数学理论论文范文

时间:2023-04-01 10:34:28

引言:寻求写作上的突破?我们特意为您精选了4篇数学理论论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

数学理论论文

篇1

1、数学理论为什么1+1=2(1+1=2的基本原理、道理、哲理是什么?):

纯粹数学理论上存在着缺陷与不足,那就是偶数能被2整除、奇数不能被2整除,换言之,纯粹数学在理论上根本无法承认和接受2是数学公理,因为奇数不能被2整除自身就是科学根据与铁的事实,偶数能被2整除、奇数不能被2整除,如此理论太绝对了,已经给纯粹数学的理论造成了不可思议,奇数不能被2整除、能不能以其他方式被2整除?值得深思、探讨、探索——不能还停留在偶数能被2整除、奇数不能被2整除玄学的理论水平上,要深化理论认识,…。

为什么1+1=2,本文回答既简单又深奥:偶数能被2整除,奇数不能被2整除却着实能被2哲理整除,奇数与偶数相反相成对立统一,1+1=2是数学首要公理,1+1=2蕴涵着深刻的对立统一规律,是啊!它真的既简单又深奥,它简单的表面上看似是小学生的基本知识,然而其道理深奥地不可思议、不可理喻、如此道理、哲理并非所有的人都能够理解与接受,更不是小学生能够理解的数学知识,...!

偶数能被2整除,奇数不能被2整除却着实能被2哲理整除,奇数与偶数不仅存在着对立性,而且还存在着共性和同一性,即异中之同,差异中的共性,…,

其一:奇数不能被2整除却着实能被2哲理整除就是指奇数与偶数的异中之同,差异中的共性与同一性,

其二:偶数能被2整除、奇数不能被2整除就是指奇数与偶数的差异性、排斥性、对立性,

因此说,奇数与偶数既有对立性又有同一性,奇数与偶数二者存在着相反相成、对立统一的辩证关系,它揭示着2是数学公理系统的首要公理,这是世界观的认识问题,有什么样的世界观就有什么样的认识论、方法论,如果玄学,无论如何都是无法理解、接受它,如此真理说不清、理还乱、但是它的庐山真面目就是如此,无法更改,古人云“不识庐山真面目、只缘身在此山中”,需要“跳出庐山看庐山”,要摆脱两千多年玄学的严重束缚,…。

为什么1+1=2不是指数论的“1+1”,为什么1+1=2?不仅要知其然还要知其所以然,…,绝对值1+1=2与数论的“1+1”既有差异又有联系,如果把素数2看作偶素数,那么数论的“1+1”是指大于等于6的偶数可表示为两个素数之和——歌德巴赫猜想,无需奇素数,本文素数就是指奇素数3,5,7,11,13,17,19,23,……,…,数论的“1+1”它是绝对值的特殊公理,数论的“1+1”与绝对值的1+1=2在数值逻辑公理系统中一脉相承,在绝对值1+1=2数值逻辑公理系统中蕴涵着数论的“1+1”,数论的“1+1”是数值逻辑公理系统偶环节上的特殊公理,换言之、数论的“1+1”也是数学公理(例如:6=3+3,8=3+5,10=3+7,12=5+7,14=3+11,16=5+11,18=3+15,……,无穷无尽)拥有客观存在性,并非被摘取下来才拥有真实性、摘取不下来就非真实性和非客观存在性,既不肯定也不否定模棱两可、这背离了数学(逻辑)排中律,…。

虽然哥德巴赫猜想数学命题没有被数学专家毕了、依然被人们研究着,但传统的素数“筛法”,此路不通已失去了昔日辉煌,…。

2、自然数与正整数、单位“1”与自然“1”:

1+1=2是科学抽象的、1+1=2以及正整数是相对于广义的单位“1”而言,单位“1”的含量绝对统一,1+1=2并非自然“1”的意义,事实上自然数与正整数既有差异又有联系,自然数是相对于自然“1”而言,正整数是相对于单位“1”而言,正整数是把自然数提升到了抽象的科学高度,由于自然数、时常因单位“1”不统一、“含金量”不一致,如果对自然数直接进行运算是有很大的局限性——有时正确、有时有偏差,我们人类是聪明智慧的,有了数学的广义的单位“1”、正整数,消除了自然数的局限性,…。

3、哲理整小数以及哲理整小数的双重性质(或哲理整分数和哲理整分数的双重性质):

小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,......,的绝对值拥有相互矛盾的双重性质,其一是哲理整性质、其二是普通小数性质,哲理整性质是指小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,......(注:它们的小数部分均为0.5,只涉及到0.5也可以、也足以)的绝对值比其他普通小数的绝对值整装、…、本文将它们的这一特性简称为哲理整性质(相对整),因为1/2是最大分数单位,则0.5是最大小数单位,因此0.5拥有哲理整性质,它地地道道、的的确确客观存在着,我们的认识迄今为止还未意识到,如此道理、哲理并非所有的人都能够理解接受,唯恐越看越不明白,令人意乱、劳神,...。

哲理整小数:本文将小数0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,…和它们的哲理整性质(相对整)统称为哲理整小数,务必明确的说明,哲理整小数拥有相互矛盾的双重性质,其一是哲理整性质、其二是普通小数性质,…。

哲理整分数:本文将分数1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2……和它们的哲理整性质统称为哲理整分数,哲理整分数拥有相互矛盾的双重性质,其一是哲理整性质、其二是普通小数性质,…。

普通小数:不包含哲理整小数在内的小数简称为普通小数。

普通分数:不包含哲理整分数在内的分数简称为普通小数。

4、1/2和0.5哲理整性质的科学依据:

分数拥有分数单位,数学教科书应该明确指出1/2是最大分数单位,1/1不是最大分数单位、是整数分数,1/1=1依然体现整数性质、是一个特例,然而迄今为止还没有小数单位,数学需要向前发展提出小数单位、最大消暑单位,要明确指出最大小数单位是“0.5”,而且为奇数能被2哲理整除提供客观科学依据,才更符合数学的客观实际!单凭直觉,最大分数单位1/2和最大小数单位0.5还未体现出其真正数学意义,最大分数单位和最大小数单位在本质上体现哲理整性质才是其真正的数学意义,这是如何对待数学真理的重大认识问题,并非可有可无,可无必然是一个数学错误,1/2和0.5的哲理整性质是微小微妙、微乎其微的变化、微不足道的差异性,若不仔细认真观察很难被人们发现,形而上学排斥它、大多数人无法理解接受它,有理难辩啊,难!真的很难!不仅如此还会遭人讽刺、挖苦等等,…。

关于分数和小数:分数单位1/2,1/3,1/4,1/5,1//6,1/7,1/8,1/9,1/10,…对应下的小数应为小数单位,例如:1/2=0.5,1/3=0.333….,1/4=0.25,1/5=0.2,…,1/10=0.1等等,….。

哲理整性质的来龙去脉:在数值逻辑公理系统中,派生子集合,0.5,1.5,2.5,3.5,4.5,5.5,6.5,……,…从系统发展变化中分化出来,占据整数的位置充分地十足地体现其哲理整性质或者说体现其相对整性质,数值逻辑公理系统为其提供科学依据;最大分数单位1/2、最大小数单位0.5也为其提供科学依据,只有在数值逻辑公理系统中才能够发现0.5,1.5,2.5,3.5,4.5,5.5,6.5,……(1/2,3/2,5/2,7/2,9/2,11/2,13/2,……)拥有哲理整性质,单凭直觉无从谈起,单凭直觉只能看到最大分数单位和最大小数单位,…。

能被2整除的是偶数,…,整数0,1,-1,2,-2.,3,-3,4,-4,5,-5,……,…为偶数能被2整除提供科学依据举世公认,…。

为了便于理解接受也可以首先把0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,…暂时将它们看作哲理整数(相对整数),哲理整数为奇数能被2哲理整除提供客观科学依据,哲理整数指小数0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,…的绝对值比其他普通小数的绝对值整装——因为0.5是最大小数单位,与整数形成异中之同,差异中有共性,数学与哲学将这一特性简称为哲理整性质(相对整)——哲理整数(相对整),但是理解接受以后:绝对不能忘记了哲理整数拥有相互矛盾的双重性质,一是拥有普通小数性质、二是拥有哲理整性质,只承认它们的小数性质认识是片面的,只承认0.它们的哲理整性质认识是片面的,…。

事实上只有把哲理整数统称为哲理整小数体现双重性质才更确切、完整、正确,…。

5、有理数系数值逻辑公理系统(就不展开叙述了):

{[0~1]}1{[1~2]}3{[2~3]}5……,…(此结构式上下交错对应不能散开)

[0.1~1.5]}2{[1.5~2.5]}4{[2.5~3.5]}6……,…

第1环节:1∑{[0~1]}=∑{[0~1]},

第2环节:2∑{[0~1]}=∑{[0.5~1.5]},

第3环节:3∑{[0~1]}=∑{[1~2]},

第4环节:4∑{[0~1]}=∑{[1.5~2.5]},

第5环节:5∑{[0~1]}=∑{[2~3]},

第6环节:6∑{[0~1]}=∑{[2.5~3.5]},

……,…,

∑{[0~1]}意指0与1之间的基数之和,它是集合族、有无穷个子集合或有无穷个数组,其他依次类推,符号:意指派生子集合,很显然,在系统数值逻辑运算过程中,小数0.5,1.5,2.5,3.5,4.5,5.5,6.5,……从系统发展变化过程中产生分化出来,占据整数位置,充分体现其哲理整性质,即派生子集合,为奇数能被2哲理整除提供科学依据,蕴涵着完整的数值运算规律,数论、集论、算术三位一体、辩证统一,蕴涵着完整数学公理2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,……,…。

潜无限给数值逻辑奠定基础并给作科学指导,潜无限排斥实无限,…。

实无限只能给数理逻辑奠定基础,如何给数值逻辑作科学指导?实无限排斥潜无限,事实上互相排斥,…。

6、广义整数:

广义整数:将整数和哲理整小数统称为广义整数(将整数和哲理整分数统称为广义整数),…。

7、有限不循环小数:

有限不循环小数:为了便于理解,简言之,我们把无限不循环小数有限数字(小数点右边至少有两位或两位以上不循环数字)称之为有限不循环小数,例如:3.14,3.1415,3.141592,3.1415926,1.4142,1.41421356,2.17181938,……,有无限不循环小数必然存在着有限不循环小数,在数值逻辑中,有限不循环小数与潜无限不循环小数拥有替代无理数数值的巨大意义与作用;有限小数中的小数再如此细致地划分出有限不循环小数、有限不循环小数,才更切合实际,在数值逻辑公理系统中会发现:有限不循环小数拥有客观存在性,拥有无限不循环小数就必然存在着有限不循环小数,这的确是一个认识问题,有限不循环小数可表达为分数形式,因此有限不循环小数是有理数,同时还是超越无理数的有限形式,因此可替代无理数数值(无理数的近似值),只谈无限不循环小数(只谈无理数),不涉及到有限不循环小数是不行的,…。

尤其是有限不循环小数,在实质上拥有替代无理数数值的巨大意义与作用——此乃有限不循环小数的重要数学意义。

8、有限循环小数:

有限循环小数:为了便于理解,简言之,我们把无限循环小数有限个循环节(小数点右边至少有两个或两个以上数字循环节)称之为有限循环小数,如:0.1616,0.161616,0.666,0.666666,0.78787878,0.999999,……,有无限循环小数必然存在着有限循环小数,有限循环小数客拥有客观存在性,它可替代无限循环小的数值,…,这也是一个认识问题,有限循环小数可表达为分数形式,因此有限循环小数是有理数,…。

9、普通有限小数:

把小数点后边有一位数或两位数以内的小数简称为普通有限小数,例如:0.9,1.1,1.2,3.6,3.8,5.8,6.8,7.16,………,…。

10、总之、数学理论要有所突破、要有所进展:

数学(算术)需要向前发展有所突破:

(1)提出数学理论为什么1+1=2,

(2)明确指出1/2是最大分数单位,

(3)提出小数单位、最大小数单位、0.5是最大小数单位,

(4)将有限小数细致划分为:

a、哲理整小数:0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,……,

b、普通有限小数,

c、有限不循环小数,

d、有限循环小数,

(5)有理数系数值逻辑公理系统,

(6)广义整数,

(7)哲理整分数:1/2,-1/2,3/2,-3/2,5/2,-5/2,7/2,-7/2,……,

(8)整数分数:把1/1,-1/1,2/1,-2/1,3/1,-3/1,4/1,-4/1,5/1,-5/1,6/1,-6/1,……统称为整数分数,拥有双重身份,…。

(9)双素数:例如6,10,14,22,26,34,38,……,其特征,能表示为两个等值素数之和,双素数星星点点揭示着哥德巴赫猜想拥有客观存在性,无法否定它,

(10)偶素数——2:2既是一个偶数又一个素数,把2简称为偶素数,

等等才更接近数学的实际情况,希望数学教师率先转变数学思维理念给以鼎力支持,…。

总之,依然还是把整数与分数统称为有理数,只不过是又将分数划分为哲理整分数、普通分数、还有整数分数,...,为什么1+1=2——是探索其原理、道理、哲理,一定要弄明白其中的原理、道理、哲理!…,再次说明,如此道理、哲理并非所有的人都能够理解接受,这是很正常的,且末当真、切莫较真,同时也说明一点本文为什么1+1=2的含义不同于1+1为什么等于2?,也未直接涉及到数论的“1+1”,…。

错字、多字、漏字、错误在所难免,本文作为数学学术最新观点,仅供参考、并不强加于人。

参考文献:

1、《辩证唯物主义和历史唯物主义原理》,中国人民大学出版社出版

2、《古今数学思想》(北京大学数学系数学史翻译组译)上海科学技术出版社出版,1981年7月。原作者:(美国数学家)M.克莱因著

篇2

学生分层之后,数学教师要根据新课标的要求,针对每个层次学生的特点和数学水平的不同,制定针对各层次学生的教学内容和目标,并贯穿到整个教学过程中。教学目标和内容要具体,把学生的能力、性格等因素考虑进去。教学目标可以划分为多个层次,不同层次的学生完成的目标不一样。针对A层次的学生,数学教师要引导他们主动思考,并能够提出问题;对B层次的学生启发他们独立思考,理解并能解决一些简单的综合问题;对C层次的学生则引导他们掌握知识重点,能运用基础知识解答简单题目。

(二)任务分层

新课改要求现代高中数学教育要重视实践性,其课后作业和练习则逐渐被忽视。在分层教学理念的指导下,教师要根据学生的实际情况,依据大纲要求适当布置课后作业。针对C层次的学生,只布置一些简单题目,巩固所学知识;对于B层次的学生布置常见的难点题目,提高解决问题的速度;而对于A层次的学生则布置提高逻辑思维能力的题目。

(三)评价分层

以往的教学中,对学生的评价仅以成绩的高低作为唯一判定标准,由于教育的不断进步,人们逐渐认识到这种评价标准的片面性。不同层次的学生应该实行不同的评价标准,评价的方式应该多元化、综合化。教师评价学生时,要全面考虑到学生的性格、学习态度等各种因素,这样才能更深入地了解学生。数学教师要依据三个层次学生的不同情况,制定不同目标,然后在同一层次上进行比较。这种方式不仅可以增强同一层次学生的竞争意识,促进学生的进步,还可以增强学生的自信心。因此,进行分层次评价可以促使A层次的学生争取更好的成绩,增强B、C层次学生学习数学的兴趣,最终实现每一个学生都能全面进步的理想。

(四)辅导分层

篇3

关键词:数学教师 数学素养

数学素养是指在个人的先天素质的基础上,受后天教育与环境的影响,通过个体自身的学习、认识和实践活动等所获得的数学知识、数学能力和数学思想观念等的一种综合修养。我们也称之为数学品质。数学素养当然也包括与数学有关的人文修养。

一、加强数学教师数学素养培养的重要性和必要性

目前教师的数学素养欠缺,到底欠缺在哪里?我认为,主要还是欠缺在数学本身,即数学的现代修养上。我国著名数学家陈景润之所以能取得举世瞩目研究成果,至今仍没有人超过他,用国外数学家和同行的话来说,“他是移动了群山才达到这一研究水平的”。这个群山就是现代数学的众多基础知识和思想观念。当然,对绝大多数数学教师来说不可能也不必要具有专职数学家那样的数学水平和研究能力。但是从《课标》中所列出的那些数学内容与模块看来,尤其是要开设的那些选修课,有许多都涉及到了近现代的数学分支,如果教师本身不具备这些必要的功底,如何能适应新的教学任务?数学的知识、能力和品质,知识是基础,没有知识,能力何在?更何谈创新与发明?

二、数学教师数学素养的构成

数学素养主要包括数学的认识、数学思想方法的理解与掌握、数学的意识、数学语言的运用等四个要素。

(一)数学的认识

完整准确地认识数学的本质,对数学教师来说具有十分重要的作用。事实上,如果一名教师注重数学的学科结构,他就会自觉地把数学视为模式的科学;如果一名教师注重过程,他就会认为数学是直觉和逻辑的产物;如果一名教师注重社会价值,他又会把数学理解为是一种工具等等。新课程标准更加关注人的发展,更加注重对学生创新意识和创新能力的培养,因此,数学教师对数学的认识要注重由绝对主义的静态观向可误主义的动态观转变,这是新形势下数学教师建构专业理念的一个基本条件。

(二)数学的意识

数学意识指的是人们通过数学的学习与训练形成的运用数学思维方式的习惯,一般说来,主要包括推理意识、抽象意识、整体意识与化归意识。推理意识就是养成数学推理的习惯,既包括在数学理论思考中由一个或一些判断导致另一判断,也包括由经验事实引出的数学概念与数学判断。抽象意识指的是在数学问题的分析和解决过程中,把适当的问题化为数学问题,进行抽象概括。整体意识是指全面地、从全局上考虑问题的习惯。化归意识则指的是在解决数学问题的过程中,用联系的、发展的、运动变化的眼光观察问题,认识问题,有意识的对数学问题进行转化,变为易解或已解的问题。数学的意识,还集中表现在用数学去描述、理解和解决现实问题,借助于数学方法使问题获得解决。

(三)数学语言的运用

数学语言,又叫符号语言,它是一种改进了的自然语言,通过使用字词、符号、图形体现数学思想,反映数学本质,具有精炼、准确、清晰等特点。将文字语言、符号语言、图像语言互相转换是数学语言表述的最基本的要求。

数学语言是教师在数学教学过程中充分发挥个人的创造性,正确处理教学中各种矛盾,正确有效地把数学知识传递给学生,最大限度地调动学生学习主动性的一种具有审美体验的语言技能活动。是师生互动的媒介,是师生交流思想的工具,是思维的外在表现形式,是教师使用最广泛、最基本、最有效的知识信息载体。没有准确、规范、简约的数学语言作为媒介,很难想象一节数学课是优质的,或是成功的。因此,熟练掌握和运用数学语言也是我们数学教师做好未来数学教学工作的基础。

除了上述所列三类数学素养,还有诸如对数学史的明了、数学美的悟性、数学论文写作、数学信息检索等方面的能力素养也是数学教师数学素养的重要组织部分。

三、数学教师数学素养的培养

培养和提高数学教师的数学素养,重在抓内因,没有个人认识上的到位,外因起不了多大作用。为此,笔者建议做好以下几点:

(一)提高数学教师对数学素养重要性的认识

当今教师的专业化发展对教师的从教素质提出了越来越高的要求,无论在教学技能、还是在专业知识上。《数学课程标准》在课程目标中明确指出:“强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理等基本能力”。“从数学的角度提出问题、理解问题,并能综合所学的知识和技能解决问题,发展应用意识”。这些虽是对学生数学能力的培养目标,同时也是对数学教师数学能力的要求。作为数学教师应当具有比学生数学能力培养目标更高的能力水平。

(二)要积极倡导数学课外阅读

数学教师具有了较丰富的数学专业知识,对一般的数学课外读物都能尝试加以阅读。诸如,张景中院士的《新概念几何》、《数学家的眼光》,李毓佩教授著《奇妙的数王国》,谈祥伯教授等的《数学与文史》、《数学与建筑》、《数学与金融》等。在数学教师中广泛倡导阅读这些数学科普读物,不但可以提高数学学习的兴趣以及阅读理解能力,而且可以让学生加深对数学本质的认识,进一步明了数学的曲折发展历程,从中感悟数学的无穷魅力。

篇4

建构主义学习理论认为,知识是学习者在一定的情境即社会文化背景下,借助教师和学习伙伴等其他人的帮助,利用必要的学习资料,通过意义建构的方式而获得。“情境”、“协作”、“会话”和“意义建构”是学习环境中的四大要素。所谓“意义建构”就是学习者对当前学习内容所反映的事物的性质、规律以及该事物与其他事物之间的内在联系达到深刻的理解。这种理解即所学内容的认知结构。学生学习的成效取决于学习者根据自身经验进行意义建构的能力而不取决于学生记忆和背诵教师讲授内容的能力。而对知识的自主“意义建构”是整个学习过程的最终目标,也是建构主义的核心思想。建构主义教学有一定的模式,统整不同派别的建构主义观点,其教学模式主要有以下几种:“情景意义”引发的“情境性教学模式”,“协作与会话”引发的“抛锚式教学模式”,“意义与经验”引发的“支架式教学模式”和“自主与反省”引发的“随机进人教学模式”tl]。2002年,笔者被南京市教育局选派赴澳大利亚昆士兰理工大学学习,每周前往布里斯班州立高中听课,最吸引我的就是他们课堂教学采用的建构主义观点下生动活泼的教学模式,特别是活动教学(Activites)。如通过测量自己手臂尺骨的长度与身高的关系来推断是谁杀了古猛玛象,通过一盒MM糖豆而展开的有关面积、体积、概率统计的有关运算等。实际上,在1991年颁布的澳大利亚国家数学课程标准中,每一个教学内容均附加了可操作的相关活动例子,以便教师选用。

建构主义教学理论也对我国中学教学改革产生了重大影响。我国即将全面推行的新一轮课程改革也把建构主义思想贯穿其中。高中数学新课程标准中提出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容,这些内容不单独设置,而是渗透在每个模块或专题中。其中数学探究即数学探究性课题学习,是指学生围绕某个数学问题,自主探究、学习的过程。这个过程包括:观察分析数学事实,提出有意义的数学问题,猜测、探求适当的数学结论或规律,给出解释或证明”。这些要求体现了建构主义“在活动中学习”的精髓。

本文在学习建构主义理论及模式的基础上,结合自己国外考察和多年的实践探索,根据我国国情,总结出两种高中数学活动课的新的教学模式:数学探究实验活动课模式和数学小组讨论汇报活动课模式。

一、数学实验活动课模式

本模式的理论基础,融建构主义与布鲁纳的“发现学习”理论为一体,在教学顺序上体现人的认知发展规律,通过数学实验操作,感悟和发现新的数学知识,并在活动中使新的数学知识与原有的数学知识不断沟通,归纳总结形成具有一定整体性和相对独立性的“知识块”,纳入原有的认知结构,使知识结构拓展和延伸,达到意义建构。

本模式的操作程序可描述如下:

选题准备*实验操作*观察感悟*归纳建构*拓展交流

上述操作程序的操作说明和建议如下:

1、选题准备阶段:选择适合动手实验的题材,使学生有兴趣、有可能动手操作又能达到教学目的,是数学实验活动课成功的关键。实验题材主要从现行高中数学教材中选择,大体有如下几类:测量验证类(如通过测量三角形的边和角的大小,推证正弦定理等)、作图发现类(如椭圆的扁圆程度与离心率等)、统计归纳类(如几何概型的投针实验)等,笔者还曾尝试让学生通过“试误”类比产生新概念的实验活动课。另外,前已述及,澳大利亚国家数学课程标准中,每一个教学内容都附有可操作的相关活动例子,所以还可从国外数学教材中选用。选题确定之后,教师除作好实验设计外还要计划实验材料的准备。

2、实验操作阶段:在建构主义的活动课堂上,教师要把主角地位让给学生,但一定要当好设计师和引导者,学生在课堂上既要充分活动,又不能过于发散。

3、观察感悟阶段:这是学生从动手操作活动的层面深人到思维活动层面的阶段,是数学活动课的核心环节。在给学生充足的思维时间和空间的基础上,教师应给以适当的点评,要重视学生思维过程中存在的问题,同时鼓励学生大胆想象,鼓励直觉思维,这在引导学生探索发现数学规律方面,将起画龙点睛的作用。

4、归纳建构阶段:这阶段从特殊到一般,从部分到总体,让学生体会数学概念和定理的由来,掌握研究数学的一般方法。当学生的假设被推翻时,教师要引导学生重新提出假设,当学生的假设被证实后,教师要引导学生用科学的语言概括结论,将证实的结论上升为概念或定理。

5、拓展交流阶段:即我们常说的运用和反馈阶段。在实验活动课上,师生互动交流和生生互动交流,贯彻始终。学生通过合作、交流,获得他人的认可,得到老师的鼓励。老师有意识地将本题材发现的方法从方法论角度进行归纳总结,促进学生的进一步拓展研究,培养学生钻研数学的精神和表达数学的能力。

二、数学小组汇报活动课模式

本模式的理论基础是由建构主义学习理论发展而来的“合作学习”理论。合作学习强调学生学习上的合作与交流。每个学生都有自己的知识基础,对于教师提出的数学问题,或者他们各自有各自的理解,或者他们各自可能无法解决这个问题。本模式先经过小组内的合作交流,再运用班级汇报的形式,各人把自己的认识、理解和有关信息表达出来,最后经过比较、组合和融合,就可能解决这个问题,使大家都有收获。

本模式的操作程序可表述如下:

明确问题*自由分组*分工合作*成果汇报*讨论评价

上述操作程序的操作说明和建议如下:

1、明确问题阶段:教师结合本课程教学计划内容和学生的学习状况,选择适合本模式的主题。提出课题后,必要时,教师可列举围绕主题开展的活动要点及与主题有关的数学知识,供学生参考。笔者曾选用苏教版普通高中课程标准实验教科书必修3中关于统计和概率知识应用的探究拓展题,该课题是以柯南道尔的侦探小说《跳舞的小人》及美国作家爱伦·坡的小说《金甲虫》中利用英语字母使用频率破案引出的,要求学生从网上找若干篇英文文章,用计算机统计26个英文字母出现的频率并由此估计它们在英文文章中出现的概率。我在所任教的高一班级就此问题组织了分组讨论研究,并请其中的三个小组进行了全班汇报讨论,取得满意的教学效果。

2、自由分组阶段:学生在了解教师所选主题以及相应的活动要点后,自由结合成研究小组。教师一般不干涉学生的自由分组,但可在每组人数上加以控制,必要时可征求学生意见后进行微调。

3、分工合作阶段:学生以小组活动的形式,根据活动任务,制定活动流程,分工合作开展研究。在这一阶段,学生是探究者、合作者,教师是学生活动的支持者、观察者,当然也可以是参与者。当教师观察到某小组无法按照预定方案进行活动时,应该给予一定的策略性支持。

4、成果汇报阶段:这是学生呈现、反思评价活动成果的阶段。这里允许学生用各种可能的表达方式展现相应的成果。以小组为单位,在课堂上向大家汇报研究成果,是小组讨论汇报课的主要表现形式。

友情链接