人工智能技术论文范文

时间:2023-03-23 15:23:54

引言:寻求写作上的突破?我们特意为您精选了12篇人工智能技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

人工智能技术论文

篇1

2人工智能技术产生的误差小

人工智能技术在运行过程中基本不受到来自外界的影响,而且其本身的抗干扰能力就很强,所以,一旦提前对系统设定了参数,那么在操作过程中就不用担心参数发生变动。这些参数在整个过程中会保持在一个值域之内,所以不需要担心会有较大的差值,因此其工作效率也比较高。

3人工智能在电气自动化中的应用

3.1智能控制和保护功能

进行操作控制。在进行操作的过程中,使用人员可以通过键盘或鼠标对隔离开关、断路器等进行现场的或者远程的控制,对励磁电流进行精准的调整。除此之外,还能够进行带负荷操作和停机操作,对相关的人员的权限进行限制。对相关数据的收集和处理。人工智能技术对所有开关量、模拟量数据进行实时的采集,而且根据先前设计好的要求进行定时批量的存贮以及整理等工作。设置和修改某些参数,及时地保护软压板的退投。对设备的管理。人工智能在对电力系统进行管理的时候,可以对运行日志进行自动保存,并生成报表的存储或打印、描绘系统运行曲线等。实行有效的监控。智能技术能够对模拟量与开关量进行全程同步的监测,当检测过程发生异常时,则可以选择多种模式进行报警,同时还可有序地记录系统里的各项事件、在线分析负序量计算等。对画面的显示。人工智能技术可以运用图像生成软件进行真实画面模拟,可以对有关设备和整个系统的工作运行进行模拟,并且最终以画面的形式显现到屏幕上。进行故障录波。智能技术对故障波形的获取具有良好的功能,在获取的同时还可以做好相关的记录,对模拟量故障及时地进行录波和捕捉相关波形。

3.2智能信息检索

作为人类智能的模拟理论而产生的新兴技术方法,人工智能具有良好的信息检索功能。其不仅可以对网络中出现的较为模糊和不确定性的因素进行科学的换算以及推理,还可以根据信息检索的结果提出一些切实可行的解决方案。人工智能技术的优势还在于它可以将正确的指令精确无误的传达给各种机器,进而机器在接受到指令后能够进行正确、正常的运转,确保任务的完成。

3.3提高电气自动化性能,提高产品质量

人工智能系统具有优越的条件,其模拟人类智能,并将人工智能技术中的遗传算法投入到电器产品的应用中。利用人工智能技术,可以将产品的性能优化,假如可以科学合理地把人工智能技术运用到电气自动化的控制中,那么电子自动化性能就会得到显著的改善,电气设备的运行效率也会被大大提高,电气自动化控制的准确性便有所保障。这样一来,就可以减少在电气工程自动化中人力资源的使用,劳动成本也可以随之降低,进而推进电气工程事业的发展。此外,人工智能技术还可以在各种电器产品的会设计中辅助进CAD,使产品的开发周期得到有效缩短,并且能够对提高CAD技术的开发和应用程度有很大的帮助,设计难度也会有所降低,产品的质量自然就会提高。

3.4电气设备优化设计

有关电气设备的优化设计工作是比较复杂的,需要结合多方面的理论知识,比如电磁场、电机电器、电路等相关知识,此外还需要丰富的设计经验知识。过去的电气产品设计效率很低,一般是因为缺乏相关的技术的支持,再加上工作量本身就很大,所以整个设计就显得比较难,很少有科学合理的设计。但是如今计算机技术发展迅速,手工设计逐渐被计算机辅助设计(CAD)所代替,产品的开发周期缩短了,设计人员的设计产品质量和设计的效率也提高了,而且设计已经越来越趋于智能化和高效化。人工智能技术在电气产品的优化设计应用中,主要有两种方法,即专家系统和遗传算法。其中,遗传算法可以直接操作结构对象,对优化和自动获取搜索空间、自行调整搜索的方向方面具有指导作用,而且采用先进的计算方法,计算结果很精确,因此在电气产品的智能化优化设计中应用广泛。而专家系统则不同,它是主要依据相关领域的一个或是多个专家所提供经验与知识来进行工作的,它是一个对专家的决策过程进行模拟的过程,从而对需要人类专家处理的问题进行处理,这种方式也比较重要。当然,除此两种方法还有很多其他方法,比如神经网络、模糊逻辑等。

篇2

2计算机网络技术的问题

目前,随着计算机技术的广泛应用,人们愈发重视有关网络信息安全问题。在网络管理系统的应用过程中,用户最为关注的功能便是网络监视与网络控制,其中,为正常发挥网络监视及网络控制这两大功能,就需要对信息急性及时获取与准确处理。网络传输的数据通常是不连续、不规则的,而在早期阶段,计算机只具备逻辑化分析及处理数据的功能,难以准确判断出数据的真实性,因此,为从大量繁复的信息中,挑选出有效的信息,实现计算机网络技术的智能化具有非常重要的意义[2]。计算机的应用日益广泛与深入,这使得用户需要通过网络安全管理来为其信息安全提供保障,而网络犯罪现象的增多,使得计算机必须具备灵敏的观察能力及迅速的反应能力否则便难以对侵犯用户信息的各种违法犯罪行为进行有效遏制。为促进网络安全管理的实现,就需要将以人工智能技术为基础而建立起来的智能化管理系统作为有效手段,自动收集信息数据,及时诊断运行故障,并在线分析趋势及性能等,从而确保计算机发生网络故障时,可做出快速、准确的反应,并采取有效措施来恢复计算机的网络系统。由此可知,针对计算机网络中存在的问题,就需要应用人工智能技术,在其内部建立完善的网络管理及防御系统,从而为用户信息安全提供充分保障。

3计算机网络技术中人工智能的应用分析

在计算机网络技术中应用人工智能,可极大程度满足人们对计算机提供人性化及智能化服务的需求。其中,计算机网络技术智能化服务主要指的是智能化的人机界面、信息服务、系统开发及支撑的环境这几个方面,与此同时,这些需求进一步促进了人工智能在计算机网络技术,尤其是在智能人机界面、网络安全及系统管理评价等方面的应用进程。

3.1人工智能在计算机网络安全管理中的应用。在计算机网络技术中,人工智能得到了极为广泛的应用。在计算机网络安全管理中,人工智能的应用主要表现在智能防火墙、入侵检测、智能型反垃圾邮件系统这三个方面。相比于其他防御系统,智能防火墙系统采用的是智能化识别技术,例如,通过概率、统计、记忆、决策等方法,来识别并处理有关信息数据,不但有效减少了计算机匹配检查过程中的庞大计算,而且大大提高了发现网络有害行为的效率,从而实现了限制访问及拦截有害信息的功能;此外,与传统防御软件相比,智能防火墙系统具有更高的安检效率,从而将拒绝服务共计这一普通防御软件普遍发生的问题进行有效解决,实现了高级应用的入侵及病毒传播的有效遏制[3]。作为计算机网络技术安全管理的一项重要环节,入侵检测起着保证网络安全的关键作用,同时也是防火墙技术的核心部分。计算机系统资源的保密性、完整性、安全性等均与网络系统入侵检测功能的有效发挥有着紧密联系。入侵检测技术通过采集、筛选、分类、处理信息数据,在形成最终报告的基础上,将当前计算机网络系统的安全状态及时反映给用户。现阶段,人工智能在模糊识别、专家及人工神经网络等系统入侵检测中,得到了非常广泛的应用。计算机网络安全管理中的智能型反垃圾邮件系统,是一项以人工智能技术为基础而研发出来的防护技术,其针对的对象为垃圾邮件。此项技术可在不对用户信息安全造成影响的前提下,有效监测用户的邮件,并在完成邮箱内垃圾邮件的开启式扫面后,将垃圾邮件分类信息提供给用户,提醒其对可能对自身不利或对系统造成危害的信息进行尽早处理,进而确保整个邮箱的安全性,

3.2人工智能在计算机网络系统管理及评价中的应用。计算机网络管理的智能化发展,离不开人工智能技术及电信技术的发展。除了应用在计算机网络安全管理中,人工智能技术中的问题求解技术及专家知识库等,均可促进计算机网络综合管理的实现。由于网络具有瞬变性及动态性的特点,因而给计算机网络管理工作增加了一定的难度,这同时也使得现代化网络管理工作朝着智能化的方向发展。其中,以人工智能理论为发展基础的专家级决策及支持方法,在信息系统的管理工作中得到了广泛应用。作为一项智能计算机程序,专家系统可累积尽可能多的专家经验与知识,并通过进行归纳与总结,在形成资源录入系统的基础上,利用这一汇集了多位特定领域中的专家经验的系统,对此领域中相似的其他问题进行解决。因此,对于计算机网络管理及其系统评价,可通过众多专家系统来开展计算机网络管理及系统评价等大量工作。

篇3

尤其是,即将到来的人工智能时代,企业独自解决或者和行政部门合力解决的事情越来越多,一场政务革命即将爆发。

2016年10月,杭州市政府公布了一项“疯狂”的计划:为这座拥有2200多年历史的城市,安装一个人工智能中枢――杭州城市数据大脑。

城市大脑的内核采用的正是阿里云ET人工智能技术。这项人工智能技术,可以对整个城市进行全局实时分析,自动调配公共资源,修正城市运行中的Bug,最终将进化成为能够治理城市的超级人工智能。在杭州萧山区部分路段的初步试验中,城市大脑通过智能调节红绿灯,车辆通行速度最高提升了11%。

如今,中国人工智能研究已进入世界第一集团,中国从事人工智能研究的科学家已经占据世界半壁江山。据报道,在2015年全球顶尖期刊上发表的人工智能论文里,华人/中国人作者的比例达到了43%。2017年美国人工智能促进协会(AAAI)年会,原定于一月底在新奥尔良举行,但是,由于正好赶上中国春节,最后会议不得不延后一周举行。在这个会议上提交的论文,中美两国最终被接受的论文几乎一样多。

现在,地方政府与掌握人工智能技术企业的合作,已经远远超出了大众的想象。除了智慧交通,在城市信用体系建设、供水乃至医保结算等领域,人工智能技术已经深度介入,并开始积累数据,进行深度挖掘。

在这方面,美国政府也看得很清楚,而且早早就开始动手。2009年12月,美国政府公布以“透明性”、“公众参与”、“官民合作”为三大核心的“开放政府指令”,其核心内容就是,政府向社会公开数据,鼓励社会参与,通过政府与企业的合作,提升行政效率。

这些年来,美国政府已经将大数据挖掘,往前推进了很多。2013年5月9日,时任美国总统奥巴马签署行政命令《政府信息的默认形式就是开放且机器可读》,把数据开放上升到了法规层面。政府数据开放的好处,就是为社会各种人工智能技术参与社会治理,提供了基础。这几年来,美国涌现出了各种基于政府数据开放而开发的应用,从灾情预警、灾情评估,到智能公共交通定r等等。

篇4

智能化技术是技术领域的一种革新,使得各个行业都实现了全面发展。在电气自动化控制中应用人工智能技术,可以使得电气设备的系统运行更加简单智能,对系统可以进行优化处理。与此同时,人工智能技术的应用也为电气自动化控制提供了技术保障和安全保障,减少了各种电气设备操作对人员带来的伤害,在节省人力和物力的基础上提高了工作质量。在电气行业的发展过程中,自动化发展就必须要利用人工智能技术。

1 人工智能技术概述

1.1 人工智能技术的定义

人工智能技术指的是借助计算机技术对人脑进行模拟,并且发出类似人类的行为指令,从而对各种操作进行完成的过程。人工技能技术是多个领域的研究结果的融合,比如传统的数学和计算机,同时还结合了人文学科、自然和社会学科的知识,在很多领域中都有十分广泛的应用。计算机技术可以实现对人脑的有效模拟,因此使得工作的效率更高,系统的运行更加灵活也更加稳定,能够增强各种设备的自动化处理水平。

1.2 人工智能技术在电气自动化应用中的功能

第一,实现数据的采集和处理。人工智能技术在电气自动化控制中进行应用的时候,可以实现对设备中的一些数据进行采集,根据功能的不断完善,还能对一些数据进行存储。

第二,监视运行系统,并及时发出报警。人工智能技术可以对电气设备在使用过程中出现的一些问题进行有效地监控,而且还能对电气系统进行有效地模拟,对设备的开关量进行监视,防止出现异常情况,一旦出现了异常情况,要自动启动报警装置,同时还能对一些电气设备进行切断,从而使得电气设备处于安全状态。

第三,对电气设备的操作进行控制。电气自动化过程中,人工智能技术的应用,可以使得电气设备的操作过程变得更加简单,通过鼠标和键盘可以实现对断路器和电动隔离开关的控制,还可以对励磁电流进行调整。通过这种技术的应用,就可以极大地减少工作人员的工作量,降低劳动强度。

2 人工智能技术在电气自动化过程中的应用

2.1 在电气设备中的应用

电气设备的设计要符合自动化操作的要求,在进行设计的过程中,也应该要加强对人工智能技术的应用。由于电气设备的系统比较复杂,包含了很多方面的知识和技能,因此在进行设计的时候,有的系统设计也可以借助人工智能技术来完成,比如可以通过计算机设置一些算法,对电气设备系统设计中的一些参数进行计算,从而便于电气设备控制系统的设计,极大程度地提高设备的工作速率与质量。

2.2 在电气控制工作中的应用

在电气领域内,对电气设备进行控制是一个十分重要的部分,自动化设备是当前电气行业的主要发展方向,在设备的控制上,也要逐渐实现智能化,可以极大程度增强工作效率,缩减资金成本,并且降低从业者的劳动强度。比如人工智能技术中的模糊控制、神经网络控制、专家系统等,都是比较先进的控制技术,可以实现对各种设备的有效控制,韩剧热的反思而且控制的效果很好,产生的误差较小。比如在模糊控制中,较为常用的模糊控制方法有Sugeno与Mamdani两种技术,后者主要是应用在对设备的速度调节的控制上,模糊控制的方法能够以一种更高的效率来处理交流传动控制的相关问题,从而使得电气设备的工作质量和工作效率有很大的提升。

2.3 在电气设备的日常操作过程中的应用

电气行业与民众的日常生活与工作都存在紧密的关联,各种电网十分复杂、电气设备繁多,日常的控制工作也十分繁琐。传统的日常操作比较复杂,而且也会增加电气系统控制的时间,降低控制效率。对此,要积极加强对人工智能技术的应用,在日常工作过程中,可以通过人工智能技术设置一些基本的控制算法,应用在日常系统操作期间,能够将复杂的操作流程变得简洁,而且仅仅需要电脑就可以实现对各种操作的控制,最重要的是,通过人工智能技术的深化,还能实现远程控制,可以将操作界面进行简化,及时处理并保存相关重要数据,为将来的查找与应用提供方便。在日常操作过程中,对于很多数据都要进行记录,比如电气设备的损耗情况、电量等,如果采用人工记录,则会有巨大的工作量,还容易出错,但是应用人工智能技术编制相应的表格和数据采集系统,则可以实现对数据的采集和有效保存,降低了工作强度,同时提高了工作效率。

2.4 在故障诊断过程中的应用

在电气运行过程中,无论是客观因素还是其他的主观因素,都会造成电气设备的故障以及事故,如果对于这些故障没有及时进行处理,找不到相应的原因,则很有可能造成更严重的危害,会有较大的经济损失。电气自动化过程中,对设备的使用性能、故障等方面的诊断也要逐渐实现自动化,而人工智能技术的应用,将使得故障诊断过程变得更加简单。神经网络、模糊理论及专家系统是人工智能技术在电气诊断过程中应用的三种方式,这三种方法在故障的诊断以及事故的发生过程中发挥了十分重要的作用。借助智能技术,将神经网路、模糊理论等系统的结合在一起,就能够处理电气故障检测耗费时间长、等待结果时间长等问题,可以对各种故障进行精准的判断,并且为后续的故障处理提供更多充足的时间和依据。

2.5 在简化自控流程中的应用

电气领域的自动化控制是一个十分复杂的过程,对于各个步骤的要求都比较严格,一旦某个环节出现了纰漏,则会造成严重的后果,引发较大的经济损失。人工智能技术的应用可以对各种设备使用情况、故障情况等进行分析,进而设计出合理的故障处理方法,尽可能确保电气自控工作的质量。而且这种技术的应用,还可以实现远程维修,简化了过程。

3 结语

综上所述,人工智能技术在电气自动化过程中的应用包括多方面内容,比如电气设备的操作、故障的诊断、自动控制流程的简化等,都可以借助人工智能技术,使得各个过程变得简单、快捷,促进电气设备的自动化水平不断提升。

【参考文献】

篇5

当前的网络舆情监测工作平台主要是基于信息采集、整合技术和智能处理技术,通过对互联网海量信息的自动抓取、自动分类聚类、主题检测、专题聚焦,实现对用户的网络舆情监测,并由相关部门形成舆情工作报告、舆情信息简报等,为舆论引导提供可靠的分析依据。

进入大数据时代,网络舆论呈现的新特点,促使网络舆情监测工作暴露出诸多不足之处,这为网络舆情监测工作带来了诸多挑战。

网络舆论信息格局发生变化,舆情分析质量亟待提高。据人民网权威的《2016年中国互联网舆情分析报告》显示,在2016年,伴随着移动互联网应用不断向社会各层面渗透,网络舆论的格局发生了很大变化,如网民结构与社会人口结构趋同,网民产生代际更新导致网络流行议题和文化热点发生转换,微博、微信平台化,专业自媒体步入兴盛等。在这样的变局下,网络舆情监测工作面临着新的挑战。然而,有些部门的舆情信息收集工作仍然停留在报刊、门户网站、BBS、微博等开源信息的收集阶段,并未将新闻客户端、微信、直播等平台打通,难以保证舆情信息分析的全面性以及舆情热度指标的准确性。《2016年中国互联网舆情分析报告》还对近五年来参与当年最具网络关注度的20个舆情热点事件讨论的320万微博用户样本进行了分析,发现关注新闻事件和聚焦热点话题的网民发生了代际交替,在性别方面,女性的比例明显上升;在地域上,三、四线城市用户增长迅猛。受众层面发生的这些变化,也将在舆情监测工作中体现出来。然而在目前的舆情监测工作中,相关信息部门的舆情信息报送在内容上只是就事论事、停留在现象层面,对受众的成分、热点事件的社会背景以及事件背后所反映出来的社会问题没有进行细致深入的研究分析;在形式上,网络舆情监测工作的报送还停留在工作动态报告或者事件日志等形式的报送上。这样就造成了网络舆情信息的价值作用降低、服务能力减弱的问题。

热点事件话语体系不可控,舆情预警能力亟待增强。纵观近年来发生的热点公共突发事件,可以发现,在以大数据为基础的社交平台上,公众的话语体系呈现出了一些全新特征,如舆论主体的匿名性、参与渠道的多元化、生成议题的自发性、交流观点的无界性、汇集意见的实时性、发展趋势的不确定性等。这些特征与舆论话语体系在传统媒体的呈现完全不同,网络舆论热点事件话语体系的不可控性大大增强。

在社交媒体平台上,自媒体呈现出来的话语体系最为庞杂。许多舆情信息不仅包含结构化数据,还涉及大量非结构化数据,若对其准确性、真实性逐一核查,既耗费人力又耗费时间。就内容而言,较多负面、虚假舆情具有较强的隐蔽性,单纯以关键词或主题词进行搜索容易产生误判、遗漏。话语体系的不可控性增加了舆情监测工作的难度,这要求工作人员必须具备过硬的专业敏感性以及较强的网络操作技能。但是目前大多数舆情监测工作部门的信息工作人员缺乏专业化的训练,舆情信息工作水平参差不齐。就舆情监测平台系统来说,对于舆情信息的跟踪分析灵敏度较低,在有些热点事件的处理上没有按照公共突发事件的分类标准进行准确的分级,从而导致网络舆情信息的分析判断力体现不出其应有的情报价值,预警能力也随之削弱。

舆情监测的技术体系落后,人机不协调问题亟待解决。网络舆论的实时性及其发展的不确定性要求网络舆情监测必须迅速、及时,但很多单位部门的舆情监测平台的方法技术体系滞后,部分单位采用了网络监控系统、有害信息过滤系统等方式进行网络舆情监测,而有些单位为了节省舆情监测设备的成本,甚至将网络舆情监测工作依托于人工网页搜索及浏览的“人工盯梢”方式上,这成为监测工作的一大阻碍,监测工作出现疏忽错判也在所难免。排除资金、人力等客观因素,现阶段的网络舆情监测工作中技术方法体系的不足主要归因于“人机不协调”。机器与人工的协同分工模式不成熟、机器的辅助力量不够,导致人工智能技术在预测监测体系中分析情感、预测走势、检查效果等方面应用还稍显粗浅、机械,而在需要人工进行的高级维度分析、提出应对策略等层面,机器的应用又显得粗糙以及同质化。

人工智能为网络舆情监测带来的三大变革

网络舆情监测要适应大数据时代人工智能的要求,就必须顺势而为,积极进行变革,主要包括网络舆情监测技术体系的变革、网络舆情监测研究范式的变革以及网络舆情监测管理思维的变革三个方面。

网络舆情监测技术体系的变革。将人工智能技术应用于网络舆情是为了更好地对舆情进行分析研判,通过直观、简明的方式描述网络舆情信息的产生,进一步推导信息传播主体的态度倾向性、情绪感染性以及初衷、意图等,从而预测网络舆情信息的发展趋势。

如果说在“小数据”环境下,网络舆情监测工作还可以依托于“人工盯梢”的方式来完成,那么在“大数据”环境下,当数据的量级达到了EB甚至ZB级别后,以人工监测来把握舆情脉络已成为不可能完成的任务。而那些隐含在网络舆情信息中的观点、态度及情绪的表达,更难以从泛滥成灾的信息碎片中被真正发掘出来。加之海量信息的不共享所带来的“信息盲区”,更使得舆情信息分析不够严谨,易偏离实际,而这些问题都需要依托搭建智能化的网络舆情监管平台来解决。在平台上可以通过三种人工智能技术实现数据分析与人工智能研判相结合,再借助如眼动仪、脑电仪等受众检验仪器对网络舆情信息进行综合化分析。三种主要的人工智能技术主要包括:一是Web挖掘技术,该技术把互联网与数据挖掘技术结合起来,对网络上结构化数据如文字言论,以及非结构化的数据如视音频、图像等信息进行采集,完成信息前期处理的第一步;二是语义识别技术,该技术是利用采集到的信息,通过对语句中的关键词进行词义推断处理以及句子语法结构的分析,从而将复杂信息简单化,这是对采集的信息数据做进一步识别推断的过程;三是TFDF信息聚类技术,该技术主要提升数据信息的分析和分类速度,使网络舆情监测工作的处理更加及时,反应更加灵敏,提高采取措施的时效性。

人工智能技术的介入将有利于对信息进行挖掘、采集、分类、整理,从而找寻出最核心的关键性数据。在此基础上,还可以运用人工神经网络预测模型,对网络舆情的性质、发展趋势进行正确描述,并提出相应的对策。

网络舆情监测研究范式的变革。人工智能和大数据对网络舆情监测工作及其研究产生了颇为深刻的影响,舆情监测的研究范式从多角度发生了转向。

第一,舆情监测工作视角的转向:从单一化到多元化。在社交媒体平台上,受众的角色首先发生了转向,由信息的被动接收者转变为信息的参与者和传播者。这一转向给网络舆情监测工作带来了新的挑战,当受众是单纯的信息接收方时,网络信息的可控性强,舆情监测工作形式单一,把关相对容易。而受众角色发生变化以后,网络信息传播的不可控性大大增加,信息传播速度加快,信息传播呈现多元化特征,把关难度增加,网络舆情监测工作也从单一转向多元化,还需要对信息进行疏导、研判处理。

第二,研究视角的转向:从内容研究转向“内容+关系”研究。传统的网络舆情信息研究最重视的是受众借助网络进行的话语表达,其研究视角主要集中在内容层面。随着人工智能技术的介入,这一单向视角将发生转变,潜藏在内容层面背后的网络受众心理、行为、动机、诉求等多方面因素都将被关注到。借助人工智能技术及大数据分析技术,网络舆情信息的研究视角将透过内容层面深入到关系层面,转向对网络受众社会心理描绘、社会关系呈现、社会话语表达等多维度的研究。

第三,研究重点的转向:由舆情监测转向舆情预测。当前的网络舆情监测工作主要通过对当下网络舆情的动态信息进行随机采样来收集、整理、分析,更多的是关注已经发生的事件在过去及当下的动向,对未来的发展预测难以兼顾。而借助人工神经网络预测模型,通过自然语言处理、模式识别及机器学习等人工智能技术,可以对网络舆情的性质、发展趋势进行正确描述,再结合大数据分析处理整群数据来实现预测功能。比如,著名的搜索引擎公司谷歌通过关注用户搜索中的“流感”关键词来预测实际流感发生的时间,往往可以提前两三个周对流感的爆发进行预报及预防。

网络舆情监测管理思维的变革。在以人工智能技术为支撑的网络舆情监测平台出现之前,相关舆情监测部门的管理者往往由一人或几人的小团队组成,在监测信息数据量级不大的情况下,这种小作坊式单打独斗、面面俱到的舆情监控管理思维可以基本满足需求。但是随着人工智能技术的发展及大数据时代的到来,这种小作坊式的舆情监测体系面临瓦解。当前,商业化运营的软件监测团队多达几百家,这些监测软件服务商通过开发相应的舆情监测软件为政府部门、企业主体以及科研院所提供服务,进行简单的舆情信息数据采集及分类处理工作。在数据开源的情况下,这些软件服务商的竞争逐渐由粗放型、低层次化向数据处理的优化、人机互动、机器算法的精进等层面转变。

篇6

一、人工智能的定义

“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。

人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

二、人工智能的应用领域

1.在管理系统中的应用

(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。

(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。

2.在工程领域的应用

(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist 2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3.在技术研究中的应用

(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。

(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。

三、人工智能的发展方向

1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。

2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。

3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息, 2007.

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).

篇7

 

人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?

1.你在和谁说话?

“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?

1.1. 人工智能的定义

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。

1.2. 人工智能技术的发展

几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能毕业论文格式范文。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。

1.3. 人工智能的研究领域

人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。

现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。

2.机器真的可以思考吗?

机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。

2.1. 人类意识的本质

意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。

2.1.1. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。

意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。

2.1.2. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。

意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。

2.2. 人类意识与人工智能的关系

认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:

l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。

l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性毕业论文格式范文。

l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。

随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。

3. 人工智能的未来

人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。

在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。

人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。

【参考文献】

1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页

2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页

3.蔡自兴,徐光祐人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年

4.(美)Sternberg,R.J.认知心理学[M] .北京.中国轻工业出版社 2006年

篇8

中图分类号:G642 文献标识码:B

1 引言

人工智能是计算机科学与技术学科类各专业重要的基础课程,在信息类相关的许多高年级本科和研究生都开设了人工智能课程。人工智能是一门前沿性的学科,它主要研究计算机实现智能的基本原理和基本方法,同时人工智能也是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域。广义的人工智能涵盖了模式识别、机器学习、数据挖掘、计算智能、神经网络、统计学习理论等众多研究方向。人工智能作为计算机学科的重要分支,已成为人类在信息社会和网络经济时代所必须具备的一项核心技术,并将在未来发挥更大的作用。

由于人工智能课程的学习难度较大,内容更新比较快,也繁多,使得教学有一定的难度。特别是针对本科高年级的人工智能教学,由于本科生的研究意识相对较弱,而人工智能比较强调科研性,所以如何教好本科高年级的人工智能课程是一项非常具有挑战性的任务。

本文通过分析本科高年级的教学特点和人工智能课程的自身特点,在如何提高教学质量这一问题上提出了几点思考。

2 本科高年级的教学特点

中国的本科教育,由于历史和经济发展水平等诸多原因,目前的定位还是培养某方面专业人才的专才教育。本科高年级学生在完成了低年级公共基础课程和部分专业基础课程的学习之后,迫切希望了解本专业的应用领域和发展前景,所以在教学过程中要注意内容的应用性和专业性。另一方面,本科高年级学生也是研究生教育的储备人才,在教学过程中要适时的进行科研引导,这样能够让毕业生保持对科学的兴趣,从而为研究生阶段进一步深入研究打下基础。本科生一般于4年级的10月份开始着手毕业设计,在本科高年级的教学过程中还要注意与毕业设计的内容相结合,这样可以让学生提前做好准备,选择适合自己的方向。

3 人工智能课程的学科特点

与信息类其它专业课程相比,人工智能具有应用性、研究性和发展性三个重要学科特点。首先,人工智能是一门应用性很强的学科。人工智能学科的主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。人工智能技术广泛应用于模式识别、数据挖掘、智能控制、信息检索、智能机器人等领域,在日常生活中,随处可见人工智能技术的应用实例;其次,人工智能技术具有很强的研究价值,是计算机科学领域中重要的研究方向。技术进步无止境,研究者们不断追求开发出效率更高、更智能的人工智能技术:最后,人工智能是一门正在发展中的学科。随着信息化、计算机网络和Internet技术的发展,人类已步入信息社会和网络经济的时代,它们为人工智能提出了许多新的研究目标和研究课题,人工智能的应用领域以及技术算法都在不断发展。

4 人工智能教学的三点思考及对策

4.1 注重应用性和介绍性

在教学实践中,笔者发现,本科高年级学生一般比较关心各种人工智能技术的应用领域和使用方法,而对基础性理论和技术细节不是很感兴趣。他们一方面希望能学到很多较新和较实用的人工智能算法,并且最好可以看到使用效果;另一方面又希望老师的教学主要停留在介绍性层面,不想花太多时间在复杂的理论理解上。这也比较符合本科高年级的教学特点,本科阶段主要是培养具备较强应用性和基础科研素质的专业人才。传统的人工智能教学主要讲授知识表示和搜索推理技术,大部分实例都是解答式或推证式的。由于其知识的抽象性,又加之其应用实例较少,所以往往教师感觉难讲,学生在学习过程中也感觉乏味,对讲授的内容大多都是死记其方法和步骤,因此影响了教学效果。针对这一问题,笔者认为,在设计人工智能教学时,要注重内容的新颖性、实用性和介绍性。除了讲授那些仍然有用的和有效的基本原理和方法之外,要着重介绍一些新的和正在研究的人工智能方法和技术,特别是近期发展起来的方法和技术,如支持向量机、决策树、模糊集、遗传算法、蚁群算法等。这些内容的理论部分可以不必过分深究,教学重点主要放在介绍每种技术的产生背景、发展状况、应用领域和具体实现上。此外,要注意理论与实际应用密切结合,在教学过程中加入一些与课程内容结合的、可以用计算机实现的实际应用内容。考虑到目前应用最广泛的人工智能领域之一是模式识别,而研究模式识别的主要计算机工具是Matlab,所以笔者在教学过程中以手写数字识别作为教学实例,针对所介绍的每一种人工智能技术,都将其应用于手写数字识别当中,并讲解了这些技术的Matlab实现方法。学生在掌握了基本理论之后,可以按照实现步骤的指导,立刻上机见到算法的实际效果,加深对算法实现思路和方法的认识。

4.2 注重科研引导性

本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。本科教育一方面为社会培养了大批应用型人才,另一方面也要为我国的科研事业培养后备力量。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。针对这一特点,在本科高年级的人工智能教学中,还要注意对学生适时适度的科研引导。这样可以激发学生的研究兴趣,树立目标意识,找准研究方向,为未来的科研工作打下基础。在教学过程中,可以引导学生思考每种人工智能技术的优点是什么?缺点是什么?有没有改进的办法?比如BP神经网络是计算智能中较为成熟的技术,具有强大的非线性学习能力,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等。近十年来,研究者逐渐把目光转移到另一种新的非线性学习工具――支持向量机上。同神经网络相比,支持向量机具有泛化能力强、不受局部最小问题困扰、理论背景完善等显著优点。在给学生讲解BP神经网络算法的时候,一方面可以通过手写数字识别实验展示其强大的非线性分类能力,另一方面也要告诉学生,BP神经网络并不是完美的,其缺点同样明显。然后引导学生对这些问题进行思考,讨论有没有更好的解决办法。此时,顺势引出支持向量机的内容,并且介绍支持向量机的研究现状和研究方向。通过两者的对比,学生不但了解到了较新的人工智能技术,又对人工智能研究中如何去发现问题、解决问题、人工智能技术的进化历程有了直观的印象。

4.3 教学内容与毕业设计相结合

篇9

1引言

作为当前社会发展的前端,人工智能技术以计算机技术和通信技术为基础,在现代编程的控制下,实现了人们数据控制计算方式和生活方式的有效改变。当前环境下,大数据的发展趋势愈发明显,数据的处理规模不断扩大,这对传统计算机技术的应用提出了较高要求。基于此,将人工智能技术与计算机网络技术结合已成为时展的必然要求,从应用过程来看,其能实现计算机系统中复杂问题的高效、安全处理,对于社会稳定具有重大影响,本文就此展开分析。

2大数据时代的基本特征

数字化、信息化是时展的重要趋势,在其影响下,日常生活中的数据数量和类型不断丰富,其对人们传统的数据库处理模式形成挑战,而这种数量巨大、类型庞杂的数据集就是人们所说的大数据。就实践过程来看,种类多、规模大、真实性高、处理速度快等是大数据处理的基本特征[1]。具体表现如下:第一,大数据并非是单一的独立数据,其在多种来源的基础上,实现了数据格式、数据类型的丰富和膨胀,充分保证了数据类型的多样。第二,与传统数据相比,大数据的容量基本都处于10TB以上,具有规模较大的突出特征。第三,新经济形态下,大数据的更新速度非常迅速,较为及时的数据信息有效保证了数据整体的真实性。第四,大数据的规模十分庞大,并且具有较高的应用安全需要,这就对整体的数据处理系统提出了较高要求。目前,高效、快速的数据处理系统已经成为大数据发展的重要特征,其充分保证了大数据时代下,人们对于数据信息的应用要求。

3人工智能的应用优势

人工智能是现代社会科学发展的重要方向。具体而言,其在计算机技术与通信技术的支撑下,实现了人类思维方式及行为方式的有效模拟,并且在相关程序的保证下,实现了相关问题的高效化、安全化、精确化处理。大数据时代,人工智能技术的发展与计算机技术密不可分,并且,就整体应用过程而言,其具有以下应用优势:第一,人工智能支撑下,使用人员的工作效率得以有效提升。例如,在日常办公中,部分软件会进行使用人员兴趣爱好及操作习惯的记录,并在下次应用过程中进行相关信息的筛选,然后对用户进行推荐应用,由此有效避免了信息筛选、信息寻找所带来的时间浪费,提升了工作、学习、生活、娱乐的效率。第二,人工智能系统有助于当前网络体系管理的规范,具体而言,从本质上讲,人工智能技术是对计算机技术的深层次应用,为提升其应用质量,设计人员在运行质量、运行效率和运行安全等方面进行了严格保证,而这些保证措施能够进行互联网体系相关任务的指导,对于更高经济效益和社会效益的创造具有重大影响。

4大数据时代人工智能在计算机网络技术中的应用

大数据时代下,人工智能技术是时展的必然,确保人工智能技术应用的高效与规范,对于人们的生活质量具有重大影响,并直接制约着社会经济发展及智能化、数字化时代的建设进程。就应用过程来看,当前计算机技术中,人工智能技术的应用主要表现在以下方面:

4.1数据挖掘技术

数据挖掘技术是人工智能应用的基础,同时也是其应用较为广泛的方向之一[2]。具体而言,在智能技术的支撑下,计算机系统可以进行网络连接及主机会话的全方位、系统化描述,并且在数据刻录的应用下,实现入侵规则的高效学习,最后其将这些入侵的模式在自身数据库中进行记录,一旦计算机系统再次受到外来入侵,其可以进行有效的识别和程序拦截,从而保证了计算机网络技术应用的高效与安全。

4.2规则产生式专家系统

通过人工智能在数据挖掘上的应用,人们可以实现入侵检测系统的高效建立,并且在其基础上,高效化的计算机推理机制得以建立,此即规则产生式专家系统。实践过程中,网络管理人员在特定入侵特征编码编制的基础上,可以实现外界入侵信息的有效预防和管控。由此可见,人工智能对提升检测效果及准确性有积极意义。然而,需要注意的是,规则产生式专家系统的人工智能技术主要应用于系统已输入的入侵信息,因而检测效果相对有限。

4.3人工网络神经

人工网络神经是人工智能在计算机网络技术中应用的重要内容。计算机系统应用过程中,在人工网络神经的支持下,计算机网络对人脑处事方式第一模拟,与传统的计算机事件处理相比,其对于计算机系统的容错性和接受性进行控制,有效保证了计算机网络系统应用的高效与质量。譬如,在计算机网络技术人工智能实践中,其可以对畸变及噪音输入的模式进行有效识别,从而确保计算机网络检测系统检测效率的提升,对于人们生活质量的提升具有重大影响。

4.4自治AGENT技术

自治AGENT技术是面向对象发展成果的典型代表,其能在计算机网络系统中充当底层数据,进而实现数据的高效化收集和分析。在自治AGENT技术人工智能应用过程中,较强的学习能力、适应能力、自主能力和兼容能力是其应用的主要特征[3];并且在这些因素的控制下,其对于环境的依赖程度较低,具有较强的外来入侵抵抗能力。

4.5人工智能问题求解

人工智能问题求解是人们社会生活中应用较为广泛的技术之一。实践过程中,人们在计算机系统的问题搜索栏进行待解决问题输入,然后在人工智能技术的应用下,其可以实现这些问题的高效化搜索、推理和求解,从而实现搜索空间、最优解等内容的有效把控。与传统计算机系统相比,人工智能技术的应用有效提升了网络运行效率,其在减少资源浪费的基础上,实现了人们实际问题的高效率解答。

4.6专家知识库技术

作为计算机网络专家系统的重要组成,专家知识库的应用极为广泛,并且尚处于不断发展阶段。实践过程中,专家知识库的应用以直接或间接积累的知识为基础,然后在网络管理人员编码操作的运行下,使得计算机相关管理的决策获得专家支撑,从而实现管理过程、评价实践的具体把控,专家知识库技术的应用对于网络管理评价具有重大影响。此外,人工智能系统在智能考试方面也有着广泛应用。具体而言,传统环境下,纸质试卷的应用具有较大的纸张载体负担,其不仅造成了大量的基础资源消耗和环境污染,更对教师的批阅过程造成负担。而在人工智能技术和计算机网络技术的支撑下,自动考试的功能得以实现,其在题量分配、试卷平均难度、题型结构、题型比例、知识点均匀分布等要素的控制下,充分满足了用户的考核要求,实现了现代化考试的智能发展。

篇10

中图分类号:TP18 文献标识码:A

人工智能技术如今已经广泛应用于各个领域,也在很大程度上促进了各个行业的发展。对于电气设备来说,采用先进的人工智能技术可以大大提高系统的运行水平,改进生产效率。

1 人工智能应用理论分析

人工智能的基本原理是将人的思维方式,逻辑推理的形式进行模拟和设置的一种技术形式。人工智能是计算机技术发展的一个高级阶段,它不仅能模拟人类的语言系统,还一定程度上模仿人类的思维方式和逻辑推理。人工智能技术从研发至今,已经结合了各个学科的相关先进理论,涉及多个研究领域。其主要目的在于使机器和设备的操作能够脱离人工的绝对指导,以至于胜任一些专业技术人员的操作。

计算机的诞生给人类的生活带来了翻天覆地的变化,渗透到了各个领域,改变了许多行业的发展方式。计算机技术也随着计算机的发展和应用在不断的发展着,但是在这个发展过程中,人类逐渐认识到人脑才是最先进的信息分析和处理仪器,计算机技术要想更好的为人服务,必须朝着贴近人脑的工作特点的方向努力。对于电气系统的控制技术来说,就是要尽量的实现自动化控制。将各个生产和传输环节有机的结合起来,减少人力和资金的投入,形成一个一条龙的流水作业,有利于提高电气系统的生产效率。

2 人工智能控制器的优势

人工智能控制器相对于传统的控制器的优势在于利用了AI函数近似器,这种函数控制器较传统的常规控制器的优势在于更便于控制系统的一体化。在操作中,这些优势的表现在几下几个具体方面:

人工智能控制器的设计阶段无需设计模型的配合,这是其他常规的传统控制器所无法做到的。常规的控制器的研发和设计阶段必须要辅以各种实验模型的试验,来检测控制器的各项性能,但是人工智能控制器就克服了这一缺陷。

人工智能控制器的操作方法比常规的控制器的要简便易行,便于技术人员的执行和操作。

人工智能控制器的设置方式也相应的更加灵活,除了可以通过传统的设置方式外,它们还可以通过响应数据这种简便的方式进行设置,同样便于技术员的操作。

此外,人工智能控制器有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对具体对象必须具体设计。

人工智能控制器能解决常规方法不能解决的问题。

人工智能控制器的实现十分便宜,特别是使用最小配置时,所以人工智能控制器的使用不仅能提高电气自动化的整体技术水平,还能降低整个电气系统的成本。

人工智能控制器很容易扩展和修改,相较于其他常规控制器来说,人工智能控制器的更新和改进的空间更大。

另外,采用人工智能控制器进行电气自动化的控制时,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。虽然很多常规的控制器也能实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配景,自学习迅速,收敛快速,所以,综合上文的分析,我们可以得知人工智能控制器的优势还是十分明显的,必将取代传统的常规控制器实现电气自动化的控制。

3 人工智能的应用现状

随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,力图将先进的人工智能技术应用于电气系统的各个领域中,以提高电气自动化的水平和生产效率。目前,我国在这一方面虽然和国际上的先进国家还有很大差距,但也较以往取得了很大的进步,如将人工智能用于电气产品优化设计、故障预测及诊断、控制与保护等领域,未来随着我国在这方面的研究的深入,必将取得更加可喜的成绩。

3.1 优化设计

电气设备的设计是一项复杂的工作,也是电气设备的研发的最重要的工作之一,它不仅要应用电路,电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识,才能将电气设备的各方面的功能完美的结合起来,设计出一个满足运行需要的电气设备。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的,因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进,使传统的CAD技术如虎添翼,产品设计的效率及质量得到全面提高。

优化设计的另一个有力武器是专家系统。但从目前已开发的专家系统来看。总体上仍处于研究阶段,离实用尚有一定距离。将专家系统应用到电机设计领域是从1988年J.H.Garret建立变压器设计专家系统开始的,目前我国沈阳工业大学特种电机研究所研制了永磁直流电动机及永磁同步电动机的设计专家系统;西安交通大学、华中理工大学、东南大学各自开发了异步电动机的设计专家系统,都取得了一定成效。

3.2 故障诊断

电气设备在运行过程中难免会出现各种故障,如果不及时排除,将会影响整个系统的运行,所以,电气设备的故障排除和运行维护工作同等重要,需要引起我们监管人员的相关重视。电气设备的故障发生前,一般都会出现一定的故障征兆,我们可以以此来推测故障产生的大致原因,但是电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性,用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络,从目前的应用效果来看,人工智能技术在电气设备故障的判断阶段起到了良好的效果和作用,为维护人员的工作提供了便利。

变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析,从而判断变压器的故障程度。

另外,值得一提的是人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃,已经被较为广泛的应用。

3.3 智能控制

人工智能控制技术在自动控制领域的研究与应用已广泛展开,但在电气设备控制领域所见报道不多。根据笔者整理的资料来看,可用于控制的人工智能方法主要有3种:模糊控制,神经网络控制,专家系统控制。但是这三种方法的应用范围程度还是有所不同的,由于模糊控制是其中最为简单、最具实际意义的方法,因而它的应用实例最多,另外两种控制方法在实际中的应用实例还比较少。

结语

综合全文来看,人类智能主要包括三个方面,即感知能力,思维能力,行为能力。而人工智能是指由人类制造出来的“机器”所表现出来的智能。人工智能主要包括感知能力、思维能力和行为能力。人工智能的应用体现在问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器人学等方面,而这诸多方面都体现了一个自动化的特征,表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化,因此人工智能在电气自动化领域会大有作为,电气自动化控制需要人工智能的参与。只有将二者有机的结合起来,才能更好的促进我国电气自动化控制技术的发展,也可以在应用中不断促进人工智能技术的进步。

篇11

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。随着电气的设计的发展,传统的方法有时很难适应。在此背景下,人工智能技术被引入电气设备的优化设计过程中,并取得了一些成功经验。本文在总结人工智能在电气设备领域取得成果的基础上,对具体应用提出一些看法与策略。积极运用人工智能的新成果无疑有利于电气自动化学科特别是自动控制领域的发展,也有利于提高电气设备运行的智能化水平,对改造电气设备系统,增强控制系统稳定性,加快生产效率都有重大意义。

1人工智能控制器的优势

不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下:

(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。

(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。例如:模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍,过冲更小。

(3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时,通过响应数据也能设计它们。

(5)运用语言和响应信息可能设计它们。

(6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对具体对象必须具体设计。

(7)它们对新数据或新信息具有很好的适应性。

(8)它们能解决常规方法不能解决的问题。

(9)它们具有很好的抗噪声干扰能力。

(10)它们的实现十分便宜,特别是使用最小配置时。

(11)它们很容易扩展和修改。

总而言之,当采用自适应模糊神经控制器,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置,自学习迅速,收敛快速。

2 人工智能的应用现状

随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计、故障预测及诊断、控制与保护等领域。

2.1 优化设计

电气设备的设计是一项复杂的工作,它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的,因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进,使传统的CAD技术如虎添翼,产品设计的效率及质量得到全面提高。

用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

2.2 故障诊断

电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性,用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。

变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析,从而判断变压器的故障程度。

人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃。

2.3 智能控制

篇12

Abstract: Electrical automation control is to enhance the production, circulation, exchange, distribution and other key ring, realize the automation, is equal to the reduction of human capital investment, and improve the operational efficiency. With the development of information technology, many new methods and technology into engineering, product of stage, the automatic control of the new challenges, promote the theory of intelligent control technology application in the control of complex system, to solve with traditional methods can not solve the problem.

Key words: artificial intelligence; electrical engineering; automation

中图分类号:V242 文献标识码: 文章编号

引言:社会的进步和人类的长寿要求生产力更加发达,要求人类的经济生活更加智能化,以节省宝贵的人类时间去做其它有益的事情。电气自动化控制领域的革新需要人工智能的大力支持,而人工智能在自动化控制方面的优势在这个领域也确实能够得到极大的发挥。促进自动化控制的发展进步,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。人工智能主要包括思维能力、行为能力和感知能力三个方面。人工智能指的是人类制作的机器所表达出来的智能,体现了自动化的特征。因此智能化技术在电气工程自动化控制中可以发挥最大的效用,促进电气的优化设计、诊断故障和智能控制等。

一、人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质.并生产出一种新的能以人类智能相似的方式作出反应的智能机器 该领域的研究包括机器人、语言识别、图像识别 自然语言处理和专家系统等。自从1956年“人工智能 一词在Dartmouth学会上提出以后,人工智能研究飞速发展,成为以计算机为主.涉及信息论.控制论, 自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学的一门学科。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂的工作。

当今社会,计算机技术已经渗透到生产生活的方方面面,计算机编程技术的日新月异催生自动化生产,运输 传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈.所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。

二、智能化技术应用优势

在电气自动化控制中应用到智能化技术,主要是以智能化控制器的形式,这种智能化控制器较过去的控制器相比的确具有不少优势,下面我们就对其进行详细的分析。

1.无需控制模型

过去的控制器在进行自动化控制时,往往会因为控制对象的动态方程比较复杂而无法精确到位地掌握,这会使得该对象模型的设计过程中会出现较多不可预估、不可测量的客观因素,比如一些参数的变化。无法掌握这些因素,也就不能设计出精准的模型,自动化控制工作的实际效率也会下降。而智能化控制器并不需要对控制对象模型进行设计,这就可以从根本上避免一些不确定因素的产生,提高自动化控制的精密系数。

2.方便调整控制

智能化控制器还有另一个大好处,就是可以随时根据下降时间、响应时间以及鲁棒性的变化来调节控制程度,从而有效提高自身工作性能,为自动化控制提供最基础的保障。无论是在什么样的情况下,智能化控制器的调节控制与过去的控制器相比具有更方便调节的优势,更适合投入实际使用。还有一点好处,就是智能化控制器在进行调节控制时完全只需要根据相关数据的变化来自行调节,即使没有专门的技术人员在旁边也可以,同样远程调节控制也是可行的,充分体现了电气工程自动化控制的无人操作性要求,对行业未来发展的重要性不言而喻。

3.一致性很强

智能化控制器的一致性很强,这表现在它对不同数据的处理上,及时输入完全陌生的数据也可以收到很高的估计,完美达到自动化控制的相关要求。不同的控制对象的效果也是不同的,虽然在对有些控制对象实施控制时智能化控制器暂时没有采取行动,其控制效果也是非常优秀的,但这并不是绝对的,可能在换了控制对象的时候就无法收到预期的效果了。所以我们技术人员在设计阶段还是不能松懈,要认真落实具体化原则,即在面对不同的对象时一定要根据其具体情况详细分析,不能因为马虎就降低了控制要求。一旦出现智能化控制器使用效果不佳的情况,不能盲目否定智能化技术,一定要从每个工程环节详细排查、认真分析,因为上述人为因素会给自动化控制结果带来很大的误差,影响试验的准确性。

三、人工智能技术的应用

随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计,故障预测及诊断、控制与保护等领域。

1.优化设计

电气设备的设计是一项复杂的工作 它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的.因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进.使传统的CAD技术如虎添翼.产品设计的效率及质量得到全面提高。用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

2. 故障诊断

电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性.用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。

变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析.从而判断变压器的故障程度。人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃。

3. 智能控制

人工智能控制技术在自动控制领域的研究与应用已广泛展开,但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。由于模糊控制是其中最为简单、最具实际意义的方法,因而它的应用实例最多。

四、结束语

综上所述,本文主要介绍了智能化技术在电气工程自动化控制中的应用情况。只有加强电气工程的智能化程度,才是最终保证行业持续稳定发展的根本手段。

友情链接