英语硕士论文范文

时间:2023-03-27 16:51:31

引言:寻求写作上的突破?我们特意为您精选了12篇英语硕士论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

英语硕士论文

篇1

马上就将面临毕业了,大家知道英语硕士论文致谢应该怎么写吗?下面是学术参考网小编为朋友们搜集整理的英语硕士论文致谢,欢迎阅读~希望可以帮助到各位。

Acknowledgements

MydeepestgratitudegoesfirstandforemosttoProfessoraaa,mysupervisor,forherconstantencouragementandguidance.Shehaswalkedmethroughallthestagesofthewritingofthisthesis.Withoutherconsistentandilluminatinginstruction,thisthesiscouldnothavereacheditspresentform.

Second,IwouldliketoexpressmyheartfeltgratitudetoProfessoraaa,wholedmeintotheworldoftranslation.IamalsogreatlyindebtedtotheprofessorsandteachersattheDepartmentofEnglish:Professordddd,Professorssss,whohaveinstructedandhelpedmealotinthepasttwoyears.

Lastmythankswouldgotomybelovedfamilyfortheirlovingconsiderationsandgreatconfidenceinmeallthroughtheseyears.Ialsoowemysinceregratitudetomyfriendsandmyfellowclassmateswhogavemetheirhelpandtimeinlisteningtomeandhelpingmeworkoutmyproblemsduringthedifficultcourseofthethesis

篇2

二十一世纪,随着新课程体系的建立,课程评价体系逐渐引起重视。教学评价包括终结性评价以及形成性评价,在教学中有着重大的作用,不仅可以帮助教师改善教学方法,保证教学质量,而且可以帮助学生调整学习策略,提高学习效率,从而达到以评促学,以评促教的目的。英语视听说课程是英语专业高年级的一门专业选修课,主要是为了培养学生听、说、读、写综合英语能力。在本门课程中,为激发学生练习听说的内在动力,引导学生积极参加课堂活动,提高学生综合运用英语的能力,笔者所在的英语视听说教学组以建构主义理论为主导,注重学生在学习过程中的自主学习,并采用终结性评价和形成性评价相结合的教学评价模式,对学生的学习效果进行科学、合理的评价。 

一、理论基础 

1.形成性评价体系。根据评价在教学过程中的作用和功能,教学评价可以分为形成性评价和终结性评价。传统的终结性评价通常以期末考试、结业考试的形式,在一个阶段的学习结束时对学生学习结果的评价。这虽然在一定程度上可以检验学生的学习成果,但是不利于激发学生的学习兴趣。目前我国仍有许多高校在英语教学中对学生听说能力的评价方式过多地依赖于终结性评价,强化了考试分数的作用,致使相当一部分学生为了考试而专注于考试要求的题目练习,而忽视了实际听说能力的提高,这显然不利于学生自主学习能力的培养。 

相对于传统的终结性评价,形成性评价更注重学生的学习过程。形成性评价是由美国哈弗大学学者斯克里芬(M.Scriven)于1967年率先提出的,后由美国教育学家布鲁姆(B.S.Bloom)应用于教学领域。形成性评价注重观察学生学习过程中的表现、所取得成绩以及其学习态度、学习策略,对学生的学习全过程进行观察、记录、反思以及总结的一种发展性评价体系,有助于激励学生,帮助学生调控自己的学习过程,获得成就感。 

2.建构主义与形成性评价。建构主义也称之为结构主义,是由认知主义发展而来的哲学理念。建构主义理论认为教学是以学生为主体,学生根据自己已有的知识和经验主动建构,创造情境,从而获得知识。同时,建构主义理论认为学生还需要与同伴共同探讨来进行知识建构。由于学生个体差异较大,在同一课程中,不同的学生会采用不同的学习策略,科学公正客观的评价学生的学习结果变得尤为重要。形成性评价,学生是评价的主体,注重对学生在知识建构过程中所采取的学习方法、策略进行评价,从而激励学生、增强学生的学习动力。 

二、评价工具 

英语视听说课程注重语言的人文性,充分利用多媒体教学,将平面教材转化为视频教材,为学习者提供了视觉以及听觉的刺激,创造了一个趣味化的学习环境。结合英语视听说教学特点,笔者所在课程组在教学实践中,对学生的课堂表现以及课外学习采取了终结性评价与形成性评价相结合的评价手段,在形成性评价中主要采取了教师观察、小组协作、电子档案、网络学习等评价手段。 

1.教师观察。教师在形成性评价中扮演非常重要的角色。在形成性评价体系中,教师观察将贯穿整个教学过程,包括正式和非正式两种形式。在日常教学过程中,教师注意观察学生如何使用教材,对教师所教内容的反应,是否积极主动与其他同学合作交流,如何理解运用所学知识。教师以日常行为记录、学生评估表或记事簿等方式记录下来,最后经过汇总,可以将资料反馈给学生,帮助学生了解自己的不足,以便调整学习策略。另外,通过教学活动的观察,教师还可以根据学生的反应了解学生对所学知识的掌握程度,哪一种教学方法更为学生所接受、更为有效以及学生对哪些教学材料更感兴趣。通过教师的观察,教师能够更好地了解学生的学习,根据观察结果教师可以适当调整自己的教学方法。 

2.小组协作。建构主义强调学习者的主体作用。小组协作学习模式是指两个或者多个学生相互配合共同努力来实现学习目标。教师以学习小组为基础,指导小组成员相互学习,相互合作,发挥群体的积极性,提高个体的学习效率,从而激发学生的积极性和创造性。在英语视听说课堂上,课程组尝试在影视剧作品模仿改编中根据学生的学习兴趣、学习成绩、性别比例、交往技能等,将学生分成若干学习小组。每个小组的整体英语水平相当。学生以小组形式,进行角色分配,对经典影视剧中的片段进行模仿改编,并提交一份书面材料总结小组合作的成员分工、取得结果、存在的问题以及改进方式。另外每一小组都要对其他小组进行评价打分,并计入平时成绩。小组合作不仅让学生更加积极主动地融入课堂,还可以让学生取长补短、培养团队合作意识。 在形成性评价中,教师不再成为评价的唯一主体,学生也可以参与到评价中来。这一方面调动了学生的学习积极性,使学生更主动的参与到学习中,同时也保证了评价的公正性和客观性。但是在实际的评价中,教师应进行指导和监督,同时教师评价和学生评价所占的比例也应当结合具体的课程做出设计,以保证评价的科学性。 

3.电子档案。电子档案,又称之为成长记录袋,是关于学生学习成绩以及学生发展状况的汇集,在形成性评价中是一个非常重要的手段。动态性是电子档案袋的一个显著特征,随着每天、每周、以及每月而不断发生改变。通过电子档案,教师可以记录、存储、再现学生的学习过程并评价学习过程以及学习成果。另外,在教学过程中,教师可以建立教师电子档案袋记录日常教务活动,对学生的成绩进行管理,进行学期评定、反馈指导。档案袋真实反映了学生的成绩,更有助于教师了解学生。定期对学生电子档案的分析可以帮助教师发现教学中的不足,调整教学策略。同时,电子档案也更有助于学生交流学习,学生可以经常回顾自己以及他人的电子档案,借鉴其他同学的经验,不断提高自己。 

篇3

    Fan Zhang

    University of Limerick

    MEng. Computer and Communication Systems

    ID: 0526401

    Abstract: I am a video game fan, but not an addict. Since this topic attracted me a lot, I decided to choose this one as my topic for the third assignment of Processor Architecture Module. I started to play video games since I was five. While I was playing games, I found the game console itself just like a mystery, how could they react our actions to the controller then reflects so amazing pictures on TV? Although I have read a lot about it in game magazines, I admit that I didn’t try to find the answer until I found this topic. This is a great chance for me to answer the question myself. At the same time, I want to present you this paper, which should be fun.

    This paper concerns the differences of architecture between PC and PlayStation 2. Since the purposes of PC and PlayStation 2 are different (or maybe I should say the purposes of PC include that of PlayStation 2), the different objectives decide the different design orientation. I think PlayStation 2 is a good game console for the comparison. First, a lot of documentations about PlayStation 2’s Emotion Engine can be found in the Internet. Second, as far as I know, PlayStation 2’s design has straightforward purposes: 3D games and multimedia, which makes the game console is seemed to be born for these two reasons. Contrasts to PlayStation, current PCs do very well on these two aspects, but the cost is the unstoppable upgrade of hardware. PlayStation 2 is a product born 5 years ago. Today tens of millions of people are still enjoy PlayStation games at home. 5-year-old PCs have been washed out already.

    Keywords: PC, processor, video card, system controller, bus, Emotion Engine, Vector Unit, Graphics Synthesize.

    1. INTRODUCTION

    1.1 The evolution of game performance

    The computer technology has achieved rapid evolution this year. From Figure 1.1 to Figure 1.5 you can see, in almost twenty years, how great changes of game performance are, both PC and game consoles.

    Figure 1.1: Final Fantasy I (FC) 1987 by SQUARE

    Figure 1.2: Final Fantasy XII (PlayStation 2) 2006 by SQUARE ENIX

    Figure 1.3: Prince of Persia (PC) 1989 by Broderbund

    Figure 1.4 Prince of Persia: The Two Thrones (PC) 2006 by Ubisoft

    The screenshots above are the evidences of technique developments. In these twenty years, computers are almost 10 times faster than in the 1980’s. The cost of buying a computer is decreasing simultaneously. However, the development orientations of both PC and game consoles didn’t change much during these 20 years. Here I want to say game consoles and PC are different, although they both can be classified to ‘computer’ class, although PC includes all game consoles’ functions (but the software are not compatible each other). The differences include many areas, the architecture, the media, the software producing and selling model, and the customers.

    1.2 Why they are different?

    I would rather to say it is because of the distinct purposes. Of course PC can play games, can do anything that game consoles do, and in the present, PlayStation 2, the most famous game console in the world, can connect to Internet, can print paper, even can run complete Linux operating system, but PC is general purpose, this means PC should care too much things, and be good at almost everything. For instance, PC should be good at text processing, games, printing, Internet connection, a huge amount of protocols are settled for it; PC also need to compatible with all components and software that are designed and implemented by current standards. But game consoles are different. They need only care about games, which mean most designs are flexible. At the same time, the standards which PC has to obey do not affect it at all. No extra cost, no burden, only focus on games.

    Figure 1.5: Sony’s PlayStation 2

    1.3 Multimedia

    From later 20th century, multimedia has become one of the main purposes of PC. Corresponding new technology for enhancing the capability of multimedia processing on PC has been developed as well. However, the reality of transmission speed bottleneck hasn’t been changed much. Keith Diefendorff and Pradeep K. Dubey published an article named “How Multimedia workloads will change Processor Design” in 1996. They argued the dynamic media processing would be a big challenge for current processor architecture. They also thought it will force the fundamental changes in processor design.

    Before Pentium 4, the processors shared the same character: their data cache memory was big, but instruction cache memory was relatively small. It was quite useful for most usage, for instance, word editor, e-business, stock information processing, and so on. However, Diefendorff did not think it is useful, or efficient enough for multimedia processing, for multimedia data come and forth constantly, no need to settle a huge bulk of storage space for holding the information that rarely has chance of reuse. Contrarily, multimedia processing requires more calculation than others. So, for multimedia calculation, the instruction cache memory should become larger, both caches require faster transmission speed as well. We shall see this prediction has realized much in both Pentium 4 and PlayStation 2.

    1.4 The purpose and the brief layout of the article

    This paper is mainly talk about the architectural differences between PC and PlayStation 2, which is the most famous game console in the world. The article will discuss several aspects, the whole architecture, the CPU, the motherboard, and the graphics. In the following section, the whole architectures are compared. Two processors, Intel’s Pentium 4 and PlayStation 2’s Emotion Engine are discussed and compared in the third section. The fourth section is about the bus and caching comparison. The fifth section mainly talks about PC and PlayStation 2’s graphic devices, Video card and Graphics Synthesizer. The conclusion will be made in the last section.

    2. WHOLE ARCHITECTURE COMPARISON

    2.1 PC architecture

    The basis of PC could root back to 1940’s. John von Neumann (1903-57), who constructed a very basis structure of computer, stayed his name in the history forever. The architecture of modern PC is still based mainly on his architecture. Let’s see a diagram of PC architecture as our basis of illustrating how PC works for game performance in the future.

    Figure 2.1: PC architecture--------------------------------->

    Different regions in the diagram have different clock speed. We can see the system controller is the heart of whole PC system. It carries data between processor and other components in PC over bridge. The bridge is used to connect interfaces and buses. Two kinds of bridges exist in PC, North Bridge (the system controller) and south bridge (the bus bridge). The system controller provides an interface between the processor and external devices, both memory and I/O. The system controller works with the processor to perform bus cycles.

    From the diagram we can see, the system controller makes the whole diagram to be complicated. This is because the system controller has to adjust the bus cycles between the processor and the external device that it wants to access. Briefly, the PC’s working procedure can be described as follow:

    PC executes commandsèaccess data with the help of system controllerèreturns the execution resultèexecute commandsè…

    System controller also possesses the function of controlling DMA (Direct Memory Access), which is the ability to transfer data between memory and I/O without processor intervention.

    2.2 PlayStation 2 Overview

    Let’s first see the architecture of PlayStation 2.

    Figure 2.2: the architecture of PlayStation 2---------------->

    PlayStation 2 is composed of a graphics synthesizer, the Emotion Engine, the I/O Processor (IOP), and a Sound Processor Unit (SPU). The IOP controls peripheral devices such as controller and disk drive and detect controller input, which is sent to the Emotional Engine. According to this signal, the Emotional Engine updates the internal virtual world of the game program within the video frame rate. Many physical equations need to be solved to determine the behavior of the character in the game world. After this is determined, the calculated object position is transformed according to the viewpoint, and a drawing command sequence (display list) is generated. When the graphics synthesizer receives the display list, it draws the primitive shape based on connected triangles on the frame buffer. The contents of the frame buffer are then converted from digital to analogue, and the video image appears on the TV. Finally, the Sound Processor is in charge of sound card thing, it outputs 3D digital sound using AC-3 and DTS. This is the overview of PlayStation 2 working procedure.

    2.3 Comparison

    Compare Figure 2.1 and Figure 2.2, we can see that the PC’s architecture is far more complex than that of PlayStation 2’s. There are many reasons. PC has more devices has to care. For instance, PlayStation’s I/O processor, which is act as the same role as the system controller bus in PC, the chief responsibility of this chip is to manage the different devices attached to the PS2. 2 PlayStation controller port, and MagicGate-compatible memory card interface, 2 USB ports, and a full-speed 400Mbps IEEE 1394 port, which are much less than PC. The other main reason is processor’s speed increased much faster than other devices; the devices themselves had uneven speed increments as well. In general, PlayStation 2 has simpler architecture and less components and devices.

    3. ALL ABOUT PROCESSORS

    3.1 Pentium 4 Processor

    Pentium 4 adopts Intel’s 7th generation architecture. We can see in detail from the diagram below. Since the birthday of PlayStation 2 waiting for exploring was 4th March 2000, when Pentium 4 was not published yet. It is unfair to PlayStation 2. However, Pentium 4 is the most popular processor in the present, and PlayStation 2 is globally the most popular game console, whatever.

    Figure 3.1: Pentium 4 processor architecture

    Since the previous generation architecture (Pentium III) Intel began to use hybrid CISC/RISC architecture. The processor has to accept CISC instructions, because it has to be compatible with all current software (most software is written using CISC instructions). However, Pentium 4 processes RISC-like instructions, but its front-end accepts only CISC x86 instructions. A decoder is in charge of the translation. Intel doesn’t create the path for programs using pure RISC instructions.

    CISC instructions are rather complex, decoding one may cost several clock cycles. In Pentium III era, once a CISC instruction needed to be processed several times (i.e. a small loop), the decoder had to decode the instruction again and again. In Pentium 4 this situation has been improved by replacing Pentium III’s L1 instruction cache to Trace Cache, which is placed behind the decoder. The trace cache ensures that the processor pipeline is continuously fed with instructions, decoupling the execution path from a possible stall-threat of the decoder units. After decoding stage, Intel introduces the Renamer/Allocator unit to change the name and contents of 32-bit CISC instructions of the registers used by the program into one of the 128 internal registers available, allowing the instruction to run at the same time of another instruction that uses the exact same standard register, or even out-of-order, i.e. this allows the second instruction to run before the first instruction even if they mess with the same register.

    The other big advance of Pentium 4 is its SSE2 - The New Double Precision Streaming SIMD Extensions. 128-bit SIMD package offers 144 strong instructions. Intel prepares two SIMD instruction units for Pentium 4 (64-bit each), one for instructions, and the other for data. Let’s recall Section 1.3, Pentium 4’s 128-bit SIMD extension is Intel’s efforts for meeting the future requirements for multimedia implementations. Because of that, video, games implementation capability gained the drastic enforcement.

    Pentium 4’s pipeline is the most disputable place. When it was announced, 20-stage pipeline surprised a lot of people. Intel did so because the more stage pipeline can increase the clock rate of processor. However, once the pipeline does not contain the information what processor need, the pipeline refill-time is going to be a long wait. In fact, Pentium 4 is only faster than Pentium III because it works at a higher clock rate. Under the same clock rate, a Pentium III CPU would be faster than a Pentium 4.

    Figure 3.2: Pentium 4 Pipeline

    The scheduler is a heart of out-of-order engine in Pentium 4. It organizes and dispatches all microinstructions (in other words, uops) into specialized order for execution engines.

    Figure 3.3: Pentium 4 scheduler

    Four kinds of schedulers deal with different kinds of microinstructions for keeping the processor busy all the time. The ports are Pentium 4’s dispatch ports. If you read the diagram carefully, you can see Port 1 and Port 0 each is assigned a floating-point microinstruction, Port 0 is assigned Simple FP Scheduler (contains simple Floating-point microinstructions) and Port 1 is assigned Slow / Floating Point Scheduler (contains complex floating-point microinstructions). Port 0 and Port 1 also accept the microinstructions came from Fast Scheduler. For the floating point microinstruction may run several clock cycles, Pentium 4’s scheduler monitor decides to transfer the microinstruction to Port 1 if Port 0 is busy, and vice versa. Port 2 is in charge of Load microinstructions and Port 3 deals with Store microinstructions.

    3.2 PlayStation 2’s Emotion Engine

    PlayStation 2’s designers focus deeply on the purpose of 3D games. At the same time, they had to ensure it was completely compatible with DVD video. For performing 3D games well, PlayStation 2 has to possess perfect vision and audio functions. Emotion Engine acts as the role of Geometry calculator (transforms, translations, etc), Behavior/World simulator (enemy AI, calculating the friction between two objects, calculating the height of a wave on a pond, etc). It also in charge of a secondary job of Misc. functions (program control, housekeeping, etc). In general, Emotion Engine is the combination of CPU and DSP processor.

    Figure 3.4: The architecture of Emotion Engine

    The basic architecture of Emotion Engine is show in Figure 14. The units are composed of

    (1) MIPS III CPU core

    (2) Vector Unit (two vector units, VU0 and VU1)

    (3) Floating-Point Coprocessor (FPU)

    (4) Image Processing Unit (IPU)

    (5) 10-channel DMA controller

    (6) Graphics Interface Unit (GIF)

    (7) RDRAM interface and I/O interface.

    Something interesting in the diagram you may have noticed. First, inside the Emotion Engine, there is a main bus connects all components for data communication. However, between MIP III core and FPU, VU0 and MIP III, VU1 and GIF, there are dedicate 128-bit buses connect them. Second, VU0 and VU1 have certain relationship shown in the diagram. This design extremely enhanced the flexibility of programming with Emotion Engine.

    MIPS III Core connects with the FPU and VU0 directly with the dedicated buses. The pipeline of MIPS III is 6-stage. The MIPS III is the primary and controlling part, VU0 and the FPU are coprocessors to MIPS III. They compute the behavior and emotion of synthesis, physical calculations, etc For example, in a football game, the flying orbits of the ball, the wind effect, the friction between ball and the ground need to be calculated. At the same time, 21 player’s AI needs to be implemented (the last player is controlled by the user), the activity, the lineup, etc. After the calculation, MIPS III core sends out the display list to GIF.

    VU1 has a dedicated 128-bit bus connected to GIF, which is the interface between GS (Graphics Synthesizer) and EE (Emotion Engine). VU1 can independently generate display list and send to GIF via its dedicated bus. Both of these relationships forms a kind of dedicate and flexible structure. The final goal of EE is generating display list and send to GS. The programmer can choose either programming two groups (MIPSIII + FPU + VU0 and VU1 + GIF) separately, send their display list in parallel, or programming purposely, making MIPS III + FPU + VU0 group as the “coprocessor” of VU1, for instance, generate physical and AI information then send to VU1, VU1 then produces corresponding display list. The diagram below shows the two programming methods.

    (a)                                                       (b)

    Figure 3.5: Two programming methods of Emotion Engine

    MIPS ISA is an industry standard RISC ISA that found in applications almost everywhere. Sony’s MIPS III implementation is a 2-issue design that supports multimedia instruction set enhancements. It has

    (1) 32, 128-bit general purpose registers

    (2) 2, 64-bit integer ALUs

    (3) 1 Branch Execution Unit

    (4) 1 FPU coprocessor (COP1)

    (5) 1 vector coprocessor (COP2)

    What I really want to cover are two vector processors, VU0 and VU1. This is the main reason why PlayStation 2 is powerful.

    VU0 is a 128-bit SIMD/VLIW design. The main job of VU0 is acting as the coprocessor of MIPS III. It is a powerful Floating-point co-processor; deal with the complex computation of emotion synthesis and physical calculation.

    The instruction set of VU0 is just 32-bit MIPS COP instructions. But it is mixed with integer, FPU, and branch instructions. VIF is in charge of unpacking the floating-point data in the main bus to 4 * 32 words (w, x, y, z) for processing by FMAC. VU0 also possesses 32 128-bit floating-point registers and 16 16-bit integers.

    VU0 is pretty strong. It is equipped with 4 FMACs, 1 FDIV, 1 LSU, 1 ALU and 1 random number generator. FMAC can do the Floating-Point Multiply Accumulate calculation and Minimum / Maximum in 1 cycle; FDIV can do the Floating-Point Divide in 7 cycles, Square Root in 7 cycles, and Inverse Square Root in 13 cycles. In fact, as the coprocessor of MIPS III, VU0 only uses its four FMACs. However, VU0 doesn’t have to stay in coprocessor mode all the time. It can operate in VLIW mode (as a MIPS III coprocessor, VU0 only takes 32-bit instructions. In VILW mode, the instruction can be extended to 64-bit long). By calling a micro-subroutine of VLIW code. In this case, it splits the 64-bit instruction it takes into two 32-bit MIPS COP2 instructions, and executes them in parallel, just like VU1.

    VU1 has very similar architecture than VU0. The diagram below is the architecture of VU1 possesses all function that VU0 has, plus some enhancement. First, VU1 is a fully independent SIMD/VLIW processor and deal with geometry processing. Second, VU1 has stronger capability than VU0: it has a 16K bytes’ instruction memory and a 16K bytes’ data memory, which VU0 only has 4K bytes each. VU1 acts as the role of geometry processor; it burdens more instructions and data to be computed. Third, VU1 has three different paths to lead its way to GIF. It can transmit the display list from 128-bit main bus, just as VU0 + CPU + FPU do; or it can transmit via the direct 128-bit bus between its VIF and GIF; the last one is quite interesting, the path comes out from the lower execution unit (which I will talk about later) and goes directly to GIF. Three individual paths ensure two main problems of PC 3D game programming will not happen: first, the bottleneck of bus bandwidth; second, the simplex way of programming.

    Figure 3.6: The architecture of VU1

    VU1’s VIF does much more than that of VU0 does. The VIF takes and parses in which Sony called 3D display list. The 3D display list constructs of two types of data: the VU1 programming instructions (which goes to Instruction memory) and the data that the instruction deal with (which goes to Data memory). The instruction itself can be divided into two units, Upper instruction and Lower Instruction, which directly operate on two different execution units, Upper execution unit and Lower execution unit. The 64-bit VLIW instruction can be used to deal with two operations in parallel. Recall that VU0 possesses the same function but most of time it acts only as the coprocessor of MIPS III, this mode can only operate 32-bit SIMD instructions. Programmers also rarely ask VU0 to do the same thing what VU1 is good at.

    3.3 Comparison

    I strongly agree if you think Emotion Engine is more flexible than Pentium 4. The design of Emotion Engine is completely around the performance of 3D games. Two vector units, VU0 and VU1, contribute a lot for the game performance. Pentium 4 architecture is straight, you can trace the path of data from the very beginning, and soon you will be able to know how Pentium 4 works easily. For Emotion Engine, except you are the game designer, you will never know exactly.

    I did not put too much digits in this section, the comparison of digits does not make sense at all. The comparison between two PC processors depends on digits, because they are the same kind and work in the same situation. For game consoles, without the burden of compatibility, the designers think a lot for the perfect cooperation. This would results in better performance, plus less cost. Unfortunately the programmers don’t think it is a good idea, it cost them quite a lot of time to investigate the processor to figure how it works.

    4. BUSES AND CACHEING

    4.1 PC Motherboard

    While multimedia processing requires massive quantities of data to move rapidly throughout the system, the speed difference between processor and external devices is the main bottleneck of PC. Processor companies like Intel have put a lot of energy into getting the rest of the system components to run faster, even if other vendors provide these components. Improving the performance of motherboard is a good idea. Figure 4.1 is the main structure diagram of GIGABYTE GA-8TRX330-L Pentium 4 Motherboard. The bandwidth between Processor and system controller, main memory and system controller has reached to equally incredible 6.4GB/S. However, the latency of memory is still impossible to remove. Here I want to talk something about the processor caching mechanism.

    In the present, motherboard’s FSB (Front Side Bus) frequency has over 800 megahertz. However, it is slower than that of Pentium 4, which is over 3 gigahertz. Processor runs at a multiple of the motherboard clock speed, and is closely coupled to a local SRAM cache (L1 cache). If processor requires data it will fist look at L1 cache. If it is in L1 cache, the processor read the data at a high speed and no need to do the further search. If it is not, sadly processor has to slow down to the motherboard clock speed (what a drastic brake!) and contact to system controller. System controller will check if L2 cache has the required data. If has, the data is passed to processor. If not, processor has to access the DRAM, which is a relatively slow transfer.

    4.2 About PlayStation 2’s buses and caching.

    Recall Figure 2.2, we can see 32-bit interfaces between processor and I/O Processor, main memory and I/O Processor, which can achieve 3.2GB/S bus speed. Although slower than Pentium 4, Emotion Engine itself is relatively slow as well, 300MHz MIPS III processor. However, PlayStation 2’s 32-bit interface, 10-channel DMAC, 128-bit internal bus, and small cache memory group to an incredible caching condition. Any data necessary can be store or download in time. This strategy takes 90% of DMA capability. It makes the latency which main memory generates is acceptable for Emotion Engine.

    4.3 Comparison

    This time we can talk about digits some more. Let’s see a Pentium 4’s cache memory

    L1 trace cache: 150K

    L1 data memory: 16K

    L2 memory: 256K ~ 2MB total: 422~2204K

    Let’s see PlayStation 2 next

    VU0 data memory: 4K

    VU0 instruction memory 4K

    VU1 data memory 16K

    VU1 instruction memory 16K

    MIPS III data memory: 2-way 8K

    MIPS III instruction memory: 2-way 16K total: 64K

    Contrast to Pentium 4, the cache memory of PlayStation 2 is too small. Its capability is indeed ‘weak’ in the present. Pentium 4 is able to hold more data and does more computations in parallel. However, PC architecture hasn’t been improved along with the processor. No matter how Pentium 4 fast is, present bus architecture is never going to perform Pentium 4 100% capability. PlayStation 2 achieves a nearly perfect structure and mechanism, which helps it exert as much as it can (or maybe I should say because Pentium 4 is too fast, the memory speed is relatively too slow). Besides, it remarkably low down the cost, you can afford a PlayStation 2 plus a controller with the same price of a single Pentium 4 chip.

    5. VIDEO PERFORMANCE

    5.1 Comparison of performance between PC and PlayStation 2

    Figure 5.1 Need for Speed Most Wanted (PlayStation 2) 2006 by EA GAMES

    PlayStation 2 Graphics Synthesizer (GS)

    · 150 MHz (147.456 MHz)

    · 16 Pixel Pipelines

    · 2.4 Gigapixels per Second (no texture)

    · 1.2 Gigatexels per Second

    · Point, Bilinear, Trilinear, Anisotropic Mip-Map Filtering

    · Perspective-Correct Texture Mapping

    · Bump Mapping

    · Environment Mapping

    · 32-bit Color (RGBA)

    · 32-bit Z Buffer

    · 4MB Multiported Embedded DRAM

    · 38.4 Gigabytes per Second eDRAM Bandwidth (19.2 GB/s in each direction)

    · 9.6 Gigabytes per Second eDRAM Texture Bandwidth

    · 150 Million Particles per Second

    · Polygon Drawing Rate:

    · 75 Million Polygons per Second (small polygon)

    · 50 Million Polygons per Second (48-pixel quad with Z and Alpha)

    · 30 Million Polygons per Second (50-pixel triangle with Z and Alpha)

    · 25 Million Polygons per Second (48-pixel quad with Z, Alpha, and Texture)

    · 18.75 Million Sprites per Second (8 x 8 pixel sprites)

    Figure 5.2 Needs for Speed Most Wanted (PC) 2006 by EA GAMES

    PC Graphics Chip RADEON X300 SE PCI Express

    · Bus type PCI Express (x16 lanes)

    · Maximum vertical refresh rate 85 Hz

    · Display support Integrated 400 MHz RAMDAC

    · Display max resolution 2048 x 1536

    · Board configuration

    · 64 MB frame buffer

    · Graphics Chip RADEON X300 SE PCI Express

    · Core clock 325 MHz

    · Memory clock 200 MHz

    · Frame buffer 64 MB DDR

    · Memory I/O 64 bit

    · Memory Configuration 4 pieces 8Mx16 DDR

    · Board configuration

    · 128 MB frame buffer

    · Specification Description

    · Graphics Chip RADEON X300 SE PCI Express

    · Core clock 325 MHz

    · Memory clock 200 MHz

    · Frame buffer 128 MB DDR

    · Memory I/O 64 bit

    · Memory Configuration 4 pieces 16M x 16 DDR

    · Memory type DDR1

    · Memory 128 MB

    · Operating systems support Windows? 2000, Windows XP, Linux XFree86 and X.Org.

    · Core power 16 W (Max board power)

    From the data we can see. GS is too weak, contrast to low-level video card of PC. However, the performance of PlayStation is not too that bad. I don’t want to analyze data here. What I am interested to discuss is about the performance itself.

    Let’s see Figure 5.2 in detail. Texture is very clear and exquisite. This is what big video memory offers. The tree leaves in distance need a lot of polygons to build. The video card itself is low-level; possess no special effect for the game rendering. No refection and other sparking place can be found. In general, the game performance is only ok.

    Figure 5.3 PC game rendering related architecture

    Now let’s see PlayStation 2’s performance, which is in Figure 5.1. We see a good image. If you look the image in detail, you may found the mountain beside the road is weird: the shape of mountain is not that nature, like some spectrum graphics. This is done by VU1, which draws the Bezile, build 3D graphic based on the curve. Although not good enough, how many people will actually notice that when dashing at over 200km/h with his virtual car? VU1 does a lot of job like that and it could generate a lot of shapes without too many polygons to build. Now let’s see the car, the refection of cars is true reflection (which means it is not fake texture pretended to be the reflection), we can distinguish the mountains behind, however very blur. The whole image is not as clear as Figure 5.2 because the limitation of GS’s video memory (4M). However, this image is good enough for most PlayStation 2 players.

    5.2 Some more about the video performance

    Although Pentium 4 has enough capability to process image real time, the way of implementing games is still no change. The video card read the content of texture into its local memory card, the processor only deal with the data and instructions. After the calculation, the processor stores the display list (a list, recorded with the details of all elements, for instance, one single polygon’s position and texture code) back to the main memory. Video card then access the lists and process them, generate picture, transfer to analogue signal and output. Most special effects depend on the video card. So, no good card, no good performance.

    Let’s see figure 2.2, we will see there is no direct connection between GS and main memory. At the PC’s point of view, 4MB video-memory is not enough to show a single frame with 1024*768 pixels. How is PlayStation 2 able to perform like that? The answer is bus. So we come back to section 4 again. The specialized display list (which Sony called 3D display list) is directly sent to GS, along with the required texture. GS has a huge bandwidth (3.8GB/S), its local memory can work as fast as it is (maybe it is more suitable if we call the memory as cache). GS itself supports only a few special effects. However, this situation can be improved by the simulation calculations finished by Emotion Engine… Again, PlayStation 2’s elegant design makes its all components work as a whole.

    6. CONCLUSION

    Hopefully you have got the idea of how PlayStation 2 and PC architecture differ. Let’s go through it again.

    General architecture. PCs are more complex to read, but easier to implement. The system bus directly manages all devices inter-communications. PlayStation 2’s is easy to read, but much harder to implement. The communication between each other is convenient.

    Processor architecture. The trend of processor architecture design is meeting the requirement of multimedia. Both PC’s Pentium 4 and PlayStation 2’s Emotion Engine are qualified to run multimedia applications efficiently. Pentium 4 is much stronger than Emotion Engine, but the architecture is very ‘straight’ and has to do extra jobs of translating instructions to be compatible with current applications. Emotion Engine has no this burden, the specialized 3D game performance design make it easy to handle complex calculation jobs with relatively low clock rate.

    Buses and Caching. PC has classic bottlenecks and there is no way to overcome it. Current PC buses and cache has improved a lot by increasing the bandwidth and cache volumes, but the latency of main memory cannot be solved. PlayStation 2 works on nearly full load; perfect coordination between components is almost achieved.

    Video. Although Pentium 4 can run perfectly on multimedia applications, the PC game developers don’t think so. They still stick to push the texture and other data into the video memory for one time. The awkward situation is, when you want to update your PC for high requirement games, the first component came into your mind must be the video card but processor. It is impossible to ask PlayStation 2 players to update. Emotion Engine is in charge of many jobs what PC’s video card does. The good condition of data transmission makes it is possible to implement ‘true’ multimedia processing in games, that is treating game image as media streams, no need to supply huge data storage to hold that.

    Purpose: PC’s general—purpose VS PlayStation 2’s 3D game rendering purpose.

    PlayStation 2 is 6 years old now. According to the principle of game console life expectance, it is time to hand the baton to its offspring, PlayStation 3. It is a successful game console of Sony. Contrast to PC, it is too weird, but all its weird compositions seemed so reasonable as well. PC’s architecture is classical; all components have its space for upgrade. Maybe it is too early to say the architecture should evolve. However, PlayStation 2’s architecture gave us a good lesson. If you only were interested in games, you should buy a PlayStation series, not a PC. At least, you need not worry about upgrading your components for the next game. Special architecture can make it becomes the best in specialized region.

    7. REFERENCE

    [1] William Buchanan and Austin Wilson, “Advanced PC Architecture”, ISBN: 0 201 39858 3

    [2] John L. Hennessy and David A. Patterson, “Computer Architecture—A Quantitative Approach”, ISBN: 1 55890 724 2

    [3] Keith Diefendorff and Pradeep K. Dubey, "How Multimedia Workloads Will Change Processor Design." Computer, September 1997

    [4] Jon "Hannibal" Stokes Sound and Vision: A Technical Overview of the Emotion Engine Wednesday, February 16, 2000

    [5] K. Kutaragi et al "A Micro Processor with a 128b CPU, 10 Floating-Point MACs, 4 Floating-Point Dividers, and an MPEG2 Decoder," ISSCC (Int’l Solid-State Circuits Conf.) Digest of Tech. Papers,Feb. 1999, pp. 256-257.

    [6] Jon "Hannibal" Stokes “SIMD architectures”

    arstechnica.com/articles/paedia/cpu/simd.ars

    [7] “Graphics Synthesizer – Features and General Specifications”

    arstechnica.com/cpu/1q99/playstation2-gfx.html

    [8] “The Technology behind PlayStation 2”

    ieee.org.uk/docs/sony.pdf

    [9] Michael Karbo,“PC Architecture“

    karbosguide.com/books/pcarchitecture/start.htm

    [10] Gabriel Torres, “Inside Pentium 4 Architecture”

    hardwaresecrets.com/article/235/1

    [11] Thomas Pabst, “Intel’s new Pentium 4 Architecture”

    tomshardware.co.uk/2000/11/20/intel/

    [12] KuaiLeDaYuShu, “Video Card Parameters Analysis”

    blog.yesky.com/Blog/joyelm/archive/2005/07/30/253803.html

    [13]Howstuffworks “How PlayStation 2 Works”

    entertainment.howstuffworks.com/ps21.htm

篇4

1.什么是注册入学。注册入学与统一招生录取相比,江苏省试行的注册入学是高校招生的一种新的模式。与传统的统一招生录取相比,注册入学要相对简单的多,院校根据学生的高考成绩、学业水平、测评等来进行录取,学生只要符合院校条件,很容易被申请的院校录取,这种不再单一的根据学生成绩录取的方式给了学生更多的选择,让学生可以简便入学。

2.注册入学背景下学生英语能力分析。注册入学实行七年以来,招生的学生越来越多,根据近年来学生状况可以分析出选择注册入学的学生有以下三类:一是学生高考成绩不理想的,一考定终身的弊端让他们没有达到上本科或是重点高职院校,只能选择注册入学;二是学生本事成绩就差,上不起民办的,就选择注册入学;三是填志愿滑档的,无奈选择注册入学。这就带来问题,学生学习成绩良莠不齐,在我国,英语一直是我国大多学生的学习短板,在注册入学的学生中大多数英语基础薄弱,而又有部分学生英语素质高,这就给高职公共英语教学带来很多的挑战。

二、注册入学背景下学生对于英语需求层次分析

1.注册入学下公共英语教学现状。在注册入学背景下,现在高职院校的公共英语教学还采取以往的唯教材论,教学内容空洞、教学手段单一、学生主动性差,这些都使原有的教学模式不再适应现今的教学。对于高职公共英语改革的呼声一直都高,但是应该怎么做,却一直没有定论。

2.学生需求层次的分析。(1)学生需求变化。随着社会变迁,现在学生需求也在发生变化,在以为的教学中,学生因继续深造、工作需求等对英语的重视程度也在发生改变。随着社会就业压力的加大,选择继续深造的人越来越多了,其中英语所占比重并未减轻,就考研情况说,每年考研初试未通过的一半以上是因为英语成绩没达到要求,这些都受注册入学的影响,在一个班级里,老师不能过分迁就成绩差的,也不能迎合成绩好的,而中等成绩的学生也没有从中受益。(2)社会需求变化。现今社会的公司对员工的英语需求存在两极化的区别,在一些大型企业和英语对口单位对英语的要求有增无减,而一些中小企业几乎对英语不做任何要求,这也给教学提供了更多的挑战,如何让非英语专业的学生通过公共英语能在竞争中获胜,这给授课教师提出了更多的要求。

三、高职英语的改革历程

1.教材版本过于呆板,很多知识陈旧,框架也过于刻板,现在使用的教材很多年都没有变动,有的甚至是十年前的编订的,根本不适合现在社会英语的发展,有的教材想突破这种现状,尝试开辟新的模块,所谓的拓展训练、新式阅读、课时训练,其实只是换汤不换药,反而加大了学生的课业压力。关于教材的选定,要征求授课教师的意见,改变教材采购的利益链。

2.现有知道思想过于强调基础知识的学习,对于高职院校而言,学生主要任务就是要通过英语三级半的考试,至于学生英语以后的发展就不在学校的计划内,公共英语也就完成了它的任务。

3.注册入学下,学生人数剧增,师资力量存在一定的断档,一般老师一节公共英语要几个班级一起上,很难顾及到每个同学,就只是按照大纲要求进行授课。甚至有的是在校的研究生。

四、分层教学的理论分析

1.什么是分层教学。分层教学就是教师根据学生现有的知识、能力水平和潜力倾向把学生科学地分成几组各自水平相近的群体并区别对待,采用因材施教的方法,最大限度的用适合学生的方法进行教学,最大程度满足学生需求。

2.分层教学的理论依据。分层教学理论最早来源于孔子的因材施教,用适合学生的教材去教育学生,在现代教学中是一项重要的教学方法和教学原则,要求在教学中根据学生的认知水平、学习能力及自身素质来安排教学,这种针对每个学生特点采取的特殊教学方法对学生的发展有很大的积极作用。在公共英语教学中引入分层教学是为了解决注册入学背景下英语中存在的问题,根据学生英语水平和兴趣倾向,能动的讲学生分组。

篇5

一、建构主义理论分析

建构主义理论是认知心理学的重要组成部分,该理论认为知识不是通过教师传授得到,而是学生在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,利用必要的学习资料,通过意义建构的方式而获得。学习是在一定的情境即社会文化背景下,借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程,因此建构主义学习理论认为“情境”、“协作”、“会话”和“意义建构”是学习环境中的四大要素或四大属性。

二、建构主义下英语新闻视听说教学的实践原则

1.以学生为中心

建构主义理论认为知识是由认知主体主动建构的结果,强调学生作为认知的主体,而教学则为学生主动进行意义建构提供了促进、指导和合作。学生应该转换态度,从原来知识被动的接受者转变为知识主动的构建者。该理论要求教师要以学生为中心,培养他们对知识的主动获取和探索能力以及对知识的意义建构能力,教师也应更新观念,从传授知识的角度转变为引导、支持学生主动建构知识的角度,激发学生学习兴趣和积极性。学生在学习过程中发挥主体作用,主动搜集分析相关学习资料,提出问题和假设,将所学内容与已知事物联系起来并加以认真思考,提高学习效率和质量。

2.以掌握视听说为目的

建构主义主张“为理解而学习”,这就要求英语新闻视听说教学要使学生在学习英语的过程中获得系统化的知识,不仅仅能解决书本和课堂上的问题,学生要主动对知识进行意义建构,突破英语学习的基本层次,把握英语新闻中想要真正传达的信息和意义,提高英语新闻理解能力和表达能力。通过英语新闻的视听说课程,学生能够充分掌握基本英语知识,例如一些单词句子,同时理解英语新闻中的信息和含义,并能够用英语表达自己的想法提出建议。

3.以协作为方式

语言的学习只有在于他人的交流中才能充分掌握,所以进行语言意义的建构,要通过学生与教师、学生之间的多方交流,而且教师和学生需要进行学习资料的交换和探讨。协作方式在英语新闻学习的过程中有着重要的作用,能够更大程度地促进整个学习团队共同目标的达成,并能够激起学习团队的合作和进步精神。在英语新闻视听说教学中,学生在教师的引导或自行组织下,组成学习小组,相互交流讨论,分享学习经验和相关知识,共同达成学习目标并形成一定的激励机制,激发学习的动力和热情。

4.以情境创设为手段

建构主义认为学生是与一定的“情境”相联系的,在实际的情境中,学生可以利用原有知识和经验获取新的知识并赋予其某种意义,或者对原有知识体系进行重建,达成新的知识的意义建构过程。英语新闻视听说教学中的情境创设,能够提高课堂学习的生动性和丰富性,使学生熟悉现实生活中可能遇到的问题,掌握常见的表达方式,以适应现实中多变的语言环境。所以,教师需要精心创设教学情境,选择真实的符合现实情况的任务,以提高学生的基本功和知识面,支持帮助学生意义建构的达成,提高学生的应用能力。

三、建构主义理论下的英语新闻视听说教学实践策略

1.科学安排教学实践过程

英语新闻视听说的教学过程包括课程前的准备,课程中的操作和课程后的扩展三方面,下面对这三方面进行具体分析。

第一,课程前准备的程序是,首先教师选择合适的教材交给学生,学生自己查找相关背景资料和媒体信息,整理相关词汇句子,提前做好知识准备。其次教师在播放视听说材料之前提出问题,播放自己整理的学习资料让学生进行思考。再次教师让学生分组进行讨论,并与学生互相交流,根据他们自己的学习材料对背景进行分析。

第二,具体的课堂教学过程中,教师要把握播放时的技巧,让学生能够在安静专注的环境中进行视听,减除外在干扰,让学生能够掌握材料所要传达的信息,并找出自己不理解的内容和听不懂的语句。在重复进行播放视听材料时,教师要为其设置的问题提供线索,引导学生积极思考并提出疑问。在精听环节,教师要针对问题进行具体必要讲解,补充视听材料和更多背景知识,帮助学生更加深入地学习视听材料的内涵和所要传达的真正信息,并为他们传授视听技巧。最后,教师再次让学生分组讨论并鼓励他们表达自己的观点。经过一系列的视听过程,使学生掌握基本英语新闻知识并培养学生发现问题解决问题的能力。

第三,视听说教学结束后,首先,教师要督促学生在课下对英语新闻材料进行认真聆听跟读,学习英语表达语调和语气;其次,教师还应该为学生提供广泛的视听内容,让他们在课下进行泛听以提高听力能力和理解能力;再次,教师可以组织一系列有趣的活动或比赛,或者鼓励学生自己组织竞赛,激发他们的学习热情,提高他们学习的参与性和积极性。

2.英语新闻的导入形式多样化,合理使用视听材料

篇6

【中图分类号】 G424 【文献标识码】 A 【文章编号】 1006-5962(2013)01(a)-0038-01

1 英文影视资料应用的积极作用

英文影视资料内容丰富,文化特色突出,语料真实,贴近学生生活,是英语教学的好帮手,不仅可以使学生置身于英语环境,加深对语言的理解和认识。还能使学生了解英语国家的历史文化、风土人情、人们的行为方式和交往礼仪等文化内涵,是学生学习语言知识和文化知识的有效途径。

1.1 提供真实的语言场景

任何交际行为都是在一定的场合中发生的,而电影展现交际场景的真实性(龙千红,2003)。电影故事情节取材于生活,其中的场景,道具及其他方面都充分展示生活的真实。因此。看电影时,学生有亲临其境的感觉,这等于把语言学习放在真实的交际情景中进行,无疑使语言学习十分真实自然。经常看英语电影,学生就会逐渐地学会在不同情景中得体地使用语言。此外。电影作为动感的可视媒体,使学生在观看影片过程中不仅能听到人物的对白,而且能看到背景画面,演员的动作,表情,着装等超语言线索,可以更容易,更准确地理解语言和阐释影片。

1.2 传递丰富的文化知识

语言是文化的载体,学习一门语言也在学习一种文化(胡文仲,1989)。作为沟通中西方文化便捷的桥梁,英文影视资料浓郁的文化特色,向观众传递丰富的文化背景知识。通过对电彩情节故事的了解、经典台词的学习,可以挖掘出它们所反映的社会习俗、交际方式、政治体制、法律制度、、价值观念、艺术传统等与东方不同的文化内容。C.克拉姆(1999)曾指出:文化氛围始终存在于外语学习的背后,即使优秀语言者的交际能力也可能因文化原因受到限制,他们对周围事物的了解也可能因而产生障碍。学习英语的过程也是文化习得的过程,越是深入了解英美国家的历史地理,文化传统和生活方式,越能正确理解和使用英语。

1.3 提高全面发展的能力

根据认知主义学习理论,言语学习的主题输入强于单一的视觉或听觉输入,尤其是采用英语电影主体语言教学,其优势比较明显,有利于语言教学的多方位立体输入,突出重点,以此促进学生听说读写全面发展。(李萌涛,2006)英语电影有声有色,声色并茂给人以身临其境的感觉,引起学生的新奇感、注意力和求知欲,并能在教师的引导下获得知识,取得进步。现代教学的实践证明:学生获得知识若仅靠听觉,3小时后仅保持70%,3天后降为10%;单用视觉,3小时后保持72%,3天后降为20%;如果视听并用,3小时后保持85%,3天后降为65%。(杨明,1999)由此可见,在高职院校利用英语电影教学是最能提高学生效率的一种教学手段。让学生视觉、听觉都参与言语实践,对知识掌握更加牢固,其中变化的情景和言语实践活动可以直接或间接的从不同角度激发学生的能力。

2 英文影视资料应用存在的问题

2.1 语言难、过于耗费精力

电影教学过于费力,这是难以普及的重要原因。电影教学之难表现在:首先,电影语言本身难。电影语言是十分接近生活的自然语言。语速快、1:3语表达方式丰富。其次,电影内容包罗万象,涉及人类生活的各个领域。有时一部电影的主题非常分明.但人物的对话内容却十分宽泛,而且电影中的人物众多。谈话内容各异。教学环节上,大多数情况是课前师生都没有充分准备。从头放到尾,中间没有讲解。所以导致学生有许多消极反应。反而更倾向于选择传统的教学方式。

2.2 学生不重视

对有些学生来说,就最迫切的目标就是通过考试,认为口头表达没有语法知识重要。上课时如果教师又毫无指导说明,学生根本听不懂语速如此快的英语对白。严重挫伤了学习的自信心。听不懂时就会产生焦虑,最终导致恶性循环,因此没有教学目的和安排的电影欣赏是毫无意义的。

2.3 缺乏影视英语教学课时安排的合理性

当前各高校分配给大学英语的教学时数相当有限,而且大部分课时是用于阅读课,用于专门训练听说的课时少之又少。这种情况严重地制约了电影课的普遍开设。虽然目前高校都配备多媒体教室,但由于扩招导致学生人数增多,多媒体教室的发展赶不上学生人数的增长,一定程度上制约了英语电影在听说教学中的运用。

2.4 缺乏一套权威性的教材

从教辅市场上同类书籍的状况来看,在全国不同省市100多种英语教材近1000种版本中。影视英语类教材有IO多种,但是以欣赏、注释、参考类居多。缺乏一定的系统性、权威性。目前此领域尚属空白,急需专家、学者研发出科学、系统的教材.以便更好地实现教学目标。可想而知,教师没有教材的指向性。其课前的备课工作量是巨大的,更何况大部分教师不只担任一门课程,时间、精力都受到了限制。

3 解决办法

针对上述问题,笔者建议合理安排影片在听说课上的时间,结合课文主题引入电影资源,如Hobbies用《憨豆先生》,Success用《阿甘正传》,Travelling用《走遍美国》,Natural Environment用《狮子王》,Women用《时尚女魔头》等等。如此说中有看,看中有听,听中有写,互相作用,非常有利于培养学生的听说读写能力。

参考文献

[1] C・克拉姆契.语言教学的环境与文化[M].上海外语教育出版社,1999.

[2] 胡文仲.英语学习的教与学[M].外语教学与研究出版社,1989.

篇7

 

1引言

据统计,全国高职高专院校有近三分之一的学校开设了商务英语专业[1]。商务英语作为国际商务环境中应用的英语,主要特点是应用性强,而商务英语视听说课程是培养听说交际能力的主要形式。教师充分利用丰富的视听说材料给学生带来真实具体的交流示范,再现真实的商务交际情境,从而更有效地掌握商务英语知识,培养商务英语交际能力。本文结合《新视野商务英语视听说》探讨如何指导高职学生学习商务英语视听说。

2商务英语视听说课程简析

商务英语视听说是高职商务英语专业一门重要的技能课程,是融视、听、说于一体进行教学,通过视听输入提高说的输出能力[2]。教学目标是让学生通过具有针对性的商务英语学习,通过专门系统的听力训练,培养和提高商务工作环境下所需要的听读说写能力以及从多种材料中获取商务信息并进行分析、理解、归纳、判断等方面的能力,进行有效的英语交流和商务活动。为了达到目标,选择合适教材很重要。《新视野商务英语视听说》直观生动、难度适中、突出应用、内容丰富,改变传统的、单一的以“听”为主的听说教学模式,构建多维度的“音”、“像”结合的互动听说教学模式[1]。让学生在商务环境中学习英语,通过英语获取商务知识,提高技能。

3高职学生商务英语视听说学习现状

3.1 学习目的不明确,缺乏学习兴趣

高职高专院校一般安排三年级实习,学生真正用心学习的时间主要集中在一二年级,相对比较少。进入大学后学生受到四级考试的影响,单纯地背词汇书,盲目地做大量试题,认为学习英语的目的就是通过等级考试。而部分学生认为大学的学习任务比中学轻松,对商务英语视听说课更有一种畏惧和排斥心理,学习商务英语视听说只是为了通过期末考试,不愿意投入精力有计划有目的地学习。

3.2 专业词汇量少

词汇量少一直是很多英语学习者提高英语水平的主要障碍。词汇在学习英语和提高英语综合能力的过程中一直发挥重要作用。高职学生只有掌握必要的词汇才能完成听力、阅读、口语等任务,才能提高英语水平。而商务英语中存在大量专业词汇和表达,学生对此十分陌生,直接影响视听说教学效果。如:marketing,catalogue中学英语教学论文,makeenquiries,place an order,negotiate prices,demandexceeds supply。学生可能会根据已经学过的词汇“market”猜测“marketing”的意思仅仅与“市场”相关,但是想到“营销”的可能性很小;学生更不知道在商务英语中“order”是“订单”。

3.3听力理解问题

学生听力能力差,影响听力理解的因素有很多:(1)语音。缺乏语音知识的学习和训练,很难做出快速正确的反应。(2)语速。平时练习少习惯较慢语速,遇到正常的交际对话和大篇文章时就会不适应,而且喜欢将听到的材料在头脑中译成汉语再去理解,导致跟不上语速。(3)词汇及语法。词汇量不足和语法知识不牢固直接影响听力理解。有的学生词汇量大但是对单词和短语没有形成反射,导致听不懂。(4)文化背景知识。不了解中西方文化背景知识上的差异,给听力理解带来一些困难。(5)心理。平时练习少,加上以上四点因素的影响,一旦开始听力就无法集中注意力进入状态,造成紧张烦躁。

3.4口语问题

对高职学生而言,学习英语是为了与人交流,因此英语听说能力的培养尤为重要。但是长期以来我国英语教学一直存在“高分低能,哑巴英语,费时低效”的问题。教学中“重考试成绩,轻能力培养”,“重语法,轻口语”的现象普遍存在[4]论文的格式。课堂上教师以“灌输”方式为主,提供给学生训练口语的机会较少。学生习惯“看”英语,一旦要求开口“说”就表现出很不自信,课后更不会花时间练习英语口语。因此,学生具备一定读写能力,但在一些实际场合却无法用适当的话语正确表达自己的思想。

4采用正确方法指导学生学习商务英语视听说课

4.1 明确学习目的,激发学习兴趣

指导学生认识学习英语的目的是交流而不是应付等级考试,学习商务英语视听说是为将来在商务环境中工作打基础而不仅仅是通过期末考试。兴趣是最好的老师,教学需要激发学生的学习兴趣,实现“以教师为主导,以学生为主体”的教学活动[4]。教师应培养学生的语言表达能力同时注重发展学生的交际能力。将视听说三者有机结合,采用灵活多样的教学方法,在课堂上生动再现教材中的各个商务活动场景,让学生模拟感受真实的场景,激发学生积极参与课堂交际任务。

4.2 输入商务英语专业词汇和表达

语言知识是语言交际能力的前提,没有扎实的语言知识就不可能获得较强的语言交际能力[6]。掌握一定的商务英语专业词汇和表达是进行视听说活动的前提,因此,教师应该要求学生获得与商务活动相关的专业词汇和表达。教师可以将单元关键词汇,如:formal order,articlenumber,specifications,delivery,unitprice,total amount等,让学生对所学单元摘要根据自己课堂上的吸收情况强化巩固。

4.3 提高学生的听力理解能力

听是语言输入的重要途径,听者应该积极地进行预测、辨别、推断、获取有用的关键信息。传统的“听录音、对答案、再听录音”听力模式已大大影响听力教学。课堂上教师指导学生不需力图听懂每一个单词,应学会把握大意抓住关键信息。如果通过词汇和语言点输入,学生仍然不能按要求完成视听说任务,教师则可以在每项任务之前列出视听说材料的关键词和表达,指导学生进行听前预测。例如Placing an Order单元的一个听力任务,三个问题的答案都比较长而且学生不熟悉听力内容。教师在播放录音前先列出关键词和生词:large capacity,configured,automaticdocument feeder,payable cheque等。学生能根据关键词预测听力材料,获取记录信息和组织答案时有准备有参考,从而消除了焦虑,增加了信心,提高了听力理解能力。

4.4 课堂上创造真实的商务环境

视听是语言输入的重要途径中学英语教学论文,多媒体视听手段所提供的信息输入方式声形并茂、形象生动[6]。商务英语视听说应注重英语听说技能在各种商务活动中的实际应用。课堂上利用多媒体视听资源,努力创造真实的商务环境,让学生积极参与认知过程,刺激大脑并做出反应,有利于消化吸收语言知识并进入大脑长期存储,使之成为真正的语言输入。播放视频前,带领学生学习相关生词和短语,看图片了解主要角色和场景并预测视频大意。然后播放第一遍,指导学生不需完成练习任务,重点是能明白视频大意。播放第二遍前让学生快速浏览练习,观看时能准确抓住关键信息,并做一些记录。播放第三遍时,教师提供要点提示,视频关键地方给予暂停或重复让学生思考记录。最后如果有必要可以显示字幕再播放一遍,学生能更深入地理解该场景的涵义。

4.5 给学生更多机会开口“说”

语言是一种交际工具,语言教学的最终目的就是培养学生运用该语言的能力[6]。视听说课堂教学应该注重视、听、说三个环节的连贯。让学生开口说至关重要。进行说的任务前,教师首先指导学生背诵并反复操练以掌握教材中与单元主题相关的表达,然后进行视听练习,这些语言输入活动大大帮助学生准备开口说。课堂上教师将学生分成小组,根据教材视频之后的Role-play所提供的场景,让学生口头练习对话或者讨论。学生经过语言要点和视听练习的输入之后,能够模仿视频将学到的知识表达出来,进行语言输出。这种先输入再输出的过程将教师讲的课堂变为学生练的课堂,模拟商务交流的过程有效地帮助学生掌握商务英语知识,提高口语交际能力。

5 结语

综上所述,明确教学目标和学习目的,在教学中打破传统陈旧的教学理念,结合高职学生的实际情况采用正确的方法指导,创造真实的商务环境,重点培养听说能力,同时重视商务文化知识,才能真正提高学生的商务英语交际水平。

参考文献:

[1]马龙海.新视野商务英语视听说[M].北京:外语教学与研究出版社,2010.

[2]郑佳生.交际法在高职商务英语视听说课程中的运用[J].北京电力高等专科学校学报(社会科学版),2010;27(10).

[3]樊永仙.英语教学理论探讨与实践应用[M].北京:冶金工业出版社,2009.

[4]杨丽华.高职商务英语视听说教学改革初探[J].科教文汇,2010;(22).

[5]李培娥.在课堂教学中强化高职学生口语能力的培养[J].考试周刊,2009;(35).

篇8

3. 在读期间已发表的学术论文原件及复印件;

4. 文献综述、专业英语译文及原稿(由导师出具成绩)。

硕士论文答辩资格审查材料按培养类别(统招研究生、同等学力申请硕士学位、高校教师在职申请硕士学位、工程硕士专业学位)不同,所需材料及使用表格不同,请研究生根据各自学习方式准备答辩资格审查材料。

附件1: 硕士学位论文答辩申请书

附件2:同等学力申请硕士学位论文答辩申请书

附件3:专业学位硕士学位论文答辩申请书

附件4:同等学力申请硕士学位答辩资格审核表

附件5:同等学力申请硕士学位学习成绩单

附件6:同等学力申请硕士学位人员学位论文计划书

附件7:工程硕士学位论文计划书

篇9

第二个文学硕士论文故事:“最年轻的英国首相”:1782年, 英国在北美失败, 通过不信任案, 诺思带领所有内阁成员集体辞职, 年仅24岁的小皮特上台组阁, 仍旧受到了议会的不信任, 但是这位“最年轻的英国首相”向国王提议, 解散议会下院, 宣布提前进行大选, 最终将反对派议员从议会下院中剔除。针对这一故事, 教师需要要求学生思考, 议会和内阁出现矛盾时, 可以采取哪几种处理方案?>>>>>中国汉字日本四种简化方法分析

篇10

【中图分类号】G533.40 【文章标识码】D 【文章编号】1326-3587(2014)04-0029-01

一、新课改的初中英语教学重点和目标

1、教学重点。

此次英语课程改革的重点是加强对学生实际语言运用能力的培养,改变过分重视学科知识的讲解与传授的倾向,强调课程从学生的学习兴趣、生活经验和认知水平出发,倡导体验、实践、参与、合作与交流的学习方式,发展学生的综合语言运用能力,使语言学习的过程成为学生形成积极的情感态度、发展思维能力、提高跨文化意识和增强自主学习能力的过程。

2、课改目标。

激发和培养学生学习英语的兴趣,使学生树立自信心,养成良好的学习习惯和形成有效的学习策略,发展自主学习的能力和合作精神,使学生掌握一定的英语基础知识和听、说、读、写技能,形成一定的综合语言运用能力,综合语言运用能力的形成建立在语言技能、语言知识、情感态度、学习策略和文化意识等方面整体发展的基础上。硕士论文,自主学习。语言知识和语言技能是综合语言运用能力的基础;文化意识是得体运用语言的保证;情感态度是影响学生学习和发展的重要因素;学习策略是提高学习效率、发展自主学习能力的保证;这五个方面相辅相成共同促进综合语言运用能力的形成。同时拓展学生的视野,为他们的终身学习和发展打下良好的基础。

二、新课改下初中英语教学的改革创新

1、更新教学观念。

新课程标准在英语教学中实施素质教育,《英语课程标准》要求的核心是贯彻素质教育思想,培养学生为交际初步应用英语能力。在教学中,教者牢固地树立以贯彻素质教育为己任,就会自觉地转化教学观念,在英语教学中体现素质教育。新课程标准要求教师提高素质,更新观念,转变角色。目前英语课堂教学虽然课程标准变了,教材变了,但教师的教学方法却不变,教师教得辛苦,学生学得痛苦,结果却不尽如人意。硕士论文,自主学习。其原因是广大教师受考试指挥棒的影响,受传统观念的束缚,教学上一直以教师为中心,以知识为中心,以教材为中心,严重束缚了学生的思维,阻碍了学生创造力的发展。人类社会的教育从学校教育向终身教育转变的大背景下,教师的教育观念与教育教学方法也必须有相应的变革。硕士论文,自主学习。所以要彻底改变目前的状况首先应从教师做起,教师要更新观念。硕士论文,自主学习。教师要勤奋学习现代化教育教学理论,树立人本主义教育理念,转变角色,建立良好、和谐的师生关系,发挥学生的主体作用,调动学生的积极性和创造性,注重学生的全面发展,让学生有持续学习的能力,为终身学习打下良好的基础。

2、新课改要求初中英语教师全方位提高个人素质。

英语新课改体现了英语学科的综合性、选择性和均衡性,课程内容强调与学习生活及现代社会科技发展的联系,关注中学学生的学习兴趣和经验。因此,作为英语专业教师,需要具备各方面的知识,只熟悉英语学科的单一型教师已不能胜任新的课改教学要求。另外,英语教师也必须具有教学创新素质,在课堂教学中能够合作成为教师的一种能力或基本功,课堂教学中的合作,就是教师走下讲台,置身于学生中间,从而调动学生的思维和积极性。硕士论文,自主学习。教师也应善于了解其他学科,关注其发展,积极寻求学科之间的融合。教师不要把自己任教的学科看作孤立的整体,而要把它作为整体中的有机组成部分。

3、改变传统教师角色,以学生自主学习为重心。

中学英语教学的目的是通过听、说、读、写的训练使学生获得基础知识和初步运用语言的能力,激发学生的学习兴趣,养成良好的学习习惯,为进一步学习打好初步基础。新教材正是突出了以语言使用为教学目标的特点.无论是课文编排结构,还是句型、语法练习,都注重把语言知识转化为言语技能,并能进行多层次的运用。多年来,英语教学总是以教师为中心,学生跟着教师转教师重语言知识的传授,轻语言运用能力的培养,教师的教学总是以应试为前提。硕士论文,自主学习。为了适应新教材、应对新课改,教师的教学应以学生为主体,以学生的为主体,注重学习水平层次和个性差异,养成良好的学习习惯。学习习惯的养成对于一个人一生的学习活动至关重要。在英语教学中,教师有必要按照教材体系和学生认识水平,使学生养成如下几方面的学习习惯:语音为首的听说习惯、按时预习新课习惯、集中注意力认真听课习惯、主动参与课堂实践活动习惯、听说读写齐头并进习惯、及时复习所学知识习惯等。

4、融洽英语教学的气氛。

成功的教学依赖于真诚的理解和彼此信任,依赖于轻松、和谐的课堂气氛。师生间建立和谐的人际关系至关重要。教学不仅是教与学的关系,同时也是师生双方的感情和思想的交流,师生关系直接制约学生的情感和意志,影响学生的认知活动。成功的教学依赖于一种真诚的理解和相互信任的师生关系,依赖于一种和谐的课堂气氛,教师要努力使课堂充满无拘无束的气氛,如果不能造就这样良好的教学气氛,那任何一种教学方法都不可能发挥作用。在教学中,教师应热爱每个学生,尊重每个学生,关心每个学生,积极鼓励他们在学习中的尝试,保护他们的自尊心和积极性,不要因为学生成绩的优劣而产生亲疏和偏向;创设各种合作学习的活动,促使学生互相学习发展合作精神。

任何一轮课程的实施都应当首先是教育理念的转变,通过对英语新课程标准的不断学习以及对课堂教学的不断探索,一切均应从实际效果去考虑,要充分运用新的教学组织形式,使教师教得轻松,学生学得愉快,从而达到教与学的最佳境界。

【参考文献】

1、黄远振,新课程英语教与学[M].福建教育出版社 2003

篇11

 

本团队的论文服务

服务一:本科毕业论文、专科毕业论文、硕士毕业,负责提纲、开题报告、文献综述以及论文的写作,并提供不限次数的修改服务。

服务二:职称论文及研究生发表,并推荐发表。

服务三:演讲稿、宣传稿、工作总结、社会调查报告等。

服务四:提供英语论文写作和中文翻译成英文的服务。

 

本团队的论文承诺

在您接受本团队服务的过程中,我们负责给您提供服务直至您满意通过为止。不泄漏您的任何信息和联系方式,论文的所有权归您!论文通过后,我们会立即删除原稿,确保您的利益。

 

篇12

0 引言

转述是学术写作中不可缺少的部分,运用转述可以体现作者对转述命题或被引作者所持的态度,为作者的评论开启评价空间[1]。转述动词是转述的重要信号之一,作者可以通过转述动词实现言语功能,导入被引用者的声音,实现作者、被引作者和读者之间的对话。恰当使用转述动词是作者寻求其交际目的与学科规范之间平衡的一种重要手段[2]。因此,对转述动词进行研究是理解作者意图与学科规范之间关系的起点,对于英语学习者而言,正确使用转述动词有助于提高英语学术写作能力,以便于更好地实现写作目的。

1 国内外研究综述

语言转述现象一直以来受到众多学者的关注。国外学者从传统语法、文体学、功能语言学等角度对语言转述现象进行了研究。传统语法重点从直接引语、间接引语的转换关系上关注对他人话语的转述策略[3]。在文体学领域,Leech和Short把对言语和思想的表征区分成五类:直接引语、间接引语、自由直接引语、自由间接引语和人物话语的叙事性报道,这种分类方法扩大了语言转述研究的范围[4]。功能语法学家Thompson则关注转述动词的人际意义,指出转述者对转述内容的态度主要体现在转述动词上[5]。对批评话语分析学家而言,转述动词体现了语篇互文性和语篇中的多声特征[6]。专门用途学者也注重对转述动词的研究,他们对转述动词进行分类,关注转述动词在学术论文中的功能,同时通过引用分析(Citation analysis)关注转述动词的使用[7]-[10]。其中,Thompson和Ye将转述动词分为三类:研究转述动词(Research verb)、语篇转述动词(Textual verb)和心理转述动词(Mental verb),并分析了各类转述动词的人际意义。此后,Thomas和Hawes[8]以及Hyland[10]等人在其基础上做了类似分类。

国内部分学者从认知语用角度研究引用现象中与认知有关的方面[11],或者研究引语在语篇中所完成的修辞功能[12]。有的学者对学习者学术英语语料中使用的转述动词做了定性和定量分析[13]-[17]。也有学者分析了引用的结构形式及其与时态、语态的关系,探讨了转述动词的类别及功能[18]。

以Hyland为代表的国外学者的研究以英语本族语研究者的学术论文为语料,未涉及母语为汉语的英语学习者对转述动词的使用情况。而中国学者的研究中,对学习者学术英语语料的定性及定量研究所选择的语料大多来自应用语言学;以期刊论文为语料的种类及数量有限,从对比分析的角度探讨中国作者和英语本族语作者在学术论文中转述动词的使用情况的研究更不多。本研究将在这些方面做一些尝试。

2 研究方法

本研究从Springer电子期刊中选取近十年(2004-

2013)文学类论文共20篇,其中中国作者和英语本族语作者论文各10篇。选择语料时,研究者还考虑到论文期刊的多样性及代表性。然后,研究者根据学术论文撰写的规范要求,运用人工识别的方法记录论文全文中所有标注了引用信息(作者,时间,页码)的地方,对所得语料进行分类统计。首先统计了两类作者零转述动词的使用情况。其次,分别对转述动词总次数、使用频率较高的转述动词做了统计。最后,重点统计了两类作者表示评价倾向的转述动词的使用情况,并对以上各类型语料进行对比分析。

3 研究框架

Hyland基于Thompson和Ye以及Thomas和Hawes对转述动词的分类,运用过程法和评价法对转述动词加以分类[10]。按照过程法,转述动词可以分为三大行为类型,即研究行为(指研究者在研究结论或研究过程中对真实世界行为的陈述)、认知行为(指心理过程)、话语行为(指语言表述方式)。而按照评价法,转述动词又可以分为三大类,第一类表明现作者对被引作者提到的信息或做法持肯定态度;第二类表明现作者不同意或不接受被引作者提到的信息或其做法;第三类转述动词不直接表明现作者的观点,而是现作者通过转述动词传递被引作者的态度、观点和评价,具体又可以分为四个小类,包括①被引作者以肯定的口吻提出自己的观点;②被引作者以中立的姿态提出自己的观点或者客观上做了什么事;③被引作者以谨慎的态度提出自己的观点;④被引作者以批判的态度评价别人的研究或研究结果。

Hyland没有说明过程法和评价法各自的优缺点,也没有说明两者的相互关系。本研究认为,过程法基于研究行为的本质特征,从行为、心理和话语三个方面对转述动词进行分类,有利于提高人们对转述动词本质的认知,具有理论上的指导意义。而评价法立足于现作者、被引作者以及读者之间的对话性,旨在区分现作者、被引作者的立场和态度,从而帮助读者明确现作者的观点。同时,评价法也有助于提高英语学习者学术写作中对转述动词的运用能力,具有实际的指导意义。

本研究在对比分析中国作者和英语本族语作者转述动词时基于Hyland的评价法,首先将转述动词分为两个大类,第一类是现作者通过转述动词进入语篇,向读者阐明自己的立场、观点和论断;第二类是现作者通过转述动词表达被引作者的态度、观点和评价,从而间接帮助读者了解现作者自己的观点。之所以采用这样的分类方法,是因为转述是作者借助语言表述心理的过程,也是意向性自我构建的过程,反映了现作者对转述内容的认知评判,并通过转述动词进入语篇,向读者阐明自己的科学论断。

[2]Thompson,G.&Y.Ye.“Evaluation of the reporting verbs used in academic papers”,Applied Linguistics,1991(12): 365-

382.

[3]Yule,G.et a1.“On reporting what was said”,ELT Journal,1992,46(3):245-251.

[4]Leech,G.& M.Short.Style in Fiction.London:Longman, 1981.

[5]Thompson,G.Introduction to Functional Grammar.London: Edward Arnold,1996.

[6]Fairclough,N.Discourse and Social Change. Cambridge: Polity Press,1992.

[7]Thompson,G.&Y.Ye.“Evaluation of the reporting verbs used in academic papers”,Applied Linguistics,1991(12): 365-

382.

[8]Thomas,S.& T.Hawes.“Reporting verbs in medical journal articles.”ESP Journal,1994(13):129-48.

[9]Swales,J.Genre Analysis:English Academic and Research Setting.Cambridge:CUP,1990.

[10]Hyland,K.Disciplinary Discourse:Social Interactions in Academic Writing.Haflow:Peaon Education,2000.

[11]彭建武.语言转述现象的认知语用分析[J].外语教学与研究,2001(5):359-366.

[12]辛斌.引语研究的语用修辞视角[J].外语学刊,2010(4):67-

73.

[13]胡志清,蒋岳春.冲外英语硕士论文转述动词对比研究[J].语言研究,2004(3):123-126.

[14]袁邦株,徐润英.社会科学论文中转述动词的学术考察[J].求索,2008(12):79-81.

[15]孙迎晖.中国学生英语硕士论文引言部分转述语使用情况的语类分析[J].外语教学,2009(1):53-57,69.

[16]娄宝翠.学习者英语硕士论文中的转述动词[J].外国语学院学报,2011(5):64-68.

[17]张军民.基于语料库的英语学术语篇转述动词研究[J].河南师范大学学报(哲学社会科学版),2012(5):246-249.

友情链接