压缩技术论文范文

时间:2023-03-25 11:32:04

引言:寻求写作上的突破?我们特意为您精选了12篇压缩技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

压缩技术论文

篇1

Abstract:Digitalimagecompressiontechnologyisofspecialintrestforthefasttransmissionandreal-timeprocesssingofdigitalimageinformationontheinternet.Thepaperintroducesseveralkindsofthemostimportantimagecompressionalgorithmsatpresent:JPEG,JPEG2000,fractalimagecompressionandwavelettransformationimagecompression,andsummarizestheiradvantageanddisadvantageanddevelopmentprospect.Thenitintroducessimplythepresentdevelopmentofcodingalgorithmsaboutarbitraryshapevideoobject,andindicatesthealgorithmshaveahighcompressionrate.

Keyword:Digitalimage;Imagecompression;Compresstechnique;Arbitraryshapevisibleobjectcode

一、引言

随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。

图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了[1]。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。

二、JPEG压缩

负责开发静止图像压缩标准的“联合图片专家组”(JointPhotographicExpertGroup,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。

1.JPEG压缩原理及特点

JPEG算法中首先对图像进行分块处理,一般分成互不重叠的大小的块,再对每一块进行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后进行哈夫曼编码。JPEG的特点如下:

优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好图像质量。

缺点:(1)由于对图像进行分块,在高压缩比时产生严重的方块效应;(2)系数进行量化,是有损压缩;(3)压缩比不高,小于50[2]。

JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其结果不是最优的[3]。

2.JPEG压缩的研究状况及其前景[2]

针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年来提出了不少改进方法,最有效的是下面的两种方法:

(1)DCT零树编码

DCT零树编码把DCT块中的系数组成log2N个子带,然后用零树编码方案进行编码。在相同压缩比的情况下,其PSNR的值比EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。

(2)层式DCT零树编码

此算法对图像作的DCT变换,将低频块集中起来,做反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数进行零树编码。

JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,因此在今后的研究中,应重点解决DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合进行压缩。

三、JEPG2000压缩

JPEG2000是由ISO/IECJTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。

1.JPEG2000压缩原理及特点

JPEG2000编解码系统的编码器和解码器的框图如图1所示[4]。

编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。

JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提高10%~30%,而且压缩后的图像显得更加细腻平滑。对于目前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在JPEG2000系统中,通过选择参数,能够对图像进行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式的图像支持渐进传输,这使用户不必接收整个图像的压缩码流。由于JPEG2000采用小波技术,可随机获取某些感兴趣的图像区域(ROI)的压缩码流,对压缩的图像数据进行传输、滤波等操作[4]。

图1JPEG2000压缩编码与解压缩的总体流程

2.JPEG2000压缩的前景

JPEG2000标准适用于各种图像的压缩编码。其应用领域将包括Internet、传真、打印、遥感、移动通信、医疗、数字图书馆和电子商务等[5]。JPEG2000图像压缩标准将成为21世纪的主流静态图像压缩标准。

四、小波变换图像压缩

1.小波变换图像压缩原理

小波变换用于图像编码的基本思想就是把图像根据Mallat塔式快速小波变换算法进行多分辨率分解。其具体过程为:首先对图像进行多级小波分解,然后对每层的小波系数进行量化,再对量化后的系数进行编码。小波图像压缩是当前图像压缩的热点之一,已经形成了基于小波变换的国际压缩标准,如MPEG-4标准,及如上所述的JPEG2000标准[2]。

2.小波变换图像压缩的发展现状及前景

目前3个最高等级的小波图像编码分别是嵌入式小波零树图像编码(EZW),分层树中分配样本图像编码(SPIHT)和可扩展图像压缩编码(EBCOT)。

(1)EZW编码器[6]

1993年,Shapiro引入了小波“零树”的概念,通过定义POS、NEG、IZ和ZTR四种符号进行空间小波树递归编码,有效地剔除了对高频系数的编码,极大地提高了小波系数的编码效率。此算法采用渐进式量化和嵌入式编码模式,算法复杂度低。EZW算法打破了信息处理领域长期笃信的准则:高效的压缩编码器必须通过高复杂度的算法才能获得,因此EZW编码器在数据压缩史上具有里程碑意义。

(2)EBCOT编码器[8]

优化截断点的嵌入块编码方法(EBCOT)首先将小波分解的每个子带分成一个个相对独立的码块,然后使用优化的分层截断算法对这些码块进行编码,产生压缩码流,结果图像的压缩码流不仅具有SNR可扩展而且具有分辨率可扩展,还可以支持图像的随机存储。比较而言,EBCOT算法的复杂度较EZW和SPIHT有所提高,其压缩性能比SPIHT略有提高。

小波图像压缩被认为是当前最有发展前途的图像压缩算法之一。小波图像压缩的研究集中在对小波系数的编码问题上。在以后的工作中,应充分考虑人眼视觉特性,进一步提高压缩比,改善图像质量。并且考虑将小波变换与其他压缩方法相结合。例如与分形图像压缩相结合是当前的一个研究热点[2]。

(3)SPIHT编码器[7]

由Said和Pearlman提出的分层小波树集合分割算法(SPIHT)则利用空间树分层分割方法,有效地减小了比特面上编码符号集的规模。同EZW相比,SPIHT算法构造了两种不同类型的空间零树,更好地利用了小波系数的幅值衰减规律。同EZW编码器一样,SPIHT编码器的算法复杂度低,产生的也是嵌入式比特流,但编码器的性能较EZW有很大的提高。

五、分形图像压缩

1988年,Barnsley通过实验证明分形图像压缩可以得到比经典图像编码技术高几个数量级的压缩比。1990年,Barnsley的学生A.E.Jacquin提出局部迭代函数系统理论后,使分形用于图像压缩在计算机上自动实现成为可能。

1.分形图像压缩的原理

分形压缩主要利用自相似的特点,通过迭代函数系统(IteratedFunctionSystem,IFS)实现。其理论基础是迭代函数系统定理和拼贴定理。

分形图像压缩把原始图像分割成若干个子图像,然后每一个子图像对应一个迭代函数,子图像以迭代函数存储,迭代函数越简单,压缩比也就越大。同样解码时只要调出每一个子图像对应的迭代函数反复迭代,就可以恢复出原来的子图像,从而得到原始图像[9]。

2.几种主要分形图像编码技术[9]

随着分形图像压缩技术的发展,越来越多的算法被提出,基于分形的不同特征,可以分成以下几种主要的分形图像编码方法。

(1)尺码编码方法

尺码编码方法是基于分形几何中利用小尺度度量不规则曲线长度的方法,类似于传统的亚取样和内插方法,其主要不同之处在于尺度编码方法中引入了分形的思想,尺度随着图像各个组成部分复杂性的不同而改变。

(2)迭代函数系统方法

迭代函数系统方法是目前研究最多、应用最广泛的一种分形压缩技术,它是一种人机交互的拼贴技术,它基于自然界图像中普遍存在的整体和局部自相关的特点,寻找这种自相关映射关系的表达式,即仿射变换,并通过存储比原图像数据量小的仿射系数,来达到压缩的目的。如果寻得的仿射变换简单而有效,那么迭代函数系统就可以达到极高的压缩比。

(3)A-E-Jacquin的分形方案

A-E-Jacquin的分形方案是一种全自动的基于块的分形图像压缩方案,它也是一个寻找映射关系的过程,但寻找的对象域是将图像分割成块之后的局部与局部的关系。在此方案中还有一部分冗余度可以去除,而且其解码图像中存在着明显的方块效应。

3.分形图像压缩的前景[2]

虽然分形图像压缩在图像压缩领域还不占主导地位,但是分形图像压缩既考虑局部与局部,又考虑局部与整体的相关性,适合于自相似或自仿射的图像压缩,而自然界中存在大量的自相似或自仿射的几何形状,因此它的适用范围很广。

六、其它压缩算法

除了以上几种常用的图像压缩方法以外,还有:NNT(数论变换)压缩、基于神经网络的压缩方法、Hibert扫描图像压缩方法、自适应多相子带压缩方法等,在此不作赘述。下面简单介绍近年来任意形状纹理编码的几种算法[10]~[13]。

(1)形状自适应DCT(SA-DCT)算法

SA-DCT把一个任意形状可视对象分成的图像块,对每块进行DCT变换,它实现了一个类似于形状自适应GilgeDCT[10][11]变换的有效变换,但它比GilgeDCT变换的复杂度要低。可是,SA-DCT也有缺点,它把像素推到与矩形边框的一个侧边相平齐,因此一些空域相关性可能丢失,这样再进行列DCT变换,就有较大的失真了[11][14][15]。

(2)形状自适应离散小波变换(SA-DWT)

Li等人提出了一种新颖的任意形状对象编码,SA-DWT编码[18]~[22]。这项技术包括SA-DWT和零树熵编码的扩展(ZTE),以及嵌入式小波编码(EZW)。SA-DWT的特点是:经过SA-DWT之后的系数个数,同原任意形状可视对象的像素个数相同;小波变换的空域相关性、区域属性以及子带之间的自相似性,在SA-DWT中都能很好表现出来;对于矩形区域,SA-DWT与传统的小波变换一样。SA-DWT编码技术的实现已经被新的多媒体编码标准MPEG-4的对于任意形状静态纹理的编码所采用。

在今后的工作中,可以充分地利用人类视觉系统对图像边缘部分较敏感的特性,尝试将图像中感兴趣的对象分割出来,对其边缘部分、内部纹理部分和对象之外的背景部分按不同的压缩比进行压缩,这样可以使压缩图像达到更大的压缩比,更加便于传输。

(3)Egger方法

Egger等人[16][17]提出了一个应用于任意形状对象的小波变换方案。在此方案中,首先将可视对象的行像素推到与边界框的右边界相平齐的位置,然后对每行的有用像素进行小波变换,接下来再进行另一方向的小波变换。此方案,充分利用了小波变换的局域特性。然而这一方案也有它的问题,例如可能引起重要的高频部分同边界部分合并,不能保证分布系数彼此之间有正确的相同相位,以及可能引起第二个方向小波分解的不连续等。

七、总结

图像压缩技术研究了几十年,取得了很大的成绩,但还有许多不足,值得我们进一步研究。小波图像压缩和分形图像压缩是当前研究的热点,但二者也有各自的缺点,在今后工作中,应与人眼视觉特性相结合。总之,图像压缩是一个非常有发展前途的研究领域,这一领域的突破对于我们的信息生活和通信事业的发展具有深远的影响。

参考文献:

[1]田青.图像压缩技术[J].警察技术,2002,(1):30-31.

[2]张海燕,王东木等.图像压缩技术[J].系统仿真学报,2002,14(7):831-835.

[3]张宗平,刘贵忠.基于小波的视频图像压缩研究进展[J].电子学报,2002,30(6):883-889.

[4]周宁,汤晓军,徐维朴.JPEG2000图像压缩标准及其关键算法[J].现代电子技术,2002,(12):1-5.

[5]吴永辉,俞建新.JPEG2000图像压缩算法概述及网络应用前景[J].计算机工程,2003,29(3):7-10.

[6]JMShaprio.Embeddedimagecodingusingzerotreeofwaveletcoefficients[J].IEEETrans.onSignalProcessing,1993,41(12):3445-3462.

[7]ASaid,WAPearlman.Anewfastandefficientimagecodecbasedonsetpartitioninginhierarchicaltrees[J].IEEETrans.onCircuitsandSystemsforVideoTech.1996,6(3):243-250.

[8]DTaubman.HighperformancescalableimagecompressionwithEBCOT[J].IEEETransactionsonImageProcessing,2000,9(7):1158–1170.

[9]徐林静,孟利民,朱建军.小波与分行在图像压缩中的比较及应用.中国有线电视,2003,03/04:26-29.

[10]MGilge,TEngelhardt,RMehlan.Codingofarbitrarilyshapedimagesegmentsbasedonageneralizedorthogonaltransform[J].SignalProcessing:ImageCommun.,1989,1(10):153–180.

[11]TSikora,BMakai.Shape-adaptiveDCTforgenericcodingofvideo[J].IEEETrans.CircuitsSyst.VideoTechnol.,1995,5(1):59–62.

[12]TSikora,SBauer,BMakai.Efficiencyofshape-adaptive2-Dtransformsforcodingofarbitrarilyshapedimagesegments[J].IEEETrans.CircuitsSyst.VideoTechnol.,1995,5(3):254–258.

[13]EJensen,KRijk,etal.Codingofarbitrarilyshapedimagesegments[C].Proc.WorkshopImageAnalysisandSynthesisinImageCoding,Berlin,Germany,1994:E2.1–E2.4.

[14]MBi,SHOng,menton“Shape-adaptiveDCTforgenericcodingofvideo”[J].IEEETrans.CircuitsSyst.VideoTechnol.,1996,6(6):686–688.

[15]PKauff,KSchuur.Shape-adaptiveDCTwithblock-basedDCseparationandDeltaDCcorrection[J].IEEETrans.CircuitsSyst.VideoTechnol.,1998,8(3):237–242.

[16]OEgger,PFleury,TEbrahimi.Shape-adaptivewavelettransformforzerotreecoding[C].Proc.Eur.WorkshopImageAnalysisandCodingforTV,HDTVandMultimediaApplication,Rennes,France,1996:201–208.

[17]OEgger.Regionrepresentationusingnonlineartechniqueswithapplicationstoimageandvideocoding[D].Ph.D.dissertation,SwissFederalInstituteofTechnology(EPFL),Lausanne,Switzerland,1997.

[18]SLi,WLi,etal.Shapeadaptivevectorwaveletcodingofarbitrarilyshapedtexture[S].ISO/IECJTC/SC29/WG11,MPEG-96-m1027,1996.

[19]WLi,FLing,HSun.ReportoncoreexperimentO3(Shapeadaptivewaveletcodingofarbitrarilyshapedtexture)[S].ISO/IECJTC/SC29/WG11,MPEG-97-m2385,1997.

篇2

假设定义向量Z={z1,z2,…,zN}的P-范数如下:Zp=Ni=1ΣzipΣΣ1p当P=0时,可以求出向量Z的0-范数,用以表示Z中非零元素的个数。一般情况下,非稀疏信号x通过稀疏转换可得出s,此时压缩感知理论中信号恢复问题就可以转化为线性约束下最小0-范数问题,具体表达式如下:s^=argmin0,s.t.y=准x=准覫s=s上述0-范数优化问题属于非凸优化问题,换言之,在多项式内不能够进行求解,也无法验证解是否有效,这样一来,就需要将其转化为其他范数,例如2-范数或者1-范数,相关资料显示,上述0-范数优化问题可通过求解简单的1-范数来解决,所以压缩感知理论一般采用如下公式:s=argmin1,s.t.y=准x=准覫s=s这样一来,就可以运用线性规划算法等方法来进行处理,在实际工作中,算法有很多中,可以根据具体需要来选择快捷的方法。

2实际应用

分析在实际应用过程中,压缩感知技术有以下几方面特性:

(1)观测信号没有稀疏性,比如OFDM系统频域信道响应等等。

(2)变换观测信号的基坐标,信号在另外的组基下变稀疏,比如频域信号响应经过DFT进行转换,使之在时域上具有稀疏性。

(3)稀疏性是变化的,并且稀疏性是不可知的,这也是使用压缩感知技术的首要条件。有资料显示,经过外场测试多数无线信道在时域上均具有多径稀疏的特点,通过压缩感知技术的应用,将大大减少用户的导频开销。另一方面,目前基站侧天线数目不断增多,无线信道在空域上也具有稀疏性,这也为压缩感知技术未来在移动通信系统中的应用奠定了基础。

篇3

0 引言

以数字视频的采集、压缩、处理为核心的现代视频监控技术,采用先进图像处理芯片对视频进行压缩处理,把智能图像处理技术用于图像显示、监控成为嵌入式视频监控系统的重点研究方向[1]。无论是MPEG1、MPEG2或者是MPEG4、H.263都已经无法满足运动图像压缩的要求,这时新一代的H.264标准便被制定,H.264作为新一代的编码方式,有效提升了视频压缩率,仅需原先的一半带宽即可播放相同质量的视频,而且视频编码的码率更加灵活,架构主要包括,帧内预测、帧间预测、转换、量化、去区块滤波器、熵编码等模块,下面将研究H.264视频编码的关键技术及其应用前景。[2]

1 H.264压缩标准

H.264是两个组织专家ITU-T和ISO为多媒体传输设计的数字视频编码标准[3],全称是MPEG-4AVC,翻译成中文意思是“活动图像专家组-4的高等视频编码”,或称为MPEG-4Part10。各种分辨率的视频图像格式都可以被H.264视频编码标准支持,包括sub-QCIF、QCIF、CIF、4CIF、16CIF等[4]。H.264是一种视频压缩标准,同时也是一种被广泛使用的高精度视频的录制、压缩和格式。H.264比其他编码标准有着更高的视频质量和更低的码率,被广泛用于网络流媒体数据、各种高清晰度电视陆地广播以及卫星电视广播等领域。H.264的特点是能低码率、高清晰持续提供较高的视频质量,能大大加强图像的编码效率和改善图像数据在网络中的传输效率。[1],使网络更加灵活、适应性更强,最大的好处就是节约了成本,弥补了技术差距,让存储与视频管理变得更高效。

2 H.264编码器的结构和特点

H.264只是规定了输入码流的格式及编码之后输出比特流的句法结构,其标准的编码思路是混合编码模式,以帧间和帧内预测来清除空间和时间的冗余分量,用变换和量化编码来清除频域冗余分量。H.264视频编码在一定情况下提高了视频压缩编码性,其视频解码与编码实现的过程相反,依据帧内编码进行逆量化,反变换,重构帧,最后经块滤波器平滑滤波后得到重建图像,[1]H.264编码器的功能组成框图如1。

3 H.264编码器关键环节分析

3.1 帧内预测 比起H.263,H.264提供了更多不同的工具来降低码率,以编码单位来说,h.264中每个宏块(macroblock/mb)大小都是固定的16×16像素,能够实现高分辨率视频的压缩,对于帧间编码来说,它允许变换块的大小根据运动补偿块的大小进行自适应的调整;对于帧内编码来说,它允许变换块的大小根据帧内预测残差的特性进行自适应的调整。

3.2 帧间预测 H.264标准与早期标准不同之处在于,它所使用的是块结构运动补偿,运算精度精确到1/4像素点上。[8]不仅如此,H.264标准还使用了多帧预测的方法,能够明显改善预测增益。[5]

3.3 整数变换与量化 H.264中整型变换与之前的MPEG系列标准所采用的DCT变换都有区别:

①它是整形变换(所有的操作都为整数运算,不存在解码精度损失)。②用整数算术变换可以确保编解码之间实现零失配。③变换的核心运算部分只用到加法和移位运算,不需要乘除运算。④到量化器的缩放乘积因子为整数,减少了乘积因子的数据位数。[4]量化的目的是减小信号的值域,以更少的比特来表示信号,从而达到减少数据量的目的。H.264中量化的步长总共有52种,其按照12.5%递增,并且变换系数的读取有双扫描和之字形两种方式。

3.4 熵编码 熵编码是对数据的冗余信息进行压缩的方法,变长编码和Huffman编码相结合进行,以较短的字长表示出现概率较大的数据,较长的字长表示出现概率较小的数据来达到降低数据量的目的。

CAVLC是一种变长编码。先对变换系数进行zig-zag扫描。用行程码(L,V)表示扫描以后的数据,V代表数值,L代表该数出现的次数。因为视频块在整形变换和量化后,大部分变换系数成为0,只有很少的数据在低频部分,用行程数L代表连续出现的0的个数,V代表0串后挨着的非零值,接着对L和V分别采用Huffman编码进一步压缩,有不同的码表可以查询亮度块和色度块。行程编码大大降低了编码的码字字长。CABAC是一种二进制算术编码,其通过构建模型来预测当前的视频信号。相对于CAVLC编码,CABAC的编码效率更高,更节省码率。[4]

3.5 码率控制 H.264视频编码标准虽然对于编码器的结构实现模式没有具体的规定,但编码器实现的核心问题要解决编码器的结构、相应的视频编码如何控制。H.264编码器采用基于拉各朗日Lagrangian优化算法的率失真优化模型实现视频编码的控制,其实现方法简单而且效率高。[5]

H.264编码标准由于以上关键技术的支持,获得了较高性能编码,但编码器复杂度增加,约为MPEG2的4倍,MPEG4的2倍。其高复杂度原因有两个方面,一是编码选项复杂,二是计算量高。具体内容有宏块的划分及搜索模式的组合的选取、高精度亚像素运动补偿和多参考顿预测,H.264更细化,更精确的数据压缩导致了计算量高。[6]

4 应用前景

H.264作为一种具有高效压缩性能的视频压缩编码技术,其在制定的过程中就充分参考和吸收了H系列和MPEG系列的优秀研究成果,修改或重新制定了其中不合理的部分,使其有很好的压缩性能。H.264能够比H.263和MPEG-4大约省去50%的码率。[7]H.264的高效的视频压缩能力和优异的网络适应性,为视频数据传输的可靠性提供了保障,其可广泛应用于数字摄像、英特网、数字视频录像、DVD及电视广播等领域的图像压缩。

5 结束语

网络视频监控系统要达到良好的监控效果,仅提高摄像头的分辨率是不行的,只有通过改善数字视频的压缩技术,降低视频传输的误码率,提高视频的质量,才能推动网络视频走向智能化。[1]H.264标准的推出是视频编码标准的一次重要的进步,尽管其算法复杂,但是能够大幅度提高编码效率,使得应用范围更加的广泛。

参考文献:

[1]李红京.基于H.264视频压缩技术的网络视频传输系统设计[J].河北工业科技,2011,28(4):236-239.

[2]齐淋淋,向健勇,唐巍.H.264视频压缩关键技术及其应用前景[J].电子科技,2005(10)13-16.

[3]党晓军,尹俊文.基于H264的嵌入式视频监控系统研究[J].计算机技术与应用进展,2008:407-412.

[4]刘继红,孙海龙,屈鹏.TD-MBMS中H.264视频压缩的实现过程[J].信息通信,2008,4:14-16.

[5]牛建民.H.264视频压缩算法应用研究[M].同济大学工程硕士学位论文,2007,5.

篇4

文章编号:1674-3520(2015)-10-00-01

引言

当今世界袁计算机技术已经成为推动社会经济飞速发展的重要基础,它对人类经济、社会及生活各方面产生了巨大影响。多媒体技术的应用已经渗透到生活和工作的各个方面,而且多媒体应用技术也成为新世纪人才必备的技能,然而,社会对人才的需求是多方面的,对多媒体应用技术的需求也不尽相同。多媒体技术作为计算机领域的一个重要方面,在我国主要有以下方面的技术应用。

一、计算机多媒体技术的概述

以计算机为核心,交互综合处理图像、文字、音频、活动视频、动画等多种媒体信息,而且通过控制计算机让这些信息建立连接,通过加工处理可以表示出丰富、复杂信息的信息技术。多媒体需集合多种技术如计算机技术、通讯技术、声像技术等,其主要包括视频、音频、文字、超媒体链接、数据压缩、数据解压、媒体同步、高性能大容量光学存储、多媒体网络通讯等,它的特点具有集成性、复杂性、交互性、实时性。1984 年苹果公司首先引入映射、窗口、图符等技术,同时也推出了世界上第一台多媒体计算机。

二、计算机多媒体技术的应用

计算机多媒体的研究技术的重心任务已经渐渐的发生的转移,这能够极大改善了人们在对信息的交流和传递出现的问题。特别是多媒体技术的视频音像的技术、计算机的技术、生活中通信的技术等等都能够合理的结合在一起。合理的解决这一个很重大的问题。

(一)数据、图像处理的应用

计算机的多媒体计算在数字化的时展就需要面临着大量的数据转发、存储和传输等等。数字化基本已经成为了视频和音频信号的主要产物,这也就给存储器中的存储容量、通信的干线、图像的处理等等一系列的多媒体技术的处理打好了基础。

(二)音频处理的应用

在计算机多媒体中常见的视频文件的格式有很多种,常见有:WAY文件、VOC文件、htlDI文件、AIF文件、SON文件和RMI文件等,这些主要就是用于对音频信息的处理,主要的就是需要进行编制、语音的是被、文字的转换等等技术问题。

(三)数据库内容检索的应用

在计算机多媒体常见的技术支持直线,多媒体的信息检索。多媒体的数据库、信息的操作系统、等等一些相应的操作系统都应该被应用到实践的后部位。特别是对图像进行处理和检索的过程已经成为了一个系统应用放入最重要的部位也是一个热点。其中对于内同的图像处理检索的过程主要就是根据科室的特点从图像的资源库中收索一些相关的词语和描述的内容相似的图像。

(四)远程教育系统的应用

计算机辅助教学(Computer Aided Instruction,简称CAI)是在计算机辅助下进行的各种教学活动,以对话方式与学生讨论教学内容、安排教学进程、进行教学训练的方法与技术。CAI为学生提供一个良好的个人化学习环境。综合应用多媒体、超文本、人工智能和知识库等计算机技术,克服了传统教学方式上单一、片面的缺点。它的使用能有效地缩短学习时间、提高教学质量和教学效率,实现最优化的教学目标。远程教育是指学生与教师、学生与教育组织之间的传授形式不再局限于面对面或是点对点,而是可以进行分离式教与学。尤其是在因特网的支持下发展形成的现代远程教育,使远程教育的手段有了质的飞跃,极大地优化了多种媒体教学的组合模式。

(五)多媒体技术在通信系统中的应用

多媒体技术在通信系统中的应用主要表现在数据压缩技术和数据的同步这两个方面。在多媒体数据压缩技术方面:多媒体技术压缩技术主要是处理数据、文本、图像。在通信系统的实行过程中数据的压缩是必须要解决的核心问题之一。因此在不影响或者提高视频、音频的质量的前提下,按照压缩编码标准对各种音频和视频信号进行相关处理.减少其通过对音频、视频所占内存,提高压缩率。从而能够使通信过程中传输信息、图片、视频、音频的时间和空间,进步的促进通信系统的日常化应用。多媒体技术压缩技术在通信系统所表现出来的优越性,使得多媒体技术在通信系统中得到广泛的应用。在数据的同步方面:数据同步技术在通信技术领域也得到广泛的应用。对于视觉、听觉、触觉信息,多媒体技术都可以进行处理。计算机系统的响应处理子系统随着支持的媒体增多越来越多。这样通过多媒体技术的应用,使得通信技术打破了地域限制,加强了交互性。使得电视、网络的应用得到广泛的发展。让人们能够及时的掌握最新的信息,从而为各种决策奠定基础。

(六)媒体技术在工业领域中的应用

多媒体在工业领域的应用主要表现在多媒体PC的使用。随着家用pc市场的不断开拓,企业开始向工业自动化进程迈进,各种信息处理技术被广泛的应用其中。工业的自动化离不开多媒体技术在信息综合处理方面的优势,特别是多媒体信息储存的海量化、传输的方便化、内容的多样化方面,正因为多媒体技术在增强企业的竞争实力、降低生产成本、增强员工的技术能力方面有着无可比拟的优越性。因而在工业领域得到了广泛的应用。

计算机的多媒体计算是一门迅速发展起来的一门综合性电子信息技术服务。在过去人们用几个幻灯片加上声音就是多媒体。而今天随着计算机通信网络的不断发展,加上数字化影像技术的快速发展,就给计算机多媒体披上了一层新衣,赋予了新的意义。随着经济的不断发展,多媒体的应用范围也是越来越广,多媒体的技术知识也是越来越重要。其总体的发展趋势也是最好的,更具有相互的交流性,能够更大范围的服务,创造一个更加方便的社会。

参考文献:

[1]刘丹 试析计算机多媒体技术的应用[期刊论文]-计算机光盘软件与应用 2014(5)

篇5

中图分类号:TN957.51 文献标识码:A 文章编号:1007-9416(2015)12-0000-00

近年来,航空航天技术快速发展,各类飞行器的飞行能力不断提升,这就要求现代雷达应具有高精度、远距离、高分辨力的探测性能。传统脉冲雷达存在雷达探测能力与距离分辨力之间的矛盾[1]。为解决这一矛盾,大多数现代雷达采用脉冲压缩技术,调制信号频率或相位,从而产生探测距离较远的大时宽带宽信号,接收端通过具有匹配滤波器的接收机接收,产生窄时脉冲,提高了距离分辨率。

随着大规模集成电路及超大规模集成电路的快速发展,可编程门阵列(FPGA)被广泛应用,以可编程门阵列为硬件基础实现的数字脉冲压缩技术有着可靠性高、灵活性好、可编程、电路集成度高等优势[2],逐渐取代早期的模拟脉压技术,成为现代雷达脉冲压缩系统的发展主流。本文以此为技术背景,对线性调频信号的脉冲压缩进行了深入研究和波形仿真,并给出了一种基于可编程门阵列的数字脉冲压缩实现方法。

1 脉冲压缩技术原理

脉冲压缩技术主要应用于现代雷达上进行距离探测和目标识别。线性调频信号属于大时宽带宽积信号中的一种,它通过非线性相位调制或线性频率调制( LFM)来获得大的时宽带宽积,是研究的最早且应用最广泛的一种脉冲压缩信号[3]。采用匹配滤波器,可将接收机接收到的宽脉冲信号经过处理得到窄脉冲信号,实现脉冲压缩,同时提高信噪比。目前这种技术已经广泛用于各种雷达体制中。一般在时宽带宽积BT>30时,可以近似认为线性调频信号具有矩形振幅频谱,因此其匹配滤波器也应该具有矩形带通振幅特性。线性调频信号的匹配滤波器的近似频率特性可描述为:

(1)

设匹配滤波器输入端作用信号为:

(2)

式中: 为多普勒频率,匹配滤波器输出信号的频谱为:

(3)

对 求傅里叶反变换得到时域表达式 ,即为脉压系统的输出:

(4)

可以看出,经过脉冲压缩处理后的线性调频信号具有sinc函数的特性。

2 数字脉冲压缩系统的实现

在理论上,时域卷积法和频域相乘法均可以实现数字脉冲压缩。在工程上,却要同时考虑匹配滤波器的长度和雷达信号处理的巨大计算量,因此多采用频域相乘法进行脉冲压缩。回波信号首先经过A/D转换模块,再经由FFT运算模块处理后乘以频域匹配滤波系数,然后数据送入IFFT模块经D/A转换后即为脉压输出结果。采用频域相乘法的脉冲压缩处理流程如图1所示。本文的各模块设计也正是遵循这一思想进行的。

2.1 FFT模块设计

脉冲压缩处理速度的关键取决于FFT模块的算法设计,之前由于数字电路发展的限制,FFT处理结构更多的考虑节约硬件资源以获取更低的功耗,近年来随着大规模集成电路的快速发展,FFT模块的设计已经突破硬件瓶颈,看重指标主要集中于数据处理速度及数据处理精度上。以FPGA为硬件基础设计的FFT运算结构有着递归结构、流水线结构和全并行结构三种类型。递归结构在数据控制上占有优势,因其只有一个运算单元,因此占用的资源最少,需要较长时间运算。流水线结构将本级运算结果直接送入下一级运算,运算速度有所提高,但需要消耗较大的存储空间。全并行结构的运算单元数量与运算点数成正比,是计算速度最快的一种,是以牺牲硬件资源为代价[4]。本文以16路并行运算结构为基础,主要通过FPGA芯片内部资源的合理配置大幅度提升了FFT的运算能力,其中单极FFT处理模块处理流程如图2所示。

2.2 系数匹配相乘模块和IFFT模块设计

系数匹配模块根据发射波形是否可变,有两种模式可供选择。如果雷达发射可变波形,就需要在对发射波形采样的同时进行快速傅里叶变换处理,得出频谱序列的幅值即为匹配系数;如果雷达反射固定波形,可先行通过MATLAB计算出匹配系数并存储到 EPROM 中,通过系数调用方式相乘,这种方法实现起来比较简单,适合绝大多数的脉压系统。

IFFT运算模块可以调用FFT运算模块的硬件电路实现,具体处理原理如下:

将 分解为实部与虚部,将实部与虚部互换得到 ,表达式为:

(5)

对 进行傅里叶变换可得 ,即:

(6)

将 的实部与虚部交换后乘以系数因子 可得:

(7)

由(8)、(9)式可知在工程中实现IFFT模块运算对预处理数据的实部与虚部对调,调用FFT模块硬件电路处理后,再次交换数据的实部与虚部并乘以系数因子 ,通过硬件电路的共用不但降低了硬件电路的复杂程度,节省了系统资源,同时也使运算速度大大提升,其数据处理流程同图2相同。

3 实验结果与仿真

采用美国Agilent公司E8627D信号源模拟雷达回波信号,FPGA芯片选取Xilinx公司生产的XC2V1000。线性调频信号具体参数设置如下: 中频、 偏频、 的脉冲宽度, 的周期。FPGA系统输出结果和Matlab仿真结果如图3所示,可以看出二者基本吻合,从而验证了本方案正确性和可行性。

(a) FPGA输出结果 (b) Matlab仿真结果

4 结语

雷达采用线性调频脉冲压缩技术后具有作用距离远、距离分辨力高、抗干扰能力强的特点,本文给出了一种以可编程门阵列(FPGA)为硬件基础进行数字脉冲压缩的设计方法。这种基于FPGA的模块化设计方法非常灵活,电路设计简单,电路集成度高,稳定性好,极大缩短了研发周期,便于工程实现与后期维护。通过理论仿真和试验验证,FPGA芯片的输出结果和MATLAB仿真结果相吻合,满足现代雷达对数据采集与处理实时性和准确性的要求。

参考文献

[1]李方慧,龙腾,毛二可.基于TMS320C6201的并行高速实时数字脉冲压缩系统研究[J].电子学报,2001,29(9):1272-1275.

[2]贺知明,黄巍,向敬成.数字脉冲压缩时域与频域处理方法的对比研究[J].电子科技大学学报,2002(4):31-33.

篇6

1 ITS信息及特征分析

1.1 智能交通信息(ITS)

交通系统由包括4个基本要素:人(交通出行者、驾驶员和管理者)、物(货物)、各类交通工具和相应的交通设施构成。交通信息是指所有与交通系统的四大要素相关联的信息,是ATMS的关键基础。面向ATMS的基础交通信息主要是指与交通运行状态和交通管理有关的交通信息,是交通信息中最直接、最基础的信息。基础交通信息包括基础交通地理信息、交通实时状态信息、交通控制和管理信息、交通政策法规信息、公共交通信息。

1.2 基础交通信息的属性特征

基础交通信息是一种在大范围内、全方位发挥作用的,实时、准确、高效的综合运输和管理系统,其应具有以下一些基本属性特征:1)准确性;2)及时性;3)共享性;4)信息的采集具有实时性和动态性;5)具有海量信息特征;6)增值性。

2 数据压缩处理技术

交通信息一方面时采集到的信息烦杂多样,要想利用这些不同类别的信息,需采用不同的处理方法;另一方面,交通信息的一个显著特征是它的空间性和随机性,因此对它的研究分析需要建立在广泛统计的基础上,应用各类信息处理技术和统计分析方法来探索它的规律性。

所谓多媒体技术就是能对多种载体(媒体)上的信息和多种存储(媒质)上的信息进行处理的技术,特点主要表现在它的综合性和交互性。交通信息是属于多媒体信息范畴。若要实时的综合处理声音、图像、视频、文字等多媒体信息,其数据量是非常大的。要传输或存储这样大的数据量是非常困难的,必须对其进行压缩编码,在满足实际需要的前提下,尽量减少要传输或存储的数据量。

数据压缩主要依靠信源编码技术。一般的,图像压缩技术可分为两大类:无损压缩和有损压缩技术。在多媒体应用中常用的压缩方法有PCM(脉冲编码调制)、预测编码、变换编码、插值和外推法、统计编码、矢量量化和子带编码等;混合编码是近年来广泛采用的方法。新一代的数据压缩方法,如基于模型的压缩方法、分形压缩和小波变换方法等也已经接近实用化水平。

3 信息融合技术

信息融合技术在单纯数据采集融合(即一次融合)阶段称为数据融合,是研究多种信息的获取、传输与处理的基本方法、技术、手段以及信息的表示、内在联系和运动规律的一门技术。融合是指采集并集成各种信息源、多媒体和多格式信息,从而生成完整、准确、及时和有效的综合信息,它比直接从各信息源得到的信息更简洁、更少冗余、更有用途。

先进的交通管理系统(ATMS)是一个典型的多传感器系统,信息融合技术给交通信息加工和处理提供了一种很好的方法,信息融合技术的最大优势在于它能合理协调多源数据,充分综合有用信息,提高在多变环境中正确决策的能力。

在信息融合领域使用的主要数学工具或方法有概率论、推理网络、模糊理论和神经网络等,其中使用较多的是概率论、模糊理论、推理网络。当然,除了这几种常用的方法之外,还有其他很多解决途径。

3.1 概率论

在融合技术中最早应用的就是概率论。在一个公共空间根据概率或似然函数对输入数据建模,在一定的先验概率情况下,根据贝叶斯规则合并这些概率以获得每个输出假设的概率,这样可以处理不确定性问题。贝叶斯方法的主要难点在于对概率分布的描述,特别是当数据是由低档传感器给出时,就显得更为困难。另外,在进行计算的时候,常常简单地假定信息源是独立的,这个假设在大多数情况下非常受限制。卡尔曼滤波方法则根据早先估计和最新观测,递推地提供对观测特性的估计。另外,概率论和模糊集理论的综合应用给解决多源数据的融合问题提供了工具。

3.2 模糊理论

模糊集理论是基于分类的局部理论,因此,从产生起就有许多模糊分类技术得以发展。隶属函数可以表达词语的意思,这在数字表达和符号表达之间建立了一个便利的交互接口。在信息融合的应用中主要是通过与特征相连的规则对专家知识进行建模。另外,可以采用模糊理论来对数字化信息进行严格地、折衷或是宽松地建模。模糊理论的另一个方面是可以处理非精确描述问题,还能够自适应地归并信息。对估计过程的模糊拓展可以解决信息或决策冲突问题,应用于传感器融合、专家意见综合以及数据库融合,特别是在信息很少,又只是定性信息的情况下效果较好。

3.3 推理网络

推理网络的构建和应用有着很长的历史,可以追溯到1913年由一位名叫John H W ig-more的美国学者所做的研究工作。近来,许多对于分析复杂推理网络的理论往往基于贝叶斯规则的推论,并且都被归类于贝叶斯网络。目前,大多数贝叶斯网络的研究都包括了对于概率有效传播的算法拓展,同时它在整个网络中也充当了新证据的角色。同时贝叶斯网络在许多A1任务里都己作为对于不确定推理的标准化有效方法。贝叶斯网络的优点是简洁、易于处理相关事件。缺点是不能区分不知道和不确定事件,并且要求处理的对象具有相关性。在实际运用中一般不知道先验概率,当假定的先验概率与实际相矛盾时,推理结果很差,特别是在处理多假设和多条件问题时显得相当复杂。

参考文献

[1]杨兆升.基础交通信息融合技术及其应用[M].北京:中国铁道出版社,2005.

篇7

中国飞行试验研究院

摘要:本文介绍了一个作者自行开发研究、具有自主知识产权的新型加密压缩软件。在简单说明了当前加密、压缩技术的发展概况的基础上,主要描述了该新型加密压缩软件的技术方法特点、功能特色、实现流程和关键技术难点。该软件采用专业的加密方法,兼顾专业压缩功能,以寄生加密、自解密加密结合文件分割等特色功能见长,以简单、实用、友好的操作界面等得到了用户较高的评价。随着作者在此方面研究的不断深入,该软件的功能还将得到进一步增强和扩充。

关键词:数据压缩,数据加密,寄生加密,自解密加密

1  引言

计算机技术的飞速发展与互联网应用的广泛普及,促使信息技术普遍第运用于各行各业,不但为经济、政治、军事、文化的发展做出巨大贡献,而且也已经深入到了个人生活的各个层面,安全与保密逐渐成为人们应用计算机系统的一个首要问题。全球性、开放性、共享性、动态性的网络系统应用使得涉及到我们个人隐私、银行账户、商业秘密等重要信息在存储过程中很容易遭到有意或无意攻击与盗取。一旦重要的信息遭到非法窃听、截取,将会给用户的利益造成不可估量的损失,因此,目前信息安全已经成为信息社会面临的严峻挑战。同时,由于信息量的爆炸性增长,对存储和管理也提出了很高的要求。在这种情况下,就需要有一种既能提高信息的有效存储,提高存储效率,又能确保信息安全的强有力的应用软件,为用户充分利用计算机网络系统提供安全保障。

2  新型压缩加密设计

2.1  加密算法与加密软件

密码系统的两个基本要素是加密算法和密钥管理。

加密算法是一些公式和法则,它规定了明文和密文之间的变换方法。由于密码系统的反复使用,仅靠加密算法已难以保证信息的安全了。事实上,加密信息的安全可靠依赖于密钥系统,密钥是控制加密算法和解密算法的关键信息,它的产生、传输、存储等工作是十分重要的。

根据密钥类型不同将现代密码技术分为两类:一类是对称加密(秘密钥匙加密)系统,对称加密系统最著名的是美国数据加密标准DES、AES(高级加密标准)和欧洲数据加密标准IDEA,另一类是公开密钥加密(非对称加密)系统, RSA是Rivest、Shamir和Adleman提出来的基于数论非对称性(公开钥)加密算法。

虽然著名的通用数据压缩软件,例如Winrar、Winzip等在压缩数据信息的同时,具有数据压缩安全密码防护功能,但由于软件本身的应用普遍性和加密算法通用性,已经有许多解密软件来破解加密口令,这种密码防护已经形态虚设。

如何评价加密软件?笔者认为应该从以下几个方面考虑。

a. 加密功能。加密功能是加密软件首要考虑因素。一个出色的加密软件不但可以可靠地给用户硬盘中的各种格式的信息加密,而且还能够提供即时加密,例如电子邮件、剪贴板等,也就是说好的加密软件既要有静态信息加密功能,尤其是电子邮件。通常,好的加密软件还为电子邮件软件提供专门的插件程序,以方便电子邮件的即时加密,还需要有对动态信息的加密功能,这样才能保证用户信息的万无一失。

b. 附加功能。好用的加密软件在提供基本、可靠的加密功能的同时,还提供了其它一些实用的功能,例如保密删除、信息压缩等功能。保密删除可以保证那些不想要的信息从硬盘中彻底抹掉,防止被他人恢复窃取,信息压缩可以提高存储效率。

c. 易用性。对于所有的软件,易用性是十分重要的,加密软件更是如此。易用性不仅仅是指界面的友好,还包括加密效率。面向普通用户,一两分钟就可以学会使用,这就是易用性。加密、解密时间的长短是加密效率的直接体现,让用户从心里上能够接受应用加密软件。

d. 安全性:口令加密是一种原始、简单的加密保护措施,但安全性比起专业、复杂的加密算法就要差许多,商业秘密、金融信息等重要信息的加密都必须使用专业的加密软件。因此,加密软件的实现方法就成为该软件优劣的一个标准之一。

2.2  压缩算法与压缩软件

信息压缩最直接的理解就是利用一种技术把信息表达中的冗余信息剔除,使压缩后的信息基本能够代表未压缩信息,从而提高信息的存储效率。信息的表达基本都存在着一定的冗余度,通过采用一定的模型和编码方法,可以降低这种冗余度。因此,可以说压缩就等于模型(在压缩程序中,用来处理输入信息,计算符号的概率并决定输出哪个或哪些代码的模块叫做模型)加编码(对某一个符号该用多少位二进制数进行编码)。模型和编码两个模块相互是具有独立性,模型又有静态模型和自适应模型。

压缩通常分为有损压缩和无损压缩两种。有损压缩就是压缩后的信息与原信息之间存在一定的差异,无损压缩就是压缩后的信息经过还原过程后,与原信息之间没有任何差异。有损压缩一般用于多媒体压缩,在满足一定压缩比要求的同时,满足人们视觉或听觉感官的完美要求,这两个要求相辅相成,此消彼长,但主要取决于目标存储介质的存储量大小。本文讨论无损压缩。

数据压缩起源于四十年代由 Claude Shannon 首创的信息论,它的基本概念是信息究竟能被压缩到多小?这个概念借用了热力学中的名词"熵"( Entropy )来表示一条信息中真正需要编码的信息量。

D.A.Huffman 于 1952 年第一次发表了他的论文"最小冗余度代码的构造方法"(A Method for the Construction of Minimum Redundancy Codes)。60 年代、70 年代乃至 80 年代的早期,数据压缩领域几乎一直被 Huffman 编码及其分支所垄断。

1977 年,以色列人 Jacob Ziv 和 Abraham Lempel 发表了论文"顺序数据压缩的一个通用算法"(A Universal Alogrithem for Sequential Data Compression)。他们提出的两个压缩技术被称为 LZ77 和 LZ78。简单地说,这两种压缩方法的思路完全不同于从 Shannon 到 Huffman 到算术压缩的传统思路,人们将基于这一思路的编码方法称作"字典"式编码。字典式编码不但在压缩效果上大大超过了 Huffman,而且,对于好的实现,其压缩和解压缩的速度也异常惊人。随后Terry Welch 提出的LZW 算法继承了 LZ77 和 LZ78 压缩效果好、速度快的优点,在算法描述上更容易被人们接受,成为了UNIX 世界的压缩程序标准。

篇8

远程医疗利用现代通信网络,结合计算机多媒体技术,传输多媒体医疗信息来实现远距离的医疗活动;主要着重于多媒体交互式服务。利用远程医疗可以减少边远地区患者求医的费用和求医诊治花费时间,节省医生往返各地的费用和时间,也可以提供分散医院之间的远程交流和协作。小波变换的视频编码的实现能够在压缩性能、诊断性能、传输性能上适应于远程医疗系统的压缩;本文利用小波变换结合运动补偿量化编码算法,能较好地对医学图像进行压缩及处理。

小波变换用于图像压缩的基本思想

所谓图像压缩就是去掉各种冗余,保留重要的信息。图像压缩的过程常称为编码,而图像的恢复则成为解码。虽然图像的数据是非常巨大,但是可以采用适当的坐标变换祛除相关,从而达到压缩数据的目的。小波变换通过多分辨分析过程将一幅图像分成近似和细节两部分,细节对应的是小尺度的瞬变,它在本尺度内很稳定。因此将细节存储起来,对近似部分在下一个尺度上进行分解,重复该过程即可,近似与细节在正交镜像滤波器算法中分别对应于高通和低通滤波,这种变换通过尺度去掉相关性,在视频压缩中被证明是有效的[2]。

运动补偿

运动补偿是通过先前的局部图像来预测、补偿当前的局部图像,它是减少帧序列冗余信息的有效方法。远程医疗系统不仅仅是信息资源共享,提供实时可见的视频图像资料以供医学专家参考。所以,大量、高质量的视频图像数据的处理、传输就成为远程会诊系统的关键环节,另外医生在查看图像时只对图像中很小一部分感兴趣,这部分区域有可能是病灶区域分,除病灶区外对于其他图像如背景部分等一些局部图像成为医生乎略的内容,所以,可以充分利用医学图像的这一重要特征在进行设计图像压缩编码算法时对乎略的内容进行高比例压缩。

图像压缩技术在远程医疗系统中的研究方案

视频图像的压缩编码实际上是在静态图像编码的基础上,增加帧间图像的内插和运动补偿技术,由此来消除图像之间的时间相关性,从而实现高倍率的压缩目的。再对已消除时间相关性之后的每帧图像进行静态图像的压缩编码。

首先将要编码的图像分成16×16的宏块,对于每一个宏块,依照某指定的准则,在其参考图像中搜索与其最匹配(最相近)的块。如果搜索到的块满足条件,则作为当前编码宏块的运动补偿块。将它们相减,得到的结果称为帧间编码块,并将其放在残差图像的相应位置。如最终没有找到相近的块,则认为当前块属于帧内编码块,将其直接放置在残差图像的相应位置。然后对残差图像进行小波变换及压缩编码。显然,解码时,将解码的残差图像加上其对应的运动补偿图像,即可得到复原的图像。

对于小尺寸图像块宜用DCT方法进行编码,先对残差图像中的帧内编码宏块用DCT方法进行变换、量化、编码,其结果作为总数据的一部分输出到比特流中。对编码后的图像块进行恢复得到其重构块,再用原快减去重构块得到残差块,即帧间编码块。由残差块代替残差图像中相应的帧内编码块。如此一来,残差图像就全部由帧间编码块组成了,从而在整体上趋近于零。以上分块的不足之处存在于,运动补偿的块越小,得到的残差图像的能量越小。然而,分块越小,块越多,算法复杂度越高,矢量数目越多。传输矢量所需要的数量可能大于图像残差能量减小所节省的数据量,这样一来就会造成得不偿失的情况。比较好的解决方法就是使用自适应的分块大小,对细节较少的部分采用大的分块,对细节较多的地方采用较小的分块。另外,也可以采用像素插值的方法,利用插值后的像素位置进行预测将提高运动补偿的精度,但事实上,随着插值变得精细,其对于运动补偿的改善作用也在逐渐下降。

小波和运动补偿相结合能更好地进行图像压缩,基于小波变换的静止图像压缩算法EZW、SPIHT和一种改进的EZW算法,这些算法是视频压缩编码算法中的关键部分。这有待于在软件平台上进行算法验证、分析和对比,实践证明应用改进的EZW算法对图象进行压缩,重构图像的PSNR值较高。

视频图像不仅在其每一帧内存在空间相关性,而且在帧间即时间方向也存在着很强的相关性,通过有效的方法消除这些冗余信息可以大大地提高视频的压缩比。

本文分析了对图像的背景及非病灶区域进行传输编码技术,并把它有褪用到远程医疗系统会诊子系统的视频流处理模块,取得了较好的效果。此方案可以减少传输时间,解决其数据量大、耗时长的瓶颈问题,并增加了通信双方的交互性。远程医疗在我国还是一个方兴未艾的新鲜事物,一个新的课题。现有远程医疗对我国医学来讲不是一个完美的系统,其中要解决的技术问题还有很多有待于我们不断的更新和完善。

篇9

1前言

随着多媒体计算机技术和通信技术的发展,产生了一种新的技术——多媒体通信技术,它是多媒体、通信、计算机和网络等相互渗透和发展的产物,兼收了计算机的交互性、多媒体的复合性、通信的分布性以及电视的真实性等特点,具有明显的优越性。目前,如何在IP网络中更好、更快地实现视频、音频的传送已成为当今的研究热点之一。

2基于IP网络构建视频会议系统的技术要求

随着IP网络的速率越来越高,从窄带走向宽带,承载业务从非实时走向实时,IP技术已成为实现视频、音频、数据等综合业务的最佳选择。在IP网络上建立视频会议系统需要多种技术支持,是比较复杂、完整的多媒体应用系统。

2.1要有足够高的带宽

要传送视频,必须要有足够的网络带宽,就像大车要有足够宽的马路才能通行一样,否则,视频数据无法通过网络。以一帧1024×768像素的图像为例,如果用12bit表示每个像素,则共需要9.4Mb,如果按照25帧/秒的传输速率,则1秒内需要传输的数据量就是235Mb。在现有的网络条件下,传输这么大的数据是无法接受的。

2.2要有好的压缩技术

只有采用高压缩比的压缩算法,有效地降低数据量,才能使视频、音频数据在IP网上传输成为可能。例如:在H.323会议系统中,图像编码主要采用H.261和H.263标准,支持CIF、QCIF的分辨率,而正在完善之中的H.264是比H.263和MPEG-IV压缩比更高的标准,节约了50%的编码率,而且对网络传输具有更好的支持,可获得HDTV、DVD的图像质量。

2.3要有基于IP网络的多播技术

多播是一种多地址广播,发送与接收是一对多的关系。在传输过程中,发送端只需发送一次数据包,位于多播组内的各个用户就可以共享这一数据包。在视频会议系统应用中,将一个节点信号传送到各个节点时,无论是重复采用点对点通信,还是采用广播的方式,都会严重浪费网络带宽,而多播技术将数据传送分布到网络节点中,减少了网络中的数据总量。

2.4要有相适应的传输协议

TCP、UDP协议均不能很好地支持视频会议系统,这就需要与之相适应的协议,如RTP、RTCP、RSVP等。RTP运行在UDP之上,音频、视频等数据被封装在RTP数据包中,每个RTP数据包被封装在UDP包中,然后再封装到IP包中进行传输。在底层网络支持多播的情况下,RTP还可以使用多播向多个目的端点发送数据。RTCP是RTP的控制协议,负责反馈控制、检测QoS和传递相关信息,对RTP的数据收发做相应调整,使之最大限度地利用网络资源。2.5要提供服务质量保证

网络服务质量是网络与用户之间以及网络上互相通信的用户之间关于信息传输与共享的质量约定。第一,在任何网络中,时延总是存在的。视频会议系统具有较高的实时性和可靠性要求,为了获得各会场的真实的现场感,音频、视频的时延都要小于0.25s,最大时延抖动应小于10ms。其次,在视频会议系统中,还要求唇音同步,只有达到时间上的同步,才能自然有效地表达关于会场的完整信息。第三,允许一定的丢包率。因为人的感知能力有限,在一个视频会议系统中,个别分组丢失,人眼是感觉不到的,因此可以允许一定的传输误码,丢包率应控制在人能接受的范围内。

3基于IP网络构建视频会议系统的协议

基于IP网络构建视频会议系统的标准主要有:H.323和SIP。

H.323沿用了传统的电话信令模式,比较成熟,已经出现了很多产品,形成了比较成熟的应用体系和市场体系。SIP协议将音、视频传输作为Internet上的一个应用,增加了信令和QoS要求,借鉴了其它Internet标准和协议的设计思想,遵循简练、开放、兼容和可扩展等原则,比较简单,但其推出时间不长,协议并不是很成熟,应用也不是很多。

4结束语

随着网络、多媒体、通信技术的飞速发展和性能的提升,基于IP网络构建视频会议系统技术会不断被发展和完善,必将以其独特的优势广泛应用到Internet、Extranet、Intranet上,为政府机关、商业集团、科研院所、医疗机构及普通个人等进行异地交流提供方便条件,成为工作、学习、生活中不可或缺的工具。

参考文献

[1]张智江,张云勇,刘韵洁.SIP协议及其应用[M].北京:电子工业出版社,2006.

[2]沈鑫剡,等.多媒体传输网络与VoIP系统设计[M].北京:人民邮电出版社,2005.

篇10

1 前言

随着多媒体计算机技术和通信技术的发展,产生了一种新的技术——多媒体通信技术,它是多媒体、通信、计算机和网络等相互渗透和发展的产物,兼收了计算机的交互性、多媒体的复合性、通信的分布性以及电视的真实性等特点,具有明显的优越性。目前,如何在IP网络中更好、更快地实现视频、音频的传送已成为当今的研究热点之一。

2 基于IP网络构建视频会议系统的技术要求

随着IP网络的速率越来越高,从窄带走向宽带,承载业务从非实时走向实时,IP技术已成为实现视频、音频、数据等综合业务的最佳选择。在IP网络上建立视频会议系统需要多种技术支持,是比较复杂、完整的多媒体应用系统。

2.1 要有足够高的带宽

要传送视频,必须要有足够的网络带宽,就像大车要有足够宽的马路才能通行一样,否则,视频数据无法通过网络。以一帧1024×768像素的图像为例,如果用12bit表示每个像素,则共需要9.4Mb,如果按照25帧/秒的传输速率,则1秒内需要传输的数据量就是235Mb。在现有的网络条件下,传输这么大的数据是无法接受的。

2.2 要有好的压缩技术

只有采用高压缩比的压缩算法,有效地降低数据量,才能使视频、音频数据在IP网上传输成为可能。例如:在H.323会议系统中,图像编码主要采用H.261和H.263标准,支持CIF、QCIF的分辨率,而正在完善之中的H.264是比H.263和MPEG-IV压缩比更高的标准,节约了50%的编码率,而且对网络传输具有更好的支持,可获得HDTV、DVD的图像质量。

2.3 要有基于IP网络的多播技术

多播是一种多地址广播,发送与接收是一对多的关系。在传输过程中,发送端只需发送一次数据包,位于多播组内的各个用户就可以共享这一数据包。在视频会议系统应用中,将一个节点信号传送到各个节点时,无论是重复采用点对点通信,还是采用广播的方式,都会严重浪费网络带宽,而多播技术将数据传送分布到网络节点中,减少了网络中的数据总量。

2.4 要有相适应的传输协议

TCP、UDP协议均不能很好地支持视频会议系统,这就需要与之相适应的协议,如RTP、RTCP、RSVP等。RTP运行在UDP之上,音频、视频等数据被封装在RTP数据包中,每个RTP数据包被封装在UDP包中,然后再封装到IP包中进行传输。在底层网络支持多播的情况下,RTP还可以使用多播向多个目的端点发送数据。RTCP是RTP的控制协议,负责反馈控制、检测QoS和传递相关信息,对RTP的数据收发做相应调整,使之最大限度地利用网络资源。 转贴于

2.5 要提供服务质量保证

网络服务质量是网络与用户之间以及网络上互相通信的用户之间关于信息传输与共享的质量约定。第一,在任何网络中,时延总是存在的。视频会议系统具有较高的实时性和可靠性要求,为了获得各会场的真实的现场感,音频、视频的时延都要小于0.25s,最大时延抖动应小于10ms。其次,在视频会议系统中,还要求唇音同步,只有达到时间上的同步,才能自然有效地表达关于会场的完整信息。第三,允许一定的丢包率。因为人的感知能力有限,在一个视频会议系统中,个别分组丢失,人眼是感觉不到的,因此可以允许一定的传输误码,丢包率应控制在人能接受的范围内。

3 基于IP网络构建视频会议系统的协议

基于IP网络构建视频会议系统的标准主要有:H.323和SIP。

H.323沿用了传统的电话信令模式,比较成熟,已经出现了很多产品,形成了比较成熟的应用体系和市场体系。SIP协议将音、视频传输作为Internet上的一个应用,增加了信令和QoS要求,借鉴了其它Internet标准和协议的设计思想,遵循简练、开放、兼容和可扩展等原则,比较简单,但其推出时间不长,协议并不是很成熟,应用也不是很多。

4 结束语

随着网络、多媒体、通信技术的飞速发展和性能的提升,基于IP网络构建视频会议系统技术会不断被发展和完善,必将以其独特的优势广泛应用到Internet、Extranet、Intranet上,为政府机关、商业集团、科研院所、医疗机构及普通个人等进行异地交流提供方便条件,成为工作、学习、生活中不可或缺的工具。

参考文献

[1] 张智江,张云勇,刘韵洁.SIP协议及其应用[M].北京:电子工业出版社,2006.

[2] 沈鑫剡,等.多媒体传输网络与VoIP系统设计[M].北京:人民邮电出版社,2005.

篇11

1 AVS视频编码概述与发展现状

为了改变国外对数字音频技术的垄断,2002年6月,经信息产业部批准,我国正式成立了“数字音视频编解码技术标准工作组”,也就是我们熟知的AVS工作组,到2013年为止,工作组的成员已经有230多家,给国内该领域的产品开发生产提供了大量的技术支持,国内数字音频技术的发展迎来了春天。AVS是由我国自主研发制定的,主要包括系统、视频、音频和数字版权等。当AVS标准提出并开始实施后,国内越来越多的技术人员开始关注并研究该标准,其中最主要研究的方向是算法标准的优化,其目的是最大限度的提高视频在压缩方面的效率和质量,与此同时,降低视频的码率。从而尽快的开发出较为适用的视频编码软件和硬件,为各个领域的视频需求提供便利。

目前来说,国内AVS芯片商还不是很多,其中具有代表性的厂商有美视、复旦微纳米、联合信源等厂商,数字音频产业已于2010年超过通信产业,预计在明年将成为国内国民经济最大产业,为我国构建技术专利到文化产业链条的转变提供发展机遇。

2 AVS视频压缩编码标准的原理

2.1 视频压缩编码标准概述

文字、声音、图像和视频等是多媒体信息技术的基本组成部分,其中,视频为多媒体信息中最为重要的组成部分。但是,由于视频的信息量较大,其传输和存储都十分不方便。故,只有经过较大的压缩才能更好的进行交流,在这样的背景下,视频编码就变得十分的具有必要。视频压缩编码的核心就是通过减少视频序列间的相关性,减少视屏内容间重复、繁杂的部分,大幅度的减少视屏内容的比特数,从而实现对视频的压缩处理。压缩编码总共分为以下四个方面,即空间冗余度的压缩、时间冗余度的压缩、统计冗余度的压缩和视觉冗余度的压缩。

2.2 AVSS视频压缩编码的关键技术

2.2.1 帧内预测

AVS视频标准采用的是空间内各个方向的帧内预测技术,这种观测技术可以提高预测精度,从而提高编码的效率。通过一个8X8块大小,亮度分类的5种预测模式分别对应水平、垂直、均值、左下角、右下角5个方向;色度分量的4种预测模式分别对应水平、均值、平面和垂直4个方向。除此之外,帧内预测还可以通过滤波处理来屏蔽噪音,从而提高编码的精准度。

2.2.2 帧间预测

帧间预测主要是通过从前面几帧图像中找寻更完美的匹配,从而提高编码的效率,AVS视频标准规定,视频的参考帧数最多为两个:一个用于搜索匹配,一个用于降低编码的复杂度。帧间编码模块主要是利用视频场或视频帧的运动进行补偿编码,这种编码模式主要是通过运动图像时间上的关联来进行压缩编码,通过对每个已知的图像板块进行运动估计,找出误差最小的对于板块,从而进行最为精确的匹配,并对运动矢量和图像的误差进行计算。这样匹配出来的图像一般不存在误差,大大提高了压缩比。

2.2.3 B帧宏块编码模式

在AVS预测中,双向预测采用的是空域和时域相结合的预测模式,这种模式较为直接,在这样的预测模式基础上,添加了运动矢量舍入控制技术,除此之外,AVS标准还提出了对称模式,即通过前向运动矢量的预测导出后向运动矢量,加大预测效率,实现对称的双向预测模式。

2.2.4 熵编码

AVS熵编码采用的是自适应变化编码技术,编码过程中所以的语言和数据都可以映射成二进制比特流,发挥闭合公式直接解析的优点,对预测误差的块变换系数,经过统一扫描,然后统一进行二维编码,并根据不同的概率分布,自适应改变指数的阶数。

3 AVS视频编码的优化实现

(1)C语言的优化。通常对热点进行汇编优化,先需要对C语言进行优化,这个过程还需要为汇编优化考虑数据结构和内存结构。

(2)表达式优化。表达式优化是较为简单的一种优化方式,对表达式中运行缓慢的部分进行优化,比如乘法、除法、取模等都是运行较为缓慢的运行方式。

(3)分支语句的优化。语句分支是计算机操作系统中,最基本的语言操作之一。有些分支可能会扰乱指令的流畅运行,因此,我们需要对一些运行缓慢的分支语句进行优化,分支语句分为条件分支和非条件分支两种。由于条件分支需要执行分支预测,故通常来说,对分支语句的优化就是指对条件语句的优化。

(4)循环语句的优化。循环具有高重复性,运行次数的不断增加就使其成为了最常见的热点。由于数据存在相关性,如果热点的执行时间不同步,就会让指令发生错误,因此,除去数据的相关性就可以大大提高执行效率。

4 结语

我国为了打破国外对数字音频的垄断,成立了AVS研究组,自己掌握了视频压缩的核心技术,AVS编码在我国的发展也是越来越好,通过对AVS视频编码的关键技术的研究,使得AVS编码技术的运用越来越广,最后,在一些指令运行方面,AVS标准对其进行相关的优化。AVS视频编码标准正逐步走向完美。

参考文献:

[1]高文.多媒体数据压缩技术.北京:电子工业出版社,2002,1―30.

篇12

 

0.前言

随着多媒体计算机技术和通信技术的发展,产生了一种新的技术----多媒体通信技术,它是多媒体、通信、计算机和网络等相互渗透和发展的产物,兼收了计算机的交互性、多媒体的复合性、通信的分布性以及电视的真实性等特点,具有明显的优越性。目前,如何在IP网络中更好、更快地实现视频、音频的传送已成为当今的研究热点之一。

1.基于IP网络构建视频会议系统的技术要求

随着IP网络的速率越来越高,从窄带走向宽带,承载业务从非实时走向实时,IP技术已成为实现视频、音频、数据等综合业务的最佳选择。在IP网络上建立视频会议系统需要多种技术支持,是比较复杂、完整的多媒体应用系统。

1.1 要有足够高的带宽

要传送视频,必须要有足够的网络带宽,就像大车要有足够宽的马路才能通行一样,否则,视频数据无法通过网络。以一帧1024×768像素的图像为例,如果用12bit表示每个像素,则共需要9.4Mb,如果按照25帧/秒的传输速率,则1秒内需要传输的数据量就是235Mb。在现有的网络条件下,传输这么大的数据是无法接受的。

1.2 要有好的压缩技术

只有采用高压缩比的压缩算法,有效地降低数据量,才能使视频、音频数据在IP网上传输成为可能。例如:在H.323会议系统中,图像编码主要采用H.261和H.263标准,支持CIF、QCIF的分辨率,而正在完善之中的H.264是比H.263和MPEG-IV压缩比更高的标准,节约了50%的编码率,而且对网络传输具有更好的支持,可获得HDTV、DVD的图像质量。。

1.3 要有基于IP网络的多播技术

多播是一种多地址广播,发送与接收是一对多的关系。。在传输过程中,发送端只需发送一次数据包,位于多播组内的各个用户就可以共享这一数据包。在视频会议系统应用中,将一个节点信号传送到各个节点时,无论是重复采用点对点通信,还是采用广播的方式,都会严重浪费网络带宽,而多播技术将数据传送分布到网络节点中,减少了网络中的数据总量。

1.4 要有相适应的传输协议

TCP、UDP协议均不能很好地支持视频会议系统,这就需要与之相适应的协议,如RTP、RTCP、RSVP等。。RTP运行在UDP之上,音频、视频等数据被封装在RTP数据包中,每个RTP数据包被封装在UDP包中,然后再封装到IP包中进行传输。在底层网络支持多播的情况下,RTP还可以使用多播向多个目的端点发送数据。RTCP是RTP的控制协议,负责反馈控制、检测QoS和传递相关信息,对RTP的数据收发做相应调整,使之最大限度地利用网络资源。

1.5 要提供服务质量保证

网络服务质量是网络与用户之间以及网络上互相通信的用户之间关于信息传输与共享的质量约定。第一,在任何网络中,时延总是存在的。视频会议系统具有较高的实时性和可靠性要求,为了获得各会场的真实的现场感,音频、视频的时延都要小于0.25s,最大时延抖动应小于10ms。其次,在视频会议系统中,还要求唇音同步,只有达到时间上的同步,才能自然有效地表达关于会场的完整信息。第三,允许一定的丢包率。因为人的感知能力有限,在一个视频会议系统中,个别分组丢失,人眼是感觉不到的,因此可以允许一定的传输误码,丢包率应控制在人能接受的范围内。

2.基于IP网络构建视频会议系统的协议

基于IP网络构建视频会议系统的标准主要有:H.323和SIP。

H.323沿用了传统的电话信令模式,比较成熟,已经出现了很多产品,形成了比较成熟的应用体系和市场体系。SIP协议将音、视频传输作为Internet上的一个应用,增加了信令和QoS要求,借鉴了其它Internet标准和协议的设计思想,遵循简练、开放、兼容和可扩展等原则,比较简单,但其推出时间不长,协议并不是很成熟,应用也不是很多。

3.结束语

随着网络、多媒体、通信技术的飞速发展和性能的提升,基于IP网络构建视频会议系统技术会不断被发展和完善,必将以其独特的优势广泛应用到Internet、Extranet、Intranet上,为政府机关、商业集团、科研院所、医疗机构及普通个人等进行异地交流提供方便条件,成为工作、学习、生活中不可或缺的工具。

参考文献

[1] 张智江,张云勇,刘韵洁.SIP协议及其应用[M].北京:电子工业出版社,2006.

[2] 沈鑫剡等.多媒体传输网络与VoIP系统设计[M].北京:人民邮电出版社,2005.

[3]Douglas E.Comer. InternetworkingWith TCP/IP Vol I:Principles,Protocols,and Architectures Fourth Edition[M].北京:电子工业出版社,2004.02.

[4] 王军.多媒体网络传输的研究与实现[D].长沙:国防科技大学硕士论文,2002.

友情链接