于用户A的数据,其他企业将可从该平台获取更多价值。这样,企业围绕平台构成了大数据共享网络。大数据平台成为网络效应的受益者。于此同时,企业客户在使用大数据产品时也具有边际效用递增的特征,数据用得越多,数据的价值就越大。可见,大数据经营完全符合新经济规则。数据不因使用而损耗,且随着使用次数增多价值反而变大,边际成本趋于0,边际效用递增,大数据的价值与数据节点及数据使用者节点的平方成正比。

细节四:如何将流量转化为大数据资产。针对流量业务,一方面优化现有面向消费客户的经营模式,另一方面从流量中提取大数据资产,作为构建面向企业客户大数据经营模式的基础,两者交叉补贴,平摊成本。用户在消耗流量的同时,也在为大数据经营添砖加瓦。一个基础设施,两个经营模式,这是成本收益困境的基本解题思路。对流量经营而言,智能管道存在的价值是调控和配置管道资源,但智能调控和配置的前提是对调控对象的深度识别和解析,而这正好就是从流量提取大数据的过程。因此,智能管道将成为电信运营商获取大数据的重要来源。大数据的另外两个重要来源是BSS和各种信息类业务的后台数据。不同域数据之间的混搭会取得1+1》2的效果。

(四)大数据平台运营商的演化

在未来实体世界与数字世界无缝整合的世界,高速流动的信息将充当不可或缺的纽带。谁能掌控两个世界相互耦合的界面,谁就将成为下一轮破坏性创新周期中最大的赢家,而大数据平台就是这样的关键环节。当前虽然总体上处于大数据1.0阶段,但基于数据重要性被不断认知、传统企业拥抱数字化商业模式热情高涨等事实,大数据领域正孕育着一个前景广阔、异彩纷呈的大市场。

未来的大数据运营商绝不仅仅包括现在的电信运营商,互联网巨头如facebook、google和阿里巴巴等也将沿着这一方向演进。阿里巴巴提出的“电商、金融、数据”三步战略就是明证。阿里巴巴和新浪微博、高德地图等之间的资本联姻,也是走在数据布局的路上。平台会扩张,生态会成长,当时代被烙上大数据的印记,围绕大数据公共平台运营商成长起来的大生态注定会成为信息文明的基石。从平台演进的角度,本文认为大数据经营的成熟将经历消费平台、垂直平台和公用平台三个阶段,简要描述如下:

第一阶段,竞争者们借助消费平台海量用户数据的原始积累取得了大数据平台之争的入场券。比如阿里巴巴的淘宝、腾讯的微信、facebook以及电信运营商的流量,都是典型的消费平台。各类消费平台有层次和领域的区别,渗透争夺十分激烈,但就数据储备而言都具备了进阶的资格。同时,OTT玩家普遍发育了后向广告模式,与电信运营商的流量前向收费模式相比,收入规模小但利润率高。

第二阶段,基于用户积累向垂直行业扩张或者某个特定的环节延展。这个阶段,消费平台依然非常重要,但随着数字世界与实体世界的整合,固守数字世界很快遇到增长极限,因而越来越多的资源将投入面向线下传统行业的拓展。垂直行业方面,包括金融业(互联网金融、移动支付等)、健康业(移动健康、移动医疗等)、汽车业(智能汽车、车联网等)。特定环节方面,包括营销(广告),CRM(如微信公众账号、淘宝卖家服务、FacebookConnect等)、产品设计(如天猫和华为定制手机合作等)。毫不意外,扩张的行业B2C特征较明显,延展的环节则以营销环节为出发点,而电信运营商通常以行业扩张为主,OTT以环节延展为主。总体而言,这些面向各垂直行业和特定环节的服务都以相对独立的小平台形式存在,每个垂直平台的经营模式各不相同,大数据资产进一步积累,但以信息为中心的经营模式仍未确立。从进阶第三阶段的角度考虑,衡量第二阶段经营成败的标准有两个:其一是是否与政府和传统企业建立了全面的信任关系;其二是是否掌握了大部分行业都需要的20%的关键信息。

第三阶段,面向全体社会成员的大数据公共平台出现。大数据在企业生产和消费者生活各环节的价值被充分认识,垂直行业内部的信息链在第二阶段被打通之后,进入跨行业信息共享阶段,大数据时代来临。在前文提到车联网信息、个人健康信息和保险公司的共享是这一阶段的典型案例,而车联网、移动健康领域的数据布局和与保险公司信任合作关系的建立,则已在第二阶段完成。值得强调的是,消费者的作用非常重要,因为各行业间打破信息隔阂唯一动力就来自于它们具有共同的用户。这一阶段,数据透明/共享/流动的范围、网络效应的范围、创造价值的范围达到了新的高峰。

上述三个阶段所描述的经营模式是叠加而非替代关系。从大数据的角度看,第一阶段着眼于积累原始资本,第二阶段注重数据的垂直投资布局和精耕细作,第三阶段注重跨行业数据的共享运营。但从经营视角来看,最终大数据运营商将具有三种核心业务、三种盈利来源,比如阿里巴巴的三步走战略,并不是金融代替了电商,数据代替了金融,而是按照这个路径最终形成三足鼎立的多元共生业务组合。

(五)对电信运营商的建议

既不甘于管道的低利润率,又无法适应OTT基于速度和创意的竞争规则,电信运营商一直在寻找位于管道业务和OTT业务之间的黄金地带。本文给出的答案就是大数据经营。大数据经营与传统通信经营在业务属性和经营模式上具有内在延续性。传统通信业务通过将个人连成通信网络解决个人与个人之间的信息不对称,大数据经营通过将企业连成大数据网络解决行业与行业之间的信息不对称,这个方向符合信息社会的演进脉络。通过选择正确的模式,大数据经营完全可以和传统通信业务一样具备网络效应等新经济特征,从而带领运营商走出当前流量经营模式的价值困境。

对电信运营商而言,大数据的战略地位应从内部运营工具提升到“新大陆”,移动互联网业务则从“新大陆”降低到撬动新大陆的“杠杆”。如果目标和OTT一样都是大数据,而获取大数据的手段并非仅自身运营OTT业务一途,电信运营商何必一定要吊死在这棵树上呢?调整心态后再参与OTT竞争,也许更从容不迫。因此,电信运营商无需过于纠结为何不具备互联网基因,而应立即与那些OTT站在同一起跑线上一道发力培养大数据基因,构建大数据经营模式。大数据目前还处于非常早期的阶段,大数据竞争最终将是资源密集型的,电信运营商在这个战场上的位势要比在OTT战场上好得多,至少暂时如此。比如,腾讯有微信和QQ,阿里有淘宝和支付宝,电信运营商有流量。关于下一步的布局,有如下几点建议:

篇12

数据的量的累积规模大是大数据存在的物质属性。比较传统的数据,大数据的量的标准明显大大提高,从TB转为PB和ZB。随着时间的推移和数据管理技术的不断进步,符合大数据标准的数据集的规模也不断地增长。导致数据的量比以前大和多的原因很多,主要是由于随着互联网的迅速普及,人们获得信息非常方便,这个过程会产生大量的数据,也就是说,当你获得信息的同时也产生了信息,你的每次浏览和点击也提供了大量的数据。

1.2数据种类很多

数据的种类是数据的外在形式,是指它的表现样态。原来数据的表示形态和种类有限,数据的维度也相对较低,数据类型简单,大多采用表格的形式和文本进行呈现。在对数据处理的过程中只是对于数值本身进行处理,没有对数据之间的关联和架构进行分,因此也就不能产生新的价值和意义。随着人们生活的丰富好技术的发展,人们对于能获得到事物几倍的诸多信息,因此对于同一事物的数据就越多。数据甄选和过滤技术的出现,数据就成了事物意义的描述,数据量就以几何级的方式增长。

1.3数据处理数据极快

大数据时代的重要特征就是数据处理效率快。早期社会,传统的技术和工具,数据处理缓慢而且抵消,不能够满足人们的需要,大数据时代,各种新兴技术的运用,数据快速增长,必然要求数据处理速度越来越快,并且数据处于不断的流动中,数据具有较短的时效性。没有及时处理的数据可能很快就失去了任何意义。因此,大数据的处理要求瞬间处理,形成结果,因此大数据时代的数据需要进行零误差处理是这个时代的显著特征。

2高职院校网络教学面临的问题

高职院校不同于一般学院,因此在网络教学平台构建的时候,应该结合高职院校自身的特点和优势,侧重于以专业资源建设为核心,构建数字化学习为中心,资源共享为目的,充分保证资源的快速上传、检索和归档。高职院校网络教学平台应该符合现代职业教育理念:一方面能够在现代教学理论中以学生为主中心;另一方面由于高职院校的学生已经具有较强的学习能力和独立思考的积极性。因此高职院校网络教学应该考虑到现代教学的要求,发挥学生网络学习的自主能动性和教师在网络教学中的向导作用。网络平台应该能够使得教师和学生在通过网络学习社区有小的组织和教学相关的应用,使得教师和学生在完成教学和学习计划的同时,还能够消除学习上的孤独和无趣,增加学习者的学习兴趣,促进广大师生进行知识分享。加强高职院校网络教学平台的教学资源库建设。优质的高职院校网络教学资源是网络教学最重要的建设部分,也是最具核心的部分。高职院校网络教学课程资源建设是网络教学平台中的重点和难点,网络教学平台应该围绕教学内容而建设,并且结果高职院校自身的特点和优势,重视优质教学资源的平时积累和丰富,最大限度地收集教学资源,使得优质的高职院校教学资源在应用的过程中不断地丰富和完善。实施网络教学平台资源收集、使用和保存的同步,将资源库的建设贯穿在网络课程建设和学习的整个过程,对于教师和学生上传的教学资源实现自动收集。高职院校网络教学平台还要加强对学习过程数据的跟踪。目前多数网络课程对于不同的学生的学习方式支持并不是很理想,还不能够为学生的自我评价提供足够的数据,不具备产生有效的学习后期服务功能。在高职院校的网络教学平台建设时候,应该考虑到利用高职院校的技术优势,对学生的学习过程和成绩进行跟踪记录,并结合找到的工作情况进行匹配,为学生提供一个很好的自我评估,自我提高的依据,也为未来的学习和发展提供有力的方向。

友情链接