监控系统设计论文范文

时间:2023-03-25 11:32:59

引言:寻求写作上的突破?我们特意为您精选了12篇监控系统设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

监控系统设计论文

篇1

智能温室是现代农业的重要组成部分,早在20世纪70年代,国外就开始对智能温室环境监控技术进行研究,其中日本、荷兰、以色列、美国等发达国家智能温室监测技术发展的最快。国外智能温室最早采用模拟式的组合仪表,采集温室环境因子参数,并通过相关设备进行指示、记录和控制。随后又出现了分布式监测系统以及计算机数据采集监测系统的多因子综合监测系统。温室产业在我国农业中的比重不断增加,加快了我国现代化农业发展的速度。“组态”的概念是伴随着集散型控制系统(DistributedControlSystem,DCS)的出现,才被广大自动化技术人员所熟悉的。在监控技术的不断发展和应用过程中,组态软件因为界面直观、便于二次开发、使用方便而一直占据着非常重要的地位,因此,基于组态软件设计了一套温室监控系统。

1系统总体设计

农作物的生长受到各种不同环境因子的影响,这些环境因子对作物生长发育的影响各不相同[1]。目前,科学家分析影响植物生长的环境因子达52种,其中空气温度、空气湿度、土壤温度、土壤湿度、光照强度、二氧化碳浓度是影响植物生长最主要的几种环境因子。根据系统监测与控制需求分析,确定系统结构如图1所示。

2系统硬件设计

2.1传感器选型

要实现对温室环境因子参数的监测,必须选择适合系统的传感器[2]。为了便于电路设计,系统土壤温湿度传感器选择上海搜博公司生产的SLHT5温湿度传感器。该传感器内置SHT10器件,主要用于土壤温湿度测量。光照度传感器选用ROHM公司的BH1750传感器。该传感器是一种用于两线式串行接口的数字型光强度传感器,内部包含一个16位模数转换器,直接输出数字信号。因此,该传感器使用时不需再进行复杂计算,使用非常方便。二氧化碳传感器选用MH-Z14NDIR红外二氧化碳传感器。该传感器利用非色散红外(NDIR)原理对空气中存在的二氧化碳进行检测,是一款高分辨率、高灵敏度的传感器,无氧气依赖性,寿命长,供电电压为4~6V,提供UART、模拟电压信号、PWM波形等多种输出方式。该传感器内置温度传感器,可进行温度补偿,具有良好的线性输出能力。几种传感器外形如图2所示。

2.2主控制器设计

系统主控制器性能的好坏直接影响系统可靠性。本系统采用基于ARMCortex-M3内核的STM32系列单片机[3]。系统选用STM32F103VE作为主控芯片,主频72MHz,内部含有256K字节的FLASH和64K字节的SRAM,LQFP100封装。操作系统选用了μC/OS-Ⅱ嵌入式实时操作系统[4]。主控制器结构框图如图3所示。

3系统软件设计

软件是整个系统的灵魂,对于系统的运行来说至关重要,各个操作都是在软件的协调下进行的。系统的软件设计包括温室控制系统的软件设计、通信接口驱动程序设计、上位机管理软件的设计等。本系统上位机软件因选取组态软件,此处不再赘述。

3.1系统主程序

系统的主程序是软件设计的核心环节,对整个程序架构起关键作用。系统上电后,将进行初始化,随后进入主程序。系统可以进行模式选择,分为手动和自动两种方式。在进入相应的子程序后,将逐步完成按键的扫描和服务、控制方式设置、环境参数采集、通信接口驱动和执行处理控制等程序,主程序流程图如图4所示。

3.2CAN总线通信协议

CAN总线有其自身的特色,传送的报文没有目标地址,采取全网广播方式,每个节点通过反映数据性质的报文标识符筛选报文,能够实现即插即用,可在线上网下网,增强了数据的安全性,满足控制系统及其他较高数据要求的系统需求。CAN总线通信软件设计包括CAN总线的初始化、报文发送和报文接收3个模块[5]。本系统所使用的芯片因其有专门一整套为其设计的固件驱动程序,因而大大简化了编程过程,为开发者省去了许多时间,可以将更多的精力放在实现系统功能上。

4组态监控系统设计

本系统上位机软件选用组态王组态软件。组态王(Kingview)是由北京亚控自动化软件有限公司开发的一款具有易用性、开放性和集成能力的通用组态软件。使用组态王的基本流程为:设计图形界面、构造数据库、建立动画连接、运行和调试。上位机是系统与用户直接对话的窗口。组态王提供了丰富的系统界面设计资源。本系统分别设计了登录界面、温室状态与控制界面、参数修改界面、实时与历史曲线界面、报警与事件界面,实现了系统相关功能[6]。

5结语

系统完成设计后,配合硬件试验资源,在杨凌农业示范园进行了实地测试,系统测试运行界面如图5所示。测试结果表明,基于组态软件的温室智能监控系统能够实现系统预期功能,操作简单、使用方便,系统运行情况良好。

作者:冯春卫 闵卫锋 单位:杨凌职业技术学院

参考文献

[1]肖乾虎.基于ZigBee/GPRS的作物生长环境因子远程监测系统研究[D].海口:海南大学,2014.

[2]杨少春.传感器原理及应用[M].北京:电子工业出版社,2010.

[3]丹,宗振海,陈慧珊,等.基于STM32的智能温室远程控制系统的设计[J].浙江农业学报,2014,26(3)791-796.

篇2

1)具有远程控制休眠、唤醒地震仪功能。地震仪在放炮之前唤醒,在停止施工期间休眠,地震仪可有选择的进行采集工作,这样大大节省了数据存储空间,降低了采集系统的功耗,延长了仪器的待机时间。

2)可查询如CF卡剩余空间,内置电池电量,位置经纬度,采集站状态等信息。对剩余空间、电池电量不足,采集站状态错误且不能远程修复的采集站及时安排工作人员更换。提高野外勘探作业的工作效率和灵活性,增强采集系统数据的可靠性。对读取回来的地震仪经纬度信息在上位机端进一步处理,可用于研发地震仪排列位置监测及远程防盗系统,保障野外勘探仪器的安全性。

3)远程控制地震仪自检功能,并能回收自检数据。地震仪系统自检内容包括检波器内阻、噪声、隔离度测试等,一次完整的自检过程通常需要2-5分钟,因此无缆存储式地震数据采集系统一般只在开机时自检一次,之后则无自检过程,因此采集站的部分工作状态,如检波器连接状态等仅仅反映了系统开机时的状态,不能作为现场质量监控的标准。法国UNITE系统由于没有远程监控功能,在自存储模式下通常是定时自检,自检时间为5分钟,在系统自检期间,地震仪停止其它一切工作,这样就减弱了地震仪野外勘探作业工作的灵活性。

4)有一定的远程修复及设置功能。如配置系统采样率、增益,系统复位等,出工前对地震仪的工作参数进行统一配置,布设到野外后,根据自检结果对有问题的地震仪进行参数设置和系统复位等操作,远程修复和解决问题,节省人力物力,提高无缆地震仪智能化控制程度。

1.2无线通信技术的选择

目前成熟的无线通信技术较多,如Wi-Fi、Zigbee、Bluetooth、GPRS、3G等,这些通信技术被广泛应用到生活及工业生产中,北斗短报文是近几年才发展起来的一种远距离通信技术,表1列出了应用以上几种通信技术典型模块的最大数据传输速率、传输距离、通信频带的参数值。

1.2.1Wi-Fi

Wi-Fi是IEEE802.11系列标准的统称,其传输速率快、安全性高,可集成到已有的宽带网络中,配合路由器组建有线、无线混合网络快捷方便。地震勘探仪器中Wi-Fi常用的组网模式有两种,即AP(无线访问接入点)模式和AdHoc(点对点)模式,在野外我们可以用架设AP基站的方式来拓扑无线局域网络的覆盖面积[3],而AP之间可以通过网桥设备连接,从而完成更大面积的网络覆盖范围,然而在实际勘探应用中AP基站和网桥设备架设困难,尤其应用于大道距的二维或者三维勘探工作中,需要更多的基站与网桥,较大的影响了施工进度。AdHoc是一种无中心、自组织、多跳移动通信网络,结点间通过分层的网络协议和分布式算法相互协调,实现了网络的自动组织和数据的相互交换,这种模式下地震仪可将其采集数据及工作状态信息接力式的传输回控制中心,美国WirelessSeismic公司的RT2无线遥测系统就是应用了这种多跳的数据传输方式,两个节点间通信距离的范围约为25~70m,然而这种工作模式会导致越靠近中央记录系统的节点积累的数据量越大,且在线性的网络拓扑结构中,数据传输的稳定性受通信距离与地形环境影响较大,数据通信的质量和速率难以得到有效的保证。

1.2.2GPRS、3G移动网络通信技术

移动网络通信技术已经成为人们工作生活中不可或缺的重要组成部分。该技术具有抗干扰能力强、传输速率高、网络覆盖面广、接入时间短、建设成本低等特点[10],在地震勘探中可被应用于移动网络信号覆盖范围内的地震台网远程监控,它提高了远程仪器维护的工作效率[11]。然而在地震勘探大道距(道距大于1km)地震深反射、折射探测作业中,由于其基站的信号覆盖范围有限,对于远程监控地震采集站工作存在一定的局限性。

1.2.3北斗短报文通信技术

北斗卫星作为北斗通信技术的中继,转发来自地面用户端的定位及通信请求,地面中心站控制端接收到请求后,解析消息后将解算出的位置信息传回用户端或将接收到的接收信息通过北斗卫星转发至另一地面用户端,达到卫星定位及通信的目的。北斗短报文通信技术在应用时具有信号覆盖范围广、安全、可靠性高和控制简单等特点,用户一次最大可以传送120个汉字的报文信息,而民用信息发送的频度通常为30-60s,接收信息则没有频度的要求,对于地震仪基本的控制命令收发及状态信息的传送,北斗短报文通信技术可以满足无缆地震仪基本状态监控数据传送的要求。

1.3系统结构设计

基于北斗的无缆存储式地震仪远程监控系统工作,系统由主控中心、北斗卫星、采集单元三部分组成,主控中心通过北斗指挥机完成对采集单元远程的控制及状态数据的回收工作,并对接收到的数据进行管理和存储。采集单元完成地震数据采集的同时,通过北斗通信模块可接收来自主控中心端的控制命令,并反馈执行结果信息。北斗卫星是控制命令及反馈信息传递的媒介。

2采集站单元设计

2.1硬件设计

地震检波器将地面振动信号转化为模拟电信号传输到FPGA数据采集单元,由FPGA完成数据的采集、缓存,并提供必要的测试、控制功能。AT91RM9200作为中央处理器,读取FPGA中存储的数据,并转存到CF存储卡中;通过SPI接口与Wi-Fi模块连接,实现近距离的无线数据传输功能;通过UART与GPS、北斗模块连接,为采集站提供高精度的授时、定位、远程通信功能,完成数据同步采集、位置信息获取、工作质量远程监控。采集站也可通过以太网接口与电脑终端连接,完成数据的回收及参数设置、检查工作。采集站在野外应用时采用太阳能和内置锂电池两种供电模式,电源智能管理系统会根据采集站当前工作的天气条件转换供电模式,保证仪器可靠、稳定的工作[12]。

2.2软件设计

采集单元的主控制器ARM9运行嵌入式Linux内核版本为2.6.31的操作系统,北斗通信进程完成对北斗模块接收信息的解析与执行,及执行结果的反馈。北斗短报文通信系统包括指挥机与用户机,指挥机是北斗短报文通信系统的中央控制器,它相当于一个服务器,负责接收来自多个用户机的报文,并可以控制多台用户机来完成相应的指令。用户机是北斗短报文通信系统的子节点,相当于一个客户端,负责将节点工作信息上传到指挥机,和接收来自指挥机的命令。北斗用户机在接收到指挥机传来的信息时,用户机会通过UART将信息内容上传给下位机系统,下位机会根据其数据传输的格式将信息进行解析,并根据信息包含的指令内容来执行相应的任务。

3上位机服务器软件设计及测试

主控中心由上位机、打印机、存储器、发电设备、北斗指挥机组成。上位机与北斗指挥机完成命令的选择与打包发送,及对采集站反馈信息的接收、显示、存储和打印处理。发电设备输出220V的交流电压,为上位机及其外设供电。此外上位机服务器软件通过对GoogleEarthAPI接口的调用,实现了对野外采集站排列位置的远程监测,为微动勘探实验中按两个嵌套式三角形方式排列的采集站传回的GPS位置信息在GoogleEarth中的显示。操作人员可根据地图显示软件中采集站的排列位置了解施工进度,获取采集站排列班报,完成布站人员调度等工作。为了了解远程监控系统的性能及数据传输丢包、误码情况,设计如下测试实验:将7台内置有北斗通信模块的采集站接好检波器放置在室外采集,由主控中心完成与各个采集站间的数据包收发,采用60s一次通讯频度,数据包长度为200字节,从500个样本数据中任选7个,分别用于七个站的通讯测试,主控中心将样本数据依次发给各个子站,并重复500次,子站收到数据包后向主控中心返回相同的样本数据。主控中心计算从开始发包到收包完成的时间间隔作为通信的延时,主控中心与采集站分别记录通信时丢包数,并根据与标准样本数据对比的结果记录错包数。

篇3

1前言

建设较完善的智能交通系统(ITS)是当下人们研究的重点。车辆导航与监控系统是ITS的重要组成部分,它借助于电子地图为驾驶员实时提供车辆位置、速度、方向以及周围地理环境等信息,以指导驾驶员快速、安全、准确的到达目的地。本人及小组成员根据项目要求,设计并实现了基于GPS/GIS以及借助于计算机网络和现有的GSM网通信平台的车辆导航与监控系统。从而实现了在GSM网覆盖范围内车辆的定位导航监控及管理。

2系统总体设计

2.1设计思路及结构划分

系统的设计首先从车辆的定位着眼,进而完成对其进行监控导航等功能,因此需要结合当前应用广泛的GPS、GIS、GSM及计算机通信等方面的技术。在具体运行中设置在车辆上的终端部件将从GPS接收坐标数据,并结合速度等信息通过GSM系统以SMS方式发送到控制中心,控制中心则要结合其后台的GIS系统以图像方式表现在屏幕上,同时又要根据需要对车辆通过GSM系统以SMS方式发送控制指令。另外为了方便用户查询用户基本信息、交通信息、车辆行驶信息等,控制中心还要实时向WEBGIS服务器传送相关信息。由此,我们对该系统的设计主要分为了车载单元和监控中心两大部分。

2.2控制中心端设计

控制中心端是我们整个系统的核心部分,它既要接收来自移动端的GPS信息并结合数据库以图形方式反映在GIS平台上,同时又要根据监控信息给车辆以相应的信息反馈,以提供车辆的导航。其功能结构如图1。

(1)数据库设计。系统对数据的要求包括地理空间数据和非空间数据,非空间数据又包括基本的属性数据和GPS数据,因此建立了三个数据库分别是地理空间数据库、属性数据库和GPS消息数据库。其中地理空间数据库主要存储GIS方面的空间图形数据,此处以成都市电子交通地图为主要部分,包括道路交通网图形要素的空间位置、几何特征和拓扑关系以及其它一些附属地物,如机关单位、绿地广场、商店超市等。属性数据库主要包括车辆基本信息、用户信息、服务信息等。GPS消息数据库主要针对车辆位置信息的管理,以方便车辆导航及路径回放等。后两者均为结构化数据,采用一般的关系数据库以表、视图方式即可很好的表示。

(2)GPS分析管理模块。此模块主要从车辆的定位、跟踪方面进行处理,对被监控车辆接收移动端发来的位置、速度等信息以图形方式显示在地图上,并以文本方式做详细记录;依据记录的数据在需要时进行回放,回放功能的设计上包括开始、暂停、继续、结束四个状态。另外还包括基本的车辆信息查询处理功能,如车辆信息查询、驾驶员信息查询、车辆监控查询、车辆调度等。

(3)GIS分析管理模块。此模块主要在MapObject基础上集成二次开发,实现GIS的基本功能,如地图放大、缩小、漫游、查询、距离测量等。另外根据项目需要实现了路段及区域范围内车辆密度分析功能。

2.3移动端设计

移动端也就是我们的车载端系统,它包括GPS接收模块、DR传感器(DeadReckoning)、车载导航计算机、通信控制器及设备等组成,其结构如图2。

GPS接收机主要用于接收卫星信号,并解算出定位信息;DR传感器用于航位推算,它是为了解决GPS无法定位而导致导航软件无法工作的问题而特意在我们的系统中引入的;车载导航计算机用于数据采集和处理;通信控制器用于向GSM短信中心发送车辆位置等数据,并接收控制中心通过GSM网发来的监控指令等数据。其工作原理为:当GPS接收模块或DR传感器取得数据后,通过通信控制器把数据以短信息的形式传到GSM短信中心,再通过局域网或广域网把数据传到监控中心,车载终端系统以中断方式完成来自GPS模块和DR传感器的数据的接收,在硬件主程序中循环采集信号和控制其它设备。3系统关键技术与实现

3.1通信

车载设备与监控中心的通信方式采用GSM短信业务方式完成。发送端将数据加上目的地址按照通讯机协议进行编码发送给短消息服务中心,之后再由短消息服务中心发送给监控中心。监控中心收到信息后同样以相应的通讯协议进行解码后分解为可识别的车辆经纬度、状态等信息。他们之间是以RS232全双工串口来通信的,可以同时接受和发送数据。在此我们利用VC++6.0下的CserialPortEx串口通行类来实现串口通信。CserialPortEx声明如下

classCSerialPortEx

{

public:

BOOLInitPort(CWnd*pPortOwner,UINTportnr=1,UINTbaud=19200,charparity=''''N'''',UINTdatabits=8,UINTstopsbits=1,DWORDdwCommEvents=EV_RXCHAR|EV_CTS,UINTnBufferSize=512);

}

串口的配置对话框如图3。

3.2地图匹配

由于当前使用的GPS定位精度为数十米,且美国军方为限制其它国家将GPS系统用于军事领域,通过选择可用性(SA)技术,人为地在卫星信号中加入噪声干扰。另外由于城市地物特征复杂,在高密集的建筑物、隧道、立交桥等处行驶时又会受其反射和遮蔽影响,使得在某些区域内无法接收GPS信号而出现定位盲区。因此在GPS定位与航位推算的基础上要将定位点与地图道路进行匹配,这样才能真正实现车辆在地图上的实时定位。

地图匹配是通过车辆的GPS航迹与GIS地图数据库中的矢量化路段对象进行匹配,寻找车辆当前行使的实际道路,再将此定位点投影到道路上。根据车辆行驶的情况和地图匹配的需要,将匹配定位分成了3种不同状态,即道路搜索、直线行驶、转弯。针对每种状态的特点和定位要求,采取了不同的处理方法。

(1)道路搜索。当车辆启动时,道路匹配可能不正确,所以应先对起始时刻进行道路匹配,以便建立正确的投影点,这就需要先进行道路搜索。在进行道路搜索时我们将道路连通性作为考虑要素,如图4所示:p0是前一时刻匹配的位置点,p1是当前时刻的GPS定位点,L1、L2、L3是待搜索的范围内的三条道路。虚线箭头是p0时刻车辆行使方向。根据前一时刻匹配结果认为车辆在道路L1上,由于道路L1与L2是连通的,所以车辆不可能直接进入L3,只可能是在L1和L2中进行搜索。

(2)直线行驶。在没有接近道路交叉点时,可以一直认为车辆是在此道路上行驶,可将定位点全部投影在此路段上,如图5。

(3)转弯。当接近交叉点时进行转弯处理。此时可认为是新一次的道路搜索,采用道路搜索的算法处理即可。

4结束语

基于GPS/GIS/GSP车辆实时监控导航管理系统涉及GPS技术、通信技术、地理信息学、数据库、软件工程等多个技术领域,系统较为复杂,本文从系统的整体结构、原理、功能、关键技术算法等方面对车辆导航监控系统做了一定分析研究。具体论述应对车辆定位、导航、监控等领域具有实用价值。

参考文献

1谭国真,赵亦林.车辆定位与导航系统[M]北京:电子工业出版社,1999.

2刘光.地理信息系统二次开发教程(组件篇)[M].北京:清华大学出版社,2003.

篇4

鉴于危险废物监控的必要性,并综合考虑监控内容和难点,设计危险废物实时监控系统,其网络拓扑结构图如图1所示。危险废物监控系统包括产废监控子系统、处废监控子系统、数据交换服务三个部分。产废监控系统部署在产废单位,监控危险废物收集和转移;处废监控系统部署在废物处置单位,监控转入车辆并核对危险废物重量。数据交换服务部署在环保监控中心,负责前端监控系统与危险废物管理信息系统的业务数据和基础数据交换。危险废物种类和形式多样,使标记和识别存在困难。本系统采用可粘贴式RFID电子标签结合一维条码冗余设计的废物标签,粘贴在废物件包装表面标记该件。针对无法按件区分的废物,如废水处理污泥,采用整个批次一个标签标识的方式。扫描废物标签可获取当前废物的类别、净重、包装形式、贮存时间、所属批次等信息。图1危险废物监控系统网络拓扑结构

1.2系统层次结构

产废、处废监控子系统的层次结构监控一体机集成了采集设备,包括RFID读卡器、激光扫描器、红外触摸屏,通过RS-232串口连接电子地磅和电子秤,完成重量采集;监控手持机具有扫描RFID标签、条码标签、网络连接等功能,可与监控一体机通信。数据上报服务实时上报转移批次、计量信息、废物信息等业务数据到环保监控中心,同时下载转移联单、废物类别等基础数据到本

2系统功能的设计与实现

2.1产废监控系统设计

产废监控流程包括危废入库、车辆计皮、危废装车、车辆计毛、危废转出。操作人员使用监控手持机扫描粘贴在危险废物包装上的废物标签,输入危废类别、单件净重等完成废物收集。系统允许三种方式记录装车危险废物信息,包括现场贴标签装车、选择仓库废物件装车、手持机扫描标签装车。

2.2处废监控系统设计

处废监控流程包括车辆计毛、手持机点检、车辆计皮。危险废物进入处置企业,系统根据车辆毛重,计算转入危险废物重量是否在允许误差范围内。手持机扫描废物件,记录该件去向(进入处置车间或者进入仓库)。危险废物监控系统业务流程

2.3系统的实现

监控主机和监控手持机软件采用客户端和服务器(Client/server,C/S)架构,基于Qt4.8开发,在Linux和嵌入式Linux操作系统上运行。软件使用开源数据库MySQL5.0,基于开放数据库互连(OpenDatabaseConnectivity,ODBC)方式连接数据库。ODBC连接方式使软件对数据库操作不依赖于特定的数据库管理系统,保证软件的可移植性。数据交换服务基于WebService平台,通过TCP/IP协议与监控主机互联,实现环保中心危险废物管理信息系统与前端采集系统业务数据和基础数据同步。

3系统应用

危险废物实时监控系统已在某市试用医药废物转出界面。产废监控子系统部署在某制药企业,处置监控子系统部署在某废物处置中心。制药企业产生的危险废物主要有废药、过期试剂、生产废液等,通过该监控系统,环保中心能实时掌握医药废物的种类、重量、贮存时间,并可根据相关规定通知企业处置废物。运输车辆进入处置单位时,系统分析废物重量,判断运输过程是否出现非法倾倒的情况,及时向环保中心反馈信息。

篇5

二、当前视频监控系统建设应用中存在的问题

1、我县“天眼”视频监控系统是一期工程建设的社会治安动态视频监控系统,共有35个视频探头,以单独立杆标准安装在县城各个重要路口及位置,该视频探头虽可360度旋转,并自动记录图像,但因建设模式采用的是“电信建设,公安租用”,所以在设备选型、配套设施等方面都存在有一定的局限性,首先目前电信采用的前端摄像机和编码器等设备型号较早,参数、性能等不能满足我县安全监控工作需要,有些监控录象机的参数、性能等在相关网站上查找不到。其次对监控点安装时没有考虑到辅助光源,造成白天图像效果尚可,夜间因光源不足或缺少光源、监控摄像头防护罩未及时清理灰尘,造成视频监控成像模糊,无法辨认,大大降低了实战效能。如所安装的35个视频探头在夜晚光源不足或缺少光源、监控摄像头防护罩未及时清理灰尘时,造成视频监控成像模糊,无法辨认。由于以上种种原因严重影响社会治安视频监控系统的实战效能,我们建设社会治安视频监控系统的目的不是为了看,现在连看都看不清的一个监控系统,更谈不上服务于实战、更深层次的应用了。

2、现有技防监控系统覆盖面虽高,但单位值班人员落实不够好。监控室内值班人员不足,无法保证夜晚值班质量,因值班人员严重不足,从而导致值班人员没有足够的时间去认真观察监控图像,不能及时发现犯罪,只能亡羊补牢。

3、对已建的技防监控系统使用及后期维护还存在一些问题。一是缺乏具有熟悉监控系统的专职人员对技防监控系统进行监控;二是日常线路的维护和保养工作没有及时得到落实,导致许多监控点出现图像不清及黑屏等问题无法及时得到解决。

4、视频功能本身不合理,虽可以360度人工旋转,但无法自动定时定角度旋转,实现全天候、全方位监控。

5、监控器的位置摆放不合理,观察不到关键位置和必经之路或摄像机易被破坏。主要体现在监控点施工不规范,安装质量大打折扣,施工中直接将摄像机安装在建筑物、路旁电杆或其它附属物上,既不安全,也不利于全方位监控,有的监控点安装时没有考虑辅助光源,造成白天图像效果尚可,夜间图像效果模糊,大大降低了实战效能。

6、多个新建住宅小区及重点部位未安装视频监控。从目前我县社会面监控系统使用情况看,视频监控系统建设虽然起步较早,但与经济快速发展、农村加快建设、动态治安控制的要求相比,与发达地区相比,建设速度仍然滞后,监控探头总量还不多、密度不大,部分重点单位、企事业机关、道路街面、公共复杂场所、居民住宅小区等还存在监控盲区,金融单位、加油站等内部监控设备安装还没有完全到位。特别是居民小区、企业事业等单位重点部位在主动落实技防措施上显得力度不够,仅靠公安机关一家“单打独斗”,导致社会面监控系统覆盖率不高,根本无法与当前日趋复杂的社会治安形势相适应。

三、对技防监控系统的建议

1、在建设过程中要注重图像存储质量、有效画面抓录、图像保存时间等,最大限度地满足实战需求

在技术层面上,要广泛应用无线传输、网络传输、移动监控、人像自动识别等高端技术,并积极协调电力部门配合支持,确保夜间监控区域光亮度达到要求,提高监控图像清晰度。在后续维护上,要建立一支设备维护队伍,在各个点确定一至二名维修人员,负责日常检查督导定期维修,以确保系统正常运转。要组织相关维修人员对监控设备的视频功能进行合理调整,使它们自动定时定角度旋转,达到全方位自动监控。对监控器的位置摆放不合理的地方,进行重新安装和调整,使关键位置和必经之路等都能得到有效防控。

2、统一规划,在建设布局上实现全覆盖

县委、县政府要结合我县实际,出台全县治安监控实施方案,限时、保质、保量完成任务。采取单位筹资、县奖励的办法解决投资经费,并严格落实奖惩制度,鼓励先进,鞭策后进,全面推进。在治安保卫重点单位、集镇街道、车站码头、公共复杂场所,治安卡口、治安复杂地区等,要突出重点,全面安装视频监控。在县道、省道要合理布建监控探头,要合理布局,并且定时抓拍。各监控系统、监控点之间要互为补充、有机衔接、联成网络,做到跟踪接力、连续拍录,不留空白和盲区,做到全面覆盖。

3、健全规章制度

篇6

2检测控制系统硬件设计

2.1系统总体结构

综合包衣机的工作流程,整个检测控制系统主要由包衣机控制主板、多传感器信号检测板、执行器控制板和液晶触摸屏构成

。多传感器信号检测板实现对称重传感器和液位传感器信号的采集;执行器控制板可实现对电机设备启停的开关量控制;用户通过液晶触摸屏进行包衣参数设置、包衣过程启停、包衣状态显示等操作。包衣机控制主板采用RS-485方式与多传感器信号检测板和执行器控制板进行通讯,采用RS-232方式与液晶触摸屏进行通讯。

2.2包衣机控制主板

包衣机控制主板选用RealARM6410开发板。该开发板以ARM11内核的S3C6410芯片作为控制核心,包含电源模块、晶振模块、复位电路、485通信模块和232通信模块等外部设备,可以装载和运行LINUX操作系统,具有处理运算能力强、耗电低、扩展性强等特点。将RealARM6410开发板作为包衣机的控制主板,可以很好地保证系统在包衣过程中的可靠性和稳定性。

2.3多传感器信号检测板

多传感器信号检测板选用意法半导体公司出产的32位高性能STM32F103C6T6作为微控制器。该微控制器的核心是ARMCortex-M3处理器,最高CPU时钟为72MHz,具有良好的精密性、可靠性和运算速度。本设计中针对供种量和进液量两种参数信息,分为两个检测模块进行硬件开发。

2.3.1供种量检测模块

供种量检测模块包含2路称重传感器信号放大电路用以检测称重桶中种子的质量,原理如图3所示。本设计中采用上海大和衡器有限公司出产的UH-53型称重传感器,该传感器具有准确度高、抗偏载能力强和长期稳定性好等优点。为了增加检测模块的抗干扰性,保证种子质量的检测精度,采用AnalogDe-vices公司具有低噪声、低失调电压和高共模抑制比特点的AD8608型CMOS精密运算放大器构成两级差分放大电路。放大电路第一级由两个同相输入运算放大器电路并联,第二级串联一个差分输入的运算放大器。这样的连接方式可以很好地抑制输入电压中的共模成分。参照称重传感器的额定输出,可以取放大倍数为500倍。为了减少第二级运放共模误差造成的影响,第一级运放的增益要尽可能高。因此,将第一级放大倍数设定为500。经过取值和计算。放大电路的输出端经过一个分压电路后,接入STM32芯片上带有A/D转换通道的I/O接口。

2.3.2进液量检测模块

进液量检测模块包含上液位和下液位传感器检测电路。Uup为上液位传感器信号,Udown为下液位传感器信号。Control1为控制主板发送的补液信号,Control2为控制主板发送的加液信号。动作执行之前Control1、Control2都为低电平,以加液动作为例,当液面高于上液位传感器时,Uup、Udown都为低电平。Uup通过光耦开关电路,在PA3处输出高电平到STM32芯片的I/O接口上;Udown通过光耦开关电路,在PA4处输出低电平到到STM32芯片的I/O接口上。此时Control2发送一个高电平信号,使RS锁存器2输出高电平,经过继电器驱动电路后使加液电机运转;然后使Control2变回低电平,在液面介于上下液位传感器之间时,Uup为高电平、Udown为低电平,PA4处仍为低电平,使RS锁存器2的输出保持之前的高电平状,加液电机保持运转。当液面低于下液位传感器时,Uup、Udown都为高电平,PA4变为高电平,使RS锁存器2输出低电平,加液电机停止;在此过程中补液电机一直保持停止状态,直到单片机通过Control1发送补液信号时再进入补液动作。通过采用主板信号控制动作启动、传感器检测电路直接控制动作结束的方式,可以有效避免药液的过量添加,保证了进液控制的稳定性。

2.4液晶触摸屏

液晶触摸屏采用广州微嵌计算机科技有限公司的WQT系列产品,它由400MHz的ARM9高速CPU、数字LED背光显示和高精度电阻式触摸屏等部分构成,有良好的兼容性和友好的人机操作界面。该液晶屏具备数据显示、数据监控和触摸控制等基本功能,并且采用双口独立通讯,可通过自定义的通讯协议实现与主板之间的信息传输。

2.5执行器控制板

执行器控制板采用与传感器信号采集板相同的STM32F103C6T6微控制器,通过设计继电器驱动电路,实现对加粉、门控等电机启停的开关量控制。开关量控制信号经由一阶RC低通滤波器和线性光电耦合器组成的电路后,可有效地滤除信号中的干扰成分。控制信号通过三极管进行放大,可驱动继电器的开合。

3检测控制系统软件设计

包衣机在开启电源并初始化完成后,通过液晶触摸屏设置包衣流程的总批次、种子质量以及种药混合时间等包衣参数。在包衣机控制主板系统平台上进行软件开发,每隔一定时间在485总线上采用轮询的方式与多传感器信号检测板和执行器控制板进行通信;系统参照用户设定的各项参数以及称重和液位传感器实际检测到的参数信息,发送电机控制命令,进行各批次的种子包衣处理动作;每个动作之间通过适当的延时衔接,可实现包衣机各工作部件的有机组合和包衣流程的有序进行。

篇7

在潍坊市气候条件下,节能公共建筑单位建筑面积设计冷热负荷相对稳定,空调总冷负荷2640kW,空调总热负荷1650kW,冷指标为91W/m2,热指标为57W/m2,每年的空调负荷具有很强的规律性。

1.2既有建筑技术改造方案

1.2.1地埋管换热器地下热平衡分析地埋管全年吸热量Q取热=1473.69MWh,散热量Q散热=1872.8MWh。在考虑了机组的耗功量后地埋管换热器的散热量与取热量的比值要明显高于建筑物所需的冷负荷与热负荷的比值。地埋管的年累计放热量与取热量不平衡率为21.3%,地埋管侧的峰值排热负荷为3201kW,峰值取热负荷为1144kW,两者相差较大,如果按照冷负荷设计钻孔井数,钻孔费用较大,综合考虑冷热负荷平衡及钻孔费用,可将一部分冷负荷采用原有模块式空气源热泵机组承担,不仅可以减少钻孔数目,还可以平衡冷热负荷。由上述冷热平衡知:总排放热量为1872.8MWh,总吸取热量为1473.69MWh,不平衡率为21.3%,如果全部采用地源热泵工程满足冷负荷,地下的温度变化总体呈上升的的趋势,不满足地源热泵工程设计规范要求。

1.2.2初步设计方案根据调研数据的显示,系统原有40台模块式空气源热泵机组,单台供冷量为60kW,为了最大程度地满足冷热负荷的平衡,同时避免钻孔数目的过多,减少水泵能耗,该技术改造方案定为1台螺杆式热泵机组+19台原有模块式空气源热泵机组,原有模块式空气源热泵机组保持原有位置不再变动,既节省了设备迁移费用,又节约了总机房面积,热泵机组及钻孔数目根据冬季负荷确定。冬季热泵机组提供全部采暖负荷,为保证地源侧冷热负荷平衡,夏季供冷以地源热泵机组为主,模块式空气源热泵机组只在部分月份、部分时间段开启,可通过控制冷水机组的运行时间完全满足地源侧冷热负荷平衡。

1)岩土热物性参数测算。根据工程所处的地质状况以及以往工程经验,岩土的导热系数预估为1.66W/(m•℃),体积比热1.993×106J/(m3•℃)。在方案确定后,应进行现场测试,即在不同位置选定2~3个测试孔,进行热响应测试实验,然后利用参数估计法计算当地的地下岩土导热系数及比热。

2)地埋管换热器设计参数的选取。采用地热换热器设计模拟软件—地热之星GeoStar(V3.0)对该工程建筑进行优化设计计算。选取垂直双U型埋管,因钻孔较深,土壤取散热能力较浅层大,换热能力强,通常是土壤浅层的5倍以上,并且所需占地面积较小[2-3]。由于该地的地质构成主要为泥沙与岩石,钻孔难度适中,每米钻孔费用相对较高,每个钻孔内设置双U型管在一定程度上降低系统的初投资。同时根据该工程周边可利用的钻孔空地面积有限,采用双U型管,可大大减少钻孔的占地面积。工程设计的基本参数为:钻孔回填材料采用的高性能回填材料,导热系数为1.82W/(m•K);进入热泵循环液的最高/最低温度分别是:33℃/4℃;De32的双U型管,钻孔直径为150mm;系统运行寿命设计为20a;岩土平均导热系数为1.66W/(m•℃),容积比热容约为1.993×106J/(m3•℃),岩土的初始温度为15.2℃。

3)地埋管换热器的长度设计计算。根据工程设计的基本参数,采用设计计算软件对建筑进行地埋管长度的设计计算。经过计算,所需的总地埋管换热器的钻孔长度约为33000m,每个钻孔深度为100m,共需330个钻孔,钻孔行列间距均为5m,所需钻孔面积为8250m2,建筑周边条件能满足钻孔面积的要求。

4)地埋管布置形式设计。对于地源热泵空调工程,竖直地埋管换热器宜分组连接,且每组不超过换热器总数的10%。因此根据钻孔设计布置情况,以6个钻孔或4个钻孔组成一个水平环路就近通过钢塑转换接头与分集水器连接,室外分集水器之间由水平主干管连接,水平主干管采用同程式连接方式。地埋侧水平管路采用地埋敷设方式,水平支管敷设深度为2.0m,水平干管敷设深度为1.5m。钻孔间的设计间距为5m,钻孔的直径为150mm。地源热泵系统模拟在设定好以上参数的条件下,对整个地源热泵系统的运行进行了10a的模拟计算,得到的温度曲线不仅为该系统的可行性提供了热平衡依据,而且对工程设计及运行管理也有一定的指导性作用。地源热泵系统运行10a期间的循环液进出热泵的月平均温度变化曲。以看出,在运行1个采暖与空调周期后地下岩土温度变化幅度很小,但由于地埋管的年取热量略微小于年释热量,所以地下的温度变化总体上呈缓慢上升的趋势。该项目可采用如下措施:适当增加冬季空调运行时间;可适当地增加地埋管各钻孔之间的间距,降低埋管间的热干扰,增大蓄热体,有利于地埋管向周围岩土中释放热量;间歇运行,有利于地温的恢复在夏季气温较低时,可以间歇性地运行或停止部分热泵机组,使地下岩土蓄热体有较长地温恢复时间,提高换热温差,延长系统在高效率点的运行时间。空调冷热源机房位于原有机房内。

2经济性分析对既有建筑的地源热泵系统与原有的空调系统

进行了经济性对比如表8所示。计算结果表明:地源热泵系统增加的初投资大约为567.5万元;系统运行按20a计,地源热泵系统可比模块式空气源热泵机组加集中供热系统节省运行费用1336万元,系统投资回收年限为8.5a。

3系统能效分析及节能量计算

每个月相对于原有的集中供热+模块式空气源热泵机组空调系统。年可节约319.78吨标准煤。现有系统全年耗能量为1949.6MWh,改造后系统全年耗能预计为918MWh。与原有空调形式相比,采用地源热泵+模块式空气源热泵机组改造方案后,5结语地源热泵系统改造项目的总投资为567.5万元,地源热泵系统运行后将带来显著的环境效益。改造项目采用新方案每年节能量为319.78吨标准煤,相当于每年减少CO2排放量797.2t,减少SO2排放量2.4t,减少NOx排放量1.24t,减少碳粉尘217.5t。节能改造项目并不是一味地追求节能,而不考虑投资成本,该项目在确定方案时,综合考虑了现有的周边能源情况及既有建筑物内冷热源情况,最终方案确定为地源热泵机组与原有模块式空气源热泵机组结合使用,该方案具有以下优势:

1)可以减少原有设备的拆迁、迁移费用;

篇8

2软件可靠性措施

为了提高软件系统的稳定性和可靠性,采取以下措施:(1)封锁。实际系统中最强的干扰来自自身,如被控的负载电机的通断、状态的变化等,在设计软件时应适当采取措施避开这些干扰。如:当系统要断开或接通大功率负载时应暂停数据采集,等到干扰过去后再继续进行;在适当的地方封锁一些中断源;几个通道互相封锁。这些都是避免或减少干扰的有效方法。(2)程序的失控保护措施。在控制系统中,一般情况下干扰都不会造成计算机系统硬件损坏,但会对软件的运行环境造成不良影响。表现在:数据码和指令码的一些位受到干扰而出现跳变,使程序出现错误,最典型的是程序计数器发生跳变,可能把数据当作指令码。这种程序盲目执行的结果,一方面造成RAM存储器的数据破坏,另一方面可能会进入死循环,使整个系统失效。因此,应采取有效措施避免程序失控。

3Proteus仿真验证

3.1定速巡航控制系统总体仿真电路设计

设计中定速巡航控制系统的主要参数是车速值及节气门开度,因为进行实物测试有设备要求,设备比较复杂,而且测试结果不够直观,所以设计最终结果通过Proteus仿真来实现。仿真电路如图3所示。Proteus软件的元件库中拥有AT89C52单片机、ULN2003驱动芯片、步进电机等元件,可满足设计研究仿真需要。Proteus软件中的车速采集信号可通过改变脉冲而改变车速,电动机的转速可直观地显示出来,还可体现节气门开度的大小。

3.2试验结果与分析

在Proteus仿真平台上分别对4种情况进行仿真,即实际车速A等于目标车速B、实际车速A大于目标车速B、实际车速A小于目标车速B及实际车速大于120km/h、小于40km/h,仿真结果分别如图4~7所示。从图4~7可看出:当输入的实际车速A等于目标车速B时,步进电机不转动;当实际车速A大于目标车速B时,步进电动机反转,节气门开度减小;当实际车速A小于目标车速B时,步进电动机正转,节气门开度加大;当实际车速A超过120km/h、低于40km/h(即脉冲频率低于100Hz、高于999Hz)时,巡航控制系统会自动退出,步进电机不转动。表明所设计的软件能实现简单的巡航控制系统指令,满足预定要求。

篇9

1变压器冷却控制系统控制模块的设计总体思想

本文所进行的就是对变压器冷却控制系统控制器模块进行设计,其中包括了可以对主变压器风扇投入与切除的温度范围进行自行设定,也可以按照用户的要求而变化。在传统控制方式中,风扇投切的温度限制值是不能改变的,此外,风扇电机的启动和停止温度有一余量,不像传统的控制方式中是一个定值,避免了频繁启动的缺陷,此外还有运行、故障保护及报警等信号的显示及其与控制中心或调度中心的通讯,上传这些信息,如变压器油温、风扇运行状态有无故障等。至于风扇的分组投切设置是为了节约电能,具有一定的经济意义,但这个分组数不宜过多,以免控制复杂,且散热效果不佳。

控制器主要由AT89CS1单片机、A/D转换器、键盘控制芯片,输出模块、通讯模块以及自动复位电路等组成,其中单片机是控制器的核心,AID转换器是把输入信号转换为数字信号。

2变压器风扇控制系统的硬件接线

基于以上的要求,我们设计的风扇控制器的硬件线路图如下页图1所示。变压器风扇控制中对控制模块进行改进是本文研究的重点,其中包括主要芯片的选用以及一些抗干扰元件的使用。所以在本章节中,我们重点将要介绍变压器风扇冷却控制模块中的主要硬件芯片的作用、选用以及它们之间的连接力一法。

(1)单片机AT89C51(如图1)。

AT89C51是Atmel公司生产的一种低功耗,高性能的8位单片机,具有8k的flash可编程只读存储器,它采用Atmel公司的高密度不易丢失的存储器技术,并且和工业标准的80c51和80c52的指令集合插脚引线兼容,其集成的flash允许可编程存储器可以在系统或者通用的非易失性的存储器编程中进行重新编程。AT89C51集成了一个8位的CPU,8K的flash。256字节的EDAM,32位的I/0总线。三个16字节的定时器/计数器,两级六中段结构,一个全双工的串行口,振荡器及时钟电路。AT89C51是完成系统的数据处理和系统控制的核心,所有其它器件都受其控制或为其服务。

在本文中,经过TLC1543A/D转换器后输出的数字量输入到AT89C51单片机中,同时在进行了温度参数的设置以后,进行它的输出控制,其中包括了变压器的温度显示、状态显示、以及声音报警设备等等,也就是我们所研究的变压器冷却控制系统的核心部分。

(2)变压器的温度采集及温度处理模块。在变压器的风扇冷却自动控制系统中,第一步进行的就是对变压器上层油温进行的温度采集工作。变压器的温度采集是由变压器的温度控制器来实现的,其中包括铂电极、传感器以及变送器。经过温度控制器输出的信号进入变送器,变送器送出一个4一20毫安的电流信号,然后将此电流信号通过控制芯片上的电阻元件实现电流电压信号的转换,转换后的电压是在0.4一2(伏特)之间,然后将此电压信号输入到TLC1543数模转换器,进行信号处理。变送器输出信号有电流和电压信号两种,考虑到变压器安装的位置(室外)距本控制装置(室内)有一定的距离,电流信号不易损失,故选择了4一20毫安的电流信号。(3)11通道10位串行A/D转换器丁LC1543。

TLC1543A/D转换器是美国TI公司生产的众多串行A/D转换器中的一种,它具有输入通道多、转换精度高、传输速度快、使用灵活和价格低廉等优点,是一种高性价的模数转换器。TLC1543是CMOS,10位开关电容逐次逼近模数转换器。它有三个输入端和一个3态输出端:片选(CS),输入/输出时钟(I/0CLOCK),地址输入和数据输出(DATAOUT)。这样通过一个直接的四线接口与卞处理器或的串行口通讯。片内还有14通道多路选择器可以选择11个输入中的任何一个三个内部自测试(self-test)电压中的一个。

(4)BC7281128段LED显示及64键键盘控制芯片。

BC7281是16位LED数码管显示器键盘接口专用控制芯片,通过外接移位寄存器(典型芯片如74HC164,74LS595等),最多可以控制16位数码管显示或128支独立的LED。BC7281的驱动输出极性及输出时序均为软件可控,从而可以和各种外部电路配合,适用于任何尺寸的数码管。

BC7281各位可独立按不同的译码方式译码或不译码显示,译码方式显示时小数点不受译码影响,使用方便;BC7281内部还有一闪烁速度控制寄存器,使用者可随时改变闪烁速度。

BC7281芯片可以连接最多64键C8*8)的键盘矩阵,内部具有去抖动功能。它的键盘具有两种工作模式,BC7281内部共有26个寄存器,包括16个显示寄存器和10个特殊(控制)寄存器,所有的操作均通过对这26个寄存器的访问完成。

BC7281采用高速二线接口与MCU进行通讯,只占用很少的I/O资源和主机时间。

BC7281在本系统中主要用于驱动变压器温度显示的LED以及显示风扇运行状态的指示灯。

前已提及,BC7281芯片内部共有26个寄存器,包括16个显示寄存器和10个特殊功能寄存器,共用一段连续的地址,其地址范围是OOH-19H,其中OOH-OFH为显示寄存器,其余为特殊寄存器。

(5)使用MAX232实现与PC机的通讯。

①MAX232芯片简介

MAX232芯片是1VIAX工M公司生产的低功耗、单电源双RS232发送/接收器,适用于各种E工A-232E和V.28;V.24的通信接口,1VIAX232芯片内部有一个电源电压变换器,可以把输入的+5V电源变换成RS-2320输出电平所需±10V电压,所以采用此芯片接口的串行通信系统只要单一的+5V电源就可以。

我们的设计电路中选用其中一路发送/接收,RlOUT接MCS一51的RXD,T1工N接MCS一51的TXD,TlOUT接PC机的RD,Rl工N接PC机的TD1。因为MAX232具有驱动能力,所以不需要外加驱动电路。

系统中使用了此技术之后就实现了变压器风扇冷却系统的远程控制,工作人员可以在控制室对冷却系统进行控制,可以达到方便、准确、快捷的日的,这也是我们对传统的风扇冷却控制系统而做的一个重要的改进。

②串行通讯

在此实现中,我们必须要对MCS-51串行接日和PC机串行接日的串行通讯要有一定的了解,串行通信是指通信的发送方和接收方之间数据信息的传输是在单根数据线上,以每次一个二进制位移动的,它的优点是只需一对传输线进行传送信息,囚此其成本低,适用于远即离通信;它的缺点是传送速度低;串行通信有异步通信和同步通信两种基本通信方一式,同步通信适用于传送速度高的情况,其硬件复杂;而异步通信应用于传送速度在50到19200波特之间,是比较常用的传送方式,本文中使用的就是异步通讯方式。

(6)“看门狗”电路DS1232

在系统运行的过程中,为了避免因干扰或其他意外出现的运行中的死机的情况,“看门狗电路”DS1232会自动进行复位,并且能够重读EEPROM中的设置,以保证系统可以安全正常的运行。

美国Dallas公司生产的“看门狗”(WATCHDOG)集成电路DS1232具有性能可靠、使用简单、价格低廉的特点,应用在单片机产品中能够很好的提高硬件的抗干扰能力。

DS1232具有以下特点:

①具有8脚DIP封装和16脚SOIC贴片封装两种形式,可以满足不同设计要求;

②在微处理器失控状态卜可以停止和重新启动微处理器;

③微处理器掉电或电源电压瞬变时可自动复位微处理器;

④精确的5%或10%电源供电监视;

在本变压器冷却控制系统中,DS1232作为一定时器来起到自动复位的作用,在DS1232内部集成有看门狗定时器,当DS1232的ST端在设置的周期时间内没有有效信号到来时,DS1232的RSR端将产生复位信号以强迫微处理器复位。这一功能对于防止由于干扰等原因造成的微处理器死机是非常有效的,因为看门狗定时器的定时时间由DS1232的TD引脚确定,在本设计中,我们将其TD引脚与地相接,所以定时时间一般取为150ms。

3结论

本装置实现了通过单片机自动控制冷却器的各种运行状态并能精确监测变压器的油温和冷却器的各种运行、故障状态,显示了比传统的控制模式的优越性。(1)能够对变压器油温进行监测与控制;(2)实现了变压器冷却器依据不同油温的分组投切,延长了冷却器的使用寿命,有较好的经济意义;(3)实现了冷却系统的各种状况,如油温、风扇投切和故障等信息的上传,便于值班员、调度员随时掌握情况。

由于固态继电器实现了变压器的无触点控制,解决了传统的控制回路的弊端,同时此控制装置具有电机回路断相与过载的保护功能。由于使用了单片机,因而具有一定的智能特征,实现了油温、风扇的投入、退出和故障等信号的显示以及上传等。通过实际运行表明,该装置的研制是比较成功的。但今后,我们还应该对固态继电器本身的保护进行一些研究,以免主回路因电流过大而造成固态继电器的损坏,以使变压器风扇冷却控制回路更加完善。

篇10

1概述

随着计算机技术的发展和应用范围的扩大,电力信息化的不断深人,计算机在电力系统中已从简单数据计算为主发展到数据库处理、实时控制和信息管理等应用领域,并在OA系统、电能电量计费系统、电力营销系统、电力ISP业务、经营财务系统、人力资源系统中得到广泛的应用。在电力系统内,它已经成为各项工作必不可少的基础条件,发挥着不可替代的作用。同时,由于各单位、各部门之间的现存的计算机网络硬件设备与操作系统千差万别,应用水平也参差不齐,因此,在计算机网络覆盖全球,计算机技术迅猛发展的今天,讨论和研究电力系统计算机的应用及安全性则显得尤为重要。

2电力系统的计算机网络应用和管理

电力系统的计算机网络应用是十分广泛的,并且将随着技术的发展而不断发展。这里从Interanet方面讨论电力系统的应用。首先各个单位应该申请工nternet国际域名和注册地址,建立省电力系统WWW服务。将各个部门的公用信息和数据进行WWW,使所有的具有不同计算机水平的员工都可以用浏览器对文档方便地进行调用、查询、浏览和维护,并且建立面对Inter-net的WWW主页服务,不仅宣传企业形象,而且可以将各种电力信息与产品进行工nternet,为了安全可以设立独立的服务器。建立电力系统的E-mail服务,使所有部门和员工拥有自己的电子信箱,不受时间和地域的限制接收电子信件。建立电力系统的FTP服务,使计算机文件方便地在Intranet和Internet上传递。建立电力系统的BBS服务,使所有分布在全省各个地区的员工在开设的不同交谈站进行实时交流。建立电力系统的服务,对系统内的新闻进行播放,同时开辟NEWS讨论主题,给所有员工发表自己见解的机会与场所,群策群力讨论企业的发展与建议。

电力系统的计算机网络管理应对各方面管理进行集成,来管理带宽、安全、通讯量、存储和内容。同时进行数据信息标准化和数据资源共享,保证系统的完整性和灵活性,适应不断变化的要求,满足系统多层次的不同应用,使系统的开放性符合国家标准和规范,保证应用软件和数据资源有较长的生命期,并具有良好的可靠性、安全性和可扩充性,体现集中与分布式的管理原则。

(1)集中就是由省局统一规划全省的计

算机网络结构,统一对全省的计算机网络应用进行协调;对已有的局域网进行论证分析,使其从结构上与总网相适应,对建立的新网进行指导与监督;对网络的通讯建设统一规划管理。建立一个范围广泛的工ntranet,应使用广域网网管,提供与工nternet的出口并进行防火墙技术安全管理,对于在系统内有广泛共性的工作要进行统一的开发与推广。

(2)分布式管理就是体现基层部门的内部管理,各个不同部门在其内部进行网络应用管理,基层部门与省局联系时进行统一的协议管理,保持全省通讯与应用协调一致,又根据单位性质的不同,开发不同特点的Intranete。

3电力系统计算机应用的现状及问题

计算机安全是指计算机信息系统的安全。计算机危害主要指计算机信息系统的软硬件资源遭到破坏、更改或泄露,系统不能正常运行。要保障计算机系统安全就必须治理(即清除、控制或预防)计算机危害。计算机系统的安全与不安全是从多方面反映的,从目前使用和发现的情况看,系统运行不稳定、内部资料外泄、网络利用率低等是主要常见的现象。

通过计算机网络使得电力系统的工作效率提高了,管理范围扩大了,工作人员的办事能力增强了,但计算机系统网络安全问题也随之变得更加严重了。例如:通过电子邮件感染病毒,电力系统管理网络互联接口的防火墙只配置了包过滤规则,提供的安全保证很低,容易受到基于IP欺骗的攻击,泄露企业机密,有些局域网没有进行虚拟网络VLAN划分和管理,造成网络阻塞,使工作效率减低。绝大多数操作系统是非正版软件,或网上下载免费软件,不能够做到及时补丁(PATCH)系统,造成系统漏洞,给攻击者留下木马后门;绝大多数工作站没有关闭不必要的通讯端口,使得计算机易受远程攻击病毒可以长驱直人,等等。

4解决问题的措施和方法

安全性是电力系统计算机网络最重要的部分。安全性既包括网络设施本身的安全,也包括信息的安全;既要防止外界有害信息的侵入和散布,又要保证自身信息的保密性、完整性和可用性。笔者觉得可以从以下几方面人手,提高网络的安全性:

(I)提高网络操作系统的可靠性。操作系统是计算机网络的核心,应选用运行稳定、具有完善的访问控制和系统设计的操作系统,若有多个版本供选择,应选用用户少的版本。在目前条件许可的情况下,可选用UN工X或LINUX。不论选用何种操作系,均应及时安装最新的补丁程序,提高操作系的安全性。

(2)防病毒。防病毒分为单机和网络两种。随着网络技术的快速发展,网络病毒的危害越来越大,因此,必须采用单机和网络防毒结合的防毒体系。单机防毒程序安装在工作站上,保护工作站免受病毒侵扰。主机防护程序安装在主机上,主机的操作系统可以是WINDOWS,UN工X,LINUX等。群件防毒程序安装在Exchange,Lotus等群件服务器中。防病毒墙安装在网关处,及时查杀企图进人内网的网络病毒。防毒控管中心安装在某台网络的机器上,监控整个网络的病毒情况,防毒控管中心可以主动升级,并把升级包通过网络分发给各个机器,完成整个网络的升级。

(3)合理地使用防火墙。防火墙可以阻断非法的数据包,屏蔽针对网络的非法攻击,阻断黑客人侵。一般情况下,防火墙设置会导致信息传输的明显延时,因此,在需要考虑实时性要求的系统,建议采用实时系统专用的防火墙组件,以降低通用防火墙软件延时带来的影响。

篇11

中图分类号:TP37 文献标识码:A 文章编号:1009-3044(2016)26-0201-02

The Design And Implement Of Video Monitoring System Based On Embedded Linux

HE Yi

(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)

Abstract: With the rapid development of Internet, embedded network video monitoring is hotspot that attracting extensive attention in the present, and have involved in all fields, so the research for the video monitoring system has a certain significance. So in the direction of video monitoring, this paper proposes a system design scheme, The system using the Linux as operating system, S3C2410 as development platform and Collecting video image data by USB camera, after compression coding, the video image data is transmitted to the video server and client through the network, achieve the basic monitoring function.

Key words: video monitoring; embedded; camera; video compression; video capture

1 概述

在当前科技迅速发展的环境下,视频监控系统已经在安防、交通监控和家居生活等重要领域得到了广泛的应用。视频监控系统经过了三个发展阶段,第一是基于模拟摄像机的模拟视频监控系统阶段,第二是基于PC 端的数字视频监控阶段,第三是基于嵌入式Linux的网络视频监控系统阶段[1-2]。传统的模拟视频监控系统存在传输距离和系统数据量有限、图像质量低和不易扩展等不足,数字监控系统虽慢慢取代了模拟视频监控系统,但其本身也存在视频前端采集复杂、系统稳定可靠性差等局限。网络视频监控系统在各类技术的不断发展的基础上也在不断发展中。在网络技术快速发展的趋势下,通过网络传输视频图像[3-5],是目前实现视频监控最好的方法。本文设计并实现一套以S3C2410为开发平台,以Linux为操作系统的基于嵌入式视频监控系统,客户端只要和监控终端在同一局域网内均可实时监控。

2 系统整体设计方案

该嵌入式视频监控系统以Linux系统和S3C2410开发板作为系统核心平台,由在前端的USB摄像头实时采集视频数据,经压缩编码后通过TCP网络传输到后台服务器,客户端可实现实时监控。此系统主要由视频服务器端和客户端组成;服务器端包括视频图像采集模块和TCP网络传输模块,它们的职责就是将视频数据进行压缩、编码后通过TCP网络传输到远程终端设备上。客户端主要实现远程终端设备的视频显示。

3 系统硬件设计

在该系统中,硬件结构包括视频图像采集模块、视频服务器模块和TCP网络传输模块。视频图像采集模块主要完成视频数据的实时采集,ARM开发板通过摄像头采集获取视频图像数据,然后进行压缩存储和处理,然后通过网络传输模块将视频数据传输到远程移动终端上显示。

4 系统软件设计

软件部分的设计主要包括:嵌入式Linux系统的裁剪和移植、视频图像的采集、视频的网络传输以及客户端网络连接程序。系统的裁剪和移植等技术本文不再作详细的论述。以下主要介绍视频图像采集模块和网络传输模块的设计。

进行视频采集[6]必须加入video4Linux模块,要从摄像头设备中采集视频图像帧,必须依靠此模块所提供的接口。video4Linux是摄像头设备的相关内核驱动,它为摄像头提供了编程所需的最基本的接口函数,比如ioctl()函数、打开函数、写函数和读函数等的实现。并把它们定义在file_operation中,当应用程序对设备文件进行打开读写等一系列系统调用的操作时,系统将通过此结构去访问内核驱动程序[7-9]所提供的一些基本函数。video4Linux中的数据结构为视频采集提供了各种视频图像的相关数据信息,其中包括有:

video_window :包含获取的视频图像区域的基本信息

video_capability:包含设备信息,比如设备的分辨率范围、设备的名称和信号的来源信息等

video_picture:包含了所获取图像属性;

video_channel:各个信号源的属性;

video_mmapf:用于内存映射;

video_mbuf:包含映射的帧的属性和信息,比如所支持的最多帧数、每一帧图像的大小和每一帧图像相对基址的偏移等属性;

video_buffer:最底层对缓冲区的描述。图3为整个的视频图像采集流程,视频图像的采集程序包括以下流程,一是初始化设备,二是打开设备,三是获取视频设备和视频图像信息,四是图像参数设定,五是视频图像采集。

视频数据网络传输模块本文采用B/S模式,以此模式来实现网络视频监控。本文采Boa来搭建Web服务器[10]。Boa 有它自己的特点,首先它支持CGI;其次它是单任务的,它与传统的web服务器不同,第一,对于每一个连接,它不会去重新启动一个新的进程,第二,对于二个或者多个连接,它也不会去启动多个对自身的复制;再次,对于所有在进行活动的连接,Boa只会在内部对它进行相应的处理,而且,对每一个CGI连接,它都会重新去开启一个进程。Boa支持的CGI公共网关接口适用于各种不同的平台,是用户应用程序与Web服务器最常用的通信接口。

5 系统仿真和测试

本文提出的构架方案和实现方案已经通过测试。客户端监控界面如图4所示。整个系统开发不仅简洁,而且高效,同时成本比较低,稳定性非常可靠,能够被移动设备应用,实现实时视频监控。

参考文献:

[1] 顾永建,高守乐.基于嵌入式系统的网络数字视频监控系统[J].计算机技术与应用, 2005(1):40-42.

[2] 杨建全, 梁华, 王成友. 视频监控技术的发展与现状[J]. 现代电子技术, 2006(21).

[3] 李保国. 基于嵌入式 ARM 的远程视频监控系统研究[D]. 南京: 南京理工大学, 2009.

[4] 张建. 基于 S3C2410 和嵌入式 Internet 的家庭视频监控系统设计[D].上海:上海交通大硕士学位论文,2007,1.

[5] 赵春媛,李萌,韩会山.基于ARM9的无线视频监控系统设计与实现[J].计算机工程与设计, 2012.

[6] 张蕾.基于嵌入式 Linux 的视频采集系统的研究设计[D].西安: 西安电子科技大学硕士学位论文,2010.

[7] 朱小远,谢龙汉.Linux 嵌入式系统开发[M].北京:电子工业出版社,2012.

篇12

1概述

为满足长输管线安全生产和 科学 系统化管理的需要,对意外情况能迅速做出准确判断和处理,拟在管道沿线建设安全监控系统,及时地把生产设备运行状况和险情图像资料传送到各站场控制室和管道调控中心,使险情或隐患被扼制在萌芽状态,确保人员生命、财产安全。

2方案选择

根据现场条件及工艺站场的实际需求,并充分考虑技术的实用性,管道安全监控系统主要采用视频监近系统和周界报警系统来组网。

2.1视频监控系统

视频监控系统的应用目前主要有三种形式:模拟视频监控、基于微机平台/嵌入式系统的(半)数字视频监控和基于网络视频服务器技术的数字化网络视频监控。

2.1.1模拟视频监控系统(第1代监控技术)视频信号采用同轴电缆进行传输,并由模拟矩阵主机进行信号处理。从摄像机到控制主机再到录像机、监视器,全部以模拟视频信号进行传输与图像存储。而控制信号以数字信号进行传输。

2.1.2半数字视频监控系统(第2代监控技术)1)基于微机平台的dvr(第2代监控技术)。dvr系统采用微机和windows平台,在 计算 机中安装视频压缩卡和相应的dvr软件,支持实时视频和音频,是第一代模拟监控系统升级至数字化的可选方案。

视频信号仍采用同轴电缆进行传输,控制信号以数字信号进行传输,由多媒体控制主机或硬盘录像主机(dvr)进行数字处理与图像存储。从摄像机到控制主机和监视器以模拟视频信号进行传输,而控制主机的处理、控制及存储是以数字信号进行的,故准确的讲应为"半数字监控"技术。

(2)嵌入式dvr(第2.5代监控技术)。嵌入式dvr指的是在传统dvk的基础上扩展了网络功能的dvr产品,使得更多的用户可以进行访问。正是由于这种产品开发的理念,使得带网络功能的dvr产品还是传统意义上的dvr,其主要功能仍然是dv存储,这也决定了其市场定位是在小范围的网络环境中,监控点也有限。

2.1.3网络视频监控系统(第3代监控技术)网络视频监控系统是目前业内最先进的监控技术,视频从前端图像采集设备输出时即为数字信号,并以网络为传输媒介,基于tcp/ip协议,采用流媒体技术实现视频在网上的多路复用传输,并通过网络数字矩阵主机(ipm)来实现对整个监控系统的调度、存储和控制等功能。此外,周界报警、门禁等设备输出的数字信号也可采用多网合一的方式,通过网络复用进行传输,并在同一平台上进行管理与控制。

2.2监控方案比选

(1)第1代模拟监控技术,由于技术落后,正在逐渐退出 历史 舞台,因此不考虑用该技术组网。

(2)第2代dvr技术,由于前端还是模拟传输方式,而模拟视频线和控制线的有效传输距离为300m以内,对于规模较大的工艺站场,有少量的监控点与控制室的距离较远,必须再加线放才能满足传输需求,增加了传输成本。

(3)第3代网络监控技术,优势就在于传输不受距离限制,组网方便灵活,更适宜于网络传输和远程控制。

根据监控系统的实时性、有效性和 经济 性,并充分考虑到管道视频图像信号的远传需求,结合各站场的实际情况,推荐采用网络视频监控技术来实现管道工程监控图像的采集、传输、实时监看、存储和上传。

2.3周界报警系统

周界防范报警系统作为视频监控系统的一个有效补充,与监控系统共同构成统一的安防网络。周界报警系统主要是在周界围墙上安装红外探头,类似于在围墙上布设了一道看不见的 电子 墙,当有人非法穿越围墙进入站场时,触发报警并输出信号进行报警联动。

3方案设计

3.1监控系统

3.1.1图像采集系统设计

前端摄像部分是整个监控系统的前沿部分,主要包括摄像机、镜头、云台和防护罩等。前端的任务是对现场进行摄像,把摄得的光信号转换成电信号,并进行数字压缩处理。

在各工艺站场根据实际情况设计 网络 摄像机若干台。在站场的工艺装置区安装防爆型枪式摄像机和视频服务器,在所有出入口、道路、围墙和其他重点部位安装网络智能球型一体化摄像机(集成视频服务器),内置低照度彩转黑多倍摄像机或宽动态低照度彩转黑一体机,可根据需要远程控制镜头拉伸,进行全方位多角度的监控。

3.1.2传输系统设计

传输部分就是系统图像和控制信号的传输信道。把现场摄像机发出的电信号及报警信号(转换后的数字信息)传送到控制室,一般包括通讯线缆(双绞线或光纤)和线路驱动设备(网络交换机、光纤收发器)等。

为保证传输信号质量,前端网络摄像机通过敷设光缆线路以及两端配置光纤收发器将视频、控制信号传人站场控制室,再通过交换机连接主控 计算 机进行图像监视和信号控制。

3.1.3控制系统设计

控制部分是实现整个系统功能的指挥中心。控制部分主要的功能有:①视频信号放大与分配;②图像信号的校正与补偿;③图像信号的切换、分割、记录和打印等;④对前端设备的摄像机、电动变焦镜头及全方位云台等进行控制,以完成对现场全面详细的监视。

拟在各站场监控室配置1~2台监控计算机进行现场视频的显示和控制;并通过管道mstp光传输系统将图像和报警信号传给调控中心,在调控中心通过数字矩阵设备实现远程控制。

管道传输网里的任何一台计算机都可以经过授权进行现场图象浏览,以及时准确地获得现场信息。

3.1.4显示及存储系统设计

监控设备置于各站场及调控中心的控制室内,不需另建监控室。在监控室采用液晶显示器和大屏幕液晶平板电视组合为电视墙,进行实时监视;录像系统采用普通pc或数据服务器,设计整个录像系统可以连续保存录像资料半个月,并支持录像与回放。

3.2周界报警系统

周界防范报警系统由前端的对射探头(安装于站场围墙上)、报警主机(安装于站场控制室)及一些辅助设备(电源、显示地图和警铃等)构成。

友情链接