量子计算论文范文

时间:2023-03-27 16:51:07

引言:寻求写作上的突破?我们特意为您精选了4篇量子计算论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

量子计算论文

篇1

井字梁的计算及施工图处理

1、井字梁与柱子采取“避”的方式,调整井字梁间距以避开柱位;避免在井字梁与柱子相连处井字梁的支座配筋计算结果容易出现的超限情况;减少梁柱节点在荷载作用下,由于两者刚度相差悬殊而成为受力薄弱点以致首先破坏,由于井字梁避开了柱位,靠近柱位的区格板需另作加强处理。

2、"井字梁与柱子采取“抗”的方法,把与柱子相连的井字梁设计成大井字梁,其余小井字梁套在其中,形成大小井字梁相嵌的结构形式,使楼面荷载从小井字梁传递至大井字梁,再到柱子。

3、井字梁截面高度的取值以刚度控制为主,除考虑楼盖的短向跨度和计算荷载大小外,还应考虑其周边支承梁抗扭刚度的影响。

4、由于井字梁楼盖的受力及变形性质与双向板相似,井字梁本身有受扭成分,故宜将梁距控制在3m以内。

5、井字梁一般可按简支端计算。

6、当井字梁周边有柱位时,可调整井字梁间距以避开柱位,靠近柱位的区格板需作加强处理,若无法避开,则可设计成大小井字梁相嵌的结构形式。

7、钢筋混凝土井字梁是从钢筋混凝土双向板演变而来的一种结构形式。双向板是受弯构件,当其跨度增加时,相应板厚也随之加大。但板的下部受拉区的混凝土一般都不考虑它起作用,受拉主要靠下部钢筋承担。因此,在双向板的跨度较大时,为了减轻板的自重,我们可以把板的下部受拉区的混凝土挖掉一部分,让受拉钢筋适当集中在几条线上,使钢筋与混凝土更加经济、合理地共同工作。这样双向板就变成为在两个方向形成井字式的区格梁,这两个方向的梁通常是等高的,不分主次梁,一般称这种双向梁为井字梁(或网格梁)。

8、井字梁的支承井字梁楼盖四周可以是墙体支承,也可以是主梁支承。墙体支承的情况是符合计算图表的假定条件:井字梁四边均为简支。当只有主梁支承时,主梁应有一定的刚度,以保证其绝对不变形。

9、井字梁楼盖两个方向的跨度如果不等,则一般需控制其长短跨度比不能过大。长跨跨度L1与短跨跨度L2之比L1/L2最好是不大于1.5,如大于1.5小于等于2,宜在长向跨度中部设大梁,形成两个井字梁体系或采用斜向布置的井字梁,井字梁可按45°对角线斜向布置。

10、两个方向井字梁的间距可以相等,也可以不相等。如果不相等,则要求两个方向的梁间距之比a/b=1.0~2.0。实际设计中应尽量使a/b在1.0~1.5之间为宜,最好按井字梁计算图表中的比值来确定,应综合考虑建筑和结构受力的要求,一般取值在1

2~3m较为经济,但不宜超过3.5m。

11、两个方向井字梁的高度h应相等,可根据楼盖荷载的大小,取h=L2/20,但最小h不得小于短跨跨度1/30.

12、梁宽=取梁高1/3(h较小时)1/4(h较大时),但梁宽不宜小于120mm。

13、井字梁的挠度f一般要求f≤1/250,要求较高时f≤1/400。

14、井字梁的楼板井字梁现浇楼板按双向板计算,不考虑井字梁的变形,即假定双向板支承在不动支座上。双向板的最小板厚为80mm,且应大于等于板较小边长的1/40。

15、井字梁的配筋井字梁的配筋和一般梁的配筋基本上要求相同。但在设计中必须注意以下几点:

a.在两个方向梁交点的格点处,短跨度方向梁下面的纵向受拉钢筋应放在长跨度方向梁下面的纵向受拉钢筋的下面,这与双向板的配筋方向相同。

b.在两个方向梁交点的格点处不能看成是梁的一般支座,而是梁的弹性支座,梁只有在两端支承处的两个支座。因此,两个方向的梁在布筋时,梁下面的纵向受拉钢筋不能在格点处断开,而应直通两端支座。钢筋不够长时,必须采用焊接,其焊接质量必须符合有关规范要求。C.由于两个方向的梁并非主、次梁结构,所以两个方向的梁在格点处不必设附加横向钢筋。但是在格点处,两个方向的梁在其上部应配置适量的构造负钢筋,不宜少于2根Ф12,以防在荷载不均匀分布时可能产生的负弯矩,这种负钢筋一般相当于其下部纵向受拉钢筋的1/3。

16、井字梁楼盖的混凝土强度等级不应低于C20。为了避免和减小楼盖混凝土的收缩裂缝,混凝土的强度等级不宜太高。

17、井字梁和边梁的节点宜采用铰接节点,但边梁的刚度仍要足够大,并采取相应的构造措施。若采用刚接节点,边梁需进行抗扭强度和刚度计算。边梁的截面高度大于或等于井字梁的截面高度,并最好大于井字梁高度的20%~30%。

18、与柱连接的井字梁或边梁按框架梁考虑,必须满足抗震受力(抗弯、抗剪及抗扭)要求和有关构造要求。梁截面尺寸不够时,梁高不变,可适当加大梁宽。

19、对于边梁截面高度的选取,应按单跨梁的规定执行,一般可取h=L/8~L/12(L为边梁跨度)。梁柱截面及区格尺寸确定后可进行计算,根据计算情况,对截面再作适当调整。

20、在边梁内应按计算配置附加的抗扭纵筋和箍筋,以满足边梁的延性和裂缝宽度限制要求。21、在节点两边,边梁要增设附加吊筋或吊箍,将交叉梁的全部支座反力传到边梁的受压区;在楼面梁端部(一倍梁高的范围)需加密箍筋,且不少于Φ8@100。

22、井字梁最大扭矩的位置,一般情况下四角处梁端扭矩较大,其范围约为跨度的1/4~1/5。建议在此范围内适当加强抗扭措施

井式梁板结构的布置方式:

井式梁板结构的布置一般有以下五种,下面分别于以说明。

1、正式网格梁

网格梁的方向与屋盖或楼板矩形平面两边相平行。正向网格梁宜用于长边与短边之比不大于1.5的平面,且长边与短边尺寸越接近越好

2、斜向网格梁

当屋盖或楼盖矩形平面长边与短边之比大于1.5时,为提高各项梁承受荷载的效率,应将井式梁斜向布置。该布置的结构平面中部双向梁均为等长度等效率,于矩形平面的长度无关。当斜向网格梁用于长边与短边尺寸较接近的情况,平面四角的梁短而刚度大,对长梁起到弹性支承的作用,有利于长边受力。为构造及计算方便,斜向梁的布置应与矩形平面的纵横轴对称,两向梁的交角可以是正交也可以是斜交。此外斜向矩形网格对不规则平面也有较大的适应性。

3、三向网格梁

当楼盖或屋盖的平面为三角形或六边形时,可采用三向网格梁。这种布置方式具有空间作用好、刚度大、受力合理、可减小结构高度等优点。

4、设内柱的网格梁

篇2

二、试验

该试验利用自主研发的“GIS综合试验系统”进行了载负量计算模型的嵌入实现。选择郑州地区的4个不同区域,在同一比例尺下进行电子地图的绘制(如图2所示),并实时利用载负量计算模型得出4个不同区域内电子地图载负量的值。为了对比,将试验区域内的4幅电子地图输出成为BMP格式的图像,并利用Photoshop软件进行色彩处理,获得每幅图像中非底色(白色)部分的像素个数(该部分为目标颜色值),除以图像像素总个数,从而获得每幅地图的载负量。上述获得的两组载负量的值见表4。从表4可以看出,在图2(a)中,模型计算方法获得的载负量比色差识别法获得的载负量要小,而图(c)中模型计算方法获得的载负量比色差识别方法计算的载负量要大。经过分析,由于图2(a)中含有面对象,而面的普染色在利用色差识别方法时将面要素的内部填充色也作为要素载负量进行了计算,但地图学理论[2]中一般不将面要素的色彩填充作为地图面积载负量,因此造成了图2(a)中载负量的差值;图2(c)中,由于没有面要素内部色彩被计算成载负量,而模型计算方法在计算过程中考虑了要素的空白位置,造成了模型计算方法计算的结果比色差识别法计算的结果值要略大,类似的情况在图2(c)中也出现了。图2(d)中由于面要素的区域稍大,而整体图面内要素数量较少,造成了利用色差识别法计算的载负量比模型计算方法计算的结果值稍大。

篇3

1994年7月毕业于南京大学物理系;1999年在中科院物理所获博士学位;1999年9月至2001年7月在清华大学高等研究中心完成博士后研究工作;2001年起在北京师范大学任教。

这就是寇谡鹏的求学、治学之路:水到渠成、充实而不平庸。早在青少年时期,寇谡鹏就对物理产生了浓厚的兴趣,对科研发自心底的热爱。当时,物理学在国内很有影响力,全国到处都在宣传像李政道、杨振宁这些获得诺贝尔奖的华裔物理学家,国内很多优秀学生在大学阶段都选择了攻读物理,寇谡鹏也是其中之一。但是,他的选择却并非跟风的盲目之举,而是基于发自心底的对物理学科的热爱,他说, “只有真正的兴趣使然,才会深入的、耐得住寂寞的钻研学问”。

也正是由于兴趣使然,寇谡鹏学习刻苦、成绩优异,在中国科学院物理研究所攻读博士学位期间,他被评为中国科学院研究生院优秀研究生,曾获得中国科学院院长奖学金优秀奖。

1999年,寇谡鹏进入清华大学高等研究中心做博士后研究工作,那里有世界一流大学的研究模式和条件,有宽松自由的学术环境,在那里,寇谡鹏结识了当今华人物理界的众多精英,采访中他就反复提及翁征宇、文小刚等人的名字,称赞他们在物理研究中的杰出成就。和众多大师级的人物近距离的接触,也增加了他们之间合作的机会。2004年,寇谡鹏作为北京师范大学物理学科学术带头人的培养对象,在“杰出青年学者数学物理研修项目”资助下被派往美国麻省理工学院研修,合作导师就是文小刚教授。

刻苦求索,玉汝于成。多年来,寇谡鹏始终瞄准理论物理的前沿尖端方向做研究,他的研究领域涉及强关联电子系统、高温超导理论、介观物理、量子场论、拓扑序和拓扑量子计算等。至今,他已在强关联电子系统、高温超导体机制、拓扑量子态等研究领域中取得了若干创造性的成果,在国际国内重要期刊60余篇,其中美国物理评论快报(PRL)3篇、美国物理评论(PR)27篇、欧洲物理快报(EPL)3篇。目前主持国家自然科学基金一项,科技部973项目量子调控子项目两项,主持博士点基金(博导类)一项,国内、国际学术会议邀请报告近二十余次。并担任美国物理评论快报、美国物理评论、中国科学、中国物理、理论物理通讯、物理学报、物理学前沿等国际、国内杂志审稿人。

科研篇――瞄准前沿发展尖端

一心做学问、专注自己有兴趣的领域,也使寇谡鹏得到了同行的认可,入选教育部“新世纪优秀人才支持计划”并获得第十三届茅以升北京青年科技奖。以下是他的代表性成果:

在拓扑序的分类及拓扑量子相变研究中,发现了一类二维Z2拓扑数,可以利用这种新的拓扑数对拓扑序、拓扑超导进行分类,另外,还发现Z2拓扑序可以由MutuaI-Chern-Simons场论描述,包括拓扑简并、手征边缘态等。获得完整的有效理论可以使得我们很方便的描述拓扑序的低能物理行为。还利用分数量子霍尔态中的hierarchy theory提出了Mutual Chern-Simons Landau-Ginzburg方法,得到了一类拓扑序量子相变的普适性原理。还运用对偶方法得到了基于自旋模型的Z2拓扑序的量子相变的一些严格结果,通过引入了闭弦算符描述该相变,发现这类量子相变开弦和闭弦的对偶关系。

在拓扑量子计算中,提出了一种新的拓扑量子计算方案,通过控制拓扑序基态的量子隧道效应进行拓扑量子计算,解决了如何控制拓扑序基态的难题。为此系统化的研究了拓扑序的量子隧道效应,在此基础上进一步提出更适合进行拓扑量子计算的表面码的拓扑量子计算方案,该工作被多个虚拟网络杂志多次选录。

在相互作用电子系统中的新奇量子态领域,系统化的研究了一类关联费米系统:Nodal绝缘体。这是在六角格子或丌-磁通格子中的相互作用电子系统。发现在金属绝缘体转变附近可能存在一种新的物态:nodal自旋液体,一种具有自旋旋转对称性、又有空间平移对称性的非磁绝缘体。发现其中的拓扑元激发是无质量的费米激发,存在电荷自旋分离现象。相关工作作为“Review article”被邀请写入Nova science Publishers的新书“Insulators:Types,Properties and Uses”。另外,基于关联拓扑绝缘体,从理论上预言了可能存在的三种新奇量子态:手征自旋液体、拓扑自旋密度波、复合自旋液体。其中,复合自旋液体态不同于已知的所有自旋液体,其元激发为电子和skyrmion拓扑激发的复合体,没有自旋电荷分离。

在高温超导体的拓扑理论领域,从高温超导体的微观模型出发,得到了一个有效场论模型。利用随机重整化群技术研究了高温超导体绝缘体一超导转变的物理机制,发现该转变的物理本质是一个量子临界点,在该量子临界点发生对偶禁闭退禁闭转变。并在此基础上解释了高温超导体中条纹相不稳定性的起源。另外,从低能有效场论出发,预言在赝能隙区,在外加电磁场的情况下,高温超导体存在守恒的无耗散自旋流。

树人篇――用心育人凝练队伍

人才培养方面,寇谡鹏每年讲授本科生基础课“电磁学”将前沿知识融入教学中,取得了很好的教学效果,同时指导了十多个本科毕业论文和两个本科生校级科研基金项目。另外参与教学改革:主持校级精品课“电磁学”,还参与北京市精品课“固体物理”和北师大“电磁学网络课程”的建设。因此,他于2006年获得北京师范大学励耘奖优秀青年教师奖二等奖,2007年获得北京市教育创新标兵。

篇4

【论文摘要】本文首先探讨了近似计算在静态分析中的应用问题,其次分析了纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册,最后电子技术在时间与频率标准中的应用进行了相关的研究。因此,本文具有深刻的理论意义和广泛的实际应用价值。

一、近似计算在静态分析中的应用

在电子技术中应运中,近似计算贯穿其始终。然而,没有近似计算是不可想象的。而精确计算在电子技术中往往行不通,也没有其必要。尽管近似计算会引入一定的误差,但这个误差控制得好,不会对分析其它电路产生大的影响。所以关键在于我们如何掌握,特别是如何应用近似计算。

在工作点稳定电路中的应用要进行静态分析,就必须求出三极管的基电压,必须忽略三极管静态基极电流。这样,我们得到三极管的基射电子的相关过程及结论。

二、纳米电子技术急需解决的若干关键问题

由于纳米器件的特征尺寸处于纳米量级,因此,其机理和现有的电子元件截然不同,理论方面有许多量子现象和相关问题需要解决,如电子在势阱中的隧穿过程、非弹性散射效应机理等。尽管如此,纳米电子学中急需解决的关键问题主要还在于纳米电子器件与纳米电子电路相关的纳米电子技术方面,其主要表现在以下几个方面。

(1)纳米Si基量子异质结加工

要继续把现有的硅基电子器件缩小到纳米尺度,最直截了当的方法是采用外延、光刻等技术制造新一代的类似层状蛋糕的纳米半导体结构。其中,不同层通常是由不同势能的半导体材料制成的,构建成纳米尺度的量子势阱,这种结构称作“半导体异质结”。

(2)分子晶体管和导线组装纳米器件即使知道如何制造分子晶体管和分子导线,但把这些元件组装成一个可以运转的逻辑结构仍是一个非常棘手的难题。一种可能的途径是利用扫描隧道显微镜把分子元件排列在一个平面上;另一种组装较大电子器件的可能途径是通过阵列的自组装。尽管,PurdueUniversity等研究机构在这个方向上取得了可喜的进展,但该技术何时能够走出实验室进入实用,仍无法断言。

(3)超高密度量子效应存储器

超高密度存储量子效应的电子“芯片”是未来纳米计算机的主要部件,它可以为具备快速存取能力但没有可动机械部件的计算机信息系统提供海量存储手段。但是,有了制造纳米电子逻辑器件的能力后,如何用这种器件组装成超高密度存储的量子效应存储器阵列或芯片同样给纳米电子学研究者提出了新的挑战。

(4)纳米计算机的“互连问题”

一台由数万亿的纳米电子元件以前所未有的密集度组装成纳米计算机注定需要巧妙的结构及合理整体布局,而整体结构问题中首当其冲需要解决的就是所谓的“互连问题”。换句话说,就是计算结构中信息的输入、输出问题。纳米计算机要把海量信息存储在一个很小的空间内,并极快地使用和产生信息,需要有特殊的结构来控制和协调计算机的诸多元件,而纳米计算元件之间、计算元件与外部环境之间需要有大量的连接。就现有传统计算机设计的微型化而言,由于电线之间要相互隔开以避免过热或“串线”,这样就有一些几何学上的考虑和限制,连接的数量不可能无限制地增加。因此,纳米计算机导线间的量子隧穿效应和导线与纳米电子器件之间的“连接”问题急需解决。

(5)纳米/分子电子器件制备、操纵、设计、性能分析模拟环境

当前,分子力学、量子力学、多尺度计算、计算机并行技术、计算机图形学已取得快速发展,利用这些技术建立一个能够完成纳米电子器件制备、操纵、设计与性能分析的模拟虚拟环境,并使纳米技术研究人员获得虚拟的体验已成为可能。但由于现有计算机的速度、分子力学与量子力学算法的效率等问题,目前建立这种迅速、敏感、精细的量子模拟虚拟环境还存在巨大困难。

三、交互式电子技术手册

交互式电子技术手册经历了5个发展阶段,根据美国国防部的定义:加注索引的扫描页图、滚动文档式电子技术手册、线性结构电子技术手册、基于数据库的电子技术手册和集成电子技术手册。目前真正意义上的集成了人工智能、故障诊断的第5类集成电子技术手册并不存在,大多数电子技术手册基本上位于第4类及其以下的水平。需要声明的是,各类电子技术手册虽然代表不同的发展阶段,但是各有优点,较低级别的电子技术手册目前仍然有着各自的应用价值。由于类以上的电子技术手册在信息的组织、管理、传递、获取方面具有明显的优点。简单的说,电子技术手册就是技术手册的数字化。为了获取信息的方便,数字化后的数据需要一个良好的组织管理和提供给用户的形式,电子技术手册的发展就是围绕这一过程来进行的。

四、电子技术在时间与频率标准中的应用

相关范文
友情链接