大数据审计论文范文

时间:2023-03-30 11:42:55

引言:寻求写作上的突破?我们特意为您精选了4篇大数据审计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

大数据审计论文

篇1

二、大数据分析是绩效审计的利器

英国NFI通过大数据分析,不仅发现个案问题,还对同类问题的产生原因进行分析,促使相关部门和单位完善制度,堵塞漏洞,提高公共资金的使用效率和效益。近年来,随着我国财经制度的不断完善和加强,违反财经纪律、违法违规的问题得到了很大遏制,国家审计在继续查处违法违规性问题的同时,也十分注重对公共财政资金使用绩效进行审计。通过大数据集中分析平台的关联分析查询,能够从整体层面高效、便捷地发现诸如公共财政资金滞留的具体环节、时间;发现公共财政资金投向不符合产业政策导向;发现财政专项资金分配在地区和部门间存在的不均衡、不合理;发现财政投入的建设项目存在的进度滞后、效益与预期不符等问题。大数据提供的证据与审计抽查相比,能够更加全面、客观地反映某项公共财政资金产生的整体效果和存在问题。在此基础上提出的审计意见和建议,更加充分、准确和有针对性,更能促使相关部门和单位完善制度、落实责任、加强管理,更好地实现公共财政资金的价值。

三、如何构建审计大数据平台

1.通过立法为建立审计大数据集中分析平台奠定基石。英国NFI的数据收集和分析工作是依据2008年7月21日修订的数据配比法案进行的,法律授权使英国审计委员会将数据收集、整理、分析等工作成为常态,这是审计开展大数据分析的基石。目前,我国审计法授予了审计机关在审计期间获取被审计单位数据的权力,但是审计项目是单个开展的,各被审计单位之间的数据不能完全地相互关联,形成了一个个数据孤岛;并且,审计项目一结束,被审计单位就不愿意继续向审计机关提供数据,难以对被审计单位进行持续的审计监督。借鉴英国的经验,我国应当从法律层面明确属于国家审计范围的政府部门、企事业单位、公共机构,以及使用公共财政资金的企业、单位等应当定期向审计机关提供电子数据,为国家审计进行大数据分析创造条件,从根本上解决目前存在的数据收集难、不完整、时效性差等问题,将一个个数据“孤岛”连接起来,在此基础上进行深入的关联、对比和分析,真正发挥信息时代大数据的强大作用。

篇2

并购创造价值,然而在并购后期企业如何将并购效益达到最佳,即如何更为有效地进行并购整合一直是并购研究的一个主要方向。同时,互联网飞速发展,大数据已悄然而至,随之而来的必然会是以大数据为依托的又一波并购浪潮。因此,研究大数据对企业并购审计活动及其风险的影响极具现实意义。

一、企业并购审计与大数据

1.企业并购。企业并购,一般指企业兼并和收购(M&A),是以目标企业控制权为标的进行交易,实现迅速规模扩张、增强竞争力的扩张型商业活动。随着我国改革开放步伐不断加快,“引进来”和“走出去”协同发展,现如今,互联网的迅速发展为中国企业创新带来了极大的动力与无限的可能,以阿里巴巴、腾讯、百度为代表的互联网企业以迅雷不及掩耳之势在我国掀起又一波并购浪潮。2.并购审计。并购审计属专项审计,即注册会计师在并购双方拟定并购计划并签订并购协议之后,为达到提高并购效率,降低并购风险,而提供的包括财务报告审计等专业服务的审计活动。由于并购审计不仅包含一般财务审计的目标,有的甚至关系到企业未来的发展,因此并购审计的目标更为复杂,内容更为丰富。3.大数据。随着云计算技术的快速普及,电子信息、互联网及移动互联网的广泛运用,数据已成为新时期的基础生活资料与市场要素。大数据具有海量化、多样化、价值高、密度低和快速化等特点,更精确地分析企业所处的行业地位、市场占有率等,使企业管理者进行管理决策更有洞察发现力及远见。

二、大数据对企业并购审计风险的影响

根据并购审计的特点以及大数据对于并购审计的影响,大数据下并购审计的风险包括四大内容:首先是大数据对企业并购审计环境的影响,其次是大数据对企业并购审计目标的影响,再次是大数据对企业并购审计内容的影响,最后是大数据对企业并购审计技术的影响。1.大数据对企业并购审计环境的影响。大数据背景下,企业的方方面都会受其影响,就企业并购活动来说,在并购准备阶段,大数据对于并购审计的影响则主要体现在企业并购环境上,例如通常来说复杂的市场环境和不断随市场变化的产品生命周期。大数据的发展对于外部环境的把握提供了极大的帮助。例如市场环境的变化可以通过对大数据的发掘分析,不仅大大提高了市场变化信息的及时性,审计过程中可通过市场大数据下行业中权威预测与评论等信息获取更具准确性的参考,同时降低审计风险。而并购企业的内部环境,如公司的管理水平、企业文化的影响程度,企业监督制度及内部控制的执行情况等内容的审计也会加大并购审计的风险。大数据时代,企业往往会建立内部的数据平台以提高生产与管理效率,在进行企业并购审计时,这些内部的大数据平台对于审计人员准确把握主并企业与目标企业的生产会计信息,充分运用职业判断降低并购审计风险起到重要的作用。2.大数据对企业并购审计目标的影响。企业并购的一大目标便是产生协同效应,然而是否能产生确是未知数,这也是并购审计风险的重要影响因素之一。企业并购并不仅是并购双方有形资产的整合重组,更重要的应是优势互补,将无形的文化与资产进行有效整合,以期企业的更大发展。因此在挑选目标企业时,大数据便能显示出其魅力。数据是一面很好的镜子,审计人员通过对主并企业和目标企业运营情况、发展特点、行业处境等影响企业并购协同效应因素的科学对比分析,寻求业务可持续发展的动力,使企业并购协同效应最大化,挖掘出并购后可达到的最大价值。3.大数据对企业并购审计内容的影响。企业并购审计的内容中,对于对方企业的评估审计关系到目标企业价值,对审计风险影响较大,因此并购审计中评估审计的内容至关重要。对目标企业的评估内容比较广,比如,需要认真分析企业财务运营状况、目标企业竞争力的强弱等;企业并购后联合风险也是并购活动中不可忽视的重要内容,其中发展战略是主并方选择并购对象和类型的基础,关系到未来企业运营状况。而大数据对于趋势与发展分析,特别是用有形数字所表现的信息分析具有不可替代的优势。4.大数据对企业并购审计技术的影响。审计技术的影响因素多指审计人员的专业素养和最新技术应用。大数据对于二者的影响颇为明显,即在信息与数据的选择中,审计人员普遍运用抽样技术,然而数据如何选取,选取之后如何解读却因人而异。但是大数据时代的来临,数据与信息获取更方便、更全面,甚至可以基于全样数据运用大数据技术进行审计分析,减少了审计抽样的风险,从而对于这一问题提供更好解决的可能。同时信息不对称问题造成很多并购活动的失败。大数据时代以其及时性与数据充分性著称,因此,在大数据日益发展的情况下,信息不对称对于并购审计风险的潜在影响不断降低。

三、大数据背景下企业并购审计风险的控制

上述风险的防范重点主要集中在提升数据处理技术、提高审计人员素质、完善政策法律环境等方面。1.注重数据安全,提升数据处理技术是核心。首先,可以根据数据性质和审计需求设置权限等级,严格控制数据访问权限,减少数据外泄的可能性。其次,大数据时代面对海量数据处理,对数据的获取与处理不仅需要Excel或审计软件,还要借助数据挖掘技术缩小数据量,然后再对数据进行分析,从而提高并购审计工作的效率,降低并购审计的风险。2.提高审计人员综合素质是关键。并购审计中审计人员的职业判断举足轻重,审计人员必须提高自身的综合素质,灵活地运用审计方法、审计工具,组合式地解决问题、应对变化。一方面要加强现有审计人员知识结构调整,另一方面要与信息技术等领域的专业人士通力合作凸显团队力量。3.完善并购法律制度环境是保障。大数据在并购审计中发挥更好的作用离不开完善的法律与制度环境。因此,进一步完善与企业并购相关法律法规,形成合理专业的业务规范是大势所趋。同时,在制定相关的会计准则时,既要借鉴国际会计领域的先进成果,也要兼顾我国国情,适合我国境内各类型的企业并购,特别是新兴的互联网企业并购。

参考文献:

[1]我国企业并购现状与成功条件的分析和思考[D].何丽.硕士论文,2010.

[2]企业并购专项审计和财务评价.[J].卢树华.现代商业,2009.5.

[3]企业并购审计风险及其防范.[J].熊梦云、彭卉.财会月刊,2013.8.

篇3

[11]Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006,57(3): 359-377.

[12]吕巾娇等. 活动理论的发展脉络与应用探析[J].现代教育技术, 2007,(01): 8-14.

[13]Xu, Y. and D. Wang. Order effect in relevance judgment[J]. Journal of the American Society for Information Science and Technology, 2008. 59(8): 1264-1275.

[14]Xu, Y.The dynamics of interactive information retrieval behavior, Part I: An activity theory perspective[J]. Journal of the American Society for Information Science and Technology, 2007,58(7): 958-970.

[15]Xu, Y.J. and C.L. Liu. The dynamics of interactive information retrieval, Part II: An empirical study from the activity theory perspective[J]. Journal of the American Society for Information Science and Technology,2007, 58(7): 987-998.

篇4

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)25-0088-02

一、大数据的内涵及特征

1.大数据的内涵。目前,对于大数据的定义没有统一定论,通常认为大数据是指以多元形式存在的、数量庞大且内容复杂的、需要专门的软件与分析工具进行搜集、整理、发掘及分析的那些自许多来源汇集而来的庞大数据组。可以从三个层面解释大数据:第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线;第二层面是技术,技术是大数据价值体现的手段和前进的基石;第三层面是实践,实践是大数据的最终价值体现。

2.大数据的特征。①Volume(数据体量巨大)。据“产业信息网”相关统计,截止到2012年底,人类已生产200PB(1PB=210TB)印刷材料的数据量,历史上全人类说过的所有的话大约是5EB(1EB=210PB)的数据量。而当前,典型个人计算机硬盘的容量为TB量级,但一些大企业的数据量已经接近EB量级,如此海量的数据对我们正确识别真实数据的能力提出了巨大的挑战。②Variety(数据类型繁多)。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,如图片、视频等多类型的数据对我们的处理及分析数据的能力提出了更高要求。③Value(价值密度低)。价值密度的高低与数据总量的大小成反比。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。如何通过强大的算法更迅速地对数据的价值进行“萃取”成为当今大数据背景下亟待攻克的难题。④Velocity(处理速度快)。这是大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告显示,全球数据预计到2020年时使用量将达到35.2ZB。在如此庞大的数据面前,高效处理数据就是企业的生命。

二、会计学专业人才培养模式

1.国外会计学专业人才培养模式。①德国的FH模式。德国推行的应用型人才培养的模式被称为FH模式。不仅注重系统的科学知识的讲授,更加注重实际应用能力的培养。尤其重视学生实践能力的考核,将学生的培养与企业实际紧密结合。②英国“三明治”模式。英国的应用型人才培养采用了实践与学习相交错的“三明治”模式,即实践环节与学习环节交替进行,课程设置与招生充分结合市场。③美国“生计教育”模式。20世纪70年代的石油危机爆发后,为解决毕业生的就业问题,美国推出了“生计教育”模式。该模式下,学生在学校不仅接受教育,而且接受技能的培训。教学方式方法灵活、校企合作、政府支持为这一模式的主要特点。

2.国内会计学专业人才培养模式。①精英教育。我国长期推行的是精英教育,尽管精英教育饱受诟病,但就会计人才的培养来看,精英教育并非一无是处。精英教育使得学生可以获得足够的教育资源。教师可以和学生在课堂上进行充分的互动沟通,帮助学生培养批判的精神和能力。此外,精英教育模式下遴选出的精英通常不仅在校期间学习刻苦,在进入工作岗位后也后劲十足,发展潜力巨大,能够将在学校培养出的良好习惯和能力运用到工作实际中。②大众教育。随着经济社会的发展,我国的会计教育由精英型教育转向了大众化教育。这一转变给我国的会计教育带来了一些问题,表现在会计教育的发展严重滞后于会计职业界的实际,会计人才培养不能满足市场的需求,供求出现结构性矛盾。培养目标侧重于技术的培养,而忽视了通用能力的训练;课程过分强调会计的规则性,抑制了职业判断;教学方法上,倾向于灌输式的教育,而缺乏必要的实践操作。

三、大数据对会计学专业人才培养提出的挑战

1.培养重点不明确、培养目标不清晰。我国高校会计学专业人才培养模式的重点主要以理论和科研教学为主,大多课程的安排也充斥着浓浓的文学色彩,如会计学原理、审计理论等。同时,我国大多高校会计学专业人才培养目标并不清晰,单一的追求学生理论知识的掌握,使得学生的实践及应用能力欠缺。这两者与当今市场对会计学专业人才的需求不对接,与当今社会职业界对会计学专业人才的要求相差较远。

2.课程设置不合理,导致无法灵活应对大数据。会计学作为一级学科,与经济学、数学、统计学等学科的交叉增添了会计学课程设置的多样及多元化。但我国会计学课程设置的本身就存在着很多问题。如过分注重理论研究,不能更好地体现会计学的实用性;课程设置的层次性不鲜明;专业课程前瞻性不够,与社会的热点及最新发展衔接脱钩;实践环节设置的相对欠缺,导致对大数据处理的应用能力受限。

3.考核制度没有得到严格执行。在我国专业人才培养模式中,会计学等各学科的结课考核方式以考试为主、结业考试以论文形式为主。因教学中研究氛围的不浓,经费支撑的不足,以及部分学生为就业等现实因素的影响造成其投放在论文上的精力不够,这都使得考核制度对会计学专业人才的培养质量的保障作用在一定程度上受到削弱,也使考核结果及论文质量受到严重影响。

4.开源课程等新型教育方式及新媒体模式对传统会计学专业人才培养模式的冲击。当今,互联网上充斥着海量的教学资源,除了各类精品课程、教学视频外,开源课程充分利用在线视频进行远程教学,为任何有意者提供学习的平台,突破了地域和时间的限制。微博等新媒体模式与移动互联网相结合,打破了教学的界限,将课堂讨论延伸到网络。吉姆.格雷指出,科学研究的方法除了基于实验、基于数学理论和基于计算模拟的三种范式外,基于数据探索的第四范式正在形成。

四、面向大数据创新会计学专业人才培养模式

1.课程设置。面向大数据,创新型会计学专业人才培养中应开设数据分析、搜索引擎系统应用、信息检索、信息处理等这些与数据的大量获得紧密联系的课程,增强学生接触数据与获得数据的可能。高校应加强对会计学相关数据库的建设以及完善图书馆信息系统,通过这样的方式对数据进行归集、整理、分类,不仅可以提高对数据的大量获取性,统一数据口径,而且有助于在数据高速产生的状态下数据的高效提取性,为后面数据的分析提供帮助。大数据的多样性特征使得我们接触到的数据的形式各式各样,相应在创新型会计学专业人才培养中课程设置也会多种多样,为大数据环境下培养复合型专业人才奠定扎实基础,可以设置专业核心课程。由于大数据的数据量虽大但价值量小的特征,因此在课程设置上应开设信息检索、数据挖掘与数据仓库等检测、分析数据价值的课程,并通过采用案例教学法、课堂模拟法、角色扮法、体验式教学法等方法,引导学生将提取出的、有价值的数据应用于中,培养学生运用数据高效解决实际问题的能力。

2.师资建设。创新型会计学专业人才培养中,师资力量是支撑学生正确获得有用及真实数据的基础。高校在会计学专业人才培养中应加大对大数据教学及运用的教师培养及经费支出的同时,组建“在线教育、实体操作与校企合作”三位一体的平台,完善具有大数据特色的师资建设。高校建设中应加强对教师大数据知识与应用的培训,与企业合作获取高效大数据平台建设及培训经费的同时,加强教师接触第一手数据的可获取性,提升教师对数据的接受性及运用能力,改变以往教学存在的偏理论、缺乏数据感的问题。另外,高校应积极引进国外先进人才,同时选派青年教师去国外高校访学、进修。高校实行创新型会计学专业人才培养模式下,应举办会计学相关教师与其他学科教师的交叉学习与培训,为实现会计学专业人才的跨专业联合培养打下基础。另外,通过建立产学研联合实验基地等项目,为教师更好的理解大数据、掌握先进方法、接触前沿性知识、运用研究成果以及未来的创新发展创造良好的平台。

3.个性化学习。创新型会计学专业人才培养中,无论课内及课外,高校教师都应该引导学生去获取更多的数据,以作为课程教学、讨论的有力支撑,做到尽可能的用数据说话。高校在寒暑期开设的相关专业模拟实习,如会计核算模拟实验、会计岗位沙盘模拟实验等,可以为学生更切身的接触数据提供便利,通过实践的反馈和思考,也可以培养学生的创新思维。大数据高速的特征加上现代开源课程等新型教育方式及新媒体模式等在线资源的冲击,使得学生接触数据的方式多样。根据学生自主选择接触数据,然后相互交流。这增加了学生的学习兴趣,而且可以激发学生的创造性。大数据的多样化特征下,高校应为学生提供相关专业学习的辅修课程,开通学生与其他学科专业教师的沟通渠道,举办“跨学科联合培养、培养复合型专业人才”的实践大赛数据分析大赛、基于大数据的数学建模大赛等。高校应为学生提供实验室、计算机机房、计算机操作系统等软硬件条件,开放式的引导学生自主参与产学研实验基地、多校联合培养项目以及国家政策引导下的大数据开发项目研究之中,为“跨学科联合培养、培养复合型专业人才”的培养目标提供实践平台和发展空间。

友情链接