数学理论论文范文

时间:2023-04-01 10:34:28

引言:寻求写作上的突破?我们特意为您精选了12篇数学理论论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

数学理论论文

篇1

1、数学理论为什么1+1=2(1+1=2的基本原理、道理、哲理是什么?):

纯粹数学理论上存在着缺陷与不足,那就是偶数能被2整除、奇数不能被2整除,换言之,纯粹数学在理论上根本无法承认和接受2是数学公理,因为奇数不能被2整除自身就是科学根据与铁的事实,偶数能被2整除、奇数不能被2整除,如此理论太绝对了,已经给纯粹数学的理论造成了不可思议,奇数不能被2整除、能不能以其他方式被2整除?值得深思、探讨、探索——不能还停留在偶数能被2整除、奇数不能被2整除玄学的理论水平上,要深化理论认识,…。

为什么1+1=2,本文回答既简单又深奥:偶数能被2整除,奇数不能被2整除却着实能被2哲理整除,奇数与偶数相反相成对立统一,1+1=2是数学首要公理,1+1=2蕴涵着深刻的对立统一规律,是啊!它真的既简单又深奥,它简单的表面上看似是小学生的基本知识,然而其道理深奥地不可思议、不可理喻、如此道理、哲理并非所有的人都能够理解与接受,更不是小学生能够理解的数学知识,...!

偶数能被2整除,奇数不能被2整除却着实能被2哲理整除,奇数与偶数不仅存在着对立性,而且还存在着共性和同一性,即异中之同,差异中的共性,…,

其一:奇数不能被2整除却着实能被2哲理整除就是指奇数与偶数的异中之同,差异中的共性与同一性,

其二:偶数能被2整除、奇数不能被2整除就是指奇数与偶数的差异性、排斥性、对立性,

因此说,奇数与偶数既有对立性又有同一性,奇数与偶数二者存在着相反相成、对立统一的辩证关系,它揭示着2是数学公理系统的首要公理,这是世界观的认识问题,有什么样的世界观就有什么样的认识论、方法论,如果玄学,无论如何都是无法理解、接受它,如此真理说不清、理还乱、但是它的庐山真面目就是如此,无法更改,古人云“不识庐山真面目、只缘身在此山中”,需要“跳出庐山看庐山”,要摆脱两千多年玄学的严重束缚,…。

为什么1+1=2不是指数论的“1+1”,为什么1+1=2?不仅要知其然还要知其所以然,…,绝对值1+1=2与数论的“1+1”既有差异又有联系,如果把素数2看作偶素数,那么数论的“1+1”是指大于等于6的偶数可表示为两个素数之和——歌德巴赫猜想,无需奇素数,本文素数就是指奇素数3,5,7,11,13,17,19,23,……,…,数论的“1+1”它是绝对值的特殊公理,数论的“1+1”与绝对值的1+1=2在数值逻辑公理系统中一脉相承,在绝对值1+1=2数值逻辑公理系统中蕴涵着数论的“1+1”,数论的“1+1”是数值逻辑公理系统偶环节上的特殊公理,换言之、数论的“1+1”也是数学公理(例如:6=3+3,8=3+5,10=3+7,12=5+7,14=3+11,16=5+11,18=3+15,……,无穷无尽)拥有客观存在性,并非被摘取下来才拥有真实性、摘取不下来就非真实性和非客观存在性,既不肯定也不否定模棱两可、这背离了数学(逻辑)排中律,…。

虽然哥德巴赫猜想数学命题没有被数学专家毕了、依然被人们研究着,但传统的素数“筛法”,此路不通已失去了昔日辉煌,…。

2、自然数与正整数、单位“1”与自然“1”:

1+1=2是科学抽象的、1+1=2以及正整数是相对于广义的单位“1”而言,单位“1”的含量绝对统一,1+1=2并非自然“1”的意义,事实上自然数与正整数既有差异又有联系,自然数是相对于自然“1”而言,正整数是相对于单位“1”而言,正整数是把自然数提升到了抽象的科学高度,由于自然数、时常因单位“1”不统一、“含金量”不一致,如果对自然数直接进行运算是有很大的局限性——有时正确、有时有偏差,我们人类是聪明智慧的,有了数学的广义的单位“1”、正整数,消除了自然数的局限性,…。

3、哲理整小数以及哲理整小数的双重性质(或哲理整分数和哲理整分数的双重性质):

小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,......,的绝对值拥有相互矛盾的双重性质,其一是哲理整性质、其二是普通小数性质,哲理整性质是指小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,......(注:它们的小数部分均为0.5,只涉及到0.5也可以、也足以)的绝对值比其他普通小数的绝对值整装、…、本文将它们的这一特性简称为哲理整性质(相对整),因为1/2是最大分数单位,则0.5是最大小数单位,因此0.5拥有哲理整性质,它地地道道、的的确确客观存在着,我们的认识迄今为止还未意识到,如此道理、哲理并非所有的人都能够理解接受,唯恐越看越不明白,令人意乱、劳神,...。

哲理整小数:本文将小数0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,…和它们的哲理整性质(相对整)统称为哲理整小数,务必明确的说明,哲理整小数拥有相互矛盾的双重性质,其一是哲理整性质、其二是普通小数性质,…。

哲理整分数:本文将分数1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2……和它们的哲理整性质统称为哲理整分数,哲理整分数拥有相互矛盾的双重性质,其一是哲理整性质、其二是普通小数性质,…。

普通小数:不包含哲理整小数在内的小数简称为普通小数。

普通分数:不包含哲理整分数在内的分数简称为普通小数。

4、1/2和0.5哲理整性质的科学依据:

分数拥有分数单位,数学教科书应该明确指出1/2是最大分数单位,1/1不是最大分数单位、是整数分数,1/1=1依然体现整数性质、是一个特例,然而迄今为止还没有小数单位,数学需要向前发展提出小数单位、最大消暑单位,要明确指出最大小数单位是“0.5”,而且为奇数能被2哲理整除提供客观科学依据,才更符合数学的客观实际!单凭直觉,最大分数单位1/2和最大小数单位0.5还未体现出其真正数学意义,最大分数单位和最大小数单位在本质上体现哲理整性质才是其真正的数学意义,这是如何对待数学真理的重大认识问题,并非可有可无,可无必然是一个数学错误,1/2和0.5的哲理整性质是微小微妙、微乎其微的变化、微不足道的差异性,若不仔细认真观察很难被人们发现,形而上学排斥它、大多数人无法理解接受它,有理难辩啊,难!真的很难!不仅如此还会遭人讽刺、挖苦等等,…。

关于分数和小数:分数单位1/2,1/3,1/4,1/5,1//6,1/7,1/8,1/9,1/10,…对应下的小数应为小数单位,例如:1/2=0.5,1/3=0.333….,1/4=0.25,1/5=0.2,…,1/10=0.1等等,….。

哲理整性质的来龙去脉:在数值逻辑公理系统中,派生子集合,0.5,1.5,2.5,3.5,4.5,5.5,6.5,……,…从系统发展变化中分化出来,占据整数的位置充分地十足地体现其哲理整性质或者说体现其相对整性质,数值逻辑公理系统为其提供科学依据;最大分数单位1/2、最大小数单位0.5也为其提供科学依据,只有在数值逻辑公理系统中才能够发现0.5,1.5,2.5,3.5,4.5,5.5,6.5,……(1/2,3/2,5/2,7/2,9/2,11/2,13/2,……)拥有哲理整性质,单凭直觉无从谈起,单凭直觉只能看到最大分数单位和最大小数单位,…。

能被2整除的是偶数,…,整数0,1,-1,2,-2.,3,-3,4,-4,5,-5,……,…为偶数能被2整除提供科学依据举世公认,…。

为了便于理解接受也可以首先把0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,…暂时将它们看作哲理整数(相对整数),哲理整数为奇数能被2哲理整除提供客观科学依据,哲理整数指小数0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,…的绝对值比其他普通小数的绝对值整装——因为0.5是最大小数单位,与整数形成异中之同,差异中有共性,数学与哲学将这一特性简称为哲理整性质(相对整)——哲理整数(相对整),但是理解接受以后:绝对不能忘记了哲理整数拥有相互矛盾的双重性质,一是拥有普通小数性质、二是拥有哲理整性质,只承认它们的小数性质认识是片面的,只承认0.它们的哲理整性质认识是片面的,…。

事实上只有把哲理整数统称为哲理整小数体现双重性质才更确切、完整、正确,…。

5、有理数系数值逻辑公理系统(就不展开叙述了):

{[0~1]}1{[1~2]}3{[2~3]}5……,…(此结构式上下交错对应不能散开)

[0.1~1.5]}2{[1.5~2.5]}4{[2.5~3.5]}6……,…

第1环节:1∑{[0~1]}=∑{[0~1]},

第2环节:2∑{[0~1]}=∑{[0.5~1.5]},

第3环节:3∑{[0~1]}=∑{[1~2]},

第4环节:4∑{[0~1]}=∑{[1.5~2.5]},

第5环节:5∑{[0~1]}=∑{[2~3]},

第6环节:6∑{[0~1]}=∑{[2.5~3.5]},

……,…,

∑{[0~1]}意指0与1之间的基数之和,它是集合族、有无穷个子集合或有无穷个数组,其他依次类推,符号:意指派生子集合,很显然,在系统数值逻辑运算过程中,小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,……从系统发展变化过程中产生分化出来,占据整数位置,充分体现其哲理整性质,即派生子集合,为奇数能被2哲理整除提供科学依据,蕴涵着完整的数值运算规律,数论、集论、算术三位一体、辩证统一,蕴涵着完整数学公理2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,……,…。

潜无限给数值逻辑奠定基础并给作科学指导,潜无限排斥实无限,…。

实无限只能给数理逻辑奠定基础,如何给数值逻辑作科学指导?实无限排斥潜无限,事实上互相排斥,…。

6、广义整数:

广义整数:将整数和哲理整小数统称为广义整数(将整数和哲理整分数统称为广义整数),…。

7、有限不循环小数:

有限不循环小数:为了便于理解,简言之,我们把无限不循环小数有限数字(小数点右边至少有两位或两位以上不循环数字)称之为有限不循环小数,例如:3.14,3.1415,3.141592,3.1415926,1.4142,1.41421356,2.17181938,……,有无限不循环小数必然存在着有限不循环小数,在数值逻辑中,有限不循环小数与潜无限不循环小数拥有替代无理数数值的巨大意义与作用;有限小数中的小数再如此细致地划分出有限不循环小数、有限不循环小数,才更切合实际,在数值逻辑公理系统中会发现:有限不循环小数拥有客观存在性,拥有无限不循环小数就必然存在着有限不循环小数,这的确是一个认识问题,有限不循环小数可表达为分数形式,因此有限不循环小数是有理数,同时还是超越无理数的有限形式,因此可替代无理数数值(无理数的近似值),只谈无限不循环小数(只谈无理数),不涉及到有限不循环小数是不行的,…。

尤其是有限不循环小数,在实质上拥有替代无理数数值的巨大意义与作用——此乃有限不循环小数的重要数学意义。

8、有限循环小数:

有限循环小数:为了便于理解,简言之,我们把无限循环小数有限个循环节(小数点右边至少有两个或两个以上数字循环节)称之为有限循环小数,如:0.1616,0.161616,0.666,0.666666,0.78787878,0.999999,……,有无限循环小数必然存在着有限循环小数,有限循环小数客拥有客观存在性,它可替代无限循环小的数值,…,这也是一个认识问题,有限循环小数可表达为分数形式,因此有限循环小数是有理数,…。

9、普通有限小数:

把小数点后边有一位数或两位数以内的小数简称为普通有限小数,例如:0.9,1.1,1.2,3.6,3.8,5.8,6.8,7.16,………,…。

10、总之、数学理论要有所突破、要有所进展:

数学(算术)需要向前发展有所突破:

(1)提出数学理论为什么1+1=2,

(2)明确指出1/2是最大分数单位,

(3)提出小数单位、最大小数单位、0.5是最大小数单位,

(4)将有限小数细致划分为:

a、哲理整小数:0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,

b、普通有限小数,

c、有限不循环小数,

d、有限循环小数,

(5)有理数系数值逻辑公理系统,

(6)广义整数,

(7)哲理整分数:1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2,……,

(8)整数分数:把1/1,-1/1,2/1,-2/1,3/1,-3/1,4/1,-4/1,5/1,-5/1,6/1,-6/1,……统称为整数分数,拥有双重身份,…。

(9)双素数:例如6,10,14,22,26,34,38,……,其特征,能表示为两个等值素数之和,双素数星星点点揭示着哥德巴赫猜想拥有客观存在性,无法否定它,

(10)偶素数——2:2既是一个偶数又一个素数,把2简称为偶素数,

等等才更接近数学的实际情况,希望数学教师率先转变数学思维理念给以鼎力支持,…。

总之,依然还是把整数与分数统称为有理数,只不过是又将分数划分为哲理整分数、普通分数、还有整数分数,...,为什么1+1=2——是探索其原理、道理、哲理,一定要弄明白其中的原理、道理、哲理!…,再次说明,如此道理、哲理并非所有的人都能够理解接受,这是很正常的,且末当真、切莫较真,同时也说明一点本文为什么1+1=2的含义不同于1+1为什么等于2?,也未直接涉及到数论的“1+1”,…。

错字、多字、漏字、错误在所难免,本文作为数学学术最新观点,仅供参考、并不强加于人。

参考文献:

1、《辩证唯物主义和历史唯物主义原理》,中国人民大学出版社出版

2、《古今数学思想》(北京大学数学系数学史翻译组译)上海科学技术出版社出版,1981年7月。原作者:(美国数学家)M.克莱因著

篇2

学生分层之后,数学教师要根据新课标的要求,针对每个层次学生的特点和数学水平的不同,制定针对各层次学生的教学内容和目标,并贯穿到整个教学过程中。教学目标和内容要具体,把学生的能力、性格等因素考虑进去。教学目标可以划分为多个层次,不同层次的学生完成的目标不一样。针对A层次的学生,数学教师要引导他们主动思考,并能够提出问题;对B层次的学生启发他们独立思考,理解并能解决一些简单的综合问题;对C层次的学生则引导他们掌握知识重点,能运用基础知识解答简单题目。

(二)任务分层

新课改要求现代高中数学教育要重视实践性,其课后作业和练习则逐渐被忽视。在分层教学理念的指导下,教师要根据学生的实际情况,依据大纲要求适当布置课后作业。针对C层次的学生,只布置一些简单题目,巩固所学知识;对于B层次的学生布置常见的难点题目,提高解决问题的速度;而对于A层次的学生则布置提高逻辑思维能力的题目。

(三)评价分层

以往的教学中,对学生的评价仅以成绩的高低作为唯一判定标准,由于教育的不断进步,人们逐渐认识到这种评价标准的片面性。不同层次的学生应该实行不同的评价标准,评价的方式应该多元化、综合化。教师评价学生时,要全面考虑到学生的性格、学习态度等各种因素,这样才能更深入地了解学生。数学教师要依据三个层次学生的不同情况,制定不同目标,然后在同一层次上进行比较。这种方式不仅可以增强同一层次学生的竞争意识,促进学生的进步,还可以增强学生的自信心。因此,进行分层次评价可以促使A层次的学生争取更好的成绩,增强B、C层次学生学习数学的兴趣,最终实现每一个学生都能全面进步的理想。

(四)辅导分层

篇3

关键词:数学教师 数学素养

数学素养是指在个人的先天素质的基础上,受后天教育与环境的影响,通过个体自身的学习、认识和实践活动等所获得的数学知识、数学能力和数学思想观念等的一种综合修养。我们也称之为数学品质。数学素养当然也包括与数学有关的人文修养。

一、加强数学教师数学素养培养的重要性和必要性

目前教师的数学素养欠缺,到底欠缺在哪里?我认为,主要还是欠缺在数学本身,即数学的现代修养上。我国著名数学家陈景润之所以能取得举世瞩目研究成果,至今仍没有人超过他,用国外数学家和同行的话来说,“他是移动了群山才达到这一研究水平的”。这个群山就是现代数学的众多基础知识和思想观念。当然,对绝大多数数学教师来说不可能也不必要具有专职数学家那样的数学水平和研究能力。但是从《课标》中所列出的那些数学内容与模块看来,尤其是要开设的那些选修课,有许多都涉及到了近现代的数学分支,如果教师本身不具备这些必要的功底,如何能适应新的教学任务?数学的知识、能力和品质,知识是基础,没有知识,能力何在?更何谈创新与发明?

二、数学教师数学素养的构成

数学素养主要包括数学的认识、数学思想方法的理解与掌握、数学的意识、数学语言的运用等四个要素。

(一)数学的认识

完整准确地认识数学的本质,对数学教师来说具有十分重要的作用。事实上,如果一名教师注重数学的学科结构,他就会自觉地把数学视为模式的科学;如果一名教师注重过程,他就会认为数学是直觉和逻辑的产物;如果一名教师注重社会价值,他又会把数学理解为是一种工具等等。新课程标准更加关注人的发展,更加注重对学生创新意识和创新能力的培养,因此,数学教师对数学的认识要注重由绝对主义的静态观向可误主义的动态观转变,这是新形势下数学教师建构专业理念的一个基本条件。

(二)数学的意识

数学意识指的是人们通过数学的学习与训练形成的运用数学思维方式的习惯,一般说来,主要包括推理意识、抽象意识、整体意识与化归意识。推理意识就是养成数学推理的习惯,既包括在数学理论思考中由一个或一些判断导致另一判断,也包括由经验事实引出的数学概念与数学判断。抽象意识指的是在数学问题的分析和解决过程中,把适当的问题化为数学问题,进行抽象概括。整体意识是指全面地、从全局上考虑问题的习惯。化归意识则指的是在解决数学问题的过程中,用联系的、发展的、运动变化的眼光观察问题,认识问题,有意识的对数学问题进行转化,变为易解或已解的问题。数学的意识,还集中表现在用数学去描述、理解和解决现实问题,借助于数学方法使问题获得解决。

(三)数学语言的运用

数学语言,又叫符号语言,它是一种改进了的自然语言,通过使用字词、符号、图形体现数学思想,反映数学本质,具有精炼、准确、清晰等特点。将文字语言、符号语言、图像语言互相转换是数学语言表述的最基本的要求。

数学语言是教师在数学教学过程中充分发挥个人的创造性,正确处理教学中各种矛盾,正确有效地把数学知识传递给学生,最大限度地调动学生学习主动性的一种具有审美体验的语言技能活动。是师生互动的媒介,是师生交流思想的工具,是思维的外在表现形式,是教师使用最广泛、最基本、最有效的知识信息载体。没有准确、规范、简约的数学语言作为媒介,很难想象一节数学课是优质的,或是成功的。因此,熟练掌握和运用数学语言也是我们数学教师做好未来数学教学工作的基础。

除了上述所列三类数学素养,还有诸如对数学史的明了、数学美的悟性、数学论文写作、数学信息检索等方面的能力素养也是数学教师数学素养的重要组织部分。

三、数学教师数学素养的培养

培养和提高数学教师的数学素养,重在抓内因,没有个人认识上的到位,外因起不了多大作用。为此,笔者建议做好以下几点:

(一)提高数学教师对数学素养重要性的认识

当今教师的专业化发展对教师的从教素质提出了越来越高的要求,无论在教学技能、还是在专业知识上。《数学课程标准》在课程目标中明确指出:“强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理等基本能力”。“从数学的角度提出问题、理解问题,并能综合所学的知识和技能解决问题,发展应用意识”。这些虽是对学生数学能力的培养目标,同时也是对数学教师数学能力的要求。作为数学教师应当具有比学生数学能力培养目标更高的能力水平。

(二)要积极倡导数学课外阅读

数学教师具有了较丰富的数学专业知识,对一般的数学课外读物都能尝试加以阅读。诸如,张景中院士的《新概念几何》、《数学家的眼光》,李毓佩教授著《奇妙的数王国》,谈祥伯教授等的《数学与文史》、《数学与建筑》、《数学与金融》等。在数学教师中广泛倡导阅读这些数学科普读物,不但可以提高数学学习的兴趣以及阅读理解能力,而且可以让学生加深对数学本质的认识,进一步明了数学的曲折发展历程,从中感悟数学的无穷魅力。

篇4

建构主义学习理论认为,知识是学习者在一定的情境即社会文化背景下,借助教师和学习伙伴等其他人的帮助,利用必要的学习资料,通过意义建构的方式而获得。“情境”、“协作”、“会话”和“意义建构”是学习环境中的四大要素。所谓“意义建构”就是学习者对当前学习内容所反映的事物的性质、规律以及该事物与其他事物之间的内在联系达到深刻的理解。这种理解即所学内容的认知结构。学生学习的成效取决于学习者根据自身经验进行意义建构的能力而不取决于学生记忆和背诵教师讲授内容的能力。而对知识的自主“意义建构”是整个学习过程的最终目标,也是建构主义的核心思想。建构主义教学有一定的模式,统整不同派别的建构主义观点,其教学模式主要有以下几种:“情景意义”引发的“情境性教学模式”,“协作与会话”引发的“抛锚式教学模式”,“意义与经验”引发的“支架式教学模式”和“自主与反省”引发的“随机进人教学模式”tl]。2002年,笔者被南京市教育局选派赴澳大利亚昆士兰理工大学学习,每周前往布里斯班州立高中听课,最吸引我的就是他们课堂教学采用的建构主义观点下生动活泼的教学模式,特别是活动教学(Activites)。如通过测量自己手臂尺骨的长度与身高的关系来推断是谁杀了古猛玛象,通过一盒MM糖豆而展开的有关面积、体积、概率统计的有关运算等。实际上,在1991年颁布的澳大利亚国家数学课程标准中,每一个教学内容均附加了可操作的相关活动例子,以便教师选用。

建构主义教学理论也对我国中学教学改革产生了重大影响。我国即将全面推行的新一轮课程改革也把建构主义思想贯穿其中。高中数学新课程标准中提出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容,这些内容不单独设置,而是渗透在每个模块或专题中。其中数学探究即数学探究性课题学习,是指学生围绕某个数学问题,自主探究、学习的过程。这个过程包括:观察分析数学事实,提出有意义的数学问题,猜测、探求适当的数学结论或规律,给出解释或证明”。这些要求体现了建构主义“在活动中学习”的精髓。

本文在学习建构主义理论及模式的基础上,结合自己国外考察和多年的实践探索,根据我国国情,总结出两种高中数学活动课的新的教学模式:数学探究实验活动课模式和数学小组讨论汇报活动课模式。

一、数学实验活动课模式

本模式的理论基础,融建构主义与布鲁纳的“发现学习”理论为一体,在教学顺序上体现人的认知发展规律,通过数学实验操作,感悟和发现新的数学知识,并在活动中使新的数学知识与原有的数学知识不断沟通,归纳总结形成具有一定整体性和相对独立性的“知识块”,纳入原有的认知结构,使知识结构拓展和延伸,达到意义建构。

本模式的操作程序可描述如下:

选题准备*实验操作*观察感悟*归纳建构*拓展交流

上述操作程序的操作说明和建议如下:

1、选题准备阶段:选择适合动手实验的题材,使学生有兴趣、有可能动手操作又能达到教学目的,是数学实验活动课成功的关键。实验题材主要从现行高中数学教材中选择,大体有如下几类:测量验证类(如通过测量三角形的边和角的大小,推证正弦定理等)、作图发现类(如椭圆的扁圆程度与离心率等)、统计归纳类(如几何概型的投针实验)等,笔者还曾尝试让学生通过“试误”类比产生新概念的实验活动课。另外,前已述及,澳大利亚国家数学课程标准中,每一个教学内容都附有可操作的相关活动例子,所以还可从国外数学教材中选用。选题确定之后,教师除作好实验设计外还要计划实验材料的准备。

2、实验操作阶段:在建构主义的活动课堂上,教师要把主角地位让给学生,但一定要当好设计师和引导者,学生在课堂上既要充分活动,又不能过于发散。

3、观察感悟阶段:这是学生从动手操作活动的层面深人到思维活动层面的阶段,是数学活动课的核心环节。在给学生充足的思维时间和空间的基础上,教师应给以适当的点评,要重视学生思维过程中存在的问题,同时鼓励学生大胆想象,鼓励直觉思维,这在引导学生探索发现数学规律方面,将起画龙点睛的作用。

4、归纳建构阶段:这阶段从特殊到一般,从部分到总体,让学生体会数学概念和定理的由来,掌握研究数学的一般方法。当学生的假设被推翻时,教师要引导学生重新提出假设,当学生的假设被证实后,教师要引导学生用科学的语言概括结论,将证实的结论上升为概念或定理。

5、拓展交流阶段:即我们常说的运用和反馈阶段。在实验活动课上,师生互动交流和生生互动交流,贯彻始终。学生通过合作、交流,获得他人的认可,得到老师的鼓励。老师有意识地将本题材发现的方法从方法论角度进行归纳总结,促进学生的进一步拓展研究,培养学生钻研数学的精神和表达数学的能力。

二、数学小组汇报活动课模式

本模式的理论基础是由建构主义学习理论发展而来的“合作学习”理论。合作学习强调学生学习上的合作与交流。每个学生都有自己的知识基础,对于教师提出的数学问题,或者他们各自有各自的理解,或者他们各自可能无法解决这个问题。本模式先经过小组内的合作交流,再运用班级汇报的形式,各人把自己的认识、理解和有关信息表达出来,最后经过比较、组合和融合,就可能解决这个问题,使大家都有收获。

本模式的操作程序可表述如下:

明确问题*自由分组*分工合作*成果汇报*讨论评价

上述操作程序的操作说明和建议如下:

1、明确问题阶段:教师结合本课程教学计划内容和学生的学习状况,选择适合本模式的主题。提出课题后,必要时,教师可列举围绕主题开展的活动要点及与主题有关的数学知识,供学生参考。笔者曾选用苏教版普通高中课程标准实验教科书必修3中关于统计和概率知识应用的探究拓展题,该课题是以柯南道尔的侦探小说《跳舞的小人》及美国作家爱伦·坡的小说《金甲虫》中利用英语字母使用频率破案引出的,要求学生从网上找若干篇英文文章,用计算机统计26个英文字母出现的频率并由此估计它们在英文文章中出现的概率。我在所任教的高一班级就此问题组织了分组讨论研究,并请其中的三个小组进行了全班汇报讨论,取得满意的教学效果。

2、自由分组阶段:学生在了解教师所选主题以及相应的活动要点后,自由结合成研究小组。教师一般不干涉学生的自由分组,但可在每组人数上加以控制,必要时可征求学生意见后进行微调。

3、分工合作阶段:学生以小组活动的形式,根据活动任务,制定活动流程,分工合作开展研究。在这一阶段,学生是探究者、合作者,教师是学生活动的支持者、观察者,当然也可以是参与者。当教师观察到某小组无法按照预定方案进行活动时,应该给予一定的策略性支持。

4、成果汇报阶段:这是学生呈现、反思评价活动成果的阶段。这里允许学生用各种可能的表达方式展现相应的成果。以小组为单位,在课堂上向大家汇报研究成果,是小组讨论汇报课的主要表现形式。

篇5

 

美是人类的一个更高尚的需求,它体现在人类活动的每一个领域,诗歌、音乐、绘画、建筑、戏剧、电影、科学等领域无不渗透着人类对美的无限热爱。同时科学的发展过程就是人类对美的一个无限追求的过程。 

物理学与美学,二者相互联系、共同发展,对美的追求是科学发展的一个内在驱动力,随着科学的不断变革,物理美学思想也呈现出不同的面貌。尤其现在面临着复杂性异军突起,不确定性、无序、混沌、非线性已毫不羞涩地登上了历史舞台,对经典科学美学思想形成了巨大挑战。现代物理学的诞生为人类开创了一片新的天空,一切都处在系统中、变化中,原有的简单、和谐、对称、确定性等美学观念日益受到严峻地挑战,新时代的科学美学思想脱颖而出。 

 

一、物理美学的简单性与复杂性: 

 

世界的本质是由非线性控制的,人们对基层规律的掌握绝不能保证对高层现象的确定性认识。进一步讲,简单性只是复杂性的特例,是在一定理想化基础上存在的。从科学史可以看出,任何科学理论均是对实际的近似,都要突出根本性的关系、行为,舍去不必要的细节因素,因此,某种程度上都背离了现实世界,把问题限制到能够找到解决办法的地步。以牛顿为例,牛顿的经典力学体系堪称简单性典范,但是他一样不能拒绝混沌现象的存在。在研究月球的轨道问题上,他不能阐明月球在地球和太阳两者作用之下的运动,感到非常恼火。由于无法得到精确解,他不得不求助“摄动法”,把三体问题化解为两体问题,以得到一个近似解。不仅如此,人们发现,最终的科学理论与实际观测之间都允许存在一定的误差,从逻辑角度思考,之所以允许存在误差,就在于人们不能完全确定地把握事物与现象。 

虽然人们否定了本体论上简单性,但是从认识论意义上说,简单性原则仍有其合理性。人类认识世界的过程就是从简单到复杂的过程,面对一个复杂的现象,人们必须把整体分成部分,分门别类地去研究,这是一个由浅入深的过程,是认识的必然规律。 

简单与复杂是一个辩证的统一体,不可能完全抛弃任何一方,而承认另一方,它们均有其存在的合理性。简单性决定了认识的可能性,而且使人类同不可知论划清了界限;复杂性决定了认识过程的曲折性、辩证性,它防止人类把科学变成恶劣的教条,当成某种僵死的固定不变的东西。 

 

二、物理美学的确定性与非确定性: 

 

牛顿带给人们的是一个确定性的世界,非确定性则作为一种随机的、偶然的、片面的现象日益遭到人们的排斥和拒绝。但是复杂的物理科学一个明显的特征就是把偶然性、非确定性引入历史舞台。非确定性不再是过去那种卑微的角色,由于非线性机制,初始条件的微小偏差,会被无限扩大。一只蝴蝶拍打翅膀都会引进一场暴风雨,可见非确定性的力量,从此,人们再也不能对偶然性等闲视之。蝴蝶的力量同时告诉我们,每一个个体都是整体不可分割的一部分,每一个体对整体有着不可察觉,但又不可估量的影响。这种影响,并非由于行为本身有影响力,而是由于这一行为超越了自身,对周围环境起了引导作用,引发了不可估量的后果。 

然而,非确定性并非是对确定性的否定,而是对确定性的补充和完善。非确定性在普里高津那里是以一种“新的理性”的姿态出现的,他认为大自然既有确定性的一面又有不确定性的一面,二者缺一不可。“确定性的意思是预先确定的和可预先确定的”,它体现的是一种稳定性,是对已有科学知识的肯定,否定了确定性也就否定了科学认识的可能性。但是如果过分强调确定性,“如果各种事件都按预定的程序发生,那么我们只不过是一个巨大的齿轮机的一部分,不言而喻只能无可奈何地听任它的摆布而己 ”。 

非确定性意味着变化、意味着随机,但也意味着希望,从此不会,也不应受到人们的完全抵制,因为任何人都不会拒绝希望。但如果单纯强调非确定性,系统也就失去了稳定性,失去了发展的基础和前提。大自然演化的历史,包括人类赖以生存的地球以及人类自身,无不是偶然性与必然性携手创造的神话。 

三、物理美学的无序性与有序性: 

 

与确定性和非确定性这对范畴相联系,有序与无序是科学美学领域另一对重要的范畴。有序,是指空间分布上的规则性和时间延伸上的周期性;无序,是指空间分布上的无规则性和时间延伸过程中的随机性。从前面对经典科学美学思想的论述中,不难看出人们一向偏爱有序,无序则是人们排斥的对象。一直以来,有序与无序是对立存在的,但是复杂性科学的诞生需要人们重新看待这一对范畴。 

有序不仅仅是体现了一种规律性和周期性,同时也体现了一种约束性。赫尔曼·哈肯在论述有序时指出,有序在现实中体现的是可能性的单一性,即只有唯一的实现方式。在这种未来只有一种可能性的情况下,生活中就再也没有惊奇,没有乐趣了,美又从何谈起呢?无序则与此相反,它体现的是一种变异性、可能性。赫尔曼·哈肯曾指出,“物件所在位置有很多可能性,这就造成了无序状态”,“大量不同的可能性也是物理学中无序的量度”。可见无序对应的是大量的可能性,这众多可能性的存在是否正是为人类创造性的发挥提供了有利的条件与机会呢?并且,无序并不总是意味着杂乱无章,在一定条件下可以转变为有序。激光的诞生就是一个绝妙的例子。激光的产生是通过改变泵入的能量及两平面镜间的距离,使完全杂乱无章运动的受激电子突然之间以同样方式运动,产生一种完全均匀的,几乎是无限长的波列。从这个意义上讲无序难道不是一种美,它蕴含着的难道不是一种创造之美、一种发展之美。 

当然纯粹的无序也是不好的,但是世界既没有纯粹的有序也没有纯粹的无序,一切美的事物都来自二者绝妙地结合。如果有序体现的是一种美的形式,无序则是美的源泉。有一句话说得非常贴切:“美是两个悬崖之间的狭窄小路;在一边全部有序消融在混沌之中,在另一边,则是对称和有序的凝固世界。只有沿着这条危险的小路,美才能展示其形态。”埃德加·莫兰也曾说过:“单独的、孤立的有序和无序是形而上学的,而只有它们的连接才是形而下的、物理的”。 

 

四、结语 

 

科学与矛盾的对话永远敞开着,科学是不断发展、进步的,美也是不断变幻其形态的,这是事物发展的必然。如果说经典的科学美学是从上帝的合理性信仰中派生出来的,它所体现的是对上帝观念的顺从与证明,是一种静态的、无生命的美。那么,现代科学的发展已突破了经典美学思想的束缚,尤其是物理学不再仅仅归结为秩序、简单性、确定性,同时也包含着非确定性、复杂性。可以说也正是这些非确定性、复杂性赋予了科学美学以新的内涵,即适应、创新、发展和进步,从而上升到更高的和谐、统一、真正的美。 

 

参考文献: 

[1] [美]r·w·爱默生. 自然沉思录.博凡译[m].上海社会科学院出版社.1993。 

[2] [美]s·钱德拉塞卡. 莎士比亚、牛顿和贝多芬——不同的创造模式[m]. 杨建邺,王晓明等译.湖南科学技术出版社, 1995。 

篇6

数学与经济学息息相关,可以说每一项经济学的研究、决策,都离不开数学的应用。特别是自从诺贝尔经济学奖创设以来,利用数学工具来分析经济问题得到的理论成果层出不穷,经济学中使用数学方法的趋势越来越明显。当代西方经济学认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论,进行预测、决策和监控。在经济领域,数学的运用首要的问题是实用性和实践性问题,即能否用所建立的模型去概括某一经济现象或说明某一经济问题。因而,数学模型分析已成为现代经济学研究的基本趋向,经济数学模型在研究许多特定的经济问题时具有重要的不可替代的作用,在经济学日益计量化、定量分析的今天,数学模型方法显得愈来愈重要。

一、经济数学模型的基本内涵

数学模型是数学思想精华的具体体现,是对客观实际对象的数学表述,它是在一定的合理假设前提下,对实际问题进行抽象和简化,基于数学理论和方法,用数学符号、数学命题、图形、图表等来刻画客观事物的本质属性及其内在联系。当数学模型与经济问题有机地结合在一起时,经济数学模型也就产生了。所谓经济数学模型,就是把实际经济现象内部各因素之间的关系以及人们的实践经验,归结成一套反映数量关系的数学公式和一系列的具体算法,用来描述经济对象的运行规律。所以,经济数学模型是对客观经济数量关系的简化反映,是经济现象和经济过程中客观存在的量的依从关系的数学描述,是经济分析中科学抽象和高度综合的一种重要形式。

经济数学模型是研究分析经济数量关系的重要工具,它是经济理论和经济现实的中间环节。它在经济理论的指导下对经济现实进行简化,但在主要的本质方面又近似地反映了经济现实,所以是经济现实的抽象。经济数学模型能起明确思路、加工信息、验证理论、计算求解、分析和解决经济问题的作用,特别是对量大面广、相互联系、错综复杂的数量关系进行分析研究,更离不开经济数学模型的帮助。运用经济数学建模来分析经济问题,预测经济走向,提出经济对策已是大势所趋。

在经济数学模型中,用到的数学非常广泛,有些还相当精深。其中包括线性规划、几何规划、非线性规划、不动点定理、变分发、控制理论、动态规划、凸集理论、概率论、数理统计、随机过程、矩阵论、微分方程、对策论、多值函数、机智测度等等,它们应用于经济学的许多部门,特别是数理经济学和计量经济学。

二、建立经济数学模型的基本步骤

1.模型准备。首先要深入了解实际经济问题以及与问题有关的背景知识,对现实经济现象及原始背景进行细致观察和周密调查,以获取大量的数据资料,并对数据进行加工分析、分组整理。

2.模型假设。通过假设把实际经济问题简化,明确模型中诸多的影响因素,并从中抽象最本质的东西。即抓住主要因素,忽略次要因素,从而得到原始问题的一个简化了的理想化的自然模型。

3.模型建立。在假设的基础上,根据已经掌握的经济信息,利用适当的数学工具来刻画变量之间的数学关系,把理想化的自然模型表述成为一个数学研究的题材——经济数学模型。

4.模型求解。使用已知的数学知识和观测数据,利用相关数学原理和方法,求出所建模型中各参数的估计值。

5.模型分析。求出模型的解后,对解的意义进行分析、讨论,即这个解说明了什么问题?是否达到了建模的目的?根据实际经济问题的原始背景,用理想化的自然模型的术语对所得到的解进行解释和说明。

6.模型检验。把模型的分析结果与经济问题的实际情况进行比较,以考察模型是否符合问题实际,以此来验证模型的准确性、合理性和实用性。如果模型与问题实际偏差较大,则须调整修改。

三、建立经济数学模型应遵从的主要原则

1.假设原则。假设是某一理论所适用的条件,任何理论都是有条件的、相对的。经济问题向来错综复杂,假设正是从复杂多变因素中寻求主要因素,把次要因素排除在外,提出接近实际情况的假设,从假设中推出初步结论,然后再逐步放宽假设条件,逐步加进复杂因素,使高度简化的模型更接近经济运行实际。作假设时,可以从以下几方面来考虑:关于是否包含某些因素的假设;关于条件相对强弱及各因素影响相对大小的假设;关于变量间关系的假设;关于模型适用范围的假设等等。

2.最优原则。最优原则可以从两方面来考虑:其一是各经济变量和体系上达到一种相对平衡,使之运行的效率最佳;其次是无约束条件极值存在而达到效率的最优、资源配置的最佳、消费效用或利润的最大化。由于经济运行机制是为了实现上述目标的最优可能性,我们在建立经济数学模型时必须紧紧围绕这一目标函数进行。

3.均衡原则。即经济体系中变动的各种力量处于相对稳定,基本上趋于某一种平衡状态。在数学中所表述的观点是几个函数关系共同确定的变量值,它不单纯是一个函数的变动去向,而是整个模型所共有的特殊结合点,在该点上整个体系变动是一致的,即达到一种经济联系的平衡。如需求函数和供给函数形成的均衡价格和数量,使市场处于一种相对平衡状态,从而达到市场配置的最优。

4.数、形、式结合原则。数表示量的大小,形表示量的集合,式反映了经济变量的联系及规律,三者之间形成了逻辑的统一。数学中图形是点的轨迹,点是函数的特殊值,因而也是函数和曲线的统一。可以认为经济问题是复杂经济现象中的一个点,函数则是经济变量之间的相互依存、相互作用关系,图形就是经济运行的规律和机制。所以,数、形、式是建模的主要工具和手段,是解决客观经济问题的三个要素。

5.抽象与概括的原则。抽象是思维的延伸,概括是思维的总结,抽象原则揭示了善于从纷繁复杂的经济现象延伸到经济本质,挖掘其本质的反映,概括是经济问题的纵横比较与分析,以便把握其本质属性,揭示其规律。

四、构建和运用经济数学模型应注意的问题

经济数学模型是对客观经济现象的把握,是相对的、有条件的。经济研究中应用数学方法时,必须以客观经济活动的实际为基础,以最初的基本假设为条件,一旦突破了最初的基本假设,就需要研究探索使用新的数学方法;一旦脱离客观经济实际,数学的应用就失去了意义。因此,在构建和运用经济数学模型时须注意到:

1.首先对所研究的经济问题要有明确的了解,细致周密的调查。分析经济问题运行的规律,获取相关的信息和数据,明确各经济变量之间的数量关系。如果条件不太明确,则要通过假设来逐渐明确,从而简化问题。

2.明确建模的目的。出于不同的目的,所建模型可能会有很大的差异。建模目的可能是为了描述或解释某一经济现象;可能是预报某一经济事件是否发生,或者发展趋势如何;还可能是为了优化管理、决策或控制等。总之,建立经济数学模型是为了解决实际经济问题,所以建模过程中不仅要建立经济变量之间的数学关系表达式,还必须清楚这些表达式在整个模型中的地位和作用。

3.在经济实际中只能对可量化的经济问题进行数学分析和构建数学模型,对不可量化的事物只能建造模型概念,而模型概念是不能进行数量分析的。尽管经济模型是反映事物的数量关系的,但必须从定性开始,离开具体理论所界定的概念,就无从对事物的数量进行分析和讨论。

4.不同数学模型的求解一般涉及不同的数学分支的专门知识,所以建模时应尽可能利用自己熟悉的数学分支知识。同时,也应征对问题学习了解一些新的知识,特别是计算机科学的发展为建模提供了强有力的辅助工具,熟练掌握一些数学或经济软件如Matlab、Mathematic、Lindo也是必不可少的。

5.根据调查或搜集的数据建立的模型,只能算作一个“经验公式”,只能对经济现象做出粗略大致的描述,据此公式计算出来的数据只能是个估计值。同时,模型相对于客观实际不可避免的产生一定误差,一方面要根据模型的目的确定误差允许的范围;另一方面,要分析误差来源,若误差过大,须寻找补救方案。

6.用所建经济数学模型去说明或解释处于动态中的经济现象时,必须注意时空条件的变化,必须考虑不可量化因素的影响作用以及在一定条件下次要因素转变为主要因素的可能性。

参考文献:

1.姜启源.数学模型[M].高等教育出版社,1993

篇7

作为问题解决的核心——问题,有着各种各样的分类方法,但大体上可分为两类:

1. 为了学习探索数学知识,复习巩固所学内容而主要由教师构作的数学问题,如教科书,复习参考书中的练习题和复习题等;这类问题往往是已完成数学抽象和加工的成品问题。

2. 出现于非数学领域,但需用数学工具来解决的问题。比如来自日常生活、经济、科学、物理、化学、生物等学科中的应用数学问题;这类问题往往还是“原坯”形的问题,怎样将它抽象转化成一个相应的数学问题是关键。当然,这两类问题是有交集的,它们彼此的边界也是模糊的,如可列方程(组)求解答文字应用题的一部分就在这个交集中。

二、 数学问题解决能力的培养目标:

1. 会审题——能对问题情境进行分析和综合。

2. 会建模——能把实际问题数学化,建立数学模型。

3. 会转化——能对数学问题进行变换化归。

4. 会归类——能灵活运用各种数学思想和数学方法进行一题多解或多题一解,并能进行总结和整理。

5. 会反思——能对数学结果进行检验和评价。

6. 会编题——能在学习新知识后,在模仿的基础上编制练习题;能把数学知识与社会实际联系起来,编制数学应用题。

三、 “问题解决”课堂教学模式的操作程序:

教学流程:

创设 尝试 自主 反馈

情境 引导 解决 梳理

1. 创设问题情境,激发学生探究兴趣。

从生活情境入手,或者从数学基础知识出发,把需要解决的问题有意识地、巧妙地寓于符合学生实际的基础知识之中,把学生引入一种与问题有关的情境之中,激发学生的探究兴趣和求知欲。

创设问题情境的主要方法:(1)通过语言描述,以讲故事的形式引导学生进入问题情境;(2)利用录音、录象、电脑动画等媒体创造形象直观的问题情境;(3)学生排练小品,再现问题情境;(4)利用照片、图片、实物或模型;(5)组织学生实地参观。

2. 尝试引导,把数学活动作为教学的载体。

学生在尝试进行问题解决的过程中,常常难以把握问题解决的思维方向,难以建立起新旧知识间的联系,难以判断知识运用是否正确、方法选择是否有效、问题的解是否准确等,这就需要教师进行启发引导。

常用启发引导方式:(1)重温与问题有关的知识。(2)阅读教材,学习新概念。(3)引导学生对问题进行联想、猜测、类比、归纳、推理等。(4)组织学生开展小组讨论和全班交流。

3. 自主解决,把能力培养作为教学的长远利益。

让学生学会并形成问题解决的思维方法,需要让学生反复经历多次的“自主解决”过程,这就需要教师把数学思想方法的培养作为长期的任务,在课堂教学中加强这方面的培养意识。

常用方式:(1)对于比较简单的问题,可以让学生独立完成,使学生体会到运用数学思想方法解决问题的快乐。(2)对于有一定难度的问题,应该让学生有充足的时间独立思考,再进行尝试解决。(3)对于思维力度较大的问题,应在学生独立思考、小组讨论和全班交流的基础上,通过合作共同解决。

4. 练结,把知识梳理作为教学的基本要求。

根据学生的认知特点,合理选择和设计例题与练习,培养主动梳理、运用知识的意识和数学语言表达能力,达到更好地掌握知识及其相互关系和数学思想方法的目的。

篇8

[关键词]图书馆本质 图书馆学理论体系 价值多元化 后现代

[分类号]G250

1 图书馆学“没有”研究对象――不再追问本质

图书馆学有研究对象吗?这一质问似乎很荒谬,也很幼稚,因为在现代性视野中不可能存在没有研究对象的学科,某一学科之所以成立和存在,就是因为它具有区别于其他学科的独特的研究对象。在现代性视野中,图书馆学理论的合理性与合法性就在于其能够揭示和确认图书馆的本质,而这一本质就在于研究对象的准确认定上。长期以来,“界定图书馆学的研究对象=揭示图书馆的本质”的逻辑,顽固地支配着无数学者的思维路向。于是,在我们的教科书和论文中,关于图书馆学研究对象的“××说”,不计其数。每一种“说”的提出者,几乎都言之凿凿地论证和认定自己“说”的科学性、正确性、本质性……。然而,迄今为止,没有一种“说”能够得到学界大多数人的认同或赞许。

造成这种局面的原因是什么?是因为图书馆学本没有研究对象,还是因为我们如此众多的学者都只是“众里寻他千百度”而未达到“蓦然回首,那人却在灯火阑珊处”的境界?显然都不是。问题出在思想方法上,即对现代性的基础主义、本质主义思想方法的盲目崇信。按照基础主义、本质主义的思想方法,图书馆现象如同自然现象――图书馆现象的产生必然基于某种“始基”、图书馆现象中必然存在某种不依人们的意志为转移的客观性本质。然而,这种“始基”和“本质”是什么?谁能准确无误地发现并界定这种“始基”和“本质”?显然,谁也无法做到这一点,因为图书馆现象并非自然现象,它的所谓“始基”或“本质”其实是人的主观建构的产物,而并非它本身所固有的东西。既然是一种主观建构,就不可能产生统一或同一的界定,而只能是“观察视野”情境下的各种“一家之说”,甚至是不厌其烦的自言自说。包括当年声名鹊起的宓浩、黄纯元等以“知识交流论”来“追问图书馆的本质”的努力,也不能摆脱仅是“一家之说”的命运。

从后现代视野看,对图书馆现象的“始基”或“本质”的追问,实际上是人们总想做到“图书馆学的牛顿”的心态之表现,即欲求“一锤定音”、“一言九鼎”、“以一驭万”、“惟我独尊”的幼稚心态的表现。用利奥塔的观点说,人们以界定图书馆学的研究对象方式来追问图书馆的本质的努力,其实并不是在“发现”本质,而是在“制造”本质――即在制造乌托邦式的“元叙事”(meta-narrtives)。

事实表明,图书馆的本质是一个无法用“元叙事”方式确定的东西。这种永远不可确定的东西,与其说它客观存在,不如说它“没有”!

2 图书馆学“没有”理论体系――理论体系是“精神监狱”

图书馆学有理论体系吗?这又是一个看似荒谬和幼稚的质问,因为长期以来人们坚信:图书馆学既然是一门“学”或一种“理论”,必然有其独特的理论体系,而且,正是这种理论体系的存在,才使图书馆学得以成立。于是,自从施莱廷格起,学者们纷纷提出“图书馆学的理论体系”,如在王子舟先生的《图书馆学基础教程》一书中就介绍有9种(包括他自己的)“理论体系说”。但是,这些所谓理论体系之间没有两种“说”是一致或相同的,有的“说”和其他“说”之间差异还很大。这说明了什么?还是思想方法问题――每个理论体系的提出者总想异想天开地提出一个比别人“科学的”、“优越的”理论体系。殊不知,所谓理论体系,仍然是提出者主观建构的产物,是提出者以自己的“学科价值观”为指导的“一家之说”而已。当然,对不同的“说”可以进行比较评价,但要知道,这种评价仍然无法摆脱时代的或价值观取向的“前结构”的影响,从而不可能作出绝对客观的、科学的评价。也就是说,各种理论体系之间不存在孰优孰劣的关系,永远处于不可公度的分立状态。因此,只有不同理论体系的提出者,没有“放之四海皆准”的理论体系。

德国浪漫主义思想家哈曼说过这样一句话:“理论体系不过是一所精神监狱”。所谓学科理论体系,实际上就是学科内容的框架结构,这种框架结构不仅框定学科内容本身的结构,而且它还能框定认识者――尤其是初学者――的认识结构。这种认识结构一旦被认识者内化,就会变成长期支配认识者认知活动的一种思维定势。这种思维定势必然对认识者产生先验性的、作茧自缚式的思想禁锢作用,这种思想禁锢无疑是一种“精神监狱”。尤其是把某种“理论体系”写入教科书或出自某一“名家”的论著中的时候,其精神禁锢作用更是强大无比。

所以,热衷于理论体系的营垒,无论营垒者的主观动机如何,总是难免出现这样两种客观后果:一是所提出的理论体系与其他已有理论体系无法相融,只是“又增加了一种理论体系说”而已,这实际上为原本不确定的理论体系又增添了不确定性;二是由于理论体系本身所具有的框架性结构特征,所以所提出的理论体系极易对他人或后人产生禁锢思想的“精神监狱”效应。

可见,初学者或后学者,若想避免陷入“精神监狱”的牢笼,其策略就是对已有理论体系进行“解构”(deconstruction)。其实,在后现代语境下,任何一种理论体系的营垒,都难免被解构的命运――任何一种理论体系的言说,终将落得“扶不起来的阿斗”的命运。面对这种命运,与其像西西福斯(Sisyphus)那样徒劳无功地去营垒什么理论体系,不如像哈曼那样视理论体系为“精神监狱”,把它当作“没有”为宜!

3 放弃元叙事,尊重差异性――走向多元化

在上文中,笔者以图书馆学人砣砣追问图书馆本质和营垒理论体系的“西西福斯情结”为例证,批判了长期以来图书馆学人热衷于制造“元叙事”的努力。在笔者看来,这种制造“元叙事”的努力该到终结的时候了。以往“元叙事”的泛滥,源于思想方法上的价值一元论,所以,“元叙事”的终结,意味着转向价值多元论。这种趋势的应然性在于:

――制造图书馆学“元叙事”,实际上是在制造图

书馆学的“真理”,而制造出来的“真理”不一定是真理。“真理”不真,乃最大的不真,也是最大的危害之源。社会意义上的“真理”,其实都是人的主观意志制造和建构的产物,并不具有纯粹的客观性、必然性。或者说,所谓“真理”,其实都是由权力(包括学术权力)生产出来的。图书馆学中的“本质说”、“理论体系说”不断被生产和泛滥,实际上是图书馆学领域中的真理话语权的不断争夺过程。所以,对图书馆学“元叙事”所追求的“真理”来说,重要的不在于这种“真理”的具体内容是什么,而在于“谁在说”、“谁在建构”。谁是真理的拥有者,谁有权力界定什么是真理?对这一问题能做出肯定的答案吗?显然不能。“我们渴望真理,但在我们身上找到的却只有不确定”。人类社会的历史实践证明,轻易声称自己拥有或掌握真理是危险的,在这一点上,最具讽刺意味的就是希特勒当年发出的狂言:“我宣布我本人及我的继承者在领导国家社会主义德国工人党方面拥有政治上不会犯错误的权利”。图书馆学中的“真理”,可以轻易地被生产,但决不会轻易地被认可;与其生产“真理”,不如质疑“真理”。真理难寻,更难确定和垄断(除了权力予以干预)。在这种情况下,真理话语必须保持多样化和多元化(这句话不表明我本人是真理多元主义者),任何人都不应该以真理的拥有者或发现者自居,而应该把是不是真理的判断权交给他人、交给历史――哪怕他人或历史也永远做不出“是不是”的判断。

篇9

东方中国的古代文化的经济基础基本上是农业经济。这种情况决定古代中国的物质文化是农业文化。中国古代数学也与农业经济有着密切的关系。《九章算术》是中国最古老的经典著作,书有九章,包含246个问题。都和农业生产有关,九章分别是方田(土地测量)、粟米(百分法和比例)、衰分(比例分配)、少广(减少宽度)、商功(工程审议)、均输(征税)、盈不足(过剩与不足)、方程(列表计算的方法)、勾股(直角三角形)。这些问题都是用来解决农田的测量、粟米的称量,农业水利工程的测算等。《五曹算经》是一部为地方行政人员所写的应用算术,全书五卷,有田曹、兵曹、集曹、仓曹、金曹五个部分。田曹卷的主题是田地面积的量法;兵曹算术大都是军队的给养问题;集曹问题和《九章算术》粟米章问题相仿;仓曹解决粮食的征收、运输和储藏问题;金曹问题以丝绢、钱币等物资为对象,是简单的比例问题。我国古代大数学家刘徽到祖冲之、祖冲之研究圆周率和圆面积的辉煌成就中,都深深地打着农业经济的印记。农业的交通工具主要是车,车轮是否圆,不仅和车辆行驶中的平稳状况有关,而且还和省力有关,因而农业经济的需要使得我国圆周率的研究在世界数学中占有相当的地位。过去,农业的显著特点是靠天吃饭,天文、节气的测算是农业生产的需要,在中国,古代天文测算的成果是相当辉煌的,“东汉末年天文学家刘洪造乾象历法(公元206年),创立了推算定朔、定望时刻的公式”。“隋朝天文学家刘焯在他的杰作《皇极历》(公元600年)中创立了一个推算日、月、五星行度的比以前更加精密的公式”②。天文学的发展推动了数学的发展。解一次同余式就是由天文测算开始的。天文数学的发展除了物质文化的需要,还受到制度文化的要求,中国数学的重要性在于它与历法有关,“在《畴人传》中很难找到一个数学家不受诏参与或帮助他那个时代的历法革新工作。”③除了中国,古代埃及数学的建立基础也是农业的需要。埃及几何学的起源被史学家们归因于泥罗河泛滥后土地的重新测量;巴比伦的数学起源也是如此,尤其是巴比伦数学的60进位制来自于天文学;印度数学和占星术有关,而占星术又和农业及宗教有关。

东方数学的建立比西方要早,但东方的数学在理论化的道路上行动迟缓。原因何在呢?自给自足的自然经济的生产力状况决定的生产力关系是以家族为中心、以血缘关系为纽带的宗法等级关系,社会制度是宗法等级制度。自给自足的自然经济中分散的家族和农民需要有高高在上、君临一切的中央集权的君主专制制度的统治。在这种社会制度的影响和作用下,形成中国古代稳定的上下尊卑等级秩序的文化心理。主要特点是静态的、和解的、自然的、消极的心理特点。造成安于现状的生活方式、工作方式、管理方式。思想僵化、调和持中,这种文化心理使得数学只停留在实用上。没有就数学而数学,使数学自身的规律没有得到完善。“在古代东方的全部数学中甚至找不到一个我们今天称之为‘证明’的例子,代替论证的只有程序的描述,所讲授的内容只是‘如此这般地做’,而且也不是以一般规则的形式提出来,只不过是在一系列特殊情况下的应用方法。”④这段话虽有失偏颇,但也道出中国古代数学的特征。在中国数学的发展史上曾出现了刘徽、墨子、惠施等天才的数学家,但他们的数学研究和成就不能和西方的阿基米得、欧几里德相比较。这主要是我国古代数学的理论研究不受重视所致。汉王朝建立以后的“重农抑商”政策使数学研究受不到贸易的诱惑。农业经济的财富有限和填饱肚子的生活状况,不允许人们的思想向实用以外的地方延伸;隋朝开始的科举制度也扼杀了大批在数学研究上具有不凡才华的人。在科举制度中数学不是要考的课程,为“学而优则仕”而奋斗的人们,自然不会将数学当作主修课程来学习。另外,农业经济的贫困使得没有多少人来学文化,学数学的人自然更少。在这种情况下,中国古代数学的许多成就只处在应用和描述过程阶段,没有提高到抽象的、系统的理论阶段,从而使数学的发展和升华受到限制,象“勾股定理”、“圆周率”这些值得中国人骄傲的数学成就,没有造成相应的数学的轰动效应。“勾股定理”在我国商高的时代就应用比西方的毕达哥拉斯发现早600年,但由于我们没有给出严格的数学证明,这个定理在现在还认为是毕氏的成果,称为“毕氏定理”。墨子的极限理论也没有引起足够的重视,后来西方数学传入我国时才知西方极限思想和黑子的思想是一致的。“重农抑商”的文化传统的价值观具有明显的伦理性。小农经济的自给自足的环境不需进行商品交换(至少不需要太多的货币介入)。生产中占支配地位的是使用价值,人们关心的是使用价值而不是价值,以不言利为荣,“重义轻利”的思想渗透到人们的思想深处。数学的应用只局限于分配环节中。而在复杂的流通和交换领域中数学没有机会“施展才华”。多农少商没有足够的财富供人们享受,财产的有限性限制了人们的探险精神和“想入非非”,从而限制了数学向理性的发展。

在西方,小亚西亚海岸新兴的商业城市、希腊本土、西西里岛和意大利海滨,由于海上贸易和战争的刺激使得人们的思想活跃,商品贸易发达,对计算要求的提高,财富的增加使人们有更多的时间从事“非实用”的理论研究。古代东方静态的观点和西方动态的观点不一样,表现在数学上唯理论的气氛浓厚起来。人们不但要知其“然”,而且要知其“所以然”。不但要问“什么”,而且要问“为什么”,要解决“所以然”和“为什么”。古代东方的以实践和经验为根据的方法就显得“无能为力”和“后劲不足”。为了知道“所以然”和“为什么”,就得在数学的证明方法上作一定的努力,在这样的文化氛围中现代意义上的数学产生了。东方的几何学只为测量提供方法,而证明的几何学是由公元6世纪前半期米利都的泰勒斯开创的。泰勒斯不是农业经济中的“耕夫”,而是一个商人,他在经商过程中积累了足够的财富后,在后半生从事研究和旅行。他在几何学中的主要成果有“圆被任一直径二等分”,“等腰三角形的两底角相等”、“两条直线相交对顶角相等”,“两个三角形,有两个角和一条边对应相等,则全等”、“内接与半圆的角必为直角”等⑤。这些成果的意义不在于断言的本身,而是提供了一些逻辑推理(象他的第五个问题巴比伦比他早知道近1400年,但没有形成严格的证明)。使得数学被推向抽象、系统化轨道的还有毕达哥拉斯、柏拉图以及他们的继承者形成的毕氏学派和柏氏学派。由于商业的发达、财富的增长,使得人们旅行的欲望越来越高,而旅行和游动的生活方式给数学的发展提供了机遇。前面提到的泰勒斯的后半生就是在旅行和数学研究中渡过的,“他有一段时间住在埃及”⑥。毕达哥拉斯也有旅行和流动生活的经历。“他曾在埃及居住了22年,从埃及神庙的祭司那里了解了古埃及有关数学、天文方面的知识……回国后,又前往希腊的移民地阿佩宁半岛的克罗托纳城定居”⑦。从这两位数学大师的经历看,不能不说旅游这种文化活动给数学的发展提供了条件。商业贸易的发展,可诱导战争的爆发,战争不仅给侵略者掠夺来物质财富,而且也带来了许多精神财富,其中就有数学成就。公元前334年,马其顿国王亚历山大领兵进入埃及,不久挥师东进,横扫了波斯帝国的军队,到了印度河西岸,建立起庞大的亚历山大帝国和亚历山大城,这个城市的建设主要着眼于文化科学设施的建设,吸引了大量的人才,不久就成为当时世界科学文化的名城,欧几里德就是在这个环境中熏陶和成熟起来的伟大的数学家。他对数学宝库的贡献是《几何原本》。他的几何和东方几何的不同之处是,不仅从应用的角度来谈,而是就几何而几何的角度加以研究,运用逻辑推理来证明命题的真伪。而且用几何的方法来解决代数方程。他的著作中的许多公理、定理和定义除了适应当时的经验外,还具有普遍的意义。阿基米得也是当时伟大的数学家,他采用穷竭法来求圆的周长和直径的比值,其指导思想和我国刘徽的计算圆周率的思想是一致的,但不同之点是“刘徽是从圆内接正多边形着手,而阿基米得不仅从圆内接正多边形着手、还从外切正多边形这个角度进行计算”⑧。这就体现出西方数学家多方位的思维方式。另外,阿基米得在研究圆的同时,还研究了球和圆柱的问题,他在《论锥形体和球形体》中使用了近似于现代数学的方法。他的工作不仅涉及到具有很大应用价值的数学问题,而且提出了许多明确的数学概念,在这一点上要比东方数学先进。商业贸易具有一定的风险性、尤其是远航贸易。这种背景下产生了保除业。而保险的兴起又促使了概率论的产生和发展。虽然刺激概率论的是赌博,但起源是商业文化。即使是赌博也是产生于发达的商业文化城。可见,东西方传统文化不仅影响到不同的数学分支和范围,而且在同一数学问题上所体现的解决问题的方法也不同,表述的形式、研究的动机也存在差异。再来看一个事实,《周易》及先天图二分法与菜布尼兹的二进制,两者一个讲对分,一个讲进位。但都“用两个符号表示无限的事物或数学其客观存在的排列法则,决定了先天图与二进制算术的一致”⑧。二进制和先天图没有关系,这是不同时代的东西方数学家,在完全不同的社会背景下的产物,其一致性是令人吃惊的,但思想方法却完全不同。二进制是在西方传统文化中欧洲科学发展的基础上产生的,是有意识地运用十进制知识而创造的一种计数方法。二分图是《周易》众多象数体系中的一个,其中有合理的因素。但其动机不免有些封建意识的糟粕,因为它不是依靠科学的依据推出来的。

总之,东西方传统文化的不同,造成了东西方数学上的差异。东方是数学原始的发祥地,但其发展和科学化、理性化的功劳基本上归于西方。

参考文献:

①张立文等《传统文化与现代化》,中国人民大学出版社。

②钱宝琮《中国数学史》,科学出版社。

③(英)李约瑟《中国科学技术史》,科学出版社。

篇10

作为教学主体的老师在培养学生质疑能力方面起着至关重要的作用。而老师的教学观念、教学方法、质疑观、知识储备都会对培养学生质疑能力产生影响。老师在数学教学过程中着重于具体知识的传授,忽略了问题情境的设置,在教学方法上老师总是把归纳好的解题方法和技巧灌输给学生,使学生丧失了思维拓展能力,不利于质疑能力的培养。老师对来自学生的质疑不能很好的处理,同时老师的自身的知识储备有限也是影响培养学生质疑能力的重要原因。

(二)来自教材的原因

现行的数学教材展现的仍然是过多的公式、公理等纯数学知识,而很少提及这些公式、公理等纯数学知识在怎样的背景下提出来的,最终如何解决的。即使现有的数学与现实相联系,但因为人为对解题条件和数据进行了加工,而最终缺乏现实感,难以激发学生的兴趣和培养学生的质疑能力。

(三)评价方面的原因

目前的评价标准仍然是把考分作为唯一的标准。而考题是对书本知识的模仿和再现。这样的评价标准难以培养学生对数学的兴趣,同时在培养学生质疑能力方面没有发挥正确的导向作用。

二、如何在数学课堂上提高学生的质疑意识和能力

现行的基础教育课程改革纲要提出了要求:要使学生具有初步的创新精神、实践能力、科学和人文素质以及环境意识,逐渐培养学生的质疑意识与批判意识,鼓励学生对书本与老师的质疑,赞赏学生独特和富有个性化的表达与理解,充分挖掘学生的潜能,培养他们的创新能力。古人训:疑是思之始,学之端;为学患无疑,疑则有进。新的数学课程改革也非常注重对学生质疑问难能力的培养,认为质疑问难能力的高低是评判学生创新意识和创新能力的重要标志。那么如何在数学课堂上提高学生的质疑意识和能力呢?

(一)营造宽松积极的环境,培养学生敢于质疑的意识

传统数学教学中,老师是课堂的主导,是课堂的权威,而课本被认为是最具有科学性和权威性的书籍。许多学生对老师的讲解存在迷信“权威”和盲从的心理障碍。我们教师自身必须要意识到课堂教学是一个学生和老师、学生和学生之间的多变互动的一个过程。要让学生置身于平等、自由、宽松的环境中,他们才更乐意去思索、质疑。通过创设情境充分地调动学生的积极性。例如在七年级下册中,教统计调查的这一课程时,我运用“抢30”的游戏来体现机会均等和不均等。游戏规则是这样的:第一个人先说1或者1、2,第二个人则接着往下说一个或者两个数,然后再由第一个人接着往下说一个或两个数,这样两人反复轮流,每人每次说一个或两个数都行,但是不可以连续说三个数。谁先说到30,谁就赢得游戏。问:这个游戏公平吗?这个游戏是学生第一次接触,为了让学生全部都参到课堂上来。通过研究分析,我做了如下处理:首先,出示题目让学生分析。也许是30这个数有点大,同学们读后眼里都充满了疑问困惑。于是我提议将“抢30”改为“抢10”。同学们对此纷纷都表示赞同。问题1:“抢10“游戏公平么?接着,让学生在自己动手实践。建议由两位同学示范“抢10”的游戏,五局三胜制。一些想玩却没有把握的学生显得很犹豫,而一些胆大的同学已经纷纷举手要求示范。两位同学来到讲台前,一位同学从1开始说,这样一直交替到了10。两局之后,无论是台上同学还是台下的同学都发现了规律:要抢到10,就必须先抢到7。于是大家又开始想如何才能先抢到7。再玩两局之后,大家又发现:要抢到7必须要先抢到4。最后,游戏结束时,同学们都明白了:先说1的同学才能在游戏中获得胜利。为了让同学们都能深刻体验这个游戏,我又建议同桌的同学做。之后,我决定加大难度。“同学们,现在我们来试试‘抢30’怎么样?”我笑盈盈地建议到。“没问题!”同学们有了“抢10”游戏的经验都信心满满。这次通过四人一组的形式来探究。不久之后,各小组都先后表示找到了“抢30”获胜的秘诀。为了验证他们的秘诀,我也参与其中,由我开始说,同学们根据自己发现的规律,先抢到了30。“哦!我们赢了!”同学们在兴奋地欢笑成一片。“老师,为什么在‘抢10’中要先数就能获胜,‘抢30’又要后数才能获胜呢?”一位男生表示了他的困惑。“对啊,为什么‘抢10’与‘抢30’会有不同的获胜的方法呢?这也在我的意料之外。同学们,你们觉得呢?”我也表达了我的困惑和想法。于是同学们继续分析研究“抢10”和“抢30”有什么区别?最后大家发现:原来抢数游戏本质上是一个是否被“3”整除的问题。由于10和30除以3后余数不同,所以得出的结论就出现了差。最后,我建议同学们自己设计一个抢数游戏和身边的朋友或家人玩,他们对此的积极性更高了。课堂上,让每个学生都参与到课堂中来,并对学生的想法作出积极的鼓励,对他们的疑惑不要立即给出答案而是引导他们自己去思考、质疑,激活他们的质疑意识。让他们乐于参与其中,自由地去探索、发现、质疑、验证自己的想法。同时也要让他们明白:在课堂上自由地思索、自由地表达想法是受到鼓舞的,即使错了也没有关系。

(二)引导学生掌握质疑的方法,提高质疑的质量

篇11

重点确立后,要通过每个教学环节和教学手段,象众星捧月般地把它加以突出,即常说的“突出重点”。也就是抓住主要问题讲课。如高中数学三角函数在各象限内的符号一节,依次出现了三个内容:①确定三角函数的符号;②三角函数的特殊值;③终边相同的角的同名三角函数值相等。而确定三角函数的符号是这节教材的重点,这要分别做出四个象限的角,从三角函数的定义式出发,先分析正弦、余弦、正切在各象限中的符号,再用余割、正割、余切分别是上述三个三角函数的倒数而分别对号成组(共三组),而特殊值与终边相同的角的同名三角函数值相等两个问题也就迎刃而解了。

二、分散难点、突破难点

难点就是难于理解或难于掌握的内容,或较抽象、或较复杂,难点与重点,有时兼备,有时不同。难,包括学生难学和教师难教,由于学生难学致使教师难教,若教法不当,则学无成效,教与学相互制约、相互影响。确定难点,要着眼于多方面,不能单凭主观臆断。突破难点,更为艰辛,要师生密切合作,协同作战,方可破之。突破难点要注重两点,一要把难点讲清,教师要由浅入深,由易到难,循序展现,把知识的内在规律,清晰地交给学生,让学生了解知识的来龙去脉,化难为易,步步相扣;二是把难点分化成若干个小问题,分散难点,各个突破。

篇12

例如:一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。剩下的要3天做完,平均每天要做多少套?

教完例题后,首先引导学生回顾例1的解题思路。根据“已经做了5天”和“平均每天做75套”这两个条件可以求出已经做了的套数;已知计划做660套衣服,又求出了已经做了的套数,就能求出剩下的套数;知道剩下的套数和要求完成的天数,就能求出后3天平均每天要做的套数(即由因导果综合法)。再让学生说出解题步骤:第一步求“已经做了多少套”,第二步求“还剩下多少套”,第三步求“后三天平均每天要做多少套才能完成任务”。最后,教师再根据综合算式提问:①“75×5”表示什么?②“660-75×5”表示什么?③“(660-75×5)÷3”又表示什么?通过这样的反思,进一步帮助学生理顺和掌握该应用题的结构和解题思路,加深学生思维的深度。

二、反思解题方法,训练思维的灵活性

教完每道例题,通过引导学生反思本题是否还有其它解法,比较哪种解法较为简捷,进一步拓宽学生解题思路,培养思维的灵活性。例如,在第十一册54页的例4教学之后,教师可问学生:这道题还可以怎样解答?在教师的启发下得出如下几种解法:

解法一

以九月份生产玻璃的箱数作单位“1”,得解法:20000÷(1+1/3)。

解法二

以十月份生产玻璃的箱数作单位“1”,解法为:20000×(1-1/4)。

解法三

用归一法解:20000÷(3+1)×3解法四用方程解:设九月份生产玻璃x箱。得方程(20000-x)÷x=13。

这样引导学生从同一例题中探求不同的解法,有利于克服思维定势,促进学生思维能力的发展。

三、反思题目变式,训练思维的广阔性

某些例题在教学后,还可引导学生多角度、多方位地改变题中的条件与问题,进行变式教学。这样,不仅加深学生对某类应用题结构和特征的理解,而且有利于培养学生理解问题和解决问题的能力。

例如,第十一册49页的例2,在教学后可进行如下变式训练

1.变换条件。将题中“六月份比五月份多捕了1/4”变换为:

(1)六月份比五月份少捕了1/4;

(2)六月份捕鱼是五月份的(1+1/4)倍;

(3)相当于六月份捕鱼吨数的4/5;

(4)六月份比五月份的4/5多100吨。

2.变换问题。将题中“六月份捕鱼多少吨”变换为:

(1)五月份和六月份一共捕鱼多少吨?

(2)六月份比五月份多捕鱼多少吨?

(3)五月份捕鱼吨数是六月份的几分之几?这样,通过一题多变和一题多问,增大了题目的知识容量,训练了学生灵活应用知识解决问题的能力,收到了事半功倍的效果。

四、反思引申推广,训练思维的变通性

有些应用题的数量关系、解题方法很相似,如在教学中不失时机地将某些例题作适当的引申,不仅有助于学生进一步理解题目的数量关系,掌握解题规律,而且有利于训练学生思维的变通性。

例如,在教学第十一册58页的例5这道工程应用题之后,引导学生根据工程应用题的结构特征及解题规律进行反思,学生容易发现工程、相遇、注水等问题有着相似的数量关系及解法。

如相遇问题:“客车从甲地开往乙地需20分钟,货车从乙地开往甲地需30分钟。现两车同时分别从甲、乙两地相对开出,几分钟相遇?”算式是:1÷(1/20+1/30)=12(分)。

友情链接