混凝土裂缝论文范文

时间:2023-04-12 18:00:37

引言:寻求写作上的突破?我们特意为您精选了12篇混凝土裂缝论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

混凝土裂缝论文

篇1

混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。

1凝土工程中常见裂缝及预防

干缩裂缝及预防

干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。

主要预防措施:一是选用收缩量较小的水泥,一般采用中低热水泥和粉煤灰水泥,降低水泥的用量。二是混凝土的干缩受水灰比的影响较大,水灰比越大,干缩越大,因此在混凝土配合比设计中应尽量控制好水灰比的选用,同时掺加合适的减水剂。三是严格控制混凝土搅拌和施工中的配合比,混凝土的用水量绝对不能大于配合比设计所给定的用水量。四是加强混凝土的早期养护,并适当延长混凝土的养护时间。冬季施工时要适当延长混凝土保温覆盖时间,并涂刷养护剂养护。五是在混凝土结构中设置合适的收缩缝。

塑性收缩裂缝及预防

塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连贯状态。较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm。其产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。影响混凝土塑性收缩开裂的主要因素有水灰比、混凝土的凝结时间、环境温度、风速、相对湿度等等。

主要预防措施:一是选用干缩值较小早期强度较高的硅酸盐或普通硅酸盐水泥。二是严格控制水灰比,掺加高效减水剂来增加混凝土的坍落度和和易性,减少水泥及水的用量。三是浇筑混凝土之前,将基层和模板浇水均匀湿透。四是及时覆盖塑料薄膜或者潮湿的草垫、麻片等,保持混凝土终凝前表面湿润,或者在混凝土表面喷洒养护剂等进行养护。五是在高温和大风天气要设置遮阳和挡风设施,及时养护。

沉陷裂缝及预防

沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致;或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致,特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。此类裂缝多为深进或贯穿性裂缝,其走向与沉陷情况有关,一般沿与地面垂直或呈30°~45°角方向发展,较大的沉陷裂缝,往往有一定的错位,裂缝宽度往往与沉降量成正比关系。裂缝宽度受温度变化的影响较小。地基变形稳定之后,沉陷裂缝也基本趋于稳定。

主要预防措施:一是对松软土、填土地基在上部结构施工前应进行必要的夯实和加固。二是保证模板有足够的强度和刚度,且支撑牢固,并使地基受力均匀。三是防止混凝土浇灌过程中地基被水浸泡。四是模板拆除的时间不能太早,且要注意拆模的先后次序。五是在冻土上搭设模板时要注意采取一定的预防措施。

化学反应引起的裂缝及预防

碱骨料反应裂缝和钢筋锈蚀引起的裂缝是钢筋混凝土结构中最常见的由于化学反应而引起的裂缝。

混凝土拌和后会产生一些碱性离子,这些离子与某些活性骨料产生化学反应并吸收周围环境中的水而体积增大,造成混凝土酥松、膨胀开裂。这种裂缝一般出现中混凝土结构使用期间,一旦出现很难补救,因此应在施工中采取有效措施进行预防。主要的预防措施:一是选用碱活性小的砂石骨料。二是选用低碱水泥和低碱或无碱的外加剂。三是选用合适的掺和料抑制碱骨料反应。

由于混凝土浇筑、振捣不良或者是钢筋保护层较薄,有害物质进入混凝土使钢筋产生锈蚀,锈蚀的钢筋体积膨胀,导致混凝土胀裂,此种类型的裂缝多为纵向裂缝,沿钢筋的位置出现。通常的预防措施有:一是保证钢筋保护层的厚度。二是混凝土级配要良好。三是混凝土浇注要振捣密实。四是钢筋表层涂刷防腐涂料。

2裂缝处理

裂缝的出现不但会影响结构的整体性和刚度,还会引起钢筋的锈蚀、加速混凝土的碳化、降低混凝土的耐久性和抗疲劳、抗渗能力。因此根据裂缝的性质和具体情况我们要区别对待、及时处理,以保证建筑物的安全使用。混凝土裂缝的修补措施主要有以下一些方法:表面修补法,灌浆、嵌逢封堵法,结构加固法,混凝土置换法,电化学防护法以及仿生自愈合法。

2.1表面修补法

表面修补法是一种简单、常见的修补方法,它主要适用于稳定和对结构承载能力没有影响的表面裂缝以及深进裂缝的处理。通常的处理措施是在裂缝的表面涂抹水泥浆、环氧胶泥或在混凝土表面涂刷油漆、沥青等防腐材料,在防护的同时为了防止混凝土受各种作用的影响继续开裂,通常可以采用在裂缝的表面粘贴玻璃纤维布等措施。

2.2灌浆、嵌缝封堵法

灌浆法主要适用于对结构整体性有影响或有防渗要求的混凝土裂缝的修补,它是利用压力设备将胶结材料压入混凝土的裂缝中,胶结材料硬化后与混凝土形成一个整体,从而起到封堵加固的目的。常用的胶结材料有水泥浆、环氧树脂、甲基丙烯酸酯、聚氨酯等化学材料。

嵌缝法是裂缝封堵中最常用的一种方法,它通常是沿裂缝凿槽,在槽中嵌填塑性或刚性止水材料,以达到封闭裂缝的目的。常用的塑性材料有聚氯乙烯胶泥、塑料油膏、丁基橡胶等等;常用的刚性止水材料为聚合物水泥砂浆。

2.3结构加固法

当裂缝影响到混凝土结构的性能时,就要考虑采取加固法对混凝土结构进行处理。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。

2.4混凝土置换法

混凝土置换法是处理严重损坏混凝土的一种有效方法,此方法是先将损坏的混凝土剔除,然后再置换入新的混凝土或其他材料。常用的置换材料有:普通混凝土或水泥砂浆、聚合物或改性聚合物混凝土或砂浆。

2.5电化学防护法

电化学防腐是利用施加电场在介质中的电化学作用,改变混凝土或钢筋混凝土所处的环境状态,钝化钢筋,以达到防腐的目的。阴极防护法、氯盐提取法、碱性复原法是化学防护法中常用而有效的三种方法。这种方法的优点是防护方法受环境因素的影响较小,适用钢筋、混凝土的长期防腐,既可用于已裂结构也可用于新建结构。

2.6仿生自愈合法

篇2

1.工程概况

韩家店1号特大桥是国道主干线重庆至湛江公路贵州省境内崇溪河至遵义高速公路上的一座特大型三跨预应力混凝土连续刚构桥,该桥主桥全长为454m,跨径设置为122m+210m+122m。该桥箱梁0号段长15m,其中桥墩两侧各外伸1.5m,每个“T”构沿纵桥方向分为36个对称梁段,梁段数及梁段长度从根部至跨中分别为10×2.2m,10×2.5m,13×3m,3×3.5m。桥体按整幅设计,箱梁采用单箱单室截面,顶板宽22.5m,底板宽11m,外翼板悬臂长5.57m,梁高由0号块处的12.5m以半抛物线形式从根部过度到跨中的3.5m。

2.挂篮形式的选取

2.1分段施工法与悬灌挂篮的演化

预应力混凝土桥梁的分段施工法是从预应力原理、箱梁设计和悬臂施工法综合演进而成的。自从二十世纪五十年代PC箱梁的分段施工法在西欧诞生以来[1],国内外大跨度桥梁多采用此法。除悬臂拼装法以外,尤其是特大桥梁中更是普遍应用平衡悬臂灌筑法——即单“T”的每一个设计节段利用挂篮对称就地浇筑混凝土。悬臂灌筑法中不需要象满堂支架法那样大量的施工支架和临时设备,不影响桥下通航和通车,施工不受季节、河道水位的影响。

平衡悬灌法施工的成败及质量控制的优劣在于挂篮的工艺设计,挂篮设计的好坏直接影响到施工进度,它是特大桥梁施工中的一项关键技术。

就挂篮总重与悬浇最大梁段的重量比而言,PC桥梁的悬臂施工挂篮的演化过程[2][3]大致经历了从平行桁架式,三角型组合梁式,曲弦桁架式(或称弓弦式),菱形式到滑动斜拉式的阶段变化。特点是结构越来越轻型化,受力越来越合理,有些挂篮的行走系统还设计有统一的液压伺服装置来控制挂篮的升降和行走,使得挂篮操作及施工控制越来越趋向智能化[4]。

2.2挂篮设计的轻型化

目前,挂篮已向轻型、重载方向发展。其中可以用两个主要控制指标β,β’来反映挂篮的设计优化与否。设定β=挂篮总重/悬浇节段重量,β’=主承重结构/悬浇节段重量。

β值越低,表示承受节段单位重量使用的挂篮材料越省,整个挂篮(包括模板)设计越合理;β’值越低,表示挂篮主承重构件使用的材料越省,设计越合理。另外,减轻挂篮自重采用的手段除优化结构形式外,最重要的措施是不设平衡重,并改善滑移系统,同时改进力的传递系统。

图1列出了国内外20座大桥的的β值分布,其中最大为2.18,最小为0.31。

图1国内外20座大桥的β值分布

2.3韩家店挂篮形式的选取

因悬灌施工中有多种因素制约挂篮的布置和结构设计,如施工状态大桥主梁的强度及变形要求,近海施工风荷载的影响,吊机的吨位及安装位置等等。一般来说,采用的挂篮须满足:结构简单,重量轻,安装、拆除方便,安全可靠,灌注混凝土过程中变形小等特点。

韩家店挂篮形式在参考了平弦无平衡重挂篮、菱形挂篮、弓弦式挂篮、斜拉式挂篮等结构形式后,从中选取了三角形挂篮形式,该挂篮与其它形式挂篮比较有如下突出特点:

⑴、三角形挂篮与菱形挂篮相比,降低了前横梁高度,即挂篮重心位置大大降低,从而提高了挂篮走行时的稳定性。

⑵、结构简单,拆装方便,重量较轻。设计中三角形挂篮主桁架和主要结构体系采用钢板和型钢焊制的箱形结构,单件重量较轻,主桁架杆件间采用法兰结构用高强螺栓连接,易于搬运和拆装。

⑶、该三角形挂篮平衡重系统利用已成形梁段竖向预应力钢筋作为后锚点,取消了平衡重的压重结构。

⑷、挂篮走行采用液压走行系统,由导梁、走行轮、反扣轮、走行油缸组成,该系统具有挂篮就位准确、走行速度快、安全可靠等特点。

⑸、该挂篮通用性强,稍做改装即可用于其它幅宽和梁高的桥上。

3.挂篮结构布置

该三角形挂篮由主桁、前横梁、底篮系统、前吊系统、内外模滑梁系统、后锚系统组成,挂篮总重(含内外模)约为1160kN,因模板以及吊杆随施工过程中截面高度的不断降低有一部分将会移去,对跨中合拢梁段所要求的支架重量须小于1300kN是显然满足的,所以减小荷载后的挂篮仍然可以作为中跨合拢的支架方案使用。总体布置图以及吊挂系统如图2-1、2-2所示。

4.挂篮的设计

4.1挂篮构件的传力过程

考察主梁设计截面的形状,单箱单室的截面形式至多可用8个相对独立的内外模板(外顶模2块+外侧模2块+底模1块+内顶模1块+内侧模2块)拼接而成。作为待浇梁段混凝土的支撑面,内、外顶模支撑翼缘板与顶板的混凝土重量,模板以上的重量则由间隔分布的8根内、外纵滑梁承受,内、外纵滑梁则把力传递到已浇梁段的顶板和前上横梁上安装的吊杆上。待浇腹板和底板混凝土的重量则通过底模传递给底栏纵、横梁,通过前、后下横梁上安装的吊带传力给已浇梁段的底板和前上横梁。而前上横梁的所有荷载则都传递到三角形主桁架上,三角形主桁架的前支点和后锚点把力再传给已浇梁段的顶板。浇注某一节段混凝土时挂篮构件的传力过程如图3所示。

图3浇注混凝土时挂篮构件的传力过程

4.2构件内力的计算

挂篮必须适应整个施工过程,因施工过程中节段荷载的不断变化,挂篮中各杆件的受力也是在不断变化之中,因此拟订一个最不利的施工过程进行计算,既可以优化杆件的设计,又可以确保施工安全。一般而言,拟订最不利施工过程的依据是待浇梁段混凝土的总体积最大,总重量最重。按设计划分的单“T”沿36个梁段的体积分布如图4所示。因为各构件在所有施工过程中的受力具有相对的独立性,有必要根据设计分段的情况把主梁截面细分,如34#节段(最长3.5m梁段)混凝土重量可能会对翼缘板外滑梁和顶板内滑梁产生最不利影响,1#节段(最重2.2m梁段)可能会对底模纵横梁以及前后吊挂构件产生最不利影响。事实上,根据设计节段长度的变化,拟订1#,11#,21#,34#四个施工节段混凝土重量对挂篮构件的效应可以涵盖其它施工节段,挂篮构件内力计算即以这四个施工节段为基准,空挂篮状态则以1#施工节段为基准计算。

图4单“T”沿36个梁段的体积

计算中挂篮系统采用空间(杆系+板块)有限元进行弹性分析,其中三角形主桁杆件、横联,上、下横梁,底篮纵梁,内、外纵滑梁用梁单元来模拟;吊杆、吊带用只拉杆单元来模拟;底篮模板采用具有较大刚性的板单元来模拟,计算模型如图5所示。这种空间模型较一般采用的平面杆系模型更能反映每根杆件或每块模板的受力和变形情况,避免了平面杆系模型中三角形主桁片杆件合并带来的杆件受力、变形平均化问题,对分析各杆件的真实受力状态有益,也对挂篮总体变形及施工标高的控制有益。

有限元法计算中的部分参数如表1所示。

表1挂篮构件内力计算中参数的选定

序号

材料

序号

荷载

16Mn钢

[σ]=200MPa

施工临时荷载重

2.0kN/m2

A3钢

[σ]=140MPa

施工冲击荷载重

1.5kN/m2

混凝土

容重γ

26.0kN/m3

模板重量根据该节

所用数量确定

模板采用

定型钢模

结构自重

程序自动加载

图5空间计算模型示意(其中符号:,分别表示支点和吊点)

图中A:三角形主桁架;B,C,D:上、下横梁;E:内、外滑梁;F,G:底篮前后吊带;H:纵滑梁吊杆;I:底篮模板及纵梁

4.3计算结果及分析

表2列出了挂篮在4个浇筑阶段(1#,11#,21#,34#施工节段)和空挂篮在1个行走阶段(1#2#施工节段)的构件应力计算结果。

表2浇筑阶段和行走阶段挂篮构件的最大应力(绝对值)(MPa)

杆件

编号

杆件

名称

浇筑阶段

行走阶段

1#

11#

21#

34#

1#2#

前后下弦杆

27.2

23.6

23.3

23.1

11.2

立柱

13.0

11.1

11.0

10.9

4.6

前后斜杆

40.7

35.1

34.5

34.2

15.0

前上横梁

38.4

33.5

34.8

36.2

14.9

前下横梁

18.7

15.1

13.1

9.4

4.5

后下横梁

22.3

17.5

10.5

6.6

6.0

底篮纵梁

93.8

73.8

48.8

26.0

3.0

前吊带

15.5

13.1

10.2

6.7

3.1

后吊带(绳)

35.1

28.1

19.7

11.4

74.7*

内外滑梁

112.4

99.6

113.4

125.1

97.5

滑梁吊杆

83.0

87.9

94.3

97.9

40.1

注:表中“*”号表示行走阶段后吊点采用钢丝绳。

与表2中五种工况对应的挂篮底篮的最大变形分别为:1#:11.3mm;11#:9.4mm;21#:8.8mm;34#:8.0mm;挂篮从1#行走至2#节段时为15.8mm。

从计算结果看,挂篮在整个施工过程中构件的应力是能够满足材料的允许值要求的。浇注混凝土过程中挂篮的变形较小说明挂篮的整体刚度较大,这有益于在实际施工中对线型及标高的控制,进而提高施工质量。

5结束语

韩家店1号特大桥通过选择三角形挂篮这种合理的挂篮形式,设计中充分了解了挂篮在施工过程和走行过程中各构件的传力机理,对挂篮在各种工况下建立了适用、合理的三维空间有限元模型,以至于能够比较完整地了解各杆件的受力和变形情况,计算结果满足各施工过程受力和变形的要求。

每一座悬灌施工的大桥都有其自身的特点,这需要综合考虑大桥本身因素以及围绕大桥伴生的各种因素对挂篮选择的影响。技术层面上,对选定的挂篮还需进一步优化结构形式和杆件的设计。轻型、重载的挂篮结构形式对增强施工现场的可操作性、创造经济效益有着重要意义!

参考文献:

[1]预应力混凝土桥梁分段施工和设计,[美]小沃尔特·波多尔尼[法]J·M·米勒尔,1986.4,万国朝,黄邦本译

篇3

一、引言

混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。

二、大体积混凝土的裂缝

混凝土结构在建设和使用过程中出现不同程度、不同形式的裂缝,这是一个相当普遍的现象。大体积混凝土结构出现裂缝更普遍。因而。混凝土结构的裂缝是建筑工程长期困扰的一个技术难题,一直未能很好地解决。根据国内外的调查资料,工程实践中结构物的裂缝原因,属于由变形变化(温度、湿度、地基变形)引起的约占80%以上,属于荷载引起的约占20%左右。在大体积混凝土工程施工中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。因此,控制混凝土浇筑块体因水化热引起的温升、混凝土浇筑块体的内外温差及降温速度,防止混凝土出现有害的温度裂缝(包括混凝土收缩)是其施工技术的关键问题。我国的工程技术人员科学实验的基础,以防为主,采用了温控施工技术,在大体积混凝土结构的设计、混凝土材料的选择、配合比设计、拌制、运输、浇筑、保温养护及施工过程中混凝土浇筑内部温度和温度应力的监测等环节,采取了一系列的技术措施,成功地完成了我国许多钢铁企业和工业民用建筑、高层建筑的大体积混凝土工程的施工,取得丰富的施工经验。

三、大体积混凝土裂缝的可能原因

大体积混凝土墩台身或基础等结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素有几种::一是结构型裂缝,是由外荷载引起的,包括常规结构计算中的主要应力以及其他的结构次应力造成的受力裂缝。二是材料型裂缝,是由非受力变形变化引起的,主要是由温度应力和混凝土的收缩引起的。

(一)收缩裂缝。混凝土的收缩引起收缩裂缝。收缩的主要影响因素是混凝土中的用水量和水泥用量,用水量和水泥用量越高,混凝土的收缩就越大。选用水泥品种的不同,干缩、收缩的量也不同。

混凝土逐渐散热和硬化过程引起的收缩,会产生很大的收缩应力。如果产生的收缩应力超过当时的混凝土极限抗拉强度,就会在混凝土中产生收缩裂缝。在大体积混凝土里,即使水灰比并不低,自身收缩量值也不大,但是它与温度收缩叠加到一起,就要使应力增大,所以在水工大坝施工时早就将自身收缩作为一项性能指标进行测定和考虑

(二)温差裂缝。混凝土内外部温差过大会产生裂缝。主要影响因素是水泥水化热引起的混凝土内部和混凝土表面的温差过大。特别是大体积混凝土更易发生此类裂缝。

大体积混凝土结构一般要求一次性整体浇筑。浇筑后,水泥因水化引起水化热,由于混凝土体积大,聚集在内部的水泥水化热不易散发,混凝土内部温度将显著升高,而其表面则散热较快,形成了较大的温度差,使混凝土内部产生压应力,表面产生拉应力。此时,混凝龄期短,抗拉强度很低。当温差产生的表面抗拉应力超过混凝土极限抗拉强度,则会在混凝土表面产生裂缝。

(三)安定性裂缝。安定性裂缝表现为龟裂,主要是因水泥安定性不合格而引起的。

四、裂缝的防治措施

(一)设计措施

1.精心设计混凝土配合比。在保证混凝土具有良好工作性的情况下,应尽可能地降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出高强、高韧性、中弹、低热和高极拉值的抗裂混凝土。2.增配构造筋提高抗裂性能。配筋应采用小直径、小间距。全截面的配筋率应在0.3-0.5%之间。

3.避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。

4.在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。

5.在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,保留时间一般不小于60天。如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。

(二)施工措施

1.严格控制混凝土原材料质量和技术标准,选用低水化热水泥,粗细骨料的含泥量应尽量减少(1-1.5%以下)。优选混凝土各种原材料。在条件许可情况下,应优先选用收缩性小的或具有微膨胀性的水泥。骨料在大体积混凝土中所占比例一般为混凝土绝对体积的80%-83%,应选择线膨胀系数小、岩石弹模较低、表面清洁无弱包裹层、级配良好的骨料。砂除满足骨料规范要求外,应适当放宽石粉或细粉含量,砂子中石粉比例一般在15%-18%之间为宜。粉煤灰只要细度与水泥颗粒相当,烧失量小,含硫量和含碱量低,需水量比小,均可掺用在混凝土中使用。高效减水剂和引气剂复合使用对减少大体积混凝土单位用水量和胶凝材料用量,改善新拌混凝土的工作度,提高硬化混凝土的力学、热学、变形、耐久性等性能起着极为重要的作用,也是混凝土向高性能化发展不可或缺的重要组分。

2.细致分析混凝土集料的配比,控制混凝土的水灰比,减少混凝土的坍落度,合理掺加塑化剂和减少剂。

3.采用综合措施,控制混凝土初始温度。

4.根据工程特点,充分利用混凝土后期强度,可以减少用水量,减少水化热和收缩。

5.加强混凝土的浇灌振捣,提高密实度。

6.混凝土尽可能晚拆模,拆模后混凝土表面温度不应下降15℃以上。

7.采用两次振捣技术,改善混凝土强度,提高抗裂性。

8.根据具体工程特点,采用UEA补偿收缩混凝土技术。

篇4

现浇钢筋混凝土楼板裂缝最常见、发生最多的是房屋四周阳角附近,即在楼板的分离式配筋的负弯矩筋以及角部放射筋未端或外侧发生45度左右的楼地面斜角裂缝,其原因主要是温差和混凝土的收缩特性双重作用所引起的,从设计角度看,现行设计规范侧重于按强度考虑,未充分考虑温差和混凝土收缩特性等因素,板角处配筋量不足。而房屋的四周阳角由于受到纵、横二个方向剪力墙或刚度相对较大的楼面梁约束,不能自由伸缩,当混凝土的收缩所引起现浇板的约束应力超过一定限度时,势必引起现浇板配筋薄弱处开裂,而且裂缝部位多发生在应力比较集中的板角处。

1.2凝土质量和性能不达标,坍落度过大、使用低性能外掺济,导致裂缝

目前普遍采用泵送商品混凝土进行浇筑,其坍落度大,流动性好,但也易产生局部粗骨料少、砂浆多的现象,加之商品砼厂商为降低价格和成本使用低档原材料忽视了混凝土的品质,导致性能下降。混凝土强度值对水灰比的变化十分敏感,基本上是水和水泥计量变动对强度影响的叠加。因此,水、水泥、外掺混合材料、外加剂溶液的计量偏差,将直接影响混凝土的强度。而采用含泥量大的粉砂配制的混凝土收缩大,抗拉强度低,脱水干缩时容易因塑性收缩而产生裂缝。

1.3施工中过分振捣,模板、垫层过于干燥导致楼板裂缝

混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后,易形成凝缩裂缝。而模板、垫层在浇筑混凝土之间洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。

1.4上过早施工、加荷导致裂缝

为了抢工期,赶进度,在刚浇好的现浇板上或混凝土尚处在初凝和终凝阶段,就任意踩踏,搬运材料,集中堆放砖块、砂浆、模板等。过早的加荷引起不规则的受力裂缝。这些裂缝一旦形成,就难于闭合,形成永久性裂缝。

1.5的混凝土养护不当导致楼板裂缝

养护不当也是造成裂缝的主要原因。过早养护会影响混凝土的胶结能力。过迟养护,混凝表面游离水分蒸发过快,水泥缺乏必要的水化水,而产生急剧的体积收缩,此时混凝土早期强度低,不能抵抗这种应力而产生开裂。另外过度的抹平压光会使混凝土的细骨料过多地浮到表面,形成含水量很大的水泥浆层,水泥浆中的氢氧化钙与空气中二氧化碳作用生成碳酸钙,引起表面体积碳水化收缩,导致混凝土板表面龟裂。

1.6筋下沉导致楼板裂缝

不重视保护板面上层负筋的正确位置,施工人员野蛮操作,任意踩踏钢筋,致使负筋下陷,保护层过大,浇筑前及浇筑中也不及时进行整修,减少了板截面的有效高度,使负筋起不到应有的作用,板的承载能力达不到设计的要求,从而导致楼板裂缝。

2楼板裂缝的预防措施

2.1适当增加房间楼板四周阳角处的配筋率,进行加密加粗,采用双层双向布置,同时保证钢筋保护层的有效厚度,就能防止温差和混凝土收缩引起的楼板裂缝。

2.2控制混凝土施工配合比,根据工程的不同部位和性质确定混凝土品质,严格控制水和水泥的比例,选择级配良好的石子,减小空隙率、砂率和含泥量以减少收缩量,提高混凝土抗裂强度。使用商品混凝土时要对坍落度进行严格检查。

2.3混凝土浇筑之前,要先将基层和模板浇水达到饱和状态,使之即不释放水分也不吸收水分,浇筑过程中振捣要充分、均匀、恰倒好处,避免振捣过度。

2.4在混凝土没达到一定强度时不要过早上人、堆料、施荷加载,尤其是振动荷载,因为混凝土浇筑后要有一个硬化过程,才会有强度;在这个过程中,应对混凝土加以保养,不能对混凝土施加任何外力。如果在混凝土尚未有一定强度的情况下,在其上面集中堆放建筑材料或支模立撑,这样带给现浇板的不是强度,而是更多的裂缝。因此,必须做到在混凝土强度达到1.2N/mm2以后,才允许在其上踩踏或安装模板及支架。

2.5混凝土的浇水保温养护特别是加强早期养护对其强度增长和各类性能的提高十分重要,早期浇水保温养护可以避免表面脱水引起的混凝土初期伸缩裂缝及温度变化产生的裂缝发生。因此,施工中必须坚持覆盖麻袋或草包进行一周左右的保湿保温养护,防止风吹日晒。

2.6加强现场管理,严格按操作程序施工,使施工人员充分重视保护板面上层负筋的正确位置,在楼板浇捣过程中要由专人护筋,并及时进行整修,严格控制板面负筋保护层厚度。有梁通过或隔断时一般放置在梁钢筋上面或与梁钢筋绑扎在一起。为了控制好负筋保护层厚度,可采用Φ10的钢筋马凳,纵横间距800mm左右来固定负筋的位置,并用电焊把马凳与负筋焊牢,保证负筋不下沉不移位,从而有效控制负筋保护层的厚度,避免板负筋保护层过厚而产生裂缝。

3弥补裂缝的处理方法

在采取了上述防治措施后,由于各种原因仍出现楼面裂缝(并不影响结构的安全),可采取如下方法进行处理。

3.1如果裂缝比较多面积较大,可以通过在找平层中增设钢丝网或钢板网进行加强,以提高楼板的整体抗裂性。

3.2对于一般楼板表面的龟裂,可先将裂缝清洗干净,干燥后用环氧树脂浆液灌缝或涂刷表面进行封闭。

3.3对一般楼板裂缝,可用清水冲洗干净后用1:2或1:1水泥砂浆灌抹,压平后养护即可。

3.4当裂缝较大时,应沿裂缝凿八字形凹槽,冲洗干净后,用1:2水泥砂浆抹平,也可用环氧树脂胶泥灌抹。

3.5对于楼板底的裂缝可采用强度较高的复合增强纤维布条等材料对裂缝作粘贴加强处理。

篇5

1.2低压注浆法修补裂缝

低压注浆法适用于裂缝宽度为0.2mm~0.3mm的混凝土裂缝修补。修补工序如下:裂缝清理-试漏-配制注浆液-压力注浆-二次注浆-清理表面。

当裂缝数量较多时,先要在裂缝位置上贴医用白胶布,再用窄毛刷沾浆沿裂缝来回涂刷封缝,使裂缝封闭,大约10分钟后,揭去胶布条,露出小缝,粘贴注浆嘴用键包严。固化后周边可能有裂口,必须反复用浆补上,以避免注浆漏浆。注浆操作一般在粘嘴的第二天进行,若气温高的话,半天就可注浆。操作时先用补缝器吸取注浆液,插入注浆嘴,用手推动补缝器活塞,使浆液通过注浆嘴压入裂缝,当相邻的嘴中流出浆液时,就可拔出补缝器,堵上铝铆钉。一般由上往下注浆,水平缝一般从一端到另一端逐个注浆。为了保证浆液充满,在注浆后约半小时可以对每个注浆嘴再次补浆。

1.3表面覆盖法修补裂缝

这是一种在微细裂缝(一般宽度小于0.2mm)的表面上涂膜,以达到修补混凝土微细裂缝的目的。分涂覆裂缝部分及全部涂覆两种方法,这种方法的缺点是修补工作无法深入到裂缝内部,对延伸裂缝难以追踪其变化。

表面覆盖法所用材料视修补目的及建筑物所处环境不同而异,通常采用弹性涂膜防水材料,聚合物水泥膏、聚合物薄膜(粘贴)等。施工时,首先用钢丝刷子将混凝土表面打毛,清除表面附着物,用水冲洗干净后充分干燥,然后用树脂充填混凝土表面的气孔,再用修补材料涂覆表面。

结论。裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此严格按规程、规范要求施工,严把质量关,防患于未来,尽可能地降低混凝土裂缝的出现;对混凝土裂缝进行认真研究、区别对待,采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件安全、稳定地工作。

参考文献

篇6

混凝土结构的施工,需要在模板及其支架的支护下进行,由于种种不良因素对这两种不同系统的作用,常常诱发施工期混凝土结构质量事故。目前,在工程结构领域中一个相当普遍的问题是建筑裂缝,并且近年来日趋增强,它已影响到生产和生活,并困扰着大批工程技术人员和管理人员,是迫切需要解决的技术难题。

混凝土工程裂缝影响工程质量的主要因素。裂缝产生的原因主要是变形作用,如温度变形、收缩变形、基础不均匀沉降变形等多因素,统称为变形作用引起的裂缝问题。对于变形作用引起混凝土裂缝研究还很不成熟,国家缺乏相关规范及规程,它涉及结构设计、地基基础、施工技术、材料质量、环境状态等诸多因素,特别是泵送混凝土施工工艺的发展,使得混凝土裂缝控制的技术难度大大增加。

一、混凝土裂缝预防措施

(一)结构方面

根据混凝土结构设计规程,为避免结构由于温度收缩应力引起的开裂,采取永久式伸缩的方法,根据现场调查,引起结构裂缝的原因是综合性的,结构长度是影响收缩应力综合因素之一,而不是惟一的因素。

根据现场实践经验,混凝土裂缝分为有害的及无害的两类。有害与无害的界限由使用功能而定。施工单位应当采取必要的设计及施工措施,以控制有害裂缝的产生。由于估计不足等因素,即使出现少量有害裂缝,也要通过化学灌浆处理,使其满足设计使用要求。结构所受到的外部作用分为外荷载,可看作是第一类荷载;具有十分重要的外部作用是变形作用,即第二类荷载为间接荷载。变形作用包括温度、湿度、地基不均匀沉降,在该作用下,结构的抗力取决于混凝土的抗拉性能,即抗拉强度和抗拉变形。

(二)施工方面

由施工单位委托搅拌站向现场供应商品混凝土时,委托的技术依据只有设计院确定的强度等级,却忽略了工程特点对大体积混凝土性能的要求,这样对控制混凝土裂缝是不利的。施工单位应在混凝土浇筑部门对混凝浇筑、振捣、养护及坍落度控制做出技术方案,并严格执行,特别是对坍落度的控制更应得到搅拌站的同意。施工新浇筑混凝土养护方法有:(1)潮湿养护;(2)养护剂涂层;(3)自动给水养护;(4)保湿养护;(5)防风;(6)实现信息化施工养护;(7)尽快回填。

(三)混凝土材质方面

泵送商品混凝土对原材料供应有很高的技术要求。由于泵送混凝土的流动性要求与抗裂的要求相互矛盾,所以应当选取在满足泵送的坍落度下限条件下尽可能降低水灰比。目前国内搅拌站对砂石骨料的含水控制波动很大,影响了混凝土的水灰比。利用较精确的含水率测定仪或传感器,测出配料过程中的含水率,进行计算机处理,自动调整配料的水灰比,对于控制混凝土的收缩和提高抗裂是必要的。

砂石的含泥量对混凝土的抗拉强度与收缩影响很大。我国对含泥量的规定比较宽,但现在实际施工中还经常超标。有的搅拌站,虽然检验资料是合格的,但在浇捣中发现有大量泥块和杂质,这样就会引起结构严重开裂。因此在实际施工中,砂石骨料的粒径应尽可能大一些,以达到减少收缩的目的。

(四)环境影响

混凝土的裂缝与环境条件(施工期和施工后)有很大关系。施工过程中应注意气温和湿度的变化,采取有效措施控制高温、低温冲击和激烈干燥冲击,此时,应力状态接近弹性应力状态,混凝土应力松弛效应无法发挥出来,特别注意浇筑后经过一定时期养护的混凝土仍然需要保护(维护),不宜长期。注意与气象站的密切联系(降温及降雨预报),不得在雨中浇筑混凝土,否则会严重改变水灰比。

结构施工后验收投入使用,由于环境变化(如生产使用条件、房屋装修改变条件),承受了新的温度、湿度、振动(包括相邻振动)、化学腐蚀及荷载变化影响等,都可能引起后期开裂。

二、混凝土裂缝限制标准

混凝土裂缝是不可避免的,其微观裂缝是本身物理力学性质决定的,但它的有害程度是可以控制的。有害程度的标准是根据使用条件决定的,如从结构耐久性要求、承载力要求及正常使用要求,最严格的允许裂缝宽度为0.1mm。近年来,许多国家已根据大量试验与泵送混凝土的经验将其放宽到0.2mm。

如果结构所处的环境正常,保护层厚度满足设计要求,无侵蚀介质,那么混凝土裂缝宽度可放宽至0.4mm;在温气及土封号为0.3mm;在海水及干湿交替中为0.15mm。当沿裂缝有害程度高时,必须处理。

近年来,由于房屋产权体制的改变及生活水平的提高,对房屋质量要求更加严格,虽然经鉴定认为没有影响安全的有害裂缝,但从美观和精神作用的要求,应用适当的允许范围;当观察人距离结构20~50cm时,可看清0.05mm宽度的裂缝,是最严格的要求;距离1~2cm时可看清0.1~0.2mm的裂缝,是一般要求;距离5~10cm时可看清0.5~1.0mm的裂缝,是必须修补的裂缝,有时虽然裂缝不宽,但是呈网状密布,给人一种精神上的不愉快的感觉,需要修补;对有渗水的任何宽度裂缝必须处理。上述这类裂缝经处理后满足正常使用要求,不应据此降低评定等级。

三、结语

混凝土结构的施工,绝对安全是不可能达到的,但在可接受的概率水平上可以得到保证,该水平可以通过可靠性理论的应用得到。当前,可靠性理论应用于混凝土结构施工期质量控制的基础工作,是开展与施工期荷载、抗力有关的参量统计参数的观测调查和统计分析,以获取基于全国范围数据的分析结果。

参考文献

篇7

0引言

泵送混凝土指用混凝土泵沿管道输送和浇筑混凝土拌合物。是随着现代施工技术进步而发展起来的,我国泵送混凝土施工技术始于1979年上海宝山钢铁厂工程,它的广泛使用加快了施工进度,提高了工效,占用场地小,也减少了对环境的污染。集中搅拌混凝土不仅能改善混凝土的施工性能、施工质量和提高文明施工程度,而且也能减少收缩、防止开裂、提高抗渗性、改善耐久性。

1温度裂缝的成因及控制

1.1温度裂缝产生的原因水泥水化是一个放热的化学反应过程,其间产生一定的水化热。每克水泥放出502J的热量,如果以水泥用量300~550kg/m3来计算,每1m3混凝土将放出15500~27500KJ的热量,且大部分水泥水化热在3d内释放出来。混凝土是热的不良导体,特别是大体积混凝土,产生的大量水化热不容易散发,内部温度不断上升,而混凝土表面散热快,使混凝土内外截面产生温度梯度,特别是昼夜温差大时,内外温度差别更大,内部混凝土热胀变形产生压力,外部混凝土冷缩变形产生拉力,由于此时混凝土拉抗强度较低,当混凝土内部拉应力超过其抗拉强度时,混凝土便产生裂缝。这种裂缝的特点是裂缝出现在混凝土浇筑后的3~5d,初期出现的裂缝很细,随着时间的发展而继续扩大,甚至达到贯穿的情况。

1.2温度裂缝的控制措施混凝土内部的温度与混凝土厚度及水泥品种、水泥用量有关。混凝土越厚,水泥用量越大,水化热越高的水泥,其内部温度越高,形成温度应力越大,产生裂缝的可能性越大。对于大体积混凝土,其形成的温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝的危险性也越大,这就是大体积混凝土易产生温度裂缝的主要原因。因此防止大体积混凝土出现裂缝最根本的措施就是控制混凝土内部和表面的温度差。减少温差的措施是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。此外,可充分利用混凝土后期强度,以减少水泥用量。因此,为更好的控制水化热所造成的温度升高、减少温度应力,可以根据工程结构实际承受荷载的情况,对工程结构的强度和刚度进行复核与验算,并取得设计单位的同意后,可用56d或90d抗压强度代替28d抗压强度作为设计强度。由于过去土木建筑物层数不多、跨度不大,且多为现场搅拌,施工工期短,混凝土标准试验龄期定为28d,但对于具有大体积钢筋混凝土基础的高层建筑,大多数的施工期限很长,少则1~2年,多则4~5年,28d不可能向混凝土结构,特别是向大体积钢筋混凝土基础施加设计荷载,因此将试验混凝土标准强度的龄期推迟到56d或90d天是合理的,正是基于这点,国内外许多专家均提出这样建议。如果充分利用混凝土的后期强度,则可使每1m3混凝土的水泥用量减少40~70kg左右,则混凝土温度相应降低4~7℃。另一方面,应当严格控制混凝土的出机温度和浇筑温度。对于出机温度和浇筑温度的控制,《混凝土质量控制标准》(GB50164—92)中明确规定:高温季节施工时,混凝土最高浇筑温度,不宜超过35℃.为了降低混凝土的出机温度和浇筑温度,可以采取下面的办法:①降低原料温度,每1m3混凝土中集料所占重量最大,所以最有效的办法是降低集料温度。在气温较高时,为了防止太阳直接照射,可以在砂石堆场搭设简易遮阳棚,必要时可向集料喷淋雾状水,或者在使用前用冷水冲洗集料;②在搅拌混凝土时加冰块冷却;③生产砼时避开当天高温时段;④对搅拌运输车罐体、泵送管道采取保温、冷却措施。2干缩裂缝的成因及控制

2.1干缩裂缝产生的原因混凝土浇注后仍处于塑料性状态时,由于表面水分蒸发过快而产生的裂缝。这类裂缝多在表面出现。形状不规则。长短不一,呈龟裂状深度一般不超过50mm,但薄板结构如果混凝土中掺加有含泥量大的粉砂则可能穿透。此类裂缝的主要原因,是混凝土浇注后3~4小时左右其表面没有被覆盖,特别是平板结构在炎热或大风干燥天气条件下,混凝土表面水分蒸发过快,或者是被基础、模板吸水过快,以及混凝土本身的高水化热等原因造成混凝土产生急剧收缩,而此时混凝土强度几乎为零,不能抵抗这种变形力而导致开裂,从混凝土中蒸发和被吸收水分的速度越快,干缩裂缝越易产生。而预拌混凝土公司为了满足施工现场的可泵性、流动性,其出机混凝土坍落度和砂率较大,加之夏季高温中为降低坍落度损失,以及大体积混凝土中均掺缓凝剂,早期强度较低,所以水分特别容易散失,表面容易形成裂缝。

篇8

前言

自2001年起,苏州市从预制多孔板体系转化为商品混凝土现浇板体系。现浇钢筋混凝土楼板在结构安全和使用功能方面比预制板优越得多,但是楼板裂缝不断增加。大多数消费者对楼板裂缝缺乏必要常识,统视裂缝为有害,担心楼板裂缝会引起建筑物倒塌,反应极为敏感,近年来成为投诉热点,开发商和承包商为此的花费亦逐年增长。

1楼板裂缝种类

1.1温差裂缝

由于温度变化,混凝土热胀冷缩而形成的裂缝,此类裂缝一般集中在东西单元的房间、屋面层和上部楼层的楼板。

1.2结构裂缝

虽然现浇楼板承载力均能满足设计要求,但由于预制多孔板改为现浇板后,墙体刚度相对增大,楼板刚度相对减弱。因此在一些薄弱部位和截面突变处。往往容易产生一些结构性裂缝。例如:墙角应力集中处的45°斜裂缝,板端负弯矩较大处的板面裂缝等。

1.3构造裂缝

PVC管处混凝土厚度减薄,容易出现裂缝。

1.4收缩裂缝

混凝土在塑性收缩、硬化收缩、碳化收缩、失水收缩过程中易形成各种收缩裂缝。

2楼板裂缝形式

2.145°斜裂缝

该裂缝常出现在墙角,特别是房屋东西两端房间,呈45°状。

2.2纵横向裂缝

该裂缝一般出现在跨中、负弯距钢筋端部、PVC电线暗管敷埋处。

2.3长裂缝

一部分房间预埋PVC电线管的板面上出现裂缝,裂缝宽度达0.2mm~0.3mm左右。这种裂缝仅在楼板表面出现,板底无裂缝。

2.4不规则裂缝

裂缝出现部位形状无规则,或散状或龟裂状。一般发生在房屋东西两单元、阁楼顶层部位。

3从设计方面分析裂缝及控制方法

造成现浇钢筋混凝土楼板开裂有设计原因、施工原因、材料原因,本文仅从设计方面进行探讨。随着苏州市经济的快速发展、建设任务增加迅猛,勘察设计队伍亦在迅速扩大,苏州市住宅工程相当一部分是由乙级和丙级设计单位承担。住宅设计单位低资质,或由于设计市场管理的不到位,造成低资格设计人员挂靠设计,而挂靠单位收取一定比例管理费后,就盲目盖章、签字,根本不对图纸的结构安全、合理性、完整性等认真审核。结果是一部分住宅工程勘察设计质量低下,问题较多。另一个原因是,一些住宅开发商任意压价,片面降低勘察设计费,以收费最低为主要条件选择勘察设计单位,同时又不讲合理设计时间,限期开工,逼迫提前出图,造成施工图设计深度不够,问题必然较多。

3.1建筑设计方面原因

3.1.1斜屋面、露台、外墙节能保温措施不够

苏州市一年之内气温变化较大,夏季最高温度可达40℃以上,冬季温度最低可达-4℃~-7℃,由于夏天室外墙体温度高于室内温度,结构外墙面在高温下发生受热膨胀,如果未采取保温措施,在纵横两外墙面的变形对楼板产生牵拉作用下,东西单元的卧室楼板被外墙向外拉伸就容易引起裂缝。同样,屋面如果未设保温层,顶层楼板会因热胀冷缩而引起开裂。

目前与温度有关的裂缝计算公式有:

连续式约束条件下楼板、长板、剪力墙、大底板等最大约束应力计算公式:

σ*xmax=-EaT1-1chβL2H(t,τ)(1)

或按时间增量的计算公式:

σ*xmax=∑ni=1Δσi=-a1-u∑ni=11-1chβiL2ΔTiεi(t)H(t,τ)(2)

当应力超过混凝土的抗拉强度时,可求出裂缝间距:

Lmax=2EHCxarcchaTaT-εp(3)

L=1.5EHCxarcchaTaT-εp(4)

Lmin=12Lmax(5)

式中,T-包含水化热、气温差及收缩当量温差。同号叠加,异号取差,由此可见,夏天炎热季节浇筑混凝土到秋冬冷缩都是叠加的,拉应力较大;

H(t,τ)-松弛系数。在保温保湿养护条件下(缓慢降温即缓慢收缩),松弛系数取0.3或0.5,当寒潮袭击或激烈干燥时,松弛系数取0.8,应力接近弹性应力,容易开裂;

T=T1+T2+T3(T1为水化热温差、T2为气温差、T3为收缩当量差,取代数和);

εp-混凝土的极限拉伸。级配不良,养护不佳,取0.5×10-4~0.8×10-4;正常级配,一般养护,取1.0×10-4~1.5×10-4;级配良好,养护优良,取2×10-4;配筋合理(细一些,密一些),可提高极限拉伸20%~40%。构造配筋宜为0.3%~0.5%;

H-均拉层厚度(强约束区);

E-混凝土弹性模量;

Cx-水平约束系数;

ch、arcch-双曲余弦及双曲余弦反函数;

a-线膨胀系数,一般情况εp≤|aT|,当εp≥|aT|时取εp=|aT|,[L]∞。

裂缝开展宽度:

δf=2ψEHCxaTthβL2(6)

δfmax=2ψEHCxaTthβLmax2(7)

δf=2ψEHCxaTthβLmin2(8)

β=CxEH(9)

式中,ψ-裂缝宽度经验系数;

Cx-约束系数。

3.1.2住宅长度超长

住宅平面超长,由于温差和材料变形,会造成墙体和楼板横向开裂。仅就长度而言,结构长度与应力呈非线性关系,如结构长度小于规范要求,结构内力影响很小。

3.1.3平面形状

当住宅卧室沿长度、宽度方向尺寸变化,由于楼板刚度不一致,会产生不相同变形,引起薄弱部位开裂。

3.2结构设计方面原因

3.2.1近代国际上结构的设计原则是,整个建筑结构的功能必须满足两种状态的要求:①承载力极限状态,以保证结构不产生破坏,不失去平衡,不产生破坏时过大变形,不失去稳定。②正常使用极限状态,以确保结构不产生超过正常使用状态的变形、裂缝及耐久性、振动及其它影响使用的极限状态。目前人们对第一极限状态已给于足够重视并严格执行,而对第二种极限状态却经常被忽视。

3.2.2从钢筋混凝土现浇楼板各种受力体系分析,无论是按单向板设计还是按双向板设计,是单跨还是多跨连续板设计;无论是板端支承在砖墙上还是支承在过梁或剪力墙内,受力状态考虑都是局限于楼板平面的应力变化(按弯矩配置抵抗正、负弯矩的受力钢筋)、板平面的受剪变形。即使是考虑板端嵌固端节点产生弯矩,也只是考虑板平面弯曲或屈曲所产生的应力。在楼板受力体系分析时,对于现浇结构构件之间在三维空间中如何分配内力、协调变形,根本没有考虑。

3.2.3目前不少设计人员只按单向板计算方法来设计配置楼板钢筋,支座处仅设置分离式负弯矩钢筋。由于计算受力与实际受力情况不符,单向高强钢筋或粗钢筋使混凝土楼面抗拉能力不均,局部较弱处易产生裂缝。部分设计人员对构造配筋,放射筋设置不重视或不合理,薄弱环节无加强筋。

3.2.4结构设计对板内布线引起裂缝的构造考虑不够。住宅电器、电信快速发展的今日,现浇楼板内暗敷PVC电线管越来越多,甚至有些部位三根交错叠放,两根管交错叠放更为普遍。PVC管错叠处板的抗弯高度大大降低,从而减弱了板的抗弯性能。

3.2.5对开口楼板,特别是开洞口比较大的双向板,设计时往往只考虑楼板在竖向荷载作用下的洞口四周加强配筋。由于纵向的受力钢筋被切断,而忽视了板与墙体或板与梁的变形协调问题。这时如墙或梁的刚度较大,板的孔边凹角处未必出现应力集中现象,开洞板易发生翘曲。

3.3建筑设计控制措施

3.3.1屋面与外墙采取保温措施按照国外建筑设计常规的做法,屋面设保温隔热层,使屋面的传热系数≤1.0W/m2·K;外墙外表面或内表面相应设置保温隔热层,同时外墙面宜采用浅色装饰材料,增强热反射,减少对日照热量吸收。根据苏州的具体情况,屋面和外墙的保温设计应通过热工计算,在不同季节均应能达到《夏热冬冷地区居住建筑节能设计标准》和《江苏省民用建筑热环境与节能设计标准》要求,彻底解决温度应力对屋面和墙体的破坏。

3.3.2适当控制建筑物长度根据《混凝土结构设计规范》(GB50010-2002)和《砌体结构设计规范》(GB50003-2001),为避免结构由于温度收缩应力引起的开裂,宜采取设置伸缩缝,伸缩缝间距为30m~50m。多层住宅建筑控制长度建议不大于50m,高层应控制在45m以内。如果超过此长度,应设置伸缩缝。超长量不大时,可采用设置后浇带的方法,以减少混凝土楼板收缩开裂。

3.3.3住宅平面形状控制住宅平面宜规则,避免平面形状突变。当楼板平面形状不规则时,宜设置梁使之形成较规则平面。当平面有凹口时,凹口周边楼板的配筋宜适当加强。

3.4结构设计控制措施

3.4.1工程裂缝产生的主要原因是混凝土的变形。如温度变形、收缩变形、基础不均匀沉降变形等,此类因变形引起的裂缝几乎占到全部裂缝的80%以上。在变形作用下,结构抗力取决于混凝土的抗拉性能,当抗拉应力超过设计强度时,应验算裂缝间距,再根据裂缝间距验算裂缝宽度。

3.4.2现浇板板厚宜控制在跨度的1/30,最小板厚不宜小于110mm(厨房、浴厕、阳台板最小厚度不小于90mm)。有交叉管线时板厚不宜小于120mm。

3.4.3楼板宜采用热轧带肋钢筋以增加其握裹力,不宜采用光圆钢筋。分布钢筋与构造钢筋宜采用变形钢筋来增加与现浇混凝土的握裹力,对控制楼板裂缝的效果较好。

3.4.4设计时注意构造钢筋的布置十分重要,它对构造抗裂影响很大。对连续板不宜采用分离式配筋,应采用上、下两层连续式配筋;洞口处配加强筋;对混凝土梁的腰部增配构造筋,其直径为8mm~14mm,间距约200mm。

3.4.5屋面层阳角处、东西单元房间和跨度≥3.9m时,应设置双层双向钢筋,阳角处钢筋间距不宜大于100mm,跨度≥3.9m的楼板钢筋间距不宜大于150mm。跨度<3.9m的现浇楼板上面负弯矩钢筋应一隔一拉通。外墙转角处应设置放射钢筋,配筋范围应大于板跨的1/3,且长度不小于2.0m,每一转角处放射钢筋数量不少于7根,钢筋间距不宜大于100mm。

3.4.6现浇楼板的混凝土强度等级不宜大于C30,特殊情况须采用高强度等级混凝土或高强度等级水泥时,要考虑采用低水化热的水泥和加强浇水养护,便于混凝土凝固时的水化热释放。

3.4.7在预埋PVC电线管时,必须有一定的措施,PVC管要有支架固定,严禁两根管线交叉叠放,确须交叉时应采用专门设计的塑料接线盒,以防止塑料管在管线交叉对混凝土厚度削弱过多。在预埋电线管上部应配置钢筋网片,(4@100mm宽度600mm)。若用铁管作为预埋管时,宜采用内壁涂塑黑铁管,一方面既能保证黑铁管(不镀锌钢管)与混凝土的粘结力,同时也有利于穿线和不影响混凝土的计算高度。

3.4.8后浇带处理

(1)后浇带应设置在对结构受力影响较小部位,一般应从梁、板的1/3跨部位通过或从纵横相交部位或门洞口的连梁处通过。后浇带间距不宜超过30m。

(2)后浇带宽度为700mm~1000mm,板和墙钢筋搭接长度应不低于45d,且同一截面受力筋搭接不超过50%。梁、板主筋不宜断开,使其保持一定联系性。

(3)后浇带浇筑时间不宜过早,以能将混凝土总降温及收缩变形完成一半以上时间为佳。从目前混凝土的收缩量来看,估计3~6月方能取得明显效果,最短不少于45天。在苏州这样软土地区,后浇带浇筑时间应在主体封顶以后,方可有效地释放沉降的应力。

(4)后浇带中垃圾应清理干净,接缝应密实,新老混凝土界面用1:1水泥砂浆接浆。后浇带混凝土强度等级比原混凝土强度等级提高一级,且采用微膨胀混凝土,以防止新老混凝土界面产生裂缝。

篇9

1.引言

大体积混凝土由于水泥凝结硬化过程中释放出大量的水化热,形成较大的内外温差,当温差较大超过25℃时,混凝土内部的温度应力有可能超过混凝土的极限抗拉强度从而产生温度裂缝,同时混凝土降温阶段如果降温过快,由于厚板收缩,又受到强大的摩阻力,可能导致收缩贯穿裂缝。此外,混凝土本身的收缩也可能造成裂缝的产生。因此大体积混凝土存在的主要问题是裂缝的控制。

2.大体积混凝土的概念

目前国内对于大体积混凝土尚无一个明确的定义。我国有的规范认为,当基础边长大于20m,厚度大于1m,体积大于400m3时称大体积混凝土;有的则认为混凝土结构物实体最小尺寸等于或大于1m,或预计会因水泥水化热引起混凝土内外温差过大,导致裂缝的混凝土为大体积混凝土。

3.大体积混凝土的主要类型

目前主要根据混凝土的种类和要求的性能进行分类。按照混凝土种类主要分为不含钢筋的素混凝土、含钢筋的钢筋混凝土或掺入钢纤维的钢纤维混凝土;按照要求的性能主要分为干硬性混凝土、低流态混凝土、高流态混凝土和常态混凝土等。

4.大体积混凝土的特点及施工技术要求

大体积混凝土结构厚、体形大、钢筋密、一次浇注量大、施工时间长、施工工艺要求高、受环境影响大,浇注完毕后,由于体积过大,造成混凝土水化热大,温度场梯度大,混凝土“内热外冷”极易产生裂缝。工程实践证明,大体积混凝土施工难度比较大,混凝土产生裂缝的机率较多。

5.大体积混凝土裂缝的主要类型

5.1干缩裂缝

混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。是混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。

5.2塑性收缩裂缝

塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细,且长短不一,互不连贯状态。常发生在混凝土板或比表面积较大的墙面上,较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm.从外观分为无规则网络状和稍有规则的斜纹状或反映出混凝土布筋情况和混凝土构件截面变化等规则的形状,深度一般3~10cm,通常延伸不到混凝土板的边缘。

5.3沉陷裂缝

沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致。或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致混凝土出现沉陷裂缝。特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。

5.4温度裂缝

温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇注后,在硬化过程中,水泥水化产生大量的水化热。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升。而混凝土表面散热较快,这样就形成内外的较大温差。较大的温差造成混凝土内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。

6.大体积混凝土裂缝的材料控制技术

6.1水泥的合理选取

优先选用收缩小的或具有微膨胀性的水泥。因为这种水泥在水化膨胀期(1~5d)可产生一定的预压应力,而在水化后期预压应力部分抵消温度徐变应力,减少混凝土内的拉应力,提高混凝土的抗裂能力。

6.2骨料的合理选取

选择线膨胀系数小、岩石弹性模量低、表面清洁无弱包裹层、级配良好的骨料,这样可以获得较小的空隙率及表面积,从而减少水泥的用量,降低水化热,减少干缩,减小了混凝土裂缝的开展。

6.3尽可能减少水的用量

水对混凝土具有双重作用,水化反应离不开水的存在,但多余水贮存于混凝土体内,不仅会对混凝土的凝胶体结构和骨料与凝胶体间的界面过度区相的结构发展带来影响,而且一旦这些水分损失后,凝胶体体积会收缩,如果收缩产生的内应力超过界面过度区相的抗力,就有可能在此界面区产生微裂缝,降低混凝土内部抵抗拉应力的能力。再者,大体积混凝土一般强度都不是很高。

7.混凝土凝结硬化过程的控制

宏观上,硬化混凝土在约束条件下,收缩变形会产生弹性拉应力,拉应力的近似值最初可假定为杨氏模量和变形的乘积,当诱导拉应力超过混凝土的抗拉强度时,混凝土材料就会开裂。但事实上,由于混凝土是一种兼具粘性和延展性(徐变)的复杂相组成的非均质材料,一些应力被徐变松弛所释放,混凝土是否产生裂缝是徐变应力松弛后的残余应力所决定。

8.外加剂与掺合材料的控制

8.1粉煤灰

混凝土中掺用粉煤灰后,可提高混凝土的抗渗性、耐久性,减少收缩,降低胶凝材料体系的水化热,提高混凝土的抗拉强度,抑制碱集料反应,减少新拌混凝土的泌水等。这些诸多好处均将有利于提高混凝土的抗裂性能。但是同时会显着降低混凝土的早期强度,对抗裂不利。试验表明,当粉煤灰取代率超过20%时,对混凝土早期强度影响较大,对于抗裂尤其不利。

8.2硅粉

(1)抗冻性:微硅粉在经过300~500次快速冻解循环,相对弹性模量隆低10~20%,而普通混凝土通过25~50次循环,相对弹性模量隆低为30~73%.(2)早强性:微硅粉混凝土使诱导期缩短,具有早强的特性。(3)抗冲磨、控空蚀性:微硅粉混凝土比普通混凝土抗冲磨能力提高0.5~2.5倍,抗空蚀能力提高3~16倍。

8.3减水剂

缓凝高效减水剂能够提高混凝土的抗拉强度,并对减少混凝土单位用水量和胶凝材料用量,改善新拌混凝土的工作度,提高硬化混凝土的力学、热学、变形等性能起着极为重要的作用。

8.4引气剂

引气剂除了能显着提高混凝土抗冻融循环和抗侵蚀环境的能力外,能显着降低新拌混凝土的泌水,提高混凝土的工作度,降低混凝土的弹性模量,优化混凝土体内微观结构,提高混凝土的抗冻性能。

9.结语

大体积混凝土结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素有几种:一是结构型裂缝,由外荷载引起的。二是材料型裂缝,主要由温度应力和混凝土的收缩引起的。目前控制和解决的重点是温度应力引起的混凝土裂缝。

篇10

l引言

混凝土因其取材广泛、价格低廉、抗压强度高、可浇筑成各种形状,并且耐火性好、不易风化、养护费用低,成为当今世界建筑结构中使用最广泛的建筑材料。混凝土最主要的缺点是抗拉能力差,容易开裂。大量的工程实践和理论分析表明,几乎所有的混凝土构件均是带裂缝工作的,只是有些裂缝很细,甚至肉眼看不见(<0.05mm),一般对结构的使用无大的危害,可允许其存在;有些裂缝在使用荷载或外界物理、化学因素的作用下,不断产生和扩展,引起混凝土碳化、保护层剥落、钢筋腐蚀,使混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用,必须加以控制。我国现行公路、铁路、建筑、水利等部门设计规范均采用限制构件裂缝宽度的办法来保障混凝土结构的正常使用。本文所讨论的仅指后一类裂缝。

近年来,我国交通基础建设得到迅猛发展,各地兴建了大量的混凝土桥梁。在桥梁建造和使用过程中,有关因出现裂缝而影响工程质量甚至导桥梁垮塌的报道屡见不鲜。混凝土开裂可以说是“常发病”和“多发病”,经常困扰着桥梁工程技术人员。其实,如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本文尽可能对混凝土桥梁裂缝的种类和产生的原因作较全面的分析、总结,以方便设计、施工找出控制裂缝的可行办法,达到防范于未然的作用。

l混凝土桥梁裂缝种类、成因

实际上,混凝土结构裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。混凝土桥梁裂缝的种类,就其产生的原因,大致可划分如下几种:

一、荷载引起的裂缝

混凝土桥梁在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。

直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝产生的原因有:

1、设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。

2、施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。

3、使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。

次应力裂缝是指由外荷载引起的次生应力产生裂缝。裂缝产生的原因有:

1、在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。例如两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。

2、桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。

实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。次应力裂缝多属张拉、劈裂、剪切性质。次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。例如现在对预应力、徐变等产生的二次应力,不少平面杆系有限元程序均可正确计算,但在40年前却比较困难。在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。

荷载裂缝特征依荷载不同而异呈现不同的特点。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。根据结构不同受力方式,产生的裂缝特征如下:

1、中心受拉。裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。

2、中心受压。沿构件出现平行于受力方向的短而密的平行裂缝。

3、受弯。弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。采用螺纹钢筋时,裂缝间可见较短的次裂缝。当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。

4、大偏心受压。大偏心受压和受拉区配筋较少的小偏心受压构件,类似于受弯构件。

5、小偏心受压。小偏心受压和受拉区配筋较多的大偏心受压构件,类似于中心受压构件。

6、受剪。当箍筋太密时发生斜压破坏,沿梁端腹部出现大于45°方向的斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约45°方向相互平行的斜裂缝。

7、受扭。构件一侧腹部先出现多条约45°方向斜裂缝,并向相邻面以螺旋方向展开。

8、受冲切。沿柱头板内四侧发生约45°方向斜面拉裂,形成冲切面。

9、局部受压。在局部受压区出现与压力方向大致平行的多条短裂缝。

二、温度变化引起的裂缝

混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化主要因素有:

1、年温差。一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。我国年温差一般以一月和七月月平均温度的作为变化幅度。考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。

2、日照。桥面板、主梁或桥墩侧面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和下述骤然降温是导致结构温度裂缝的最常见原因。

3、骤然降温。突降大雨、冷空气侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度。日照和骤然降温内力计算时可采用设计规范或参考实桥资料进行,混凝土弹性模量不考虑折减。

4、水化热。出现在施工过程中,大体积混凝土(厚度超过2.0米)浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入模温度,降低内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇筑以加快散热。

5、蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。

6、预制T梁之间横隔板安装时,支座预埋钢板与调平钢板焊接时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。采用电热张拉法张拉预应力构件时,预应力钢材温度可升高至350℃,混凝土构件也容易开裂。试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到300℃后抗拉强度下降50%,抗压强度下降60%,光圆钢筋与混凝土的粘结力下降80%;由于受热,混凝土体内游离水大量蒸发也可产生急剧收缩。

三、收缩引起的裂缝

在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。

塑性收缩。发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。

缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

自生收缩。自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。

炭化收缩。大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。炭化收缩一般不做计算。

混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。

研究表明,影响混凝土收缩裂缝的主要因素有:

1、水泥品种、标号及用量。矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。另外水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,且发生收缩时间越长。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。

2、骨料品种。骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。另外骨料粒径大收缩小,含水量大收缩越大。

3、水灰比。用水量越大,水灰比越高,混凝土收缩越大。

4、外掺剂。外掺剂保水性越好,则混凝土收缩越小。

5、养护方法。良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。蒸汽养护方式比自然养护方式混凝土收缩要小。

6、外界环境。大气中湿度小、空气干燥、温度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。

7、振捣方式及时间。机械振捣方式比手工捣固方式混凝土收缩性要小。振捣时间应根据机械性能决定,一般以5~15s/次为宜。时间太短,振捣不密实,形成混凝土强度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。

对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性,尤其是薄壁结构(壁厚20~60cm)。构造上配筋宜优先采用小直径钢筋(φ8~φ14)、小间距布置(@10~@15cm),全截面构造配筋率不宜低于0.3%,一般可采用0.3%~0.5%。

四、地基础变形引起的裂缝

由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。基础不均匀沉降的主要原因有:

1、地质勘察精度不够、试验资料不准。在没有充分掌握地质情况就设计、施工,这是造成地基不均匀沉降的主要原因。比如丘陵区或山岭区桥梁,勘察时钻孔间距太远,而地基岩面起伏又大,勘察报告不能充分反映实际地质情况。

2、地基地质差异太大。建造在山区沟谷的桥梁,河沟处的地质与山坡处变化较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。

3、结构荷载差异太大。在地质情况比较一致条件下,各部分基础荷载差异太大时,有可能引起不均匀沉降,例如高填土箱形涵洞中部比两边的荷载要大,中部的沉降就要比两边大,箱涵可能开裂。

4、结构基础类型差别大。同一联桥梁中,混合使用不同基础如扩大基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,或同时采用扩大基础但基底标高差异大时,也可能引起地基不均匀沉降。

5、分期建造的基础。在原有桥梁基础附近新建桥梁时,如分期修建的高速公路左右半幅桥梁,新建桥梁荷载或基础处理时引起地基土重新固结,均可能对原有桥梁基础造成较大沉降。

6、地基冻胀。在低于零度的条件下含水率较高的地基土因冰冻膨胀;一旦温度回升,冻土融化,地基下沉。因此地基的冰冻或融化均可造成不均匀沉降。

7、桥梁基础置于滑坡体、溶洞或活动断层等不良地质时,可能造成不均匀沉降。

8、桥梁建成以后,原有地基条件变化。大多数天然地基和人工地基浸水后,尤其是素填土、黄土、膨胀土等特殊地基土,土体强度遇水下降,压缩变形加大。在软土地基中,因人工抽水或干旱季节导致地下水位下降,地基土层重新固结下沉,同时对基础的上浮力减小,负摩阻力增加,基础受荷加大。有些桥梁基础埋置过浅,受洪水冲刷、淘挖,基础可能位移。地面荷载条件的变化,如桥梁附近因塌方、山体滑坡等原因堆置大量废方、砂石等,桥址范围土层可能受压缩再次变形。因此,使用期间原有地基条件变化均可能造成不均匀沉降。

对于拱桥等产生水平推力的结构物,对地质情况掌握不够、设计不合理和施工时破坏了原有地质条件是产生水平位移裂缝的主要原因。

五、钢筋锈蚀引起的裂缝

由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。

要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其应慎重。

六、冻胀引起的裂缝

大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水(结冰温度在-78度以下)在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%~50%。冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管道方向的冻胀裂缝。

温度低于零度和混凝土吸水饱和是发生冻胀破坏的必要条件。当混凝土中骨料空隙多、吸水性强;骨料中含泥土等杂质过多;混凝土水灰比偏大、振捣不密实;养护不力使混凝土早期受冻等,均可能导致混凝土冻胀裂缝。冬季施工时,采用电气加热法、暖棚法、地下蓄热法、蒸汽加热法养护以及在混凝土拌和水中掺入防冻剂(但氯盐不宜使用),可保证混凝土在低温或负温条件下硬化。

七、施工材料质量引起的裂缝

混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。

1、水泥

(1)、水泥安定性不合格,水泥中游离的氧化钙含量超标。氧化钙在凝结过程中水化很慢,在水泥混凝土凝结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝土抗拉强度下降。

(2)、水泥出厂时强度不足,水泥受潮或过期,可能使混凝土强度不足,从而导致混凝土开裂。

(3)、当水泥含碱量较高(例如超过0.6%),同时又使用含有碱活性的骨料,可能导致碱骨料反应。

2、砂、石骨料

(1)、砂石的粒径、级配、杂质含量。

砂石粒径太小、级配不良、空隙率大,将导致水泥和拌和水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。砂石中云母的含量较高,将削弱水泥与骨料的粘结力,降低混凝土强度。砂石中含泥量高,不仅将造成水泥和拌和水用量加大,而且还降低混凝土强度和抗冻性、抗渗性。砂石中有机质和轻物质过多,将延缓水泥的硬化过程,降低混凝土强度,特别是早期强度。砂石中硫化物可与水泥中的铝酸三钙发生化学反应,体积膨胀2.5倍。

(2)、碱骨料反应。

碱骨料反应有三种类型:

①、碱硅酸反应。参与这种反应的骨料有流纹岩、安山岩、凝灰岩、蛋白石、黑硅石、燧石、鳞石英、玻璃质火山岩、玉髓及微晶或变质石英等。反应发生于碱与微晶氧化硅之间,其生成物硅胶体遇水膨胀,在混凝土中产生很大的内应力,可导致混凝土突然爆裂。这类反应是碱骨料反应的主要形式。

②、碱硅酸盐反应。参与这种反应的骨料有粘土质岩石、千枚岩、硬砂岩、粉砂岩等。此类反应的特点是膨胀速度非常缓慢,混凝土从膨胀到开裂,能渗出的凝胶很少。

③、碱碳酸岩反应。多数碳酸岩石没有碱活性,有特定结构的泥质细粒白云质灰岩和泥质细粒灰质白云岩才具有与碱反应的碱活性,且还须高碱度、一定湿度环境下才能反应膨胀。

碱骨料反应裂缝的形状及分布与钢筋限制有关,当限制力小时,常出现地图状裂缝,并在缝中有白色或透明的浸出物;当限制力强时则出现顺筋裂缝。在工程实践中必须对骨料进行碱活性检验,采用对工程无害的材料,同时使用含碱量低的水泥品种。

3、拌和水及外加剂

拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。采用海水或含碱泉水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。

八、施工工艺质量引起的裂缝

在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:

1、混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。

2、混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。

3、混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,既塑性收缩裂缝。

4、混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。

5、混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。

6、用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。

7、混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。如混凝土分层浇筑时,后浇混凝土因停电、下雨等原因未能在前浇混凝土初凝前浇筑,引起层面之间的水平裂缝;采用分段现浇时,先浇混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。

8、混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。

9、施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。

10、施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。

11、施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉,导致混凝土出现裂缝。

12、装配式结构,在构件运输、堆放时,支承垫木不在一条垂直线上,或悬臂过长,或运输过程中剧烈颠撞;吊装时吊点位置不当,T梁等侧向刚度较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。

13、安装顺序不正确,对产生的后果认识不足,导致产生裂缝。如钢筋混凝土连续梁满堂支架现浇施工时,钢筋混凝土墙式护栏若与主梁同时浇筑,拆架后墙式护栏往往产生裂缝;拆架后再浇筑护栏,则裂缝不易出现。

篇11

混凝土工程中材料的特性决定了结构较易产生裂缝,从实践中来看施工中混凝土出现裂缝的概率也是很大的,相当一部分裂缝对建筑物的受力及正常使用无太大的危害,但裂缝的存在会影响到建筑物的整体性、耐久性,会对钢筋产生腐蚀,是受力使用期应力集中的隐患,应当尽量在各方面给予重视,以避免裂缝的出现或把裂缝控制在许可的范围之内。

一、高层建筑施工中几个特殊部位的裂缝分析

1、大体积基础混凝土板

高层建筑中随着高度的不断增加,地下室愈做愈深,底板也愈来愈厚,厚度在3m以上的底板已屡见不鲜。高层建筑中基础底板为主要的受力结构,整体要求高,一般一次性整体浇筑。国内外大量实践证明,各种大体积混凝土裂缝主要是温度变化引起。大体积混凝土浇筑后在升温阶段由于体积大,集聚在内部的水泥水化热不易散发,混凝土内部温度将显著升高,这样在混凝土内部产生压应力,在外表面产生拉应力,由于此时混凝土的强度低,有可能产生表面裂缝。在降温阶段新浇混凝土收缩因存在较强的地基或基础的约束而不能自由收缩。升温阶段快,混凝土弹性模量低,徐变的影响大,所以降温时产生的拉应力大于升温时产生的压应力。差值过大时,将在混凝土内部产生裂缝,最后有可能形成贯穿裂缝。为解决上述二类裂缝问题,必须进行合理的温度控制。

混凝土温度控制的主要目的是使因温差产生的拉应力小于同期混凝土抗拉强度的标准值,并有一定的安全系数。为计算温差,就要事先计算混凝土内部的最高温度,它是混凝土浇筑温度、实际水化热温升和混凝土散热温度的总和。混凝土内部的最高温度大多发生在浇筑后的3~7天。混凝土内部的最高温度Tmax可按下式计算:

Tmax=To+(WQ)/(Cr)ξ+(F)/(5O)(1)

式中:T0——混凝土的浇筑温度(℃)

W——每m3混凝土中水泥(矿渣硅酸盐水泥)的用量(kg/m3)

F——每m3混凝土中粉煤灰的用量(kg/m3)

Q——每kg水泥水化热(J/kg)

C——混凝土的比热

r——混凝土的密度

ξ——不同厚度的浇筑块散热系数(见表1)

不同厚度的浇筑块散热系数

表1

------------------------------------------------

厚度(m)1.01.52.02.53.03.54.0>4.0

ξ0.230.350.480.610.730.830.951.0

------------------------------------------------

实测资料显示,当基础板厚大于2米时,上述公式的相对误差在0.1%~1.3%之间,在计算温差后,即可计算出降温阶段混凝土内部的温度应力σ(2)xmax

σxmax=EαT(1-(1)/(coshβL/2))H(t,τ)………(2)

式中:E——混凝土的弹性模量(N/mm2)

α——混凝土的线膨胀系数(10-5/℃)

T——温差(℃)

L——板长(mm)

β=Cx/HE

H——板厚(mm)H>0.2L时,取H=0.2L

Cx——地基水平阻力系数(N/mm3)

H(t,τ)…考虑徐变后的混凝土松驰系数,

其中,t——产生约束应力时的龄期,τ——约束应力延续时间。

注意同期内由于混凝土收缩引起的应力应转化为当量温差,计入T一并计算σxmax。

由(1)、(2)分析可知:为避免裂缝出现,主要是减少T。可采用合理选用材料,降低水泥水化热,优化混凝土集料的配合比,控制水灰比,减少混凝土的干缩,具体控制措施见后。如有可能,减少浇筑长度L,增加养护时间减少降温速率以相应减少松驰系数对控制贯穿裂缝也有一定的意义。

2、地下室混凝土墙板及楼板的裂缝分析

地下室墙板的裂缝产生与基础大体积混凝土裂缝产生的原因有相同之处,即混凝土在硬化过程中由于失水会产生收缩应变,在水泥水化热产生的升温达到最高点以后的降温过程会产生温度应变。但又有其特点:一是墙板受到基础、楼板受到地下室外墙的极大约束,这种约束远大于桩基对基础的约束,产生贯穿裂缝的机率大。二是内墙板及楼板受环境温度影响较大。三是内外温差小,产生表面裂缝的机率小。四是养护困难,散热快、降温速率大,混凝土的松驰徐变优势难以利用,在气温骤变季节尤应注意。

在计算板内最大拉应力时仍可利用公式(2),但有以下几点应注意:

1)H取0.2L,L为整浇长度;

2)Cx取值应大于1.5N/mm3因为连接部位有较强钢筋约束;

3)计算温差T时,要考虑底板及外墙(兼作围护情况下)紧靠土体,受环境温差小,而被它们约束的墙板及周边楼板在施工过程中基本同外界温度同步变化。

4)若底板墙板施工间隔过长、外墙兼作围护时,则在计算混凝土收缩时应注意约束体与被约束体的收缩期不同,收缩量也不相同。

3、高强混凝土裂缝分析

目前高层建筑中已广泛使用C40~C60中高强混凝土,随着材料科学的迅速发展,C80~C120的高强混凝土在具体工程中已有应用。由于高强混凝土采用的配合比设计多为低水灰比、高标号水泥、高水泥用量、使用高效减小剂及掺加超细矿粉。这样其收缩机制与普通混凝土就有所不同。

高强混凝土由于其水泥用量大多在450~600kg/m3),是普通混凝土的1.5~2倍。这样在混凝土生成过程中由于水泥水化而引起的体积收缩即自缩就大于普通混凝土,出现收缩裂缝的机率也大于普通混凝土。

高强混凝土因采用高标号水泥且用量大,这样在混凝土硬化过程中,水化放热量大,将加大混凝土的最高温升,从而使混凝土的温度收缩应力加大。在叠加其他因素的情况下,很有可能导致温度收缩裂缝。由于高强混凝土中水泥石含量是普通混凝土的1.5倍,在硬化早期由于水分蒸发引起的干缩也将大于普通混凝土。

二、裂缝的控制措施

1、设计措施

1)增配构造筋提高抗裂性能,配筋应采用小直径、小间距。全截面的配筋率应在0.3~0.5%之间。

2)避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。

3)在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。

4)在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,在正常施工条件下,后浇缝间距20~30m,保留时间一般不小于60天。如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。

2、施工措施

1)严格控制混凝土原材料的的质量和技术标准,选用低水化热水泥,粗细骨料的含泥量应尽量减少(1~1.5%以下)。

2)细致分析混凝土集料的配比,控制混凝土的水灰比,减少混凝土的坍落度,合理掺加塑化剂和减少剂。

3)浇筑时间尽量安排在夜间,最大限度降低混凝土的初凝温度。白天施工时要求在沙、石堆场搭设简易遮阳装置,或用湿麻袋覆盖,必要时向骨料喷冷水。混凝土泵送时,在水平及垂直泵管上加盖草袋,并喷冷水。

4)根据工程特点,可以利用混凝土后期强度,这样可以减少用水量,减少水化热和收缩。

5)加强混凝土的浇灌振捣,提高密实度。

6)混凝土尽可能晚拆模,拆模后混凝土表面温度不应下降15℃以上,混凝土的现场试块强度不低于C5。

篇12

1裂缝产生的原因分析

混凝土中产生的裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,原材料不合格(如碱骨料反映),模板变形,基础不均匀沉降等。混凝土硬化期间水泥放出大量水热化热,内部温度不段上升,在表面引起拉应力,后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力,当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。混凝土是一中脆性材料,拉抗强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形也只有(0.6~1.0)×104,长期加荷时的极限拉伸变形也只有(1.2~2.0)×104。由于原材料不均匀,水灰比不稳定,及运输和浇注过程中的离析现象,在同一块混凝土中其拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。在钢筋混凝土中,拉应力只要是由钢筋来承担,混凝土只是承受压应力。在素混凝土内或钢筋混凝土的边缘部位如果结构出现了拉应力,则须依靠混凝土自身承担。一般设计中均要求不出现拉应力或者只出现很小的拉应力,但是在施工中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力,因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。

2温度应力的分析

温度应力的形成过程可分为以下三个阶段:

(1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。这个阶段有两个特征,一是水泥放出大量的水化热,二是混凝土上弹性模量的急剧变化,由于弹性模量的变化,这一时期在混凝土内形成残余应力。(2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中。温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝土上的弹性模量变化不大。(3)晚期:混凝土完全冷却以后的运转时期。温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相叠加。

根据温度应力引起的原因可分为两类:

(1)自生能力:没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如,桥梁墩身,结构尺寸相对较大,混凝土冷却时表面的温度低,内部温度高,在表面出现拉应力,在中间出现压应力。(2)约束能力:结构的全部或部分边界受到外界的约束,不能自由变形而一起的应力,如箱梁顶板混凝土和护拦混凝土;这两种温度应力往往和混凝土上的干缩所引起的应力共同作用;想要根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算,混凝土的徐变使温度应力有相当大的松弛,计算温度应力时,必须考虑徐变的影响,具体计算这里就不再细述。

3温度的控制和防止裂缝的措施

为了防止裂缝,可以从控制温度和改善约束条件两个方面着手,现场常用的措施如下:

(1)采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量。(2)搅拌混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度。(3)热天浇筑混凝土时减少浇筑厚度,最好控制在500mm以内,以便于表面散热;第二层浇筑必须在第一段砼初凝前浇筑完毕。(4)根据混凝土浇注面积,在混凝土上中下部设置一定数量测温管,定时测定内外温度,前4天每2h测一次,5~7天每4h测一次,8~15天每天一次,并及时记录,确保混凝土内外温差控制在25℃以内,做到及时观察,出现温度超偏,可通过调整养护方式来降低温差。(5)规定合理的拆模时间,以免混凝土表面发生急剧的温度梯度,加强保温养护措施,现场通常采取措施为混凝土浇注后先覆盖一层塑料薄膜,用麻袋装锯末,厚度80~100mm进行中层覆盖,最后覆盖1~2层100mm厚岩棉被。(6)夏季施工中长期暴露的混凝土浇筑块表面及侧边,设置专人撒水养护时间不少于14d,有条件的应对基础侧边进行覆土掩盖,避免内部水分蒸发过快,产生裂缝。

改善约束条件的措施是:

(1)合理地分区分块。(2)避免基础过大起伏。(3)合理的安排施工工序,避免过大的高差和侧面长期暴露。

此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别主注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。

在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力叠加,再加上混凝土干缩,表面拉应力达到很大的数值,就有导致裂缝的危险。但如果在拆除模板后及时在表面覆盖一些轻型保温材料,如泡沫海绵等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低,只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定,而与应力状态、时间及温度无关。钢的线胀系数与混凝土的线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7~15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100~200kg/cm2,因此,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难,但加筋后结构内的裂缝一般就变的数目多、间距小、宽度与深度较小了。为了保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一,例如使用减水防裂剂,在实践中总结出其主要作用为:

(1)混凝土中存在大量的毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。增大毛细孔径可降低毛细管表面张力,但会使混凝土强度降低。(2)水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。(3)水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。(4)掺加减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。(5)外加剂混凝土和易性好,表面易抹平,形成微膜,减少水分蒸发,减少干燥收缩。

许多外加剂都有缓凝、增加和易性、改善塑,我们在工程实践中应多进行这方面的研究,比单纯改善外部条件,可能会更加简洁、经济。

4混凝土的早期养护

实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成的,寒冷地区的温度骤降也是容易形成裂缝的。因此说混凝土的保温对防止表面早期裂缝尤其重要;从温度应力观点出发,现场保温应达到下述要求:

(1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。(2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土的使用期的稳定温度。(3)防止老混凝土过冷,以减少新老混凝土间的约束。

友情链接