时间:2023-03-27 16:50:44
引言:寻求写作上的突破?我们特意为您精选了4篇供水管理论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
1图论原理
将供水管网中的管段概化成一条线段(即图中的边),将有附件的管段看成图中的特殊管段,边与边由节点相连。这样,一个供水系统的管网图就转化为图论中的网络图。而且管道中的水流是有方向的,所以管网图是有向图。
根据以上所述原则,可将图1所示管网系统,转化为图2所示的网络图。
图1
图2
图1中有一水库A,三个给水点B、C、D,Q1表示水库节点供水量,Q2/,Q3/,Q4分别表示B、C、D节点的用水量。管段视为网络图中的对应边,管段的直径、管长、管道流量、摩损系数等作为管段对应边的权。至此,与管网同构的网络图生成了。图中箭头表示各条边的方向,即管段中水流方向。
网络图中节点与边的关联函数可以用完全关联矩阵I4×5表示如式(1)所示。
顶点边的编号
(1)
式中:Iij={1,表示j管段与i节点相连,且管内水流流离该节点;
0,表示此管段不与该节点关联;
-1,表示j管段与i节点相连,且管内水流流入该节点。
完全关联矩阵与管段流量列向量q以及节点流量列向量Q可组成管网节点方程(即连续方程)Iij×q+Q=0,q=(q1,q2,q3,q4,q5)T,Q=(Q1,Q2,Q3,Q4)T。
网络图的生成树(全涉及树)可以有很多种,在计算时可以任选一种。在本例中,选1、2、4这3条边为图的生成树,则补树(余树)的各边(弦)为3、5.各弦将与枝构成基本回路,一个基本回路中有且仅有1条弦。用基本回路矩阵Bf表示则如式(2)所示。
枝1
2
4
弦3
5
Bf=
[
-1
1
1
]
(2)
1
-1
-1
1
式中每一行表示一个基本回路(环)。环的方向以该环对应弦的方向为准。“-1”表示管段中的流向与环中弦的方向相反,“1”表示相同,“0”表示该管段不在此环内。Bf可用矩阵B和单位阵U表示为式(3)。
Bf=[B|U],其中B=
[
-1
1
]
(3)
1
-1
-1
环阵与管段摩损列向量hf构成环方程如式(4)所示。摩损向量的元素顺序与Bf中每行元素所对应的管段顺序相同。
Bf×hf=0。其中hf=(h1,h2,h4,h3,h5)T
(4)
图论理论中,连续方程用割方程代替。每个割方程只含一根枝,并和相关的弦构成割集,将图2分割成互不连通的脱离体。这样,图中就有3个割集。割集和割集阵Af如式(5)所示:
割集K:割阵:Af=[枝124弦35](5)
K1=(e1,e3,e5)1001-1
K2=(e2,e3,e5)010-11
K3=(e4,e5)00101
割阵Af中,每一行表示一个割集。图中有3根枝,所以就有3个割集。割阵中,“+1”表示该管段在此割集内,且管段流向与此割集内的枝中的流向相同,“-1”表示流向相反,“0”表示该管段不在此割集内。式(5)的割阵Af和割集K一一对应。割阵Af可用一个矩阵A和一个单位阵U表示为:
Af=[U|A],其中A=
[
1
-1
]
-1
1
1
割阵与流量列向量可构成割方程。
根据图论理论,割阵的行向量与环阵的行向量正交,这种关系可用式(6)表示。
[B|U]·[U|A]T=0或者[U|A]·[B|U]T=0
(6)
所以有B=-AT或者A=-BT。这样,环阵可以由割阵求出,反之亦然。
关联矩阵通过选主元初等行变换即可得到割阵:先选关联阵第一行中一非零枝元素为主元,并使其为+1,消去其它各行中此主元;再选第二行、第三行、…的主元,最后即得割阵Af。因此,可以由关联矩阵导出割阵和环阵。
2图论法模型
任何管道的水力计算都可以用管段流量q/,水头损失h/,管径D/,管长L和管壁条件C等5个因素来描述。一般D、L和C为已知条件,只有q和h未知。因此,求解一个管网的水力平衡问题,可从两方面考虑:一是利用q和h的关系,消去h,以q为未知量计算,求出q后,反求h;二是首先消去q,以h为未知量计算;解出h之后,再反求。图论法也可从这两方面入手,即求弦流量式和求枝摩损式。前者只适用于环状网,而后者则适用于所有类型的管网,所以本文着重介绍后者。
设一管网有J个节点,P条管段,L个环,则三者满足L=P-J+1的关系。管网的每一管段都有q和h两个未知量,因而未知量的个数为2P。但管网环方程有L个,线性无关的连续性方程有J-1个,总数为L+J-1=P个,不能求解2P个未知量[1]。因此,必须借助P个管段摩损方程式。管段摩损方程式线性化后的通式如(7)和(8)所示。系数R称为阻尼系数,Y称为传导系数。R和Y的具体形式与所选用的摩损公式有关,是D、C、L的函数。摩损公式线性化后,R还是q的函数,Y还是h的函数。不过,在求解过程中,总是把R和Y当作已知量来对待。
阻尼式:
h=R×q
(7)
传导式:
q=Y×h
(8)
式中R和Y是阻尼系数和传导系数矩阵。
如果摩损公式采用Hazen-William公式,则有:
h=R×q=10.68q1.852L/(C1.852D4.87)=10.68L|q|0.852/(C1.852D4.87)q
(9)
R=10.68L|q|0.852/(C1.852D4.87)
(10)
Y=1/R=C1.852D4.87/(10.68L|q|0.852)=C1.852D4.87/(10.68L)|q|-0.852
(11)
用h向量表示管段摩损:h表示枝摩损,h′表示弦摩损;
用q向量表示管段流量:q枝管段流量,q′表示弦管段流量。
割方程的右端项Q为脱离体所含节点流量之和。
方环程:Bf×h=0,即[BU]×[h]=0(12)
h′
割方程:Af×q=Q,即[UA]×[q]=Q(13)
q′
传导式:[q]=[Y0]×[h](14)
q′0Y′h′
求枝摩损式(以管段摩损为未知量):
首先将传导式(14)代入割方程(13)得:
[UA]×
[
Y
]
×
[
h
]
=Q
(15)
Y′
h′
由环方程(12)可得Bh+h′=0,即h′=-Bh,代入式(15)得:
[UA]×[Y0]×[h]=Q(16)
0Y′-Bh
即h×[Y-AY′B]=Q(17)
根据正交定理得:h×[Y+AY′AT]=Q(18)
这就是图论法的求枝摩损式计算公式。h即为枝管段的摩损向量。解得枝摩损值h后,其余变量可由相应的公式求出。由环方程可得h′=-B×h,即可求出弦摩损向量h′,q、q′向量可以由式(14)求得。
式(11)中C1.852×D4.87/10.68×L对某一管段来说是个常数,可用W表示。则传导系数Y可以表示为:
Y=W×|q|-0.852
(19)
在迭代计算时,第一次可以直接用W代替Y进行计算,求出h/,q后计算Y,再求新的q值,如此反复计算,直至前后两次的q值符合给定的误差标准为止。
为了避免可能出现的数值摆动现象,在第三次迭代时,用前两次迭代结果的流量平均值作为初始流量值[2],即:
q=q(1)+q(2)2
(20)
求得q(3),……,这样收敛速度加快。
3管网附件
实际管网中,有许多控制、安全、量测设施,如加压泵、控制阀、逆止阀、减压阀等附件,对管网运行产生重要影响。传统计算方法都未涉及到管网附件问题,不仅使计算准确性受损,而且其计算程序无法用于日常管理工作。
图论法处理管网附件时,将附件所在管段视为特殊管段,这些管段的摩损式要根据其附件的水力学特征计算摩损值,再加入到管网中进行水力平衡计算。本文给出几种较常见管网附件的处理方法。对于其它附件,具体问题具体处理,在此就不一一详述了。
3.1普通阀门闸板式阀门是用得最多的一种阀门,在一般的水力计算过程中,闸板式阀门的水头损失计算一般引用公式hf=ξ×v2/2g,ξ值见文献[3]。
其中,a表示管段中过水断面的高度,d表示管段直径,a/d表示阀门开关。当开度为0时,阀门完全关闭,没有流量通过;当开度为1时,阀门完全打开,对水流不产生影响。
将阀门水头损失公式用流量表示为:hf=ξ×v2/2g=ξ×2q2/π2gD2
则阻尼系数R为:R=2ξq/π2gD2;传导系数为:Y=π2gD2/2ξ×q-1
2)水利工程是一个庞大的系统工程,其中包括很多细微的环节,我们所购买的管理信息系统很难做到面面俱到,这就要求我们对已有的管理信息系统进行调整和再次的开发,因此可能会带来系统兼容等一系列问题。
3)水利工程管理部门也可以自主研发,设计只适用于某项水利工程的管理信息系统。这样就能够根据工程的具体情况进行设计,但自主研发的周期一般都很长,而且自主研究无论是从人力还是从财力上讲,都是一笔不小的开销。
2我国水利工程管理信息系统应用中存在的问题
在选择水利工程管理信息系统时,如果选择已有的管理系统,对水利工程的实用性不大,每项工程都具有其自身的特点,而已有的管理系统不能做到符合每项工程的要求,也就失去其应用的价值。如果选择在已有管理系统的基础上加以改造,这就要求考虑到改造完的系统的兼容性问题。如果选择自主研发新的管理系统,就要求在人力、物力、财力上做出重大的投入,并且研发的时间过长,还会影响水利工程的进度。这些问题的关键主要集中在一下几点:
1)现有软件平台功能受限。目前在使用中的水利工程管理信息系统限制了软件平台的功能,在现有的管理制度中,管理人员的作用往往被忽视掉了,管理人员是软件的实际使用者,而在软件设计时并没有考虑到管理人员的实际使用情况,软件设计不够人性化,管理人员在使用中只能进行简单的数据汇总和计算,无法实现管理系统本身应有的作用,从而导致软件平台的功能受到限制。
2)根据有关部门的调查,在建或已经竣工的水利工程管理信息系统采用的都是C/S结构,这种结构的程序是有针对性的开发的,变更不够灵活,不同的工程难以共用,维护和管理的难度较大。由于该结构的每台客户机都需要安装相应的客户端程序,分布功能弱且兼容性差,不能实现快速部署安装和配置,因此缺少通用性,具有较大的局限性。要求具有一定专业水准的技术人员去完成。这些特点已经很难适应并满足现代水利工程的管理要求。
3)现有的软件开发平台标准不统一。目前,水利工程管理信息系统的平台开发标准无法做到统一,软件开发公司都是按照自己的标准对管理系统进行开发,这样,兼容性问题又被凸现出来。水利工程本来就是一个系统的工程,水利工程管理系统一般也都很复杂,导致管理难度加大[3]。各个子系统之间由于兼容问题不能实现信息共享,这就对前期的一系列资源的投入造成了严重的浪费。
3对我国水利工程管理信息系统应用的几点看法
1)B/S结构在管理信息系统中的应用。由于C/S结构已经很难适应并满足现代水利工程的管理要求,B/S结构在水利工程管理信息系统中的应用将是未来必然的发展趋势。B/S结构无论是从系统开发,还是从系统维护方面都优于C/S结构。B/S结构的应用将有效地提高管理的效率,随时对工程的信息进行查询和整理,做出及时准确的决策,并且该结构的管理系统更容易维护,也不必过多考虑兼容性的问题,实现各部门之间的协同作用,真正做到资源共享。
2)逐步建立水利信息体系。电子通讯技术的发展,为信息的快速传播提供了一个平台,信息的传播速度直接影响着信息的利用效率。水利工程是系统工程,其中包含的部门繁多,如何利用水利工程管理信息系统将这些部门的信息整合到一起,为水利工程服务,是接下来工作的重点。利用管理系统,将各个部门的信息,也包括以往的水利工程的相关信息汇总起来,形成水利工程信息体系,为日后的管理和查阅工作提供有力的保障,使管理系统化,增强管理水平。
3)统一系统开发标准。水利工程是造福于民的民生工程,水利工程管理信息系统能够有效提高工程的管理效率,提升工程质量。行业应该统一系统开发标准,软件开发公司要根据水利工程的总体特征,研发符合我国水利工程管理现状的系统软件。
首先,根据工程实际特点,建立质量保证系统,将工程施工全过程的质量管理进行有机的联系,形成一个高效的体系来保证施工质量达到预定工程质量目标;其次,针对性地制定质量方针以及编写质量控制手册,使质量保证体系能更具有协调性、系统性以及可操作性;最后,分班组、分项目落实质量责任制度,使质量目标的实现与每一位员工相挂钩。
1.2加强各重点施工工序的质量控制
(1)围堰施工与排水工程。在工程施工过程中关闭上游闸门,引流至其它支渠进行施工,只有局部地区的渠系建筑物如水闸等基础施工过程中,需修筑围堰。经过技术经济比较,围堰施工最终采用土石草袋围堰,设计顶宽为1.0m,堰顶高出渠道水位约1m,断面为标准梯形,两腰坡比1∶0.5。排水工程则是根据基坑内的渗水情况,采用分段主围堰内设置小围堰的方式,在沟槽内挖若干处深0.5m的积水井,同时,配置若干台潜水泵,在施工过程中先将水排至小围堰外,然后再将排水沟内的水排至渠道中。
(2)土石方开挖工程。严格按照设计要求放样,土方开挖后的坡度护坡不小于1∶0.3,挡墙不小于1∶0.5;为了保证边坡质量,反铲时紧靠坡线开挖,以保证边坡平整度,不出现欠挖及超挖问题;雨天时做好排水工作并配备各类水泵排水。
(3)混凝土灌砌块石工程。块石及碎石等材料在进场时均已严格验收,满足设计要求;加强了砌筑施工工艺控制工作,确保砌石体平整、稳定、密实和错缝的基本要求,砌筑断面偏差符合设计要求;在砌筑过程中遇中雨或大雨,立即停止砌筑,并将已砌块石间缝隙用砂浆或混凝土填实,并捣实后加以遮盖。
(4)土方回填工程。施工过程中,经常测量填筑断面,使其符合设计要求;填筑前,进行压实试验,以保证其达到最佳夯实效果;填筑施工过程中,工地试验室人员跟班作业,并严格按照土工试验有关规程取样试验,及时试验,确保干密度等指标达到设计要求。
(5)混凝土工程。对所有混凝土结构物的材料进行检测,水泥等厂供材料均要求有合格证书,不同来源的材料分类堆放并做好标记,不混合堆放;模板质量严格把关,模板安装要牢固紧密,混凝土拌和按照配合比施工;按规范要求制作混凝土试块,送养护池养护,并及时送试验室试压,以及时掌握混凝土施工情况。
2水利节水灌溉工程成本管理
在具体实施过程中,结合工程特点,优化施工方案,并加强现场劳动力、设备、材料的科学管理和使用,从而节约成本,降低工程造价。成本管理的措施,主要有以下几点:合理安排施工,提高劳动效率和机械、材料利用率,增加周转次数;采用分段作业方式,各作业段前后工艺形成流水作业,保证前、后道工艺施工及验收时间。合理安排各工段劳动力及各道工艺施工人员,不使工艺脱节,保证施工作业区有均衡施工,不浪费劳动力;加强工地设备的调度,保证主要设备充分发挥作用。
3水利节水灌溉工程安全管理
“安全第一,预防为主”是安全管理所遵循的基本方针。本项目安全管理总体目标为:无重大人身伤亡事故,无重大施工机械设备损坏事故、无重大火灾事故、无工程安全事故、无汽车行车责任事故、无重大环境污染事故和重大垮(坍)事故。
3.1安全保护措施
工程项目的施工安全管理,具体落实到每位员工。在实施过程中,根据每个岗位在生产中所承担的安全责任,切实将责任和安全目标分解落实到班组和个人,确保安全生产能够“横向到边、纵向到底、全面覆盖”。同时,建立和健全安全监管体系,以有效预防和减少安全事故的发生。
3.2安全技术措施
水利节水灌溉工程施工中最常见的安全事故,主要为高空坠落、坍塌事故、物体打击、机械伤害和触电伤害这五类,它们占据总事故比例的85%左右。另外还包括因设备材料不合格、安全装置老化、自然环境影响而导致的安全事故,约占10%~15%左右。
由于政策的不健全,导致了灌溉工程的管理出现了问题,有些灌溉的地方根本就没有专人管理,灌溉出现了自由化的状态。管理的职责不明确,在管理的过程中没有明确各个部门的任务,没有明确的分工。一些地方的水利过程往往会出现重建轻管的现象,工程建设后出现没人管理的局面,导致水利工程荒废,无人管理,最终失去其功能。
1.2灌溉工程建设投入的资金不足
在我国水利设施建设的过程中,节水灌溉的管理制度不完善,每年投入到农田水利建设的资金比较的有限,有一部分需要农户自己进行资金的筹集,但是农户筹集资金的能力有限,导致在农田水利建设的过程中缺乏必要的资金,一些过程设施由于缺乏资金,年久失修,失去了其作用,在汛期的时候往往出现事故。
1.3灌溉工程设备不完善,不规范
目前水利工程的面临最严重的问题是资金的投入不够,由于缺乏资金,导致设备出现问题的时候不能及时地修理,一些已经丧失作用的工程设备不能及时地更换。虽然近几年来我国提倡大力发展水利过程,重视农业灌溉,但是由于推广的力度有限,现阶段的水利设施大部分是始建于上世纪,有些过程已经老化,出现了严重的问题,过程设施不完善,质量不达标。
2节水灌溉技术在农田水利工程中需要注意的问题
水利问题刻不容缓。通过以上的内容我们得知了农田水利工程中农业节水灌溉存在的主要问题。问题存在就要去解决,不能等到酿成事故的时候才去解决,到时候悔之晚矣。以下提出节水灌溉技术在农田水利工程中应用中需要注意的问题。
2.1进行灌区调度时运用线性二次高斯模型
灌区的水大部分来自水库,假如灌区的水资源能够得到合理的调度,水资源的利用率和经济效益也就提高了,此时我们运用线性二次高斯模型进行计算灌区水资源的调度,实现水资源的最大利用率。用线性二次高斯模型进行调度的基本步骤是:首先掌握和了解灌区的水土情况,根据水土情况将整个灌区分为几个小型的灌区,然后将小型灌区里的有长有作物的田块看成一个土壤水库,简化灌区调度的难度和步骤。最后用优化控制的方法求解模型,实现水资源的优化调度。
2.2优化农业灌溉中的灌溉量和灌溉时间
农业上,将作物的生长期分为四个阶段。分别为苗期、拔节期、孕育期和成熟期,并且为了计算方便,每个阶段的作物蒸发蒸腾量看成一个定值。在灌溉的过程中,只考虑两种损失,一种是在灌溉水输送的过程中由于渠道的渗漏和水面的蒸发而引起的损失;另一种由于土壤水的下渗而引起的损失量。将由于土壤水的下渗而引起的损失量和在灌溉水输送的过程中由于渠道的渗漏和水面的蒸发而引起的损失的总和看成一个定值。然后根据实际的情况建立模型,假设作物生长需水量为定值,然后两种损失为定值的情况下确定最优灌水量和最优灌水周期,使得灌溉水的损失最小。
2.3运用可变模糊理论选择节水灌溉方式
灌溉方式是影响技术推广的重要因素。节水灌溉方式的选择是从许多建设方案中,经过经济回收率,灌水强度,灌水均匀度和施工等方面进行综合的考虑,最后选出最优的灌溉方案。目前主要的方法有关联分析法,集队分析法,属性识别模型等等,但是这些方法各有优点,也各有缺点。基于可变模糊理论之上的优选方法如下:(1)有n个待选的节水灌溉方案组成的样本,为一个集合。(2)确定指标的权重向量。(3)根据相对隶属度计算公式计算方案j对1级(优级)或0级(劣级)的相对隶属度。(4)根据计算各方案的相对优属度向量,求其平均值(为相对优属度向量u)。(5)根据u中各方案的相对优属度大小,对其进行排序,选出优属度最大的,即为最佳方案。
2.4统筹规范农田水利工程的节水灌溉
由于科学技术的发展,传统的农田水利工程节水灌溉的研究方法已经不能适合于当前的水利发展。现阶段需要的是一种能够准确,及时的反应当前的土壤和作物状况的研究方法。目前提出了基于物联网的节水灌溉网络体系。物联网在节水灌溉系统中的组成包括系统网络,系统软件和系统供电策略。系统网络又可细分为监测区,采集区和控制区,其主要作用是监测和传送作物的生长情况和土壤状况,对灌溉的流量和时间起控制作用;软件结构的主要作用是在软件窗口中以动画的形式显示灌溉系统和农田的墒情信息;系统供电策略的主要作用是为整个软件的运行提供电力,但是在设计的过程中首先考虑太阳能发电,并且适当的采用优化策略。