时间:2023-03-25 11:32:14
引言:寻求写作上的突破?我们特意为您精选了4篇道路交通论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
1.1相空间重构理论相空间重构是根据有限的数据来重构吸引子,以研究系统动力行为的方法。其基本思想是:系统中任一分量的演化都是由与之相互作用的其他分量所决定的,这些分量的信息隐含在任一分量的发展过程中。上述定理简而言之就是把具有混沌特性的时间序列重建为一种低阶非线性动力学系统,通过相空间重构,可以找出混沌吸引子在隐藏区的演化规律,使现有的数据纳入某种可描述的框架之下,从而为时间序列的研究提供一种方法和思路。
1.2延迟时间的确定对于无限长的时间序列,可以任意选择延迟时间τ,但实际时间序列一般是有限长的,因此在相空间重构过程中τ值的选取很重要,笔者采用自相关函数法计算延迟时间,自相关系数定义。一般取自相关系数衰减到一个较小的值时所对应的τ值作为延迟时间,而这个较小值不能选择太小,否则对应的时间延迟会很大。文献[10]中给出了一个合理的经验值为1/e,约为0.4。根据采集到的交通噪声时间序列,参照式(5),得到采样时间分别为20,40s时自相关系数,如图2。由图2可知,当延迟时间为τ=12s时,自相关系数衰减为0.4左右,因此选择τ=12s为重构交通噪声系统的延迟时间。
2城市道路交通噪声的混沌判定
2.1关联维数关联维数是判别吸引子类型以及复杂程度的表征量,它可以描述系统在整个变化中稳定性和确定性的程度,同时也确定了描述系统所需独立变量的个数。显然,C2(r,m)是一个累计函数,它描述了吸引子上两点距离小于r的概率,表明某点(参照点)距离小于r的相点的聚集程度,所以称C2(r,m)为关联函数。一般r的选取要保证0<C2(r,m)<1。考察C2(r,m)和r的关系,给定一个微量δ,用它来探测吸引子的结构。如果吸引子是一维线性的,则与参照点相关联的点数正比于r/δ,如果吸引子是二维的,则相关点数正比于(r/δ)2,依此类推。由式(11)可得,D2(m)是嵌入维数的函数,一般称为关联维数的估计值。在求解时,一般增加嵌入维数的值,求出不同嵌入维数下关联维数的估计值,直到估计值不再随嵌入维数的增大而改变为止,此时的嵌入维数称为饱和嵌入维数mc。这在lnC2(r,m)-lnr图中表现为斜率不再发生变化,此时的斜率就是所要求的关联维数D2=D2(mc)。如果估计值随m的增长而增长,并不收敛于一个稳定的值,则表明所考虑的系统是一个随机时间序列。而关联维数的存在表明系统具有混沌特性,并为相空间重构中嵌入维数的选择提供了依据。
2.2混沌特性的判定采样时间为20s(360个噪声值)时,利用前300个时间序列值作为训练集来构造初始相空间,余下的60个值(检验集)用于检验模型精度。将m值由1依次递增至6,分别获得lnC2(r,m)与lnr关系图。限于篇幅,只列出m=6时二者的关系(图3)。由图3可知,当嵌入维数为6时,曲线的斜率接近不变,即关联维数保持为5.34468E-08,从而可以确定20s采样时间交通噪声序列的饱和嵌入维数为6。在混沌预测时,一般选取饱和嵌入维数的1/2作为系统的嵌入维数(当饱和嵌入维数为奇数时,选取饱和嵌入维数1/2的下一位整数作为系统的嵌入维数),因此确定系统的嵌入维数为3。由此可判定,交通噪声时间序列存在混沌现象。同理,采样时间为40s时,交通噪声时间序列的饱和嵌入维数也为6,系统的嵌入维数为3。
3城市道路交通噪声的混沌预测
3.1混沌预测理论如果在重构的相空间中,将交通噪声时间序列由式(12),如果能够得到f(δ),就可以对未来时刻的相空间点做出预测。在高维的相空间中,轨迹拟合较难,且非线性函数拟合误差较大。局部预测是在N个状态点中挑选出与预测点邻近的k个点(X1,X2,…,Xk)对函数f(δ)局部拟合,这种拟合可以是线性的,也可以是非线性的。笔者采用线性回归的方法进行局部拟合。拟合求得A,B后,通过X(j+1)=A+BX(j)得到相空间中轨迹的趋势,从而求出交通噪声时间序列中x(j+1+(m-1)τ)的预测值。
3.2交通噪声的混沌预测根据计算结果,选择重构相空间的嵌入维数m=3,延迟时间τ=12,对20s采样时间的交通噪声时间序列进行相空间重构,得到维数为3的相空间,其中相点个数k=N-(m-1)τ=276。对检验集中的60个点进行预测。假设当前的状态点为X(270),分别计算各点与X(270)的欧氏距离ρ=(X(270)-X(i))(0<i<276),近邻相点数p选择5。经过计算,最近邻相点分别为X(5),X(32),X(133),X(172),X(204)。由图4,实际值和预测值相差不大,城市道路交通噪声时间序列混沌预测结果平均相对误差为8.56%,精度较高。同理,对于40s采样时间的交通噪声时间序列进行混沌预测,平均相对误差为9.33%。
2.城市建筑同道路交通之间的关系探讨
城市建筑与道路在进行规划与设计过程中,其用地面积均有一定的规范与标准,如一些公共建筑区的停车场等不能占用正常的道路用地,并且建筑用地需要根据道路用地的需求适时进行调整。同时建筑物的外部装饰与道路安全也有一定影响,可见两者时间的联系是十分密切的[3]。
2.1建筑与交叉口设计的关系城市道路设计时要想在节省用地的情况下,多设置一些交叉路口,并让建筑用地以及道路红线不被影响,可以通过偏移车道线、减少机动车道宽度以及压缩隔离带等方式来完成。如果在这个过程中无法通过上述方法实施,或者应用上述方法无法达到预期效果,就需要对道路红线进行适当的后退,这样进出口车道的宽度也相应增加。对于部分与道路交叉口相邻的建筑物,应该保障其在道路展宽或渐变之外,这样交叉口与建筑就不会直接相对,而道路通行也更为顺畅。同时靠近道路两旁的居民也不至于被噪声、车辆尾气所困扰,可谓一举两得[4]。若部分建筑物与道路交叉口相交,也需要符合相应规范,如快速路缘石曲线终点与建筑物入口中心的距离应控制在一百米的范围内,而建筑物与主干道的缘石曲线终点的距离应该控制在八十米范围内。
2.2建筑与公交车停靠站设计的关系当前要解决我国大部分城市的道路拥堵等问题,就需要增加公共交通的容量,这可以说是最为有效的手段之一。而一个城市公交车停靠站台的设计是否合理,很容易影响到道路交通的正常运行。这是因为其处在人行道与车行道的转化处,在进行公交站台设计时就需要考虑如何在车行道与人行道之间进行动态转化。同时公交车在停靠站后上、下乘客过程中,或者在行驶过程中进行减速或转道时,容易阻碍车道中其他车辆的运行,这样就会出现一定的运行延误。部分城市为解决这一问题,会设置专用公交车道,并将公交站台设置为港湾样式,也可以让道路红线的宽度增加。要对公交车停靠站进行港湾式设计,首先应该考虑到车型的差异,让每一个停靠站点足够让两辆车经过,这样来看所需的道路平面空间应该以三十米长和三米宽为宜,而设置二十米与十五米为公交车加速以及减速路段的长度。在设计停靠站点的同时也需要配置必要的隔离设施,如绿化带等。并且统一规划停靠站附近的各种建筑元素,让各个区域形成休息区等功能空间,并保障各个区域的有机结合。通过这样的公交车停靠点设计,不仅能够延缓城市道路的压力,拓展道路两旁的功能空间,也让人行系统得到延展,保障了城市道路交通网络的顺畅运行。
2.3建筑装饰与道路交通安全的关系城市建筑在进行装饰时会根据需要采用不同的风格,如设置玻璃幕墙或者照明灯等,而不同的装饰设计也会对道路交通安全带来相应的影响。具体表现在:(1)玻璃幕墙的影响。我国大部分城市在近年来得到了飞速发展,很多城市建起了各种类型的玻璃大厦。这些如雨后春笋一般涌现的现代化建筑,无疑为城市增添了一道风景,并且应用各色玻璃进行建筑外墙装饰可谓是一种风尚[5]。但是由于玻璃幕墙导致的道路交通安全问题也日益凸显,如玻璃容易引发光污染,而司机由于在行驶过程中被玻璃反射光等干扰,容易出现目眩、分神等情况,由此导致的交通事故并不鲜见。统计表明,约有百分之五十的人认为玻璃幕墙反射的光,对于司机正常驾驶有很大的干扰,如分散行车时的注意力等,更多的人认为光污染很容易引发车祸。特别是在阳光普照的天气,城市道路两旁强烈的反射光让人眼花缭乱,这也让驾驶者难以看清红绿灯或方向,当车辆在高速行驶时由于反射光的影响也会对交通安全不利。(2)沿街照明设施的影响。城市道路沿街设置的各种照明装饰,尤其是位于繁华路段的各种闪烁的灯光在夜间尤为刺眼。这些照明装饰可以让建筑更加醒目,并让城市中心更加引人注目,但是这些或明或暗的灯光对于驾驶者是有很大影响的。在行车过程中由于五颜六色灯光的干扰,容易让驾驶者产生错觉,或者由于驾驶时间过久,他们容易出现反应迟钝、视力减退等,因此也增加了出现交通事故的概率。研究表明,绿色光源引发交通事故的概率最大,所以在重要交通路段应该避免使用闪烁灯,以保障道路行车安全。
1.1交通标线的种类使用错误交通标线主要分为黄色、白色、蓝色,不同颜色的标线有不同的含义和作用。然而有些地方在实际的设置中,没有充分正确认识到不同颜色标线的含义,存在滥用标线的情况,损害了标线的严肃性,并且存在一定的执法隐患。如图1-a)中,道路中心线采用四条白色单实线,应改为双黄实线;图1-b)中,同向车道分界线采用黄色单实线,应改为白色单实线。
1.2路面文字设置不规范合理正确的路面文字对于驾驶人的提示作用是不容忽视的。路面文字字符顺序、字符大小都应符合驾驶人的识读习惯。然而某些路面文字的字符顺序错误、字符过大或过小,导致驾驶人识读不便,加重了操作负担。如图2-a)中,路面文字“公交车道”排列顺序不正确,图2-b)“公共汽车”排列顺序不正确,且字符大小不符合规定。
1.3交通标线的设计不够灵活,未充分利用道路空间在实际设置过程中,有些标线设置时未充分利用道路面积,也米有充分考虑到交通参与者的实际需求与使用习惯。较为普遍的现象是,有些城市在设置人行横道的过程中,无论路口大小,都采用一样的标准,例如5m、6m。在这种情况下,如果是小路口,势必会造成行人过街较为随意,同时也是对路口空间资源的浪费。根据国标《道路交通标志和标线》(GB5768—2009)的规定,人行横道线的最小宽度为3m,可根据行人交通量进行加宽。此外,在交叉口标线设计的过程中,要充分考虑车辆的转弯半径需求。因此,在交叉口渠化中,在转弯半径不足的情况下,往往通过设置后退式停车线来扩大相邻道路右侧车道左转弯车辆的转弯半径。而如果转弯半径足够时,就没有必要设置后退式停车线,但实际中,在一些城市的大面积交叉口渠化中,虽然路口车辆左转半径足够,但仍设置后退式停车线,浪费了路口的空间,降低了路口的通行效率。
1.4部分标线的设置不够人性化国标《道路交通标志和标线(GB5768—2009)》中规定,导向车道的长度应根据路口的几何线形及交通管理的需要,一般不小于30m。然而在实际设置过程中,存在导向车道长度过长或过短的现象。有些路口设置过长,导致驾驶人在未看到指路标志前,就不能再次变道,影响到了驾驶人对道路的选择,就不利于交通参与人的出行,影响交叉口通行秩序。另外,有些导向车道过短,完全不能满足红灯时的排队需求,车辆在进口道换道频繁,容易带来交通拥堵和安区隐患,如图3-a)所示,导向车道仅有10m左右。此外,部分城市在路口设计过程中,没有充分考虑标线与周边道路设施的关系,从而导致交通标线连续性差。例如,图3-b)中人行过街横道与绿化岛相衔接,行人行走不通,不够人性化。
1.5道路交通标线的缺失市区主干道交通标线较为齐全,而城郊结合部道路、市区次干路、支路存在交通标线缺失的情况,标线在空间上不具有连续性,如图4-a)所示,非灯控交叉口大量缺乏让行标志标线。在有些畸形、面积大的路口,应根据需要设置左转弯导向标线以及路口导向线、导流线等,导致路口通行效率和安全性都不够高,如图4-b)所示。
1.6交通标线与交通标志或信号灯之间不协调交通标线应与交通标志、交通信号灯等传递的信息互相配合,互为补充。然而有些地方在设置交通标线时,由于对有些交通标线的含义理解不当或未及时调整等,未考虑与交通环境、交通组织方式以及其他设施的协调,造成道路交通信息不匹配,甚至互相矛盾,使得驾驶人无法做出正确判断,也带来了安全隐患和执法困难。如图5-a)中,停车让行标志与减速让行标线不匹配;图5-b)中直行右转混合车道与右转专用信号灯不一致,在前方有直行车排队时,后面的右转车尽管有信号通行权,但由于直行车的阻挡,无法正常行驶。此外,不同的交通标线之间应该信息一致、不冲突。然而,在设计或施划中,由于疏忽等原因,造成部分交通标线之间相互冲突,不仅失去了交通标线应有的作用,还存在交通安全隐患。例如,在交叉口条件满足的情况下,往往通过设置左转弯待行区来提高路口通行效率,然而在设计或施划的时候,却存在左转弯待行区与对向车辆的直行车辆的行驶路线相冲突的情况,存在较大的安全隐患。
1.7未对交通标线及时进行调整、更新《道路交通标志和标线》(GB5768—2009)中增加了橙色和蓝色标线。同时对标线的类型进行了调整和细化,一是对部分标线的央视进行了调整,如用左转弯箭头代替左弯待转区的路面文字,二是新增了新型标线,如增设了4.5m的导向箭头,丰富了导向箭头的选型,增加了四六比例的黄色虚线,三是细化了标线的类型,如停车位标线根据停车对象分为蓝色标线、黄色标线和白色标线,分别用于免费停车、专属停车和收费停车位[3]。然而,有些地方的交管部门未及时按照修订情况对交通标线进行排查、更新,一方面,使得新型的标线无法发挥其应有的作用。另一方面,各地更新情况的不一致,容易让驾驶人形成误解,从而做出错误的操作。此外,部分城市在道路交通管理措施发生改变后,未及时对标线进行调整,如图6所示,车道功能发生变化后,原有的左转加掉头标线仍清晰存在,既干扰了驾驶人的判断,增加了驾驶人的操作负担,又同时存在一定的安全隐患和执法隐患。
1.8交通标线未及时维护,导致标线可视性差我国交通标线磨损情况严重,标线缺损、淡化等现象普遍存在,严重影响了交通标志的视认性,为交通安全埋下隐患。在一些城乡结合部,由于车流量大,尤其是大货车比较多,导致交通标线磨损严重,几乎无法辨认,如图7-a)所示,无法发挥交通标线的正常作用。市区特别常见的是路边公交停靠站,车辆较多地刹车、停留、起步,对路面磨损很大,造成站点周边的交通标线缺损、淡化,视认性较差。此外,部分交通标线清除不彻底,新旧标线同时存在,难以区分,容易造成驾驶人心理烦躁,带来交通隐患,如图7-b)所示。
2改进建议
随着社会经济的飞速发展,道路交通参与者对于道路交通的要求必将越来越高,道路交通标线的科学性和规范性也显得越来越重要。因此,针对交通标线设置中存在各类不规范之处,提出以下的几点改进意见,旨在促进交通标线的规范化设置,提高道路交通安全水平。首先,建议各地交管部门加大国家标准《道路交通标志和标线》(GB5768—2009)的宣贯力度。在城市道路设计、建设、管理等部门开展标准宣贯工作,提高一线部门规范化设置交通标线的能力,从而促进交通标线的规范化,提高道路交通安全。二是加强管理民警队伍的学习和培训,提升专业知识水平。除了交通管理的基本知识外,还应具备交通工程、道路设计等专业知识。其次,建议各地持续开展交通标志的排查、养护和更新工作。建议交通管理部门成立专门机构,从事交通标线的设计方案的审查、验收、排查和维护。交管部门应定期、持续性地开展交通标志的排查工作,查找缺失、破损、不规范的交通标线,并及时进行养护、更新,保证交通变现功能的有效发挥[4],确保其清晰、醒目、准确、完好。同时严格执法,维护交通语言的权威性。
2城市道路交通噪声预测与实测对比分析
2.1城市道路交通噪声实测本次城市道路交通噪声实测选择在昭乌达路和锡林郭勒南路两条主、次干道进行。道路交通噪声的测量严格按照《声学一环境噪声测试方法》(GB/T3222-94)中规定的有关城市道路交通噪声测量方法进行,测点选在两路口之间,测点离路口大于50m,离地面距离为1.2m;测量时间选在2013年6月工作日8:00~12:00和14:00~18:00;测量仪器为AWA6270+噪声分析仪,采样间隔设为1秒。在噪声测量的同时对按重型、中型及轻型车分别记录的车流量和速度也作了同步计测。
2.2预测值与实测值对比分析
2.2.1预测模型参数确定昭乌达路:路段长度L=700m,车道数n=2,第一车道距测点垂直距离D1=7.55m,第二车道距测点垂直距离D2=15.05m,测点距交叉路口平行距离D=62m。锡林郭勒南路:路段长度L=400m,车道数n=2,第一车道距测点垂直距离D1=8.95m,第二车道距测点垂直距离D2=18.45m,测点距交叉路口平行距离D=55m。所选两条道路路面坡度近似为零,即G≈0;因城市市区道路拓宽和建筑用地,地面植被覆盖率几乎为零,再者道路路面基本为沥青路面,故可不考虑地面植被影响,即α×C×101g(r0/r1)≈0;本文主要研究临近城市道路边的交通噪声,可忽略声屏障影响,即Cs≈0;大气影响可附加衰减常量Cm=0.5dB/100m;其它修正主要考虑车辆鸣笛的影响,根据实测记录可取车辆鸣笛影响平均值,即Ce=1.5dB。
2.2.2预测值与实测值对比分析对于两个实测路段,计算各时段的LAeq,参考相关文献得到L10、L50和L90,并分别与实测值对比,如图1和图2。由图1和图2可知:昭乌达路所选路段LAeq预测值与实测值之间最大误差为1.31dB(A),最小误差为0.14dB(A),预测值日平均LAeq为73.72dB(A),实测值日平均LAeq为74.41dB(A),误差为0.69dB(A);锡林郭勒南路所选路段LAeq预测值与实测值之间最大误差为1.52dB(A),最小误差为0.08dB(A),预测值日平均LAeq为72.47dB(A),实测值日平均LAeq为72.95dB(A),误差为0.48dB(A);除了锡林郭勒南路路段8:00~9:00的预测值比实测值稍大以外,其它预测值均比实测值小;昭乌达路路段L10误差范围在-2.17~0.52dB(A)之间,L50误差范围在-1.61~1.39dB(A)之间,L90误差范围在-0.11~2.47dB(A)之间;锡林郭勒南路路段L10误差范围在-2.61~-0.66dB(A)之间,L50误差范围在-0.57~2.26dB(A)之间,L90误差范围在-1.87~1.74dB(A)之间。初步分析误差产生的原因主要有:一是由于实际测量时条件所限引起的测量方法的不准确和测量者操作不规范所产生的误差;二是自行车和行人的通过带来的附加噪声和道路两旁商业区产生的附加噪声;三是测量日气温变化较大,对交通噪声衰减量不同所致。