网络优化论文范文

时间:2023-03-29 09:28:01

引言:寻求写作上的突破?我们特意为您精选了4篇网络优化论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

网络优化论文

篇1

1.1网络优化目标

所谓网络优化,一方面是要对网络运行中存在的覆盖不好、通话质量差、呼叫困难、无法接通、掉话、网络拥塞、切换成功率低以及数据业务性能不佳等问题予以解决,使网络达到最佳运营状态;另一方面,还要通过优化资源配置,对网络整体资源进行合理调配和利用,以适应需求和发展的情况,最大地发挥设备潜能,从而获得最大的投资效益。所以,网络优化的主要目的就是通过对投入运行的无限网络进行数据的采集和分析,找出影响网络质量和资源利用率不高的原因,然后通过技术手段或参数调整使网络达到最佳运行状态,使网络资源获得最佳效益;同时了解网络的增长趋势,为扩容提供依据。因此,网络优化是移动通信系统实际运营过程中一项重要工作内容。

1.2网络优化内容

网络优化是一项贯穿于整个网络发展全过程的长期工作,同时也是一项系统工作,包含一系列优化方式,包括覆盖优化、话务量优化、设备优化、干扰信号分析和资金的优化使用等。网络优化要解决的是改善硬件环境和软件环境。“硬件优化”主要包括天线优化和设备故障优化等工作。“软件优化”主要指频率优化、无线参数调整和配置参数核查等内容。

二、网络优化分析

网络优化分析是网络优化工作中的一个重要环节,只有对路测、系统采集等各方面获取来的网络测试数据进行全面系统的分析,才能对网络的运行状况进行评估和测算,对网络故障进行诊断和定位,从而为进一步制定网络优化措施提供基础。以下列举一些日常维护中主要的网络优化的分析内容:

2.1掉话分析

掉话是指移动台通信发生中断,它是一种严重的网络故障现象,掉话率是评估CDMA系统性能的一项重要指标,通常,通过信令分析判断导致掉话的直接原因并不困难,但要确定造成掉话的深层原因还必须对测试数据进行仔细的分析。

按照协议规定,在通话过程中移动台和基站之间需要有闭合的信令交换,如果由于某种原因造成信令交换失败,移动台就不能正确调整它的发射机,结果或者是重新初始化或者是返回空闲状态,移动台中维持着一个计时器,以限制允许诸如接收到坏帧这样的时间持续的时间。当计时器到期时,移动台会关闭发射机,并返回到初始状态,这样即发生了掉话。

2.1.1移动台掉话机制

移动台坏帧:移动台接收到12个坏帧后会关闭发射,在连续收到两个好帧后会重新激活发射机。

移动台衰落计时器:T5衰落定时器到时,移动台关闭发射,并宣告前向业务信道丢失。

移动台证实失败:移动台在传送了MIN次消息后仍未收到证实,则移动台重新初始化。

2.1.2基站掉话机制

无线设备制造商可能会制定与移动台坏帧和证实失败机制类似的基站坏帧和证实失败机制,这些机制由各制造商执行决定,在协议中未作详细规定。CDMA2000协议规定,基站需要持续地监听每一个反向业务信道,以确定呼叫是否处于激活状态。如果基站检测到呼叫不在激活状态,则基站将断定反向业务信道丢失,基站向移动台发送释放指令,一旦基站发送了释放指令,则向所有的呼叫控制实例发送释放指令,并进入释放子状态。

2.2接入失败分析

当移动台拨打一个电话号码时即为发起一次呼叫;由无线网络用户发起的呼叫分为移动台到固定网络的呼叫和移动台到移动台的呼叫。如果在规定的时间内,呼叫建立过程不能在主叫方与被叫方建立连接,这种情况就成为一次接人失败。移动台发送起呼消息之后,经过以下5个关键步骤完成业务连接。

第1步:基站必须对收到的起呼消息进行证实,即在寻呼信道发送确认消息。

第2步:基站必须在给移动台分配业务信道后,在寻呼信道上发送信道指配消息,同时在前向业务信道上发送空业务帧。

第3步:移动台收到信道指配消息后,开始识别前向业务信道,通常移动台应在收到信道指配消息后200ms内识别前向业务信道。

第4步:在成功识别前向业务信道后,移动台开始在反向业务信道上发送空业务帧,基站在识别反向业务信道后必须发送证实消息。

第5步:基站发送业务连接消息给移动台。

以上5个步骤中每一步的完成可以被称为一个关键点,无论哪一步出错都会造成接入失败。而每个步骤出错的可能原因都很多,这就要求对各种可能原因进行一定的收集和整理,因此掌握这个过程还是不难的。还有一个有效的分析接人失败的方式就是从分析信令人手,通过其中的一些关键信令将问题迅速定位到上述的5个关键点中的某一个,然后再结合其他测试数据找出问题所在。除信令流外,我们还需要观察其他测试指标的变化情况来对问题进行准确定位。需要观察的测试指标主要包括:移动台的接收功率、发射功率和导频强度。

2.3软切换失败分析

软切换过程:

(1)当邻集或剩余集的某一个导频的强度超过T_ADD时,移动台向基站发送导频强度测量消息,并且把该导频列入候选集。

(2)基站向移动台发送切换指示消息或者扩展切换指示消息。

(3)移动台将该导频列入激活集并且向基站发送切换完成消息。

(4)当激活集中某一个导频的强度低于T_DROP时,它所对应的切换去掉计时器开始启动。

(5)当切换去掉计时器期满时(即T_TDROP超时),移动台向基站发送导频强度测量消息。

(6)基站向移动台发送切换指示消息或扩展切换指示消息。

(7)移动台将该导频引入候选集,并且向基站发送切换完成消息。

软切换失败原因主要有以下两种情况:

(1)移动台发出导频强度测量消息,却没有收到基站的切换指示消息。

(2)移动台收到基站的切换指示消息,却没有发送切换完成消息。

在对软切换失败的情况进行分析时,需要仔细观察路测数据中服务小区导频强度的变化情况。因为软切换失败导致掉话的一个重要标志是服务小区的Ec/Io太低,而别的导频则很强,具体可以从以下几点看出:

(1)在一个新的导频上重新初始化:当移动台在导频A上发生系统丢失,然后很快在导频B上重新初始化,可能说明导频B足够强,应该在此之前进行切换。

(2)从邻集的搜索结果中可以看出可用的较强的导频。

(3)从导频强度测量消息可以看出可用的较强的导频。

(4)如果以上的方法都看不出可用的导频,那么对所有导频进行扫描就是最后一种方法。

引起切换失败的主要原因有:

(1)资源分配问题。系统必须保证有足够的资源来支持软切换,但可能所有的资源都用尽了,这时就会发生切换失败。可能的原因有:T_DROP太低;T_TDROP太大;切换允许算法的有效性太差。

(2)切换信令问题。假设系统有可用资源而切换允许算法没有对切换造成干扰,那么软切换是否成功还依赖于切换信令消息是否及时地发送和接受。

2.4高误帧率分析

当移动台或基站接收到一个数据帧以后,要进行CRC校验,得到帧速率并检测帧是否错误。所谓误帧是指检测到比特错误或无法检测出帧速率的数据帧。误帧率就是指误帧的数目占总帧数的比例,是衡量语音质量的一项重要指标。语音质量是一个非常主观的量,很难进行客观评估。然而语音质量在很大程度上是与误帧率有关的,而误帧率则可以进行客观的测量。当系统的误帧率高于目标值时,需要对系统性能进行细致地分析以查明原因。

三、网络优化的分类

3.1覆盖优化

网络覆盖是衡量一个网络优势的关键,为了全面提升网络的覆盖水平,达到在最少的投资条件下实现无线网络设计目标,即最合理的基站布局、最佳的参数设置、最大的网络容量、最小的干扰水平以及最高的网络质量,应进行完善的覆盖规划设计和优化,认真考虑系统的用户分布情况,合理地设置基站数,对CDMA网络的前反向覆盖、导频Ec/Io和切换状态等多方面进行全面分析。

3.2容量优化

随着网络内用户的不断增加,系统内不可避免的会出现话务量不均衡的现象,某些局部地区可能会频繁发生话务量拥塞。容量优化的目的就是解决网络内的话务量不均衡的问题,使得整个网络内的业务负荷保持均匀。尤其在一些人口密集的商业区,要考虑人口的流动特点,而在一些大型活动场所又会在某些时段出现突发性的话务量。进行容量优化需要对基站的话务统计数据进行仔细分析,对于既存在容量问题又存在覆盖问题的地区,可以通过增加微蜂窝或基站的方法来解决。

如果网络内的某个基站话务负荷很重,经常出现话务拥塞,而周围基站的话务量又相对较低,就说明明显存在话务量不均衡的现象,这时就需要解决由于软切换对系统信道资源的浪费问题。通过调整软切换参数降低软切换比例。如果软切换比例并不高,那么就需要通过调整天线的下倾角和方向角,使该基站的话务量能够分担到周围其他话务量较低的基站上。在调整时要特别注意兼顾对覆盖的影响,需要反复进行测试和调整的过程。

3.3导频污染和干扰优化

导频污染具体可分为导频相位污染和导频强度污染两种情况。导频相位污染是指一个小区的导频相位偏移经过传输时延后落入当前移动台激活集内某导频的搜索窗内,且该导频超过一定强度,致使移动台误认为是服务导频,从而对解调形成干扰的情况,这种情况在实际中比较少见。实际网络中比较多见的情况是导频强度污染,它是指当移动台收到超过3个以上Ec/lo强度大于T_ADD的导频,而由于移动台的RAKE接收机最多可以解调3路信号,所以多余的强度导频就对移动台的信号解调形成干扰,工程上所说的导频污染通常是指这种情况。导频污染可以认为是来自CDMA系统内的下行干扰,会严重影响移动台对下行信号的解调,情况严重时常常会引起掉话,因此是CDMA无线网络优化需要解决的重要问题之一。除导频污染这种来自CDMA系统内的干扰外,可能还存在一些来自系统外的干扰,在网络优化过程中需要通过反复实地测试,对干扰源仔细查找定位和排除。

导频污染问题的解决方法主要有:

(1)以路测数据为依据来优化系统运行以减少导频的数目,或在导频污染区域调出一个主导频来。

(2)对于导频相位的污染的情况,可以通过在系统中改善PN偏置分配,如选择合适的PILOT_INC和有效集搜索窗口大小,以及将相同偏置指数的导频置于尽可能远的位置,以使干扰主导频位于有效集中的导频搜索窗口之外。

3.4切换优化

切换性能优化的主要目标是解决切换失败的网络故障和对切换比例过高等性能不佳的状况进行优化。

篇2

在进行投资时,投资者最关心的就是收益和风险。证券投资者在市场经济的客观经济环境中面临着许多不能预测、经常变动的因素。这些因素的变动,往往使投资者的原有决策受到冲击,从而导致一些意外损益的发生。这就要求投资者在投资过程中预先估计这些可能发生的变动,从而减少风险。投资组合理论正是探讨在风险条件下如何进行分散投资,使投资总体结构达到最优,从而获得可能的最高收益的理论。所谓投资组合,就是把一定的资金分散投资于多种证券,使单个证券按一定的比例构成证券集合,从而实现既定风险水平下的预期收益率最大化。

要解决的问题是投资组合的优化问题,这一问题的实质是在给定风险水平下,寻求产生最大期望收益率的投资组合。或是在给定期望收益率下,寻求风险水平最低的投资组合。投资者进行投资决策必须遵循一定的标准。

马科威茨的投资组合选择理论

具体而言,马科威茨假设投资者遵循的是均值——方差标准。所谓均值——方差标准,是指投资者在证券收益率的均值(作为收益率的未来期望值)和方差(即观测到的收益率偏离均值的程度,作为风险的量化指标)之间进行权衡。如果两只证券的期望收益率相同,投资者总是愿意选择方差较小的那一只,即厌恶风险;反之,如果两只证券的方差相同,投资者总是愿意选择期望收益率较大的那一只,即永不满足。

无差异曲线

任一经济决策问题必须确定一个机会集和一个偏好函数。在投资组合理论中,效用函数代表着投资者偏好。

用于投资决策的效用函数是从微观经济学中借用过来的。投资者的目标是投资效用最大化,而投资效用取决于投资的预期收益率和风险,投资决策过程就是在预期收益率和风险(方差)之间进行取舍权衡的过程。投资者的效用函数可以通过在预期收益率-风险平面上,通过无差异曲线族表现出来。如图1所示。

一条无差异曲线(IndifferceCurve)代表着给投资者带来同等水平效用的预期收益率和风险的所有组合,因而也被称为等效用线。预期收益率一风险平面上的无差异曲线具有以下特点:

斜率为正()。即为了保证效用相同,如果投资者承担的风险增加,则其所要求的收益率也会增加。对于不同的投资者,其无差异曲线斜率越陡峭,表示其越厌恶风险,因为在一定风险水平上,为了让其多冒等量的额外风险,必须给予更高的额外补偿;反之,无差异曲线越平坦,表示其风险厌恶的程度越小。

下凸()。这意味着,随着风险的增加,要使投资者多承担等量的风险,其期望收益率补偿越来越高。直观表现在无差异曲线越来越陡峭。这一现象实际上是边际效用递减规律在投资上的表现。

不同的无差异曲线代表着不同的效用水平,给定不同的效用值,就可以得到上面的无差异曲线族。任两条无差异曲线都不会相交。越靠左上方,无差异曲线代表的效用水平越高。这一点理解起来也比较符合直觉。如图1所示,给定某一风险水平,越靠上方的曲线其对应的期望收益率越高,因此其对应的效用水平也越高;同样,给定某一期望收益率水平,越靠左边的曲线对应的风险越小,其对应的效用水平也就越高。

可行集与有效集

可行集(FeasibleSet)是指资本市场上由风险资产可能形成的所有投资组合的总体。将所有可能投资组合的期望收益率和标准差关系描绘在期望收益率-标准差坐标平面上,如图2所示。封闭曲线上及其内部区域表示可行集,其边界上或边界内的每一点代表一个投资组合。

可行集的左侧边界是一条双曲线的一部分,而整个可行集呈雨伞状。按马科威茨投资组合选择的前提条件,投资者为理性个体,服从不满足假定和回避风险假定,他们在决策时,遵循有效集定理(EfficientSetTheorem):既定风险水平下要求最高收益率;既定预期收益率水平下要求最低风险。

在图2中,满足第一条原则的组合为从E点到H点再到G点的边界,之下的点可以全部不用考虑;E为最小风险点,G为最大风险点。

满足第二条原则的组合为从F点到E点再到H点间的边界,则弧FEH之右的点可以完全去除,F、H分别为期望收益率的最大点和最小点。而同时满足两条原则的,只剩下弧EH边界,称为有效集(有效边界—EfficientFrontier)。理性投资者仅从有效集中进行投资组合选择。有效边界的一个重要特性是上凸性。即,随着风险增加,预期收益率增加的幅度减慢。

在某种意义上,有效边界是“客观”确定的,即如果投资者对证券的收益率、方差、协方差有相同的估计,则他们会得到完全相同的有效边界。

最优组合(OptimalPortfolio)的确定

对各种可供选择的风险资产或证券,如果已知其期望收益率和方差-协方差矩阵,则有效边界可以确定下来。投资者根据个人偏好的不同,选择有效边界上的某一点进行投资决策。由于有效边界上凸,效用曲线下凸,所以两条曲线必然在某一点相切。切点代表的就是为了达到最大效用而必须选择的最优组合。如图3所示,切点O是投资者A的最优组合,因为这一点所在的等效用线U2A与有效边界相切。虽然效用线U1A代表的效用水平更高,但因处于有效边界上方,故不可行(Infeasible);等效用线U3A代表的效用水平比U2A所代表的水平低,投资者显然不会愿意只达到这一效用水平(Inefficient)。

对于投资者B由于其风险偏好的不同(比投资者A更喜好风险),其将选择期望收益率更高而风险也更高的P点进行投资。

篇3

1.1网络优化目标

所谓网络优化,一方面是要对网络运行中存在的覆盖不好、通话质量差、呼叫困难、无法接通、掉话、网络拥塞、切换成功率低以及数据业务性能不佳等问题予以解决,使网络达到最佳运营状态;另一方面,还要通过优化资源配置,对网络整体资源进行合理调配和利用,以适应需求和发展的情况,最大地发挥设备潜能,从而获得最大的投资效益。所以,网络优化的主要目的就是通过对投入运行的无限网络进行数据的采集和分析,找出影响网络质量和资源利用率不高的原因,然后通过技术手段或参数调整使网络达到最佳运行状态,使网络资源获得最佳效益;同时了解网络的增长趋势,为扩容提供依据。因此,网络优化是移动通信系统实际运营过程中一项重要工作内容。

1.2网络优化内容

网络优化是一项贯穿于整个网络发展全过程的长期工作,同时也是一项系统工作,包含一系列优化方式,包括覆盖优化、话务量优化、设备优化、干扰信号分析和资金的优化使用等。网络优化要解决的是改善硬件环境和软件环境。“硬件优化”主要包括天线优化和设备故障优化等工作。“软件优化”主要指频率优化、无线参数调整和配置参数核查等内容。

二、网络优化分析

网络优化分析是网络优化工作中的一个重要环节,只有对路测、系统采集等各方面获取来的网络测试数据进行全面系统的分析,才能对网络的运行状况进行评估和测算,对网络故障进行诊断和定位,从而为进一步制定网络优化措施提供基础。以下列举一些日常维护中主要的网络优化的分析内容:

2.1掉话分析

掉话是指移动台通信发生中断,它是一种严重的网络故障现象,掉话率是评估CDMA系统性能的一项重要指标,通常,通过信令分析判断导致掉话的直接原因并不困难,但要确定造成掉话的深层原因还必须对测试数据进行仔细的分析。

按照协议规定,在通话过程中移动台和基站之间需要有闭合的信令交换,如果由于某种原因造成信令交换失败,移动台就不能正确调整它的发射机,结果或者是重新初始化或者是返回空闲状态,移动台中维持着一个计时器,以限制允许诸如接收到坏帧这样的时间持续的时间。当计时器到期时,移动台会关闭发射机,并返回到初始状态,这样即发生了掉话。

2.1.1移动台掉话机制

移动台坏帧:移动台接收到12个坏帧后会关闭发射,在连续收到两个好帧后会重新激活发射机。

移动台衰落计时器:T5衰落定时器到时,移动台关闭发射,并宣告前向业务信道丢失。

移动台证实失败:移动台在传送了MIN次消息后仍未收到证实,则移动台重新初始化。

2.1.2基站掉话机制

无线设备制造商可能会制定与移动台坏帧和证实失败机制类似的基站坏帧和证实失败机制,这些机制由各制造商执行决定,在协议中未作详细规定。CDMA2000协议规定,基站需要持续地监听每一个反向业务信道,以确定呼叫是否处于激活状态。如果基站检测到呼叫不在激活状态,则基站将断定反向业务信道丢失,基站向移动台发送释放指令,一旦基站发送了释放指令,则向所有的呼叫控制实例发送释放指令,并进入释放子状态。

2.2接入失败分析

当移动台拨打一个电话号码时即为发起一次呼叫;由无线网络用户发起的呼叫分为移动台到固定网络的呼叫和移动台到移动台的呼叫。如果在规定的时间内,呼叫建立过程不能在主叫方与被叫方建立连接,这种情况就成为一次接人失败。移动台发送起呼消息之后,经过以下5个关键步骤完成业务连接。

第1步:基站必须对收到的起呼消息进行证实,即在寻呼信道发送确认消息。

第2步:基站必须在给移动台分配业务信道后,在寻呼信道上发送信道指配消息,同时在前向业务信道上发送空业务帧。

第3步:移动台收到信道指配消息后,开始识别前向业务信道,通常移动台应在收到信道指配消息后200ms内识别前向业务信道。

第4步:在成功识别前向业务信道后,移动台开始在反向业务信道上发送空业务帧,基站在识别反向业务信道后必须发送证实消息。

第5步:基站发送业务连接消息给移动台。

以上5个步骤中每一步的完成可以被称为一个关键点,无论哪一步出错都会造成接入失败。而每个步骤出错的可能原因都很多,这就要求对各种可能原因进行一定的收集和整理,因此掌握这个过程还是不难的。还有一个有效的分析接人失败的方式就是从分析信令人手,通过其中的一些关键信令将问题迅速定位到上述的5个关键点中的某一个,然后再结合其他测试数据找出问题所在。除信令流外,我们还需要观察其他测试指标的变化情况来对问题进行准确定位。需要观察的测试指标主要包括:移动台的接收功率、发射功率和导频强度。

2.3软切换失败分析

软切换过程:

(1)当邻集或剩余集的某一个导频的强度超过T_ADD时,移动台向基站发送导频强度测量消息,并且把该导频列入候选集。

(2)基站向移动台发送切换指示消息或者扩展切换指示消息。

(3)移动台将该导频列入激活集并且向基站发送切换完成消息。

(4)当激活集中某一个导频的强度低于T_DROP时,它所对应的切换去掉计时器开始启动。

(5)当切换去掉计时器期满时(即T_TDROP超时),移动台向基站发送导频强度测量消息。

(6)基站向移动台发送切换指示消息或扩展切换指示消息。

(7)移动台将该导频引入候选集,并且向基站发送切换完成消息。

软切换失败原因主要有以下两种情况:

(1)移动台发出导频强度测量消息,却没有收到基站的切换指示消息。

(2)移动台收到基站的切换指示消息,却没有发送切换完成消息。

在对软切换失败的情况进行分析时,需要仔细观察路测数据中服务小区导频强度的变化情况。因为软切换失败导致掉话的一个重要标志是服务小区的Ec/Io太低,而别的导频则很强,具体可以从以下几点看出:

(1)在一个新的导频上重新初始化:当移动台在导频A上发生系统丢失,然后很快在导频B上重新初始化,可能说明导频B足够强,应该在此之前进行切换。

(2)从邻集的搜索结果中可以看出可用的较强的导频。

(3)从导频强度测量消息可以看出可用的较强的导频。

(4)如果以上的方法都看不出可用的导频,那么对所有导频进行扫描就是最后一种方法。

引起切换失败的主要原因有:

(1)资源分配问题。系统必须保证有足够的资源来支持软切换,但可能所有的资源都用尽了,这时就会发生切换失败。可能的原因有:T_DROP太低;T_TDROP太大;切换允许算法的有效性太差。

(2)切换信令问题。假设系统有可用资源而切换允许算法没有对切换造成干扰,那么软切换是否成功还依赖于切换信令消息是否及时地发送和接受。

2.4高误帧率分析

当移动台或基站接收到一个数据帧以后,要进行CRC校验,得到帧速率并检测帧是否错误。所谓误帧是指检测到比特错误或无法检测出帧速率的数据帧。误帧率就是指误帧的数目占总帧数的比例,是衡量语音质量的一项重要指标。语音质量是一个非常主观的量,很难进行客观评估。然而语音质量在很大程度上是与误帧率有关的,而误帧率则可以进行客观的测量。当系统的误帧率高于目标值时,需要对系统性能进行细致地分析以查明原因。

三、网络优化的分类

3.1覆盖优化

网络覆盖是衡量一个网络优势的关键,为了全面提升网络的覆盖水平,达到在最少的投资条件下实现无线网络设计目标,即最合理的基站布局、最佳的参数设置、最大的网络容量、最小的干扰水平以及最高的网络质量,应进行完善的覆盖规划设计和优化,认真考虑系统的用户分布情况,合理地设置基站数,对CDMA网络的前反向覆盖、导频Ec/Io和切换状态等多方面进行全面分析。

3.2容量优化

随着网络内用户的不断增加,系统内不可避免的会出现话务量不均衡的现象,某些局部地区可能会频繁发生话务量拥塞。容量优化的目的就是解决网络内的话务量不均衡的问题,使得整个网络内的业务负荷保持均匀。尤其在一些人口密集的商业区,要考虑人口的流动特点,而在一些大型活动场所又会在某些时段出现突发性的话务量。进行容量优化需要对基站的话务统计数据进行仔细分析,对于既存在容量问题又存在覆盖问题的地区,可以通过增加微蜂窝或基站的方法来解决。

如果网络内的某个基站话务负荷很重,经常出现话务拥塞,而周围基站的话务量又相对较低,就说明明显存在话务量不均衡的现象,这时就需要解决由于软切换对系统信道资源的浪费问题。通过调整软切换参数降低软切换比例。如果软切换比例并不高,那么就需要通过调整天线的下倾角和方向角,使该基站的话务量能够分担到周围其他话务量较低的基站上。在调整时要特别注意兼顾对覆盖的影响,需要反复进行测试和调整的过程。

3.3导频污染和干扰优化

导频污染具体可分为导频相位污染和导频强度污染两种情况。导频相位污染是指一个小区的导频相位偏移经过传输时延后落入当前移动台激活集内某导频的搜索窗内,且该导频超过一定强度,致使移动台误认为是服务导频,从而对解调形成干扰的情况,这种情况在实际中比较少见。实际网络中比较多见的情况是导频强度污染,它是指当移动台收到超过3个以上Ec/lo强度大于T_ADD的导频,而由于移动台的RAKE接收机最多可以解调3路信号,所以多余的强度导频就对移动台的信号解调形成干扰,工程上所说的导频污染通常是指这种情况。导频污染可以认为是来自CDMA系统内的下行干扰,会严重影响移动台对下行信号的解调,情况严重时常常会引起掉话,因此是CDMA无线网络优化需要解决的重要问题之一。除导频污染这种来自CDMA系统内的干扰外,可能还存在一些来自系统外的干扰,在网络优化过程中需要通过反复实地测试,对干扰源仔细查找定位和排除。

导频污染问题的解决方法主要有:

(1)以路测数据为依据来优化系统运行以减少导频的数目,或在导频污染区域调出一个主导频来。

(2)对于导频相位的污染的情况,可以通过在系统中改善PN偏置分配,如选择合适的PILOT_INC和有效集搜索窗口大小,以及将相同偏置指数的导频置于尽可能远的位置,以使干扰主导频位于有效集中的导频搜索窗口之外。

3.4切换优化

切换性能优化的主要目标是解决切换失败的网络故障和对切换比例过高等性能不佳的状况进行优化。

篇4

1引言

由于常规PID控制具有鲁棒性好,结构简单等优点,在工业控制中得到了广泛的应用。PID控制的基本思想是将P(偏差的比例),I(偏差的积分)和D(偏差的微分)进线性组合构成控制器,对被控对象进行控制。所以系统控制的优劣取决于这三个参数。但是常规PID控制参数往往不能进行在线调整,难以适应对象的变化,另外对高阶或者多变量的强耦合过程,由于整定条件的限制,以及对象的动态特性随着环境等的变化而变化,PID参数也很难达到最优的状态。

神经网络具有自组织、自学习等优点,提出了利用BP神经网络的学习方法,对控制器参数进行在线调整,以满足控制要求。由于BP神经网络学习过程较慢,可能导致局部极小点[2]。本文提出了改进的BP算法,将遗传算法和BP算法结合对网络阈值和权值进行优化,避免权值和阈值陷入局部极小点。

2加热炉的PID控制

加热炉控制系统如图1所示,控制规律常采用PID控制规律。

图1加热炉控制系统简图

若加热炉具有的数学模型为:

则PID控制过程箭图可以用图2表示。

其中,

采用经典参数整定方法——临界比例度对上述闭环系统进行参数整定,确定PID控制器中Kp=2.259,Ki=0.869,Kd=0.276。参考输入为单位阶跃信号,仿真曲线如图3所示。

图2PID控制系统

图3Z—N整定的控制曲线

仿真曲线表明,通过Z—N方法整定的参数控制效果不佳,加上PID参数不易实现在线调整,所以该方法不宜用于加热炉的在线控制。

3基于遗传算法改进的BP神经网络PID控制器参数优化整定

对于加热炉控制系统设计的神经网络自整定PID控制,它不依赖对象的模型知识,在网络结构确定之后,其控制功能能否达到要求完全取决于学习算法。

3.1遗传算法改进的BP算法实现

一般BP网络结构如图4所示,其算法步骤为:

(1)输入训练样本,按网络结构得到输出;

(2)将实际输出与希望输出比较,得到误差,根据误差调节阈值和权值。重复两个步骤,直到误差满足要求为止;

研究表明,采用上述BP算法逐步调整权值和阈值,可能导致学习过程收殓速度慢,训练时间过长,又易陷入局部极小点而得不到最佳的权值和阈值分布。为了加快学习速率,已经有了一些优化BP算法[3],采用动态学习因子和惯性因子。这些方法在加快网络收殓速度方面比较显著,能较好地避免网络陷入局部极小。遗传算法不要求目标函数具有连续性,而且可以对复杂的多峰的,非线性及不可微的函数实现全局寻优,因此容易得到全局最优解或性能很好的次优解。将遗传算法和BP算法相结合可以具有寻优的全局性和精确性。算法过程为:

(1)对权值和阈值编码生成初始种群,由于是多参数优化问题,采用多参数映射编码;

(2)计算适应度值;

(3)如果不满足遗传算法停止条件,则对当代种群进行交叉、选择和变异产生新的个体,转(2);否则,转(4);

(4)对遗传算法找到的较好的解空间,采用BP算法在这些小的解空间中搜索出最优解。

3.2PID参数优化

由图5可知,神经网络根据系统的运行状态,通过在线调整PID的三个参数Kp,Ki,Kd,以达到某种性能指标的最优化。

图5BP网络整定PID参数原理图

经典增量式PID的控制算法:

算法步骤:

(1)确定网络结构,采用3—4—3的结构,输入分别为e(k),e(k)-e(k-1),e(k)-2e(k-1)+e(k-2)。输出为Kp,Ki,Kd。

(2)选择初始种群N=60,交叉概率Pc=0.08,权值,阈值的范围和初始化。选取目标函数为(偏差绝对值积分):,适应度函数为:

(3)采样得到rin(k)和yout(k),计算该时刻的误差。

(4)对网络进行学习,在线调整权值,阈值,计算神经网络的各层输入,输出,得到三个可调参数Kp,Ki,Kd。计算系统输出。

(5)计算适应度若不满足要求,转入第(3)步。

(6)找到最优的Kp,Ki,Kd,对系统仿真。

图6BP网络整定的控制曲线

仿真结果显示,用BP神经网络整定的PID控制系统比经典的Z—N(临界比例度)法有更快的响应特性,良好的动态特性和比较强的鲁棒性。

4结束语

由于神经网络具有自组织、自学习等优点,本文提出的优化的BP神经网络相结合的方法对控制器参数进行寻优,可根据对象的变化情况对控制器参数的在线调整,满足控制对象的动态特性随着环境变化而变化的要求。达到好的控制效果。遗传算法与BP网络的结合弥补了BP网络学习过程收敛速度慢,可能陷入局部级小的不足。

参考文献

[1]王树青等编著.工业过程控制工程[M].北京:化学工业出版社,2002

[2]李士勇著.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔并工业大学出版社,1996

[3]胡志军,王建国,王鸿斌.基于优化BP神经网络的PID控制研究与仿真[J].微电子学与计算机2006,23(12):138—140

友情链接