时间:2023-04-26 16:13:39
引言:寻求写作上的突破?我们特意为您精选了12篇检测系统论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
待检测车辆需要经过检测通道,如图1所示。将红外摄像头放置于通道中间,获得车底部热感应图像。为了获取较广的视角以及较小形变的图像,红外摄像头安放的仰角为40°。由于监控室与检测通道的距离较远,且通道数较多,因此需要通过光端机将所获取的视频传输给监控室控制台PC机。检测软件根据本文提出的检测算法对捕获到的图像进行分析,若判断车辆底部藏人则向系统发出报警信号,以便其通过控制安全杆做出相应拦截措施。视频传输示意图,如图2所示。
软件设计
软件设计采取的基本实现策略是先定位后检测。首先进行运动车辆检测,其次根据车辆的自身特征,定位可疑目标在车辆底部可能的藏匿部位。当区域定位完成后,对该区域进行感兴趣区域(RegionOfInterest,ROI)的选取。最后对ROI进行检测,判断是否藏人。检测系统流程图如图3所示。通过对车辆的扫描检测过程,查出藏匿于车底的可疑目标,实现自动检测。
1图像去噪
图像去噪是图像预处理的一个环节,也是整个图像预处理中的关键一步。在对运动车辆定位的过程中,针对车辆与环境对比度大、信息丰富,受噪声影响较小等特点,只需对图像采用常规的均值滤波进行处理。而在检测目标时,为了在去除噪声的同时,最大程度的保存目标的边缘信息,采用了基于开关控制的组合滤波。滤波器的基本思路是将图像划分为三类区域:孤立噪声点区、平坦区和边缘信息区。其主要处理原则为:孤立噪声点区的灰度与其邻域往往有较大的差异,可按照椒盐噪声进行处理,选用中值滤波器;平坦区往往包含高斯噪声,可采用加权均值滤波器加以消除;边缘信息区包含了图像的细节信息,应作为保留区域不做处理。将处理后的三个区域加以合成,即得到了去噪后的图像。
滤波器性能的关键在于分类开关的设计,借用顺序统计滤波的思路,将滤波器设计成N×N的掩模算子,N为奇数,使该掩模在整个图像上滑动,对它所覆盖的图像中的像素点xi进行排序,得到序列x(1),x(2)……x(N^2),利用排序结果设计下面的分类规则:a、b为排序后的位置偏移量,Ta和Tb为阈值。基于开关控制的组合滤波算法就包括这么几个步骤:(1)对掩模覆盖的图像像素点进行排序;(2)利用分类规则进行三个区域划分;(3)对孤立噪声点区进行中值滤波,对平坦区进行均值滤波;(4)将处理后的区域合成,得到去噪图像。
2车辆检测及目标区域的定位
2.1运动车辆检测
对于实时性要求较高的场合,运动目标的检测一般用背景差分法和帧间差分法。背景差分法是利用序列中当前帧图像与背景图像的差分来消除背景、提取运动目标区域的一种技术。背景差分法可根据实际情况设定差分阈值,所得到的结果直接反映了运动目标的大小、形状和位置,可以得到比较精确的运动目标信息,但该方法应用于红外目标检测时易受环境温度、天气等外界条件变化的影响。帧间差分法是利用视频序列中连续的两帧或多帧图像的差异来检测和提取运动目标。该方法对场景的变化不太敏感,适用于动态环境,稳定性好。不足之处是:1)无法抽取完整的运动目标,仅能得到运动目标的边界;2)运动目标提取效果依赖于帧间时间间隔的合理选择。本文针对待检测目标所处背景在短时间内为静态背景,而较长时间内背景会发生动态变化的特点,并结合两种方法的优点,设计出改进的背景差分法。算法原理图如下:其中F(K)为当前帧,B为通过隔帧帧差法求得的当前背景图像,D为差分结果图,R为二值化图像。
该算法继承了帧间差分法对场景变化不太敏感的优点,能准确更新背景差分法所需要的当前背景图,进而提取出完整的运动目标。下面是采用基本背景差分法和改进后背景差分法,在不同时候背景更新保存的背景图片。基本背景差分法在系统长时间运行之后,会出现背景更新出错,检测流程紊乱,从而产生检测系统失效现象。而采用改进的背景差分法,即使是经过长时间运行,系统也能确保背景更新的准确。
2.2目标区域定位
由于运动车辆特性已知,在其运动的过程中,可以通过对目标局部图像进行特征提取,定位可疑区域。目标的一般特征包括点、边缘、区域和轮廓。点特征对图像的分辨率、旋转、平移、光照变化等有很好的适应性,常用的点特征描述算子如SIFT、SURF等都具有很高的精度,但这些算法复杂度高,难以满足实时检测的要求,并且红外图像特征点往往较少,采用点描述算子并不能达到令人满意的效果。因此本文根据实际目标的特性,采用了对线、面特征进行描述的方法来标注运动车辆。运动的车辆受车底传动抽、燃烧室以及空间限制,目标一般躲藏于车厢后轮位置。
为了准确定位目标区域,目标区域进入视场之前的运动车辆局部特征需要重点描述。车厢底部进入摄像头视场时如图6(a)所示。为了提取车辆的直线特征,需要对车底图像进行边缘提取。常见的边缘检测算子有:Laplace、Sobel以及Canny等。由于Laplace算子常常会产生双边界,而Sobel算子又往往会形成不闭合区域,对后面直线检测都会产生不利的影响。
Canny算子克服了上述算子的缺陷,能够尽可能多的标识出图像中的实际边缘,并且能够将较小的间断点进行连接,因此能够形成较为完整的边界线。Canny算子是最优的阶梯型边缘检测算法,本文采用选用Canny算子进行图像的边缘检测。边缘检测结果如图6(b)所示,较为明显且具有特征不变性的为直线边缘。当可能藏人的区域进入摄像头视场时,车底图像的直线特征随之消失(如图6(c)),因此可以利用图像的直线特征来定位后轮检测区域。Hough变换检测直线是较为理想的直线检测方法,由PaulHough于1962年提出。经过Hough变换后,根据已知的目标直线位置、角度、长度,选取符合条件的直线。图6(b)、(c)中白色粗线为所检测出的目标直线。
受环境因素的影响,车底直线特征可能并不明显,因此单一的直线特征提取难以满足检测精度要求,如图7所示情况。实验发现车底面特征不易受到周围环境、温度的影响,因此可以进行面特征提取。选定区域为图6(b)中虚线框内,满足要求的特征为梯度小于一定阈值,即具有平滑特征,判断方法是计数虚线框内边缘点数,判断其是否小于给定阈值。采用Sobel内核计算图像差分其中src为输入图像,dst为输出图像,xorder为x方向的差分阶数,yorder为y方向的差分阶数。
由于当车底藏人时,其进入摄像头视场会阻断车底原有的平滑特征如图6(d),因此当平滑特征消失时,这时判断是否符合定位位置特征,若符合即可进行定位检测;若车底没有藏人时,车底平滑特征会持续到车尾部位才结束,这时只需判断到达车尾就可以结束检测流程。
实验表明,基于这种车箱底部中间区域光滑特征去定位检测对环境适应能力强,而基于两侧直线特征定位的方法又能够比较准确的定位到目标区域。综合上述两种思路,设计出的定位流程如下图8所示:应用中是否满足直线以及平滑特征是通过检测连续多帧图像来实现的,这样可以尽量减少偶然因素导致的定位失败。
3藏人的检测
3.1基于高亮度特征的ROI的选取
如图9为定位之后的待检测目标图。为了排除车底本身热源的干扰(如车轮)缩小检测范围,必须对原图进行ROI的选取。行进过程中的车轮一般在红外图像中会呈现高亮度特征。基于此特征,从图片左右两侧分别搜索列像素平均灰度值最高的部分(最可能为车轮内钢圈),加上一定偏移量即可求出ROI左边界位置(PositionofLeft,PL)。ROI下边界线也采用同样的方法,上边界采用默认值。当车轮不明显时采用默认感兴趣区域即可下面图9为采用固定ROI选取和基于高亮度特征的ROI提取结果对比。实验表明,这种基于具体特征的感兴趣区域提取方法,对于车轮出现的偏差具有良好的适应性,即使车辆行驶时发生较大的偏移也能做出正确的ROI选取。
3.2目标的检测
对于已知形状、外貌以及姿态等特征目标检测采用特征匹配、直方图反向投影等方法都能取得较为理想的效果。但对于躲藏姿势未知并且本身形状较为模糊的红外目标,采用匹配的方式效果并不明显。
红外目标与目标区域的周围存在一定的灰度差异,改变了原有区域梯度小、较为平滑的特征。针对这种改变采用评价函数f(x,y)对目标区域进行评估,若达到一定的阈值,即可预判车底藏人。评价函数依据不同区域可疑信息权重不一样而选定(ROI内中间部位权重较高、四周权重较低),表示如下其中T为警戒阈值,Warnflag为预警标志。具体检测步骤如下:
1)对原图的感兴趣区域进行组合滤波处理;
2)对感兴趣区域进行边缘梯度检测(图10);
3)采用评价函数对目标区域进行评分并判断是否超过给定阈值;
4)重复步骤1-3,若连续三帧超出阈值则发出报警指令,否则表示无人。对应的报警截图如图11所示
实验结果
0引言
近年来,随着信息和网络技术的高速发展以及政治、经济或者军事利益的驱动,计算机和网络基础设施,特别是各种官方机构的网站,成为黑客攻击的热门目标。近年来对电子商务的热切需求,更加激化了这种入侵事件的增长趋势。由于防火墙只防外不防内,并且很容易被绕过,所以仅仅依赖防火墙的计算机系统已经不能对付日益猖獗的入侵行为,对付入侵行为的第二道防线——入侵检测系统就被启用了。
1入侵检测系统(IDS)概念
1980年,JamesP.Anderson第一次系统阐述了入侵检测的概念,并将入侵行为分为外部滲透、内部滲透和不法行为三种,还提出了利用审计数据监视入侵活动的思想[1]。即其之后,1986年DorothyE.Denning提出实时异常检测的概念[2]并建立了第一个实时入侵检测模型,命名为入侵检测专家系统(IDES),1990年,L.T.Heberlein等设计出监视网络数据流的入侵检测系统,NSM(NetworkSecurityMonitor)。自此之后,入侵检测系统才真正发展起来。
Anderson将入侵尝试或威胁定义为:潜在的、有预谋的、未经授权的访问信息、操作信息、致使系统不可靠或无法使用的企图。而入侵检测的定义为[4]:发现非授权使用计算机的个体(如“黑客”)或计算机系统的合法用户滥用其访问系统的权利以及企图实施上述行为的个体。执行入侵检测任务的程序即是入侵检测系统。入侵检测系统也可以定义为:检测企图破坏计算机资源的完整性,真实性和可用性的行为的软件。
入侵检测系统执行的主要任务包括[3]:监视、分析用户及系统活动;审计系统构造和弱点;识别、反映已知进攻的活动模式,向相关人士报警;统计分析异常行为模式;评估重要系统和数据文件的完整性;审计、跟踪管理操作系统,识别用户违反安全策略的行为。入侵检测一般分为三个步骤:信息收集、数据分析、响应。
入侵检测的目的:(1)识别入侵者;(2)识别入侵行为;(3)检测和监视以实施的入侵行为;(4)为对抗入侵提供信息,阻止入侵的发生和事态的扩大;
2入侵检测系统模型
美国斯坦福国际研究所(SRI)的D.E.Denning于1986年首次提出一种入侵检测模型[2],该模型的检测方法就是建立用户正常行为的描述模型,并以此同当前用户活动的审计记录进行比较,如果有较大偏差,则表示有异常活动发生。这是一种基于统计的检测方法。随着技术的发展,后来人们又提出了基于规则的检测方法。结合这两种方法的优点,人们设计出很多入侵检测的模型。通用入侵检测构架(CommonIntrusionDetectionFramework简称CIDF)组织,试图将现有的入侵检测系统标准化,CIDF阐述了一个入侵检测系统的通用模型(一般称为CIDF模型)。它将一个入侵检测系统分为以下四个组件:
事件产生器(EventGenerators)
事件分析器(Eventanalyzers)
响应单元(Responseunits)
事件数据库(Eventdatabases)
它将需要分析的数据通称为事件,事件可以是基于网络的数据包也可以是基于主机的系统日志中的信息。事件产生器的目的是从整个计算机环境中获得事件,并向系统其它部分提供此事件。事件分析器分析得到的事件并产生分析结果。响应单元则是对分析结果做出反应的功能单元,它可以做出切断连接、修改文件属性等强烈反应。事件数据库是存放各种中间和最终数据的地方的通称,它可以是复杂的数据库也可以是简单的文本文件。
3入侵检测系统的分类:
现有的IDS的分类,大都基于信息源和分析方法。为了体现对IDS从布局、采集、分析、响应等各个层次及系统性研究方面的问题,在这里采用五类标准:控制策略、同步技术、信息源、分析方法、响应方式。
按照控制策略分类
控制策略描述了IDS的各元素是如何控制的,以及IDS的输入和输出是如何管理的。按照控制策略IDS可以划分为,集中式IDS、部分分布式IDS和全部分布式IDS。在集中式IDS中,一个中央节点控制系统中所有的监视、检测和报告。在部分分布式IDS中,监控和探测是由本地的一个控制点控制,层次似的将报告发向一个或多个中心站。在全分布式IDS中,监控和探测是使用一种叫“”的方法,进行分析并做出响应决策。
按照同步技术分类
同步技术是指被监控的事件以及对这些事件的分析在同一时间进行。按照同步技术划分,IDS划分为间隔批任务处理型IDS和实时连续性IDS。在间隔批任务处理型IDS中,信息源是以文件的形式传给分析器,一次只处理特定时间段内产生的信息,并在入侵发生时将结果反馈给用户。很多早期的基于主机的IDS都采用这种方案。在实时连续型IDS中,事件一发生,信息源就传给分析引擎,并且立刻得到处理和反映。实时IDS是基于网络IDS首选的方案。
按照信息源分类
按照信息源分类是目前最通用的划分方法,它分为基于主机的IDS、基于网络的IDS和分布式IDS。基于主机的IDS通过分析来自单个的计算机系统的系统审计踪迹和系统日志来检测攻击。基于主机的IDS是在关键的网段或交换部位通过捕获并分析网络数据包来检测攻击。分布式IDS,能够同时分析来自主机系统日志和网络数据流,系统由多个部件组成,采用分布式结构。
按照分析方法分类
按照分析方法IDS划分为滥用检测型IDS和异常检测型IDS。滥用检测型的IDS中,首先建立一个对过去各种入侵方法和系统缺陷知识的数据库,当收集到的信息与库中的原型相符合时则报警。任何不符合特定条件的活动将会被认为合法,因此这样的系统虚警率很低。异常检测型IDS是建立在如下假设的基础之上的,即任何一种入侵行为都能由于其偏离正常或者所期望的系统和用户活动规律而被检测出来。所以它需要一个记录合法活动的数据库,由于库的有限性使得虚警率比较高。
按照响应方式分类
按照响应方式IDS划分为主动响应IDS和被动响应IDS。当特定的入侵被检测到时,主动IDS会采用以下三种响应:收集辅助信息;改变环境以堵住导致入侵发生的漏洞;对攻击者采取行动(这是一种不被推荐的做法,因为行为有点过激)。被动响应IDS则是将信息提供给系统用户,依靠管理员在这一信息的基础上采取进一步的行动。
4IDS的评价标准
目前的入侵检测技术发展迅速,应用的技术也很广泛,如何来评价IDS的优缺点就显得非常重要。评价IDS的优劣主要有这样几个方面[5]:(1)准确性。准确性是指IDS不会标记环境中的一个合法行为为异常或入侵。(2)性能。IDS的性能是指处理审计事件的速度。对一个实时IDS来说,必须要求性能良好。(3)完整性。完整性是指IDS能检测出所有的攻击。(4)故障容错(faulttolerance)。当被保护系统遭到攻击和毁坏时,能迅速恢复系统原有的数据和功能。(5)自身抵抗攻击能力。这一点很重要,尤其是“拒绝服务”攻击。因为多数对目标系统的攻击都是采用首先用“拒绝服务”攻击摧毁IDS,再实施对系统的攻击。(6)及时性(Timeliness)。一个IDS必须尽快地执行和传送它的分析结果,以便在系统造成严重危害之前能及时做出反应,阻止攻击者破坏审计数据或IDS本身。
除了上述几个主要方面,还应该考虑以下几个方面:(1)IDS运行时,额外的计算机资源的开销;(2)误警报率/漏警报率的程度;(3)适应性和扩展性;(4)灵活性;(5)管理的开销;(6)是否便于使用和配置。
5IDS的发展趋
随着入侵检测技术的发展,成型的产品已陆续应用到实践中。入侵检测系统的典型代表是ISS(国际互联网安全系统公司)公司的RealSecure。目前较为著名的商用入侵检测产品还有:NAI公司的CyberCopMonitor、Axent公司的NetProwler、CISCO公司的Netranger、CA公司的Sessionwall-3等。国内的该类产品较少,但发展很快,已有总参北方所、中科网威、启明星辰等公司推出产品。
人们在完善原有技术的基础上,又在研究新的检测方法,如数据融合技术,主动的自主方法,智能技术以及免疫学原理的应用等。其主要的发展方向可概括为:
(1)大规模分布式入侵检测。传统的入侵检测技术一般只局限于单一的主机或网络框架,显然不能适应大规模网络的监测,不同的入侵检测系统之间也不能协同工作。因此,必须发展大规模的分布式入侵检测技术。
(2)宽带高速网络的实时入侵检测技术。大量高速网络的不断涌现,各种宽带接入手段层出不穷,如何实现高速网络下的实时入侵检测成为一个现实的问题。
(3)入侵检测的数据融合技术。目前的IDS还存在着很多缺陷。首先,目前的技术还不能对付训练有素的黑客的复杂的攻击。其次,系统的虚警率太高。最后,系统对大量的数据处理,非但无助于解决问题,还降低了处理能力。数据融合技术是解决这一系列问题的好方法。
(4)与网络安全技术相结合。结合防火墙,病毒防护以及电子商务技术,提供完整的网络安全保障。
6结束语
在目前的计算机安全状态下,基于防火墙、加密技术的安全防护固然重要,但是,要根本改善系统的安全现状,必须要发展入侵检测技术,它已经成为计算机安全策略中的核心技术之一。IDS作为一种主动的安全防护技术,提供了对内部攻击、外部攻击和误操作的实时保护。随着网络通信技术安全性的要求越来越高,入侵检测技术必将受到人们的高度重视。
参考文献:
[1]putersecuritythreatmonitoringandsurveillance[P].PA19034,USA,1980.4
[2]DenningDE.AnIntrusion-DetectionModel[A].IEEESymponSecurity&Privacy[C],1986.118-131
随着计算机与通信技术的快速发展,机房数量也在骤增。机房主要用来放置计算机系统或通信网络的核心设备,为了保证设备正常运行,机房装有许多配套设备,这些配套设备必须24小时监控,任何一种异常情况都必须得到及时有效地处理。否则,将对机房中各系统的正常工作带来严重危害,后果不堪设想。设备的生产厂家众多,有华为、西门子、摩托罗拉、中兴等,为保证整个通信网络,特别是机房设备安全稳定运行,现有设备厂家依据设备故障对系统影响程度提供不同级别的告警信号,以提醒机房监控人员及时通过系统维护终端进行软维护或以不同方式(电话、短讯等)通知相关维护人员处理。机房采用24小时专人值班,由于设备分散在不同机房,为了确保整个通讯网络系统安全运行,防止事故的发生,移动通信机房需要对不同专业设备的故障告警进行集中声光告警监视监控。
一、移动通信机房设备故障告警特点
目前许多机房的管理人员采用24小时专人值班,定时巡查机房环境设备,这样不仅加重了管理人员的负担,而且更多的时候,不能及时排除故障,对事故发生的时间及责任也无科学的管理。尤其目前国内普遍缺乏机房环境设备的专业管理人员,在许多地方的机房不得不安排软件人员或者不太懂机房设备管理甚至根本不懂机房设备维护的人员值班,这对机房的安全运行无疑又是一个不利因素。采用集中告警监视监控系统使得机房监控人员能够更及时的发现网络故障,及时处理故障,保证设备处于最佳运行状态,使其运行服务质量能够满足用户的需求。
移动通信机房设备故障集中监控系统将所有设备维护终端集中在一个统一平台输出告警,所有不同设备的故障集中产生声光告警,该系统使得监控人员只需要在同一平台处理日常告警。对于网络监控人员工作有以下有利方面:有利于网络监控人员作为第一责任人在7×24小时值班时,对安装在本地区内的话务网、传输网、数据网及所有相关设备的运行状况实时监控,对本地区动环监控的站点实时监控,特别是将交换网元、BSC网元以及传输网设备的监控作为重点,实时查看上述各网元上的各类告警信息,特别注意话务网、传输网设备上告警的关联性,并通知相关人员负责故障的受理和处理。有利于监控值班人员实时监测移动通信网网路、设备运行情况,对发现的故障进行预处理、派单,监督相关专业维护人员及时处理各种故障,并跟踪、处理过程和结果。发现重大故障立即通知相关专业管理、支撑部门和向上级领导汇报。
二、移动通信机房设备故障集中监控系统特点
2.1集中告警信号的采集
告警是设备故障集中监控系统的一个重要功能。本系统采取从网管终端发出的告警信号端子提取信号进行处理,有指示灯两端输出的电压量和机内声卡输出的语音数据。故障发生后,系统会根据故障的优先级别将故障放入不同的队列进行处理。系统首先从高优先级队列获取报警信息,进行报警。网络监控人员根据告警级别在10分钟内先分析判断、定位,确定故障发生的大致区域和基本性质后,通知相关人员进行处理,有效压缩故障历时。
2.2中央集中控管,提供良好的管理并提高效率
本系统将服务器集中控管,所有服务器的状态一目了然,监控人员可以透过因特网在远程方便地进行设备管理,并且在每个服务器端,也能由维护人员进行管理维护。
2.3支持各类智能设备的接入
机房设备种类多、生产厂家多,通信协议各不相同。因此,为提高系统的兼容性,整个系统分为通信层、规约层、业务逻辑层分别进行设计,各层之间相互不影响。可以根据需要进行通信方式的扩充、通信规约的扩充。系统新增设备终端,增加相应模块就能接入到该系统进行集中监控。
三、移动通信机房设备故障集中监控系统设计与实现
3.1系统结构概述
方案设计充分考虑移动机房的实际要求,整个监控系统采用逐个设备汇接的结构,将所有设备故障终端接入到KM0216服务器进行集中监控,如图1所示。在设计中充分考虑系统的稳定性、兼容性、系统所有设备的性价比、及其系统今后扩展、扩充需要。
监控站用来实现各种上层应用以及系统配置,监控人员只需要在设备故障集中监控系统处理日常告警,管理人员可以通过近端或设备故障集中监控系统进行数据管理、安全管理、配置管理、报表管理。移动通信机房设备故障集中监控系统选用一台AltusenKM0216MatrixKVMSwitch,来进行所有服务器的管理工作。选用USB的CPU端模块KA9120及CE250网络线来将服务器的键盘及鼠标连接到KM0432上。在视讯方面,用VS-82A将视讯一分为二,一方面传送给本地的显示器,另一方面透过KM0216与CPU端/控制端模块传送给远程的投影机,使得每台服务器都能保留原有的键盘、鼠标、显示器,不影响在本地的正常使用;同时,也能透过KM0216进行切换管理。在投影机一端,我们透过一台4埠KVM切换器CS-9134来选择三个KA9222控制端模块,以控制每个投影机的内容来源,以满足方案要求,也就是从网管主机中选择应显示某一台主机的视讯。此外,还配备了一个IP远程控管装置CN-6000,以实现透过因特网来控制网管主机的需求。
3.2系统功能概述
本系统将设备故障集中监控系统分为五大功能,分别为集中实时监视功能、集中实时声光告警功能、集中循环监视功能,用户管理功能,远程管理功能。
3.2.1集中实时监视功能
实时监控系统通过各维护终端将当前被监视设备的运行参数集中采集,实时显示在监控电脑屏幕上,监控人员通过该系统依据设备故障对系统影响程度提供不同级别的告警信号,以提醒机房监控人员及时通过系统维护终端进行软维护或以不同方式(电话、短讯等)通知相关维护人员处理。
3.2.2集中实时声光告警功能
该系统从网管终端发出的告警信号端子提取信号进行处理,将所有设备故障告警在同一集中声光告警箱产生实时告警。监控人员报警发生后,一般按以下步骤来进行处理:①通知。首要的是将报警信息告知给相关人员。②确认。表明已经知道报警的发生,正在处理。但此时报警仍然存在,没有消失。③消除。经过处理,故障消失,设备恢复正常,报警也随之消失。
3.2.3集中循环监视功能
该系统对所有维护终端都能够通过2台投影屏幕来循环监视,设置自动轮流显示所接维护终端,每个终端可设置停留时间(3s~60s);还可以用手动选择,当手动选择后,画面停止在选择的维护终端,直到再次选择自动显示按键。
3.2.4用户管理功能
本系统将管理权限分为三级:SuperAdministrator、Administrator、以及User,各级管理人员的管理范围和权限不同。
3.2.5远程管理功能
本系统提供远程管理功能,维护人员既能通过该系统进行数据管理、安全管理、配置管理、报表管理,又能在本地维护终端对设备进行相应的操作维护。
四、系统实际应用效果
4.1应用效果
该系统的上线运行将永州分公司所有设备维护终端都集中在一个平台输出,如图2所示,所有设备维护终端都显示在本系统,选择数字键或者ENTER就进入相应终端进行监控监视。该系统使得监控人员彻底改变传统分散式监控模式,集中在同一个系统对所有维护终端进行监视监控。
4.2成果效益
该系统对所有设备告警进行集中监视,根据告警的级别产生相应的告警声音,以提示监控人员立即上报故障情况。如图3所示,一旦设备出现告警,相应设备指示灯闪烁,以声音提示监控人员立即对故障进行处理。
YZHLR01设备维护终端为例介绍成果效益,对该设备的数据进行基础维护,一旦设备出现重大故障立即通知相关管理者。
五、结语
本文所设计的移动设备故障集中监控系统已在永州分公司上线试运行,效果良好。目前,集中监控系统正在向分布式和网络化方向发展,人们不断对远程监控的简便性、实时性、可靠性提出更高的要求,因此,必须要灵活、及时地把最新的技术应用到监控系统中,才能使集中监控系统不断地发展,保障移动通信机房的安全运行,不断地满足通信业发展的需求。
参考文献:
朱玉锦,张勇.调度自动化机房监控系统的设计与实现[J].信息与技术化,2007,(5):100-102.
张天开,张晶明.机房环境监控网络系统的设计及应用[J].自动化仪表.2002,23(8):52-54.
赵彬.高校机房监控系统的设计与实现[J].科技信息.2008(1):64.
督促各参建单位各专业熟悉图纸
进度检测系统涉及专业多、工程量大、工序复杂,仅依靠计划检测人员,对横跨多个专业的各工序进行准确、合理的划分,并对各专业工程量进行准确计量,无论是精力还是专业限制,完成难度都比较大。若没有强制性规定,将使现场专业人员对本专业图纸的熟悉受到一定的影响,并对其他专业图纸的熟悉变得不太可能,使各专业之间的协调、协作变得困难。通过对进度检测系统工程量的确认,将有效的督促各专业人员对本专业图纸的熟悉,以及对相关专业图纸的了解。
有效确认工程进度
进度检测系统的建立,是为了有效进行现场进度的确认。为准确利用进度检测系统对现场施工进度进行计量,在建立检测系统之前,就根据建立进度检测系统的需要,明确和设立了WBS编码,明确了进度检测系统内各专业的WBS编码和比重,根据各专业特点和施工工序,划分了各专业内各工序的比值和明确的施工范围。
在上述项目中,将土建专业当中的土建(基础)根据施工工序划分为“基坑开挖、基础垫层、钢筋绑扎、基础混凝土浇筑”4个步骤,将静设备中的冷换设备划分为“进场检验、安装就位、找正、抽芯检查、劳动保护安装、试压、保温(冷)”等数道工序,而动设备中的泵类设备则又分为“进场检验、安装就位、精平找正、电机单试、单机试运”等多道工序。这样既使进度检测系统的划分更贴合现场施工实际过程,又使得进度检测系统准确的反映现场施工进度。在进度检测系统建立之后,在项目推进过程中,随着现场施工的进行,出于进度检测系统正常、合理、准确运行的需要,根据进度检测系统内容(及工序)的划分及工程量(工作)记录,对现场各部位、各专业、各工序施工完成量进行了实时的跟踪、记录、校对、填写,使得现场工程进展情况和完成量始终处于有效跟踪、监控之中,并实时在进度检测系统的相关数据记录和相关图表中得以准确的反映。
加快工程进度款支付
在工程进度款的每个支付周期末,发包人按照合同约定,以每月实际完成工程量进行工程进度款的支付。每个月进行工程量的计量、工程款的审核支付,该工作极为复杂、繁重。但有进度检测系统建立前对各专业各部分工程量的确认,以及在进度检测系统运行过程中的细致跟踪、记录,对现场的工程进度、工程完成量始终处于有效监控和掌握当中,在每月工程量的确认、工程款的审核当中,即便有多家施工单位的工程量和工程款需要审核确认,该工作也变得较为轻松并且较为准确。上述项目中有一监理部,尽管其监理区域为该西南石化重点项目的最大的两套核心装置,工程量大、专业多,并面临多家承包单位,但由于进度检测系统建立和跟踪过程中的细致工作,使得其在每月的完工工程量确认和工程款支付审核过程当中,始终都能准确、及时的完成相关审核工作,其审核的准确率、审减率均位列多家项目监理部之首,从而多次获得项目业主相关部门和领导的表扬与认可。5善于发现现场问题,调整工作安排进度检测系统以获得值来对现场进度予以评价,进而对现场工作安排产生影响。但并不是进度检测系统获得值比原有的工程进度要求值提前,就表示现场工作安排合理,还要具体情况具体分析。
在西南某石化系统重点项目中,某钢结构在其一期的月计划中,计划完成值为4.52%,在月末的检测中,实际完成值达到4.66%。在对该组检测数据进行深入细致的分析后,发现其所增加的部分,主要为钢结构预制量出现相对较大量的增加(权重为钢结构施工的40%),而不是项目组要求的钢结构的安装量(为钢结构施工权重的60%)。
经现场实查,发现该施工单位由于缺少吊装机具,无法进行钢结构的吊安,为避免人员闲置,而将安装人员调往预制班组参与钢结构构件的预制工作,造成现场预制钢结构构件堆放量增大,部分钢构件因堆放荷载及磕碰等,出现变形、返锈等不利质量隐患。对此,项目部及时给予了制止,对施工单位做出了相应的处理,并督促其增加现场吊装机具数量,使现场钢结构安装工作得以顺利进行,保证钢结构的安装质量、进度,避免由此可能产生的对后续工序的不利影响。通过进度检测数据分析,承包商在业主及项目监理部的督促下,及时调整了现场设备和劳动力组织安排,从其总公司抽调了相应数量的吊装设备进场,使得现场进度偏差得到了及时纠正,总体进度得到了有效的保证。
同是该项目,在某期的检测中发现,原计划该月完成1.55%,实际完成为1.71%,经过分析发现其存在两部分,一部分是超前,另一部分存在滞后:
1)常压塔联合基础:整体进度47.51%,计划进度31%,超前16.51%。
2)电脱盐罐基础:整体进度59.87%,原计划进度36%,超前23.87%。
3)常压炉、减压炉基础:整体进度46.14%,原计划进度29%,超前17.14%。
施工总进度总计超前0.48%。
1)管廊基础:原计划进度11%,落后11%。
2)烟囱:原计划11%,落后11%。
3)减压框架:整体进度4%,原计划6%,落后2%。
4)减压塔基础:整体进度21.64%,原计划28%,落后6.26%。
5)常压冷换框架:原计划进度10%,落后10%。
施工总进度总计落后0.32%。
经过对上述数值结合进度检测系统的分析,施工综合进度(超前部分—落后部分):0.48%-0.32%=0.16%,得出施工总进度超前0.16%的结论。其产生的原因:一方面是现场进度计划编制合理;另一方面是现场钢筋工、混凝土工数量充足,但现场模板工短缺所造成的。项目业主和监理在认可承包商工作安排合理部分的情况下,督促承包商及时调配了足量的模板工,完善了现场的施工工作安排,使得现场进度得到有效纠正和优化。由此可知,进度检测系统的合理、有效的利用,不但对项目业主、监理的自身工作具有促进作用,同时还对参建的承包商的工作安排、劳动力/机具安排均具有积极的促进和纠正作用。
1.1传感器质量和性能较差
传感器作为安全监测监控系统的重要组成部分,保证其质量和性能是高效运用安全监控检测系统的关键之一。但事实上,目前我国大多数煤矿开采中所应用的安全监测监控系统就存在传感器质量和性能较差的情况,传感器质量和性能较差具体表现为载体催化元件的应用效果差,容易影响传感器的正常使用;传感器制作工艺技术比较落后,会降低传感器的使用性等。因各种因素而促使传感器的质量和性能降低是安全监测监控系统当前存在的问题之一,需要通过有效的措施来调整和优化,才能够保证传感器合理而有效的应用。
1.2通信协议不规范
所谓的安全监测监控系统通信协议不规范是指其缺乏符合矿井电气防爆等特殊要求的总线标准,所以现有生产厂家的监控系统的通信协议几乎都采用各自专用的,互不兼容。此种情况的存在使得我国安全监测监控系统的通信协议表现出不规范这一特点。而通信协议不规范的情况将会无法实现资源贡献,相应的安全监测监控系统的更新和升级就会受到一定的影响和阻碍,安全监测监控系统的应用效果受到一定程度的抑制。所以说,煤矿安全监测监控系统通信协议不规范也是导致此系统无法高效运用的因素之一。
2增强煤矿安全监控监测系统运行效果的有效措施
煤矿开采是一项危险性较大的工作,在进行煤矿开采作业的过程中存在很多危险因素,一旦危险因素未得到有效的控制,很容易导致安全事故发生,不仅影响煤矿正常开采,还会导致人身受损。安全监测监控系统合理而有效的运用能够大大改善此种现状,当然是是以保证安全监测监控系统高效运用为前提。如何才能够实现煤矿安全监测监控系统高效运用?作者结合相关的资料,提出以下几点建议。
2.1研发高质量、高性能的传感器
传感器作为煤矿安全监控监测系统的重要组成部分之一,其合理而有效的应用能够提高安全监测监控系统的运行效果。而我国目前所应用的安全监测监控系统的传感器质量和性能不佳,直接影响安全监测监控系统的合理应用。针对此种情况,作者建议应当充分利用不断创新的科学技术来研发高质量,高性能的传感器,将其安装在安全监测监控系统中,以此来提高监控系统的应用性,为安全高效的煤矿开采创造条件。
2.2统一化规范化通信协议
上文中已经充分说明当下我国煤矿安全监测监控系统通信协议不规范,通信协议不规范将造成设备重复购置、系统补套受制于人和不能随意进行软硬件升级改造等后果。为了尽量避免此种情况出现在安全监测监控系统中,应当对安全监测监控系统通信协议进行调整和约束,促使其规范化和统一化,从而保证我国所应用的安全监测监控系统能够实现资源共享,升级安全监控检测系统,使其合理而有效的应用。当然,实现通信协议统一化和规范化并不是非常容易的,需要我国推出很多规范性规程和标准对通信协议进行规范化处理。只有推出统一的。规范的通信协议,才能够保证安全监测监控系统能够采用统一的数据库、统一的数据格式、统一的升级模式、统一的系统资源,促使煤矿安全监测监控系统能够更加高效的应用。
2.3专家诊断、决策系统的优化
尽管目前应用于煤矿开采中的安全监测监控系统具有良好的应用性,但同时它也存在不可忽视的问题,只有有效的处理安全监测监控系统存在的问题,才能够真正意义上实现系统的优化,促使其性能更强,应用效果更好。如何才能够实现煤矿安全监测监控系统的优化?作者建议有此方面的专家对安全监测监控系统进行详细的、深入的、全面的诊断,准确的诊断出煤矿安全监控监测系统存在的质量问题,并针对煤矿安全监测监控系统存在的问题进行详细的分析,制定合理的改善措施,改变系统功能单一、简单的情况,使其性能、质量等方面得到良好的优化,更加合理的应用于煤矿开采中。
一方面,煤矿企业内部的管理体制不健全,思想教育宣传工作不到位,对职工的物质和精神生活关心程度低,尤其是对于公职人员思想政治工作放松等等。企业和家庭没有营造有关安全生产的氛围以及政府对安全教育的监管和投入有待加强;另一方面,煤矿工作人员安全意识薄弱,没有将“安全第一”这根细弦绷紧,在实际的工作中总是存在侥幸心理、投机取巧的心理,图省事,不想麻烦,贪近利,而且有些老员工认为自己已工作多年,有着丰富的经验,居功自傲,不将企业的管理放在眼里,习惯对待新问题,不按照严格的操作流程办事,无视全部知识和操作技能,这是造成事故发生的一个重要因素。
1.2安全监测监控系统的设备落后
系统的主要传感器,如甲烷传感器,在经过多年的技术完善,稳定性和实用性已有了大的改善,,但是在实际的应用中还是出现了许多问题。如:在井下瓦斯涌出量大的情况下黑白元件反复被有害气体冲击,造成了零点漂移并使其催化性能降低,黑白原件加速衰老,抗高能冲击冲击性变差造成了原件使用寿命低、稳定性差、误差率较高等现象:抗中毒性能差;载体催化元件制作工艺较低。例如:前几年对福州煤矿监测系统的排查中发现,其使用的是我国第一批KJ系列监控系统,由多家科研单位开发,其数字化监控系统,也是有不同企业和机构完成的,设备比较落后。
1.3安全监测监控系统的针对性较弱
监测系统的安全性问题,虽然在理论上是一回事,但在实际的操作过程中会受到许多条件的限制,如地理环境、开采的条件、岩力学性质、开采的工艺等因素的影响,因而对煤矿安全监控检测的分析要实现地域、地质的针对性研究,难以实现对于监测监控的准确度,难以实现安全保证。例如山西煤田的地址结构较为复杂,地质结构为倾斜的薄煤层,稳定性极差,使得山西煤田的开采量较低的情况,生产力只能打到5万、6万,但是按照相关产业的规定,每个矿井只能布置“一采两掘”。为了应付上级的检查,监控点就设置在这个地方。在实际的操作过程中,由于开采条件较为恶劣,因而多个采矿工作面被隐蔽起来,但矿井恰恰在井下工作人员密集的地方因不符合相关规定而不布置监控探头,这使监测系统的针对性没有得到体现。
2煤矿安全监测监控系统的解决措施
2.1加强监测监控人员的安全意识
针对监测监控人员的自身素质方面的缺陷,由于他自身原因和外部原因的存在,在实际的企业管理中,应对监控方面进行严格的规定,明确职责,使每个工作人员树立“安全大于天”的观念,加强工作人员的岗前培训,使他们掌握正确的操作规范,确保他们严格遵守这些规则,当然实际的培训不仅包括理论培训,还包括现实中的技能培训,将理论结合实际,使监测监控人员提升安全意识。如:开展每周的思想教育课,宣传安全思想;组织队伍到工作者的家里了解他们的物质和精神追求,使他们在实际的工作中不再担心家里的一切,安心工作,免后顾之忧。
2.2建立监控系统
由于我们的监测监控设备有其自身的弊端,因而我们运用现代技术,相应地建立一套监控系统。派遣工作人员轮流值班,可以有效的提高工作效率,另外,我们要做好煤矿检测设备及档案的相关管理,时时关注设备的使用情况以便进行必要维护。设置专业的维修人员,定期对设备进行维修,确保监控系统的正常运转并对煤矿的瓦斯监测数据进行记录,绘制图表,确保工作人员的生命安全。
2.3提高监测监控系统的设备性能
设备既然落后,那安全性能就无法保证。科研机构需研制高性能的瓦斯传感器,寻找一种解决系统兼容性的途径或指定相关的准有技术标准,对检测系统的推广意义重大;甲烷传感器的安装地点的环境湿度较大,建议每个矿井备用一个甲烷传感器,而且必须定时检测维修,进行干燥处理;岩巷破爆以后,传感器应及时撤回,并且距离也有一定的规定,即不小于50米,避免爆破震动损坏传感器;要定期擦拭风速传感器横杆,确保测量值的准确性。例如煤矿在用的监控设备的原制作单位取得MA标志后,与矿长积极协商,制定方案,对系统进行改造,重点在于;一是统一采用显示格式的系统软件,二是如果配置稳定性在15天以上的传感元件或传感器等关联设备,严禁使用未经国家授权的安全生产监测机构进行安全性的监测。其工作在2016年之前完成,如果还有未取得新的MA标志的,就应该淘汰掉,在此之前,用系统的制造厂家继续为煤矿厂提供备件因而设备的性能对其监测监控系统十分关键,我们要提高创新精神,努力研发新的技术,生产新的产品和软件,使这些更好的应用到煤矿的监控工作中去,将那些落后的设备淘汰,新设备做好定期的监测和维修工作,为安全监测监控工作提供保障。
目前在国产塔机上仅配置了力矩限制器、位置限制、速度限制器等装置,其原理是当被监测参数超过某限制值时断电报警,实际上是一种安全保护装置,其缺点是:
(1)不能实进监测塔机的运行参数,因而不能将塔机的运行状态及进显示给司机,以便及时调整。
(2)运行参数的监测基一是单独进行,不能在计算机统一管理下对诸多参数实施同步监测,协调处理,综合判断。
(3)这些保护装置长期使用后其自身的可靠性大大降低,是旦失灵,司机又无法知道。
多传感器信息融合是80年代国外军事和机器人领域率先提出来的一项高新技术,其基本原理是充分利用多个传感器资源,对观测到的有关同一目标的信息进行合理支配和使用,把多个传感器在空间或时间上的冗余或互补信息依据某种准则进行组合,以获得对被观测目标的综合的最佳估计。与单一传感器系统相比,多传感器信息融合系统具有以下优点:
(1)信息量大。大量的信息的融合和综合能减小系统的不确定性,从而提高精度。
(2)很好的容错性。在传感器有误差或失效的情况下,也能有较高的可靠性。
(3)能获得单个传感器无法感知的特征信息。
我们针对目前国内塔机运行参数监测仪器的不足,并考虑到塔机运行状态的识别以及故障诊断的需要,利用了塔机的结构特点,在不改变塔机结构和不增加许多辅助装置的前提下,研制了基于信息融合和单片机技术的塔机运行关态监测系统。
1系统组成
图1是自繁荣昌盛式塔机的结构简图,塔机工作时的运行部分主要有起升机构1(见图2),回转机构2(见图3)和小车变幅机构3(见图4)。
图2起升机构
1.电动机2.联轴器3.制动器4.减速器5.卷筒6.吊钩7.滑轮组8.离合器9.拉力传感器10.光电传感器11.导向轮
图2中,安装在滑轮组7上的拉力传感器9将起重量G转换成电信号后送到A/D转换器与单片机接口(见图5);导向轮11的转角变化能反映起重物G的起吊位置和速度,光电传感器10能将导向轮11的转角变化检测出来并转换成电信号送到单片机INT0引角(见图5)。
图3中,电动机1通过减速器3和小齿轮4驱动回转支承装置5中的大齿轮回转,带动上部旋转,小齿轮4的转角变化能反映塔机的回转角度和速度的变化,电涡流传感器6能把小齿轮4的角度变化检测出并变换成电信号送到单片机P3.0引脚(见图5)。
1.电动机2.制动器3.少齿行星传动减速器4.小齿轮5.回转支承装置6.电涡流传感器
图4中,变幅小车状有电涡流传感器3,当变幅小车在塔机吊臂上行走时,电流传感器能检测到吊臂上等间隔布置的腹杆数并送到单片机INT1引脚(见图5)。
1.起升卷扬2.塔机吊臂3.电涡流传感器4.小车牵引卷扬5.变幅小车6.吊臂复杆
2系统工作原理
2.1起重理G检测
将拉力传感器串接在定滑轮吊绳固定端的适当位置,由动态应变仪交吊重转换为电压信号,然后由A/D转换器进行转换,从而测量起吊的重量,当重量超过额定置时,保护装置动作并发出报警信号。
2.2变幅小车位置L及瞬间速度V1检测
在变幅小车上安全电涡流传感器(见图4),传感器与吊臂上的腹杆垂直。小车运行时,当电涡流传感器经过腹杆时会产生一负脉冲,通过对脉冲进行计数及任意两个脉冲之间的时间差进行定进,可计算出小车的瞬时位置及速度(吊臂上任意两腹杆间的距离是相等的)。如图5所示,将电涡流传感器输出信号与89C52的INT1相连,对该引角上的脉冲进行计数,可获得小车通过腹杆的个数,由T1引脚对任意两个脉冲的时间间隔进行定时,可检测出小车经过两个腹杆所用的时间,由P1.4、P1.5引脚检测小车向前有向后运动。当小车速度超过最大允许值时,保护装置动作,并发出报警信号。
小车位置L1=L0±n×S,小车速度V1=(L1-L0)/Δt
式中L1——本次脉冲小车位置,L0——上次脉冲小车位置,n——脉冲个数,S——两腹杆间的距离,Δt——两个脉冲间的时间距离。
2.3吊重位置H及速度V2检测
将图2中导向轮轴上安装一圆盘,在圆盘上加工出若干个小孔,光电传感器与圆盘垂直,当塔机起长时,每当小孔转到与传感器相对的位置,都会产生一个脉冲。由脉冲的个数及任意两个脉冲之间的时间间隔,可计算出起升位置及速度。当起升速度超限时,保护装置动作并发出报警信号。检测进,由P1.1、P1.2检测重物运动方向,由INT0检测脉冲个数,由T0对任意两个脉冲的时间间隔进行定时,见图5。
起吊位置H1=H0±n×l
式中H1——本次脉冲重物位置,H0——上次脉冲重物位置,l——每经过一个脉冲重物运动的距离起吊速度V2=(H1-H0)/Δt式中Δt——两个脉冲间的时间间隔。
2.4动态力矩M检测
当小车的位置及吊重检测出来后,运行时的力矩为M=L×G。
将运行时的动态力矩实进地显示给司机,并与该位置时的额定力矩相比较,可控制小车的运动。当力矩超限时保护装置动作,并发出报警信号。
2.5塔机回转角度α、回转速度V3检测
在回转机构的小齿轮上安装一电涡传感器,塔机回转时,小齿轮每转过一个齿都会产生一个脉冲,通过对脉冲计数及任意两个脉冲时间间隔进行定时,可计算出塔臂回转角度和速度。当回转速度超限时,保护装置动作,并发出报警信号。
由P1.3、P1.7检测塔机的回转方向,由P3.0对脉冲进行计数要可得到回转角度,由T2对脉冲之间的时间间隔进行定时,可计算出回转的速度。
回转角度α1=α0±n×β,回转速度V3=(α1-α0)×r/Δt
式中α1——本次回转角度,α0——上次回转角度,n——回转齿数,β——每回转一齿对就的角度,r——回转半径。
3基于多参数信息状态的监测原理
我们研制的监测系统是一种电子显示监测系统是一种电子显示监近系统,客观存在通过塔机实际工作时所产生的信号和预先储存的安全工作数值进行比较,达到报警保护目的。如图6所示,塔机要作时,当起重量,工作幅度,小车运行速度等参数接近安全工作数值时,系统发出报警信号,正常工作时,安不断地在司机室显示上述各项监测数值。
4结语
本系统已完成试验开发阶段,正时一步完善,推向实用,它的主要特点是:
(1)能在一个显示屏上随时监测到反映塔机运行状态的多种运行参数:起重量,起重力矩,起升速度及位置,小车变幅位置及速度,塔臂回转角度及速度等。
天气变化对有线电视网路的影响
这一方面主要从雷雨天气分析。进入夏秋之交的九月,阴雨天气也开始增加,遭遇雷击的可能性增大。在农村有线电视系统中,众所周知,雷电是自然现象,雷击释放能量很大,直接遭雷击,在放电通道上毁坏性巨大,也增加了弄寻有线电视线路检修的难度。在干线较长的农村有线电视系统中,需要注意防雷,防水和监测。这3个方面具体表现在:
1)防雷:要保证有线电视的“村村通,长期通”,防雷是必不可少的监测点之一。一般说来,有线电视的被损部位有前端放大器、架空电缆的分支、分配器被击毁等。最简单的防雷措施在于材料的安全选择上,如电缆要带有防雷的安全保护,在传输网中,进入前端的电缆安置分流雷电的避雷器,金属外皮就近接地,可有效地避免光缆遭受雷击;
2)防水:有线电视系统电缆传输中接头进水是个很普遍的问题。主要包括接头进水导致电缆部分进水和进水导致的接头氧化两种情况。在平常的收看电视过程中,高端信号变差,雪花点变多是进水常见的问题之一。对干线表现为放大器输出电平斜率很小或为负值。从而使供电出现故障,影响整个农村接收端的放大器正常工作,同时伴随斜率变大,信号质量恶化;
3)监测。各有线电视台在建台时往往经过上级广播电视主管部门的验收,验收基本上是以抽样测试点,对部分项目和指标进行夏初、冬初的两次考核。包括对主干线的线性分布的监测,用户接收端分支器,分配器的监测等。抓好常规维护,可以及时查出线路是否有故障或即将有故障的发生迹象,从而防患于未然,大大减少故障率。
常规维修监测技巧
前面我们讲过,因为农村地广人稀、农户居住先对分散,再加上通讯技术道路交通相对城市而言的薄弱,使得农村有线电视系统的监测和技术维护方面存在着更大的挑战。一般情况下,整个系统的无信号,故障在前端、主干线及供电部分;整个系统收不到某一频道信号,故障在信号源或调制器;部分用户无信号,故障在支干线或分配系统;个别用户无信号,故障在串接一分支或分支、分配器以及用户盒、用户线等用户器材上。只要仔细查找,故障就不难排除。
1.1河段概况
三峡工程施工区从伍相庙至鹰子咀长约12km,面积15.28km2。为较好地掌握施工区水文、河道、水环境变化情势,水文监测河段上起太平溪、下至莲沱,全长22km,水域面积约为22km2(以下简称坝区河段)。大坝轴线以上1.5km至大坝轴线以下1km为明渠截流水文监测河段(以下简称截流河段),全长2.5km,面积约为3.0km2。三峡工程明渠截流河段水文监测布置见图1。
图1三峡工程明渠截流河段水文监测布置图
1.2工程概况
三峡工程明渠截流继一期导流明渠开挖、二期大江截流导流和通航之后、为修筑三期围堰而实现戗堤进占与合龙的关键性工程。
(1)三期围堰工程。三期围堰位于导流明渠内。三期上游围堰为Ⅳ级临时建筑物,围堰轴线长427m,设计洪水标准为4月份实测最大流量17600m3/s(1877年~1990年资料,下同),相应上游水位81.05m,堰顶高程83.0m,最大堰高33.0m。三期下游围堰为Ⅲ级临时建筑物,围堰轴线长415m,设计洪水标准为频率2%的洪水流量79000m3/s,相应挡水位78.3m,堰顶高程81.5m,最大堰高36.5m。上、下围堰均由风化砂、石渣、石渣混合料和块石以及反滤料构筑而成,总填筑量分别为146.58万m3和152.48万m3。
(2)明渠截流分流工程
明渠截流期采用大坝泄洪坝段导流底孔分流。22个导流底孔分别布设在泄洪坝段的表孔正下方跨缝处,其有压出流口尺寸为6m×8.5m,中间16孔进口底高程56.0m,两侧各3孔进口底高程57.0m。大坝底孔泄流能力受二期上下游围堰拆除高程和底宽的影响,设计明渠截流前,上游围堰拆除高程57m,底宽不小于550m;下游围堰拆除高程53m,底宽不小于410m。
(3)明渠截流戗堤工程
三期截流采用上、下游戗堤立堵,上游双向、下游单向进占的施工方案。设计按上游戗堤承担截流总落差的2/3,下游戗堤承担截流总落差的1/3。上、下截流戗堤总抛投量分别为35.85万m3和38.38万m3。戗堤施工进占分为非龙口进占和龙口进占两个阶段,设计上、下截流龙口宽度分别为150m和140m,抛投量分别为20.4万m3和20.5万m3。设计截流流量10300m3/s,经模型试验表明,上、下龙口最大平均流速分别达5.14m/s和4.01m/s,截流终落差4.11m。合龙能量指标达40.4万kw,为葛洲坝工程截流的2.6倍,是巴西伊泰普工程截流的1.4倍,居当今世界龙口能量指标之首。
1.3水文监测的目的、主要内容及作用
鉴于明渠截流的难度,水文监测的目的主要为三期截流设计、施工、截流指挥提供可靠数据,同时也为模型跟踪试验、水文预报、水文及水力学计算提供基本资料。特别要为在明渠截流过程中可能出现的突况进行跟踪监测,以指导明渠截流施工决策和调度管理。水文监测的主要内容包括水下地形、截流落差、龙口流速、坝址流量及导流底孔分流量等,其主要作用是为掌握截流边界条件、截流水流条件和截流环境影响的动态变化,见表1。
表1三期截流水文监测的主要内容及作用
项目名称
主要内容
主要作用
截
流
边
界
条
件
水下地形
水下地形形象
掌握水下地形形象、口门水面宽及床沙的变化情况,为截流设计优化、调整截流施工方案及进度、模型跟踪试验、水文预报及水文、水力学计算提供基本资料
固定断面
固定断面形象(含口门水面宽)
床沙
床沙(抛投料)颗粒级配
截
流
水
流
条
件
水位
坝区沿程水面线
是监测截流落差及其变化的基本资料。同时监测葛洲坝水库调节对截流水力学指标的影响
龙口落差、戗堤落差
掌握上、下戗堤落差及其分配,指导上、下戗堤施工进占的时机及进度
流速及流态
护底加糙区流速、戗堤头及挑角流速、龙口纵横断面流速、截流河段流态
掌握戗堤口门区(以龙口为重点)的流速变化特征,指导戗堤进占的抛投体块径、形状、抛投方式及推填角度的选择,以利戗堤头的防冲和稳定
流量
坝址流量、茅坪溪支流流量、大坝底孔及龙口分流量
掌握坝址来水流量及导流、截流的分流量
截
流
环
境
影
响
河床演变
永久船闸下游引航道口门河势及两坝间河道演变
截流对河道、航道口门区的河势影响及抛投料对水环境的影响
水环境
截流河段及下游水质
2水文监测系统设计
根据三峡工程明渠截流施工布局和截流工程设计、监理、施工、水文预报、水文及水力学计算、模型跟踪试验等部门对截流水文监测的要求,为确保水文数据全面、可靠、精度和时效,建立包括水文信息采集—传输—处理—与反馈等四个子系统的三期截流水文监测系统,见框图2。为系统实施成立了五个专业组,即水文组、河道组、水质组、水文信息处理中心和综合组。
2.1信息采集子系统。包括水位降水、龙口流速、流量、流态、口门水面宽、河道冲淤、水环境等,根据三峡坝区现有监测站网条件,结合截流所需的水文信息,共布设18个水位站、2个水文站、17个流速或流量监测断面、32个河道固定断面、5个水质监测断面。
2.2信息传输子系统。采用计算机有线或无线数传方式,辅以电话、电台或对讲机等方式,将自动、半自动或人工采集的水文、河道地形数据,经无线或有线数传、或无线人工、有线人工传至水文数据处理中心截流数据库。各专业组之间的联系采用短波电台、电话(有线或WAP电话)等。
2.3信息处理、信息与反馈子系统。利用现代信息技术,建立明渠截流水文信息处理中心,使用计算机网络与通讯技术合理集成,实现水文信息接收、处理、存贮、检索和e水文情报的网络化与自动化。
水文信息处理中心建立截流水文数据库和计算机局域网,实现数据、图表自动处理与共享。截流水文数据库包括水文数据库、河道数据库、施工信息数据库等,数据库采用表结构设计方案。计算机局域网挂靠长江三峡工程开发总公司局域网,其间专设“截流水文网站”,以动态方式直接从数据库生成《水文实测信息》、《水文快报》以及其他信息网页,水文监测信息。
内容包括水位、流量、流速、水面流速流向、泥沙、固定断面、水下地形等信息和相关的分析成果。信息以截流指挥专用通信系统和“截流水文网站”为主,并以电子邮件、电传、电话、电台等为辅的方案。《水文实测信息》全面反映坝区河段水文变化情势,在戗堤进占和龙口合拢期每天一期;根据水情变化确定《水文快报》频次,如在龙口合拢期,实时水位、流速、落差等信息。系统还具有实时查询、信息反馈、整编归档及检索等功能。
3水文监测仪器设备与技术措施
截流水文监测除采用常规的、成熟的测验方法和技术手段外,尽可能采用新的监测仪器设备与技术措施。截流水文监测是在特殊环境条件下的水文观测,其仪器设备将经受各种不利因素的制约,如明渠截流施工场地窄小、截流龙口水流湍急和高强度施工形成的复杂水域,以及无线电波干扰等,都将影响到水文监测工作,也对仪器设备提出了更高的要求。根据明渠截流水文监测的特点,应立足于成熟的先进仪器设备、先进的技术手段,以收集、传输、水文资料。经过调研和大量的仪器设备技术指标分析,确定在明渠截流水文监测中使用以下关键仪器设备与技术措施。
3.1ADCP测流系统。ADCP(AcousticDopplerCurrentProfilers)是目前世界上最先进的水文测验仪器之一,具有不扰动流场、测验历时短、测速范围大等特点。对截流河段多断面的水文监测,采用船载型ADCP测流系统,辅以GPS导航技术,能快速、准确地巡测各断面的流速分布及流量或分流比,还可解决船舶无锚定位和全天候测验等问题;对龙口流速测验,采用无人测艇ADCP测流系统,可精确地获取龙口流速分布。
3.2无人测艇测量技术。该方法是通过龙口上游150m左右的锚锭船,用钢丝绳牵引无人测艇(艇上安装ADCP等仪器)深入龙口进行水文测验。无人测艇采用全密封双体船结构,具有稳性好、阻力小、安全可靠等特点。锚锭船安装有以计算机为主的控制中心及机电设备,控制无人测艇测验。
3.3GPS水道测绘系统。利用GPS接收机,配备数字测深仪或多波束测深仪、绘图仪、计算机与数据链、通讯等设备组成的GPS水道测绘系统,可高效地施测水下地形和冲淤断面,具有全天候、多功能、精度高、成图快等特点。
3.4无人立尺测量技术。对戗堤头水位观测,传统的方法难以达到安全、高效的要求,选用成熟的无人立尺测量技术,并配以高精度的激光全站仪,可测量未知点的三维坐标,用于龙口戗堤头水位和口门宽度的测量。
3.5计算机网络技术。实现水文信息远传、处理、计算机化,具有快速、准确等特点。
3.6监测系统在明渠截流中的运用实践
三峡明渠截流从2002年9月15日导流底孔闸门调试开始,至11月6日龙口合龙结束,明渠截流水文监测系统实时监测了明渠截流水文情势变化,收集到全过程多要素完整的水文成果,并实时动态更新截流水文网页,为指导截流施工、调度、水文预报、提供了大量科学的水文信息。
4结语
三峡工程明渠截流是一项非常复杂的系统工程,水文监测成为重要组成部分,是截流不可缺少的技术保障服务系统。
三峡工程明渠截流水文监测采用高新的监测技术、选进的仪器设备、高素质的监测人员以及合理可靠的组织措施保证系统的高效运行,充分发挥水文监测在三峡工程截流中的耳目和参谋作用,体现一流工程和一流的水文服务。
中图分类号:U673.37 文献标识码:A
1 智能无线温度监测系统的工作原理
智能无线温度监测系统被设定成三个子系统,分别是采集系统、汇总系统、监测系统。三个子系统通力协调工作,实现了电力设备温度的实时、准确、便捷的智能无线监测。
智能无线温度监测系统的三个子系统间的连接方式是不同的,无线通信方式是应用于采集系统和汇总系统之间,而通信线缆则是使用在汇总系统与监测系统之间,即一个无形,另一个有形。对应部位的热感应元件将其所监测到的温度信息通过无线通信设备传输到汇总系统的总站,总站将会对收集到的所有温度信息进行分类整理、分析并处理,再将处理完毕的数据信息传输到监测系统的监测计算机上。同时,调节端监测计算机也将收到同样的数据信息。监测计算机对接收到的数据信息进行二次处理分析,当处理所得数据结果超高设定的极限值时,监测计算机就会发出警示信号。每个总站可以管理数百个子站,信息量的采集将是非常巨大的。
2 智能无线温度监测系统的组成
2.1 采集系统
此种技术主要是通过使用传感器等热感应元件安装在工作中散热不是很好的部分,这就能够时刻地对这部分元件进行温度采集,并能够及时地把消息发送出去。保证采集系统正常工作的主要依靠力量就是交流电,为了保证能够持续的采集信息,我们应该准备太阳能板作为后备电源。
2.2 汇总系统
汇总系统一般是由无线装置组成的,用于收集采集系统传递过来的数据,然后通过该系统传递给总站,再由总站把温度数据传递给当地的监视系统,这样就能够实现实时监测的目的,一旦发现温度数据异常就可以采取一定的措施来解决,保证了电力设备的正常运行。
2.3 监测系统
随着监测系统的发展出现了两种不同的系统形式,一种是调节端监测系统,另一种是站级监测系统。监测系统中的计算机会把传递过来的温度数据进行分析、整理,在发出去的同时也存储在了特定的数据库,不仅实现了对电力设备的实时监测,也方便解决以后类似问题。计算机不仅会对数据进行分析和存储,还会自动生成报表,能够准确地记录下来温度情况的时间、地点、原因。通过对计算机进行系统设定,当设备某部分的温度超过设定值时就会自动报警。此外,监测计算机还具有另外一个特点,就是可以根据单位的需要可以设定任何一个时间段的任何一个部位的温度查询,方便监测人员对设备部件的温度控制和掌握,有利于及时的调整。
3 智能无线温度监测系统的特点
3.1 免于布置排线
因为采用了无线传输设备,所以不用布置排线,热感应元件的安装更方便。
3.2 免于经常的维护
智能无线温度监测系统都是整体化设计,所以免于维护。
3.3 节能
智能无线温度监测系统的各个部分均采用节能、低功率消耗设置,同时应用太阳能电池板更是绿色节能。
3.4 警示系统更完善
当温度过高时,总站智能终端电源,后台监控系统能够及时发出警报。
4 智能无线温度监测系统与传统监测的对比
4.1 在智能无线温度监测系统工作过程中,正因为在需要监测的设备部件上安装了热感应元件,这就有助于事先系统对设备部件实时的准确的连续的监测,并根据每一时刻的温度数据变化来总结出电力设备上不同部位的温度变化规律,进而帮助监测人员保证电力设备的正常运转,避免了因温度问题导致的设备停止工作的问题,保证了工作人员的安全。而传统的监测技术主要是靠人力来获取数据信息的,这不仅耗费了大量的人力物力,而且因为人类自身的生理原因,不可能保证测量数据的准确性,难免会出现误差,这就会导致电力设备存在潜在的危险,如果不能及时处理,就会导致设备出现故障,工作人员的安全受到威胁。
4.2 当前这种智能无线温度监测系统的速度是十分惊人的,其预见性也是当前人类不可比拟的,而且计算机存储的数据信息可以根据需要随时查阅,提高了工作效率,该系统存储的信息量是十分庞大的。传统的监测技术则需要单独的建立一个存储空间,而且随着存储信息量的不断增加,查阅起来也不是十分方便的,已经不适应当前电力企业的发展。智能无线温度监测系统则很好地解决了这个问题,取得了非常好的效果。
5 智能无线温度监测系统的后台监控功能
5.1 热感应元器件所监测的部位的温度能够实时的传递给监控计算机并于显示屏上呈现出来,出现警示温度时的时间及故障位置都会以数据的形式保存起来,保存期限可长达数年。
5.2 可设置警示音的类型,如可以以真人语音的形式播报出来或者以文字警示的方式显示到屏幕上。
5.3 监测计算机所监测到数据信息可以以年、月、日等为单位用线性图或者表格的形式一目了然的展现出来,也可以直接抽查或打印出来。
6 智能无线温度监测系统国内外现状
在国外,智能无线温度监测系统自从开始使用以来已经得到了非常快速的发展。此种技术不仅仅被应用到电力方面,在人们的生活中也被广泛使用,提高了人们的生活质量和安全性。人们从传统的监测方式过渡到智能无限温度监测系统,实现了监测技术的跨越式发展。这种新型监测技术在电力设备中的应用取得了很好的效果,正逐步的在医疗、农业、生产等方面发展。
而在我国,真正在电力企业使用这种技术的时间比较晚,随着多年的努力终于实现了从实验到实践的过程。当前,智能无线温度监测技术应用之广自然不必阐述,这种监测设备能够被广泛应用,其最大的优点在于不需要布置线,节省了空间,提高了工作效率,操作起来也十分的简便。目前,我们正在努力使智能无线温度监测技术朝着滴能耗的方向发展,这也是目前的技术难题。相信在不久的将来,我国的智能无线温度监测技术会实现更好层次的发展。
参考文献
[1]高人伯.数据仓库和数据开采相结合的决策支持新技术[J].计算机世界.
[2]任玉珑,王建,牟刚.基于CA模型的电力设备全寿命周期成本研究[J].工业工程与管理,2008,(5):56-70.
2001年8月至2013年2月新乐市医院收治的泌尿系统感染患者100例。按照随机数字表法,将100例患者分为观察组和对照组,每组患者50例。观察组患者中,男23例、女27例,年龄23-74岁,平均(49.6±10.2)岁。对照组患者中,男24例、女26例,年龄25-78岁,平均(52.2±10.4)岁。两组患者基本资料比较差异无统计学意义(P>0.05),具有可比性。
1.2方法
采用无菌、干燥塑料杯采集所有受试对象清晨首次尿液标本,混合均匀后倒入已编号的玻璃试管中。对照组尿液标本采用干化学法进行检测。观察组尿液标本采用UF1000i型尿沉渣分析仪(日本Sysmex公司)检测白细胞数量(参考区间:小于20个/微升)。所有标本均进行微生物培养。上述检测方法均参照文献。
1.3统计学处理
采用SPSS20.0软件进行数据处理和统计学分析。计数资料以百分率表示,组间比较采用卡方检验。P<0.05为比较差异有统计学意义。
2结果
2.1尿白细胞检测结果
观察组患者尿白细胞数量分布为小于20个/微升25例、大于或等于20个/微升25例,所占比例分别为50.0%、50.0%%。对照组患者尿白细胞数量分布为小于20个/微升35例、大于或等于20-100个/微升15例,所占比例分别为70.0%、30.0%。观察组患者中,尿白细胞数量超过参考区间上限的患者所占比例大于对照组,组间比较差异有统计学意义(P<0.05)。
2.2尿微生物培养检测结果
观察组患者尿微生物培养阴性13例,阴性率为26.0%;微生物培养阳性24例,阳性率为48.0%;微生物培养可疑阳性3例,可疑率为6.0%。对照组患者尿微生物培养阴性21例,阴性率为42.0%;微生物培养阳性12例,阳性率为24.0%;微生物培养可疑阳性2例,可疑率为4.0%。观察组患者尿微生物培养阳性率明显高于对照组(P<0.05)。
3讨论
3.1尿沉渣检验及其优越性 在住院患者临床常规检查项目中,尿液生化检验具有极为重要作用和临床意义,能够通过测定尿液的理化性质和有形成分,有效诊断和鉴别诊断泌尿生殖系统、肝脏等脏器及系统的病变,同时也有助于判断疾病的预后。尿沉渣检测通常采用显微镜和流式细胞技术对尿液中的有形成分进行定性和定量检测。生理情况下,尿液中的有形成分,例如红细胞、白细胞、管型、细菌、结晶等均极为少见。多数泌尿系统疾病患者尿沉渣检测可检出结晶和上皮细胞,因此尿沉渣检测可用于疾病的初步诊断。尿沉渣检测主要是对尿液中的有形成分进行检验。载玻片法属于尿沉渣检测的传统方法,但存在操作标准难以统一、影响因素较多等不足,因此检测结果无法真实、客观地反映真实情况,检测结果见的可比性也相对较差。定量分析板法是用于尿沉渣检测的新方法,具有标准化及规范化程度高、操作简单、可重复性强及准确度高等优点,同时还能够对检测结果进行一次性处理,数据结果也具有较高的量化程度。
3.2泌尿系统感染尿沉渣检测应注意的问题
健康者尿液中没有红细胞或数量极少。当连续数次尿液高倍镜观察均检出1-2个红细胞时,可判为镜下血尿;肉眼观察即可发现尿液呈赭红色或洗肉水样,可判为肉眼血尿。一旦出现肉眼血尿,说明泌尿系统疾病的病情已十分严重,患者需接受进一步检查,以发现病因和明确诊断。在对泌尿系统感染患者进行尿沉渣检测时,应注意规范操作,以保证标本染色效果、防止标本污染,同时应采用标准的检查器材。在尿沉渣检测的临床应用中,通常采用晨尿标本,因为晨尿具有较高的浓缩度,能够更好地反映尿液中有形成分的实际情况。一般而言,尿沉渣检测应在标本采集后1H内进行,从而避免长时间保存标本对检测结果的影响,提高检测结果的准确性。
3.3泌尿系统感染尿沉渣检测的优点
泌尿系统感染患者的尿液中通常存在一定量的病原体和白细胞,因此对患者尿液中的细菌及白细胞进行检测对泌尿系统感染的临床诊断极为重要,也有助于判断疾病的病程。Sysmex公司UF1000i型尿沉渣分析仪同时采用了流式细胞技术及荧光染色法,因此检测白细胞、红细胞等有形成分的线性范围较大,准确度、灵敏度和检测效率也较高,有效避免了干化学法尿沉渣检测的不足,适用于泌尿系统感染患者早期诊断。本研究结果表明,与干化学法相比,采用UF1000i型尿沉渣分析仪对泌尿系统感染患者进行尿沉渣检测,可明显提高异常检出率(P<0.05)。
2软件概述
2.1总述
数据链测试系统软件安装在数据链测试系统的计算机系统上,驱动整个测试系统硬件系统,完成对测试工作的控制、数据分析处理、测试结果的判断与显示。为了给用户友好的操作界面,测试系统的计算机操作系统采用基于图形界面的WindowsXP操作系统。测试软件的开发,利用当今流行的可视化编程语言VisualC++6.0编制出一个完全图形化的用户操作界面,设计出操作方便的集成化数据链测试系统软件结构设计。
2.2功能简介
数据链测试系统软件主要实现以下功能:(1)与电子飞行仪表系统建立通信。(2)模拟指挥仪系统发送J链和U链的数据链信息;基于VC的数据链测试系统软件设计文/蔡军本文主要论述了在VC++6.0环境下进行的数据链测试系统软件设计。数据链测试系统软件是为测试、验证某电子飞行仪表系统的数据链功能而研制的软件,该软件在某综合测试系统上配套使用,是一款用于模拟大批量数据链信息,并实现与电子飞行仪表系统建立通信的软件。数据链测试系统软件可完全模拟指挥仪系统发送J和U数据链交联数据信息,并实时接收电子飞行仪表系统对自由文电信息的应答。摘要(3)接收电子飞行仪表系统的自由文电应答信息;(4)打印输出RS422数据的封装结果;(5)多视图方式实现双链多事件型数据界面的切换;(6)通过配置文件一次性装载、修改多批目标数据。
2.3层次划分
分层的设计思想有利于实现设计的模块化,减小模块间的耦合度,从而有利于提高系统可靠性和方便升级维护。从层次结构上讲,整个测试系统可以包括三个层次:硬件层、硬件接口层以及软件层,从软件设计的角度看,测试系统软件可认为由三部分组成:硬件驱动层、软件支持层和用户应用层。系统层次关系如图1所示。各层功能划分如下:
2.3.1硬件层即为了实现具体测试的各数据采集科和总线接口卡,它们将插在测试主机上,实现测试主机与被测系统的互连和通讯;
2.3.2物理接口层该层是软件和硬件的结合层,主要指主机内插卡提供的可通过ISA或PCI总线访问的板卡上的资源。
2.3.3硬件驱动层提供上层软件访问板卡硬件的方法,是软硬件通讯的桥梁。
2.3.4软件支持层在本系统里包括对硬件访问功能封装的API函数,以及对测试系统软件界面支持的导出类。对于硬件功能封装,也将按照接口统一的理念,比如初始化,中断句柄传递,重置,执行等等,以实现统一的函数调用;对于对测试系统软件界面支持的导出类,主要是为了实现界面增强的功能,使测试界面更加人性化,更直观。动态连接库的设计也是模块化设计思想的具体体现。
2.3.5用户应用层即提供给用户的控制测试流程和观察测试结果的可视化视图界面。为了方便用户使用,减少误操作以及无效操作,测试系统软件采用了多视图的构架,将视图客户区主要分成两个部分:视图选择按钮和为多视图,每次只有一个视图处于顶层激活状态。测试需求所要的所有功能都是在功能视图中完成,对于J链测试、U链测试等视图采用了基于FormView的视图类,对于测试结果则采用了ListView作为基类,对于帮助文档采用了HtmlView作为基类。多视图的形式解决了为了实现不同需求功能,而测试界面不同的要求,使测试界面更简洁,用户更容易操作,同时也使代码更加模块化。
3软件设计
3.1软件模块数据链测试系统软件采用模块化、分层的设计思路以保证系统本身的健壮性和有效管理繁杂的测试数据。测试软件具体功能由8个相互联系的模块实现,各模块具体组成和结构如图2所示。
3.2驱动程序模块驱动程序模块通过串口通信控件MSComm控件实现,本模块采用了事件驱动法,主要是考虑MSComm控件在接收到数据事件发生时能及时相应并获取缓冲区中的数据,而且可靠性高。
3.3应用程序类模块在MFC框架里,在工程的其他类实现文件CPP中,只需要利用AfxGetApp()函数就可以很方便的获得应用程序入口类指针。
3.4框架类模块在应用程序框架类中管理所有与测试框架有关的东西,包括加载菜单,加载工具栏,加载状态栏,组织多视图等等,同时还将管理中断的传递,以及测试板卡的指针(长整型)。在本测试软件中,主程序采用了MFC生成向导里面的单文档视图结构,为显示测试结果,视图基类为ClistView。不选择多文档视图,是因为在测试过程中,任何一个时刻J链数据发送、U链数据发送,这两者中只能一个处于激活状态,这是由测试需求中测试项目选择决定的,因此就不存在同时开启多个测试界面,用单文档视图结构是适合的。测试系统的菜单采用了动态连接库封装的CpicMenu类,以支持图形化菜单,工具栏为部分菜单功能的映射。在CstatusBar派生类中重载OnCreate函数,创建一个静态文本框用来显示图片,其中风格设置成WS_CHILD|WS_VISIBLE|SS_ICON|SS_CENTERIMAGE,表示静态文本框是子框架、可见、图表显示、图片居中。
3.5文档类模块文档和视图分离是MFC推荐的一种程序结构,在这种结构下,视图类处理跟界面有关的东西,而文档类处理跟存储有关的东西,两者通过GetDocument函数相关联。这样处理给程序编程带来了很多好处,首先这种方法强调了模块化的思想,两个类中分别处理各自的事情,而需要数据交换时再相关,而这种情况往往是打开文档或者保存文档时发生,因此提高了程序的模块化;其次两个类中都有很多各自的支持类和函数,特别是视图类,这样就便于各自编程,而不互相影响,最大方便的实现每个类。在本测试系统中也采取了这种文档视图分离的结构。
3.6视图类模块数据链测试系统软件将显示界面划分为三块,左1右2,左边加载的是具有Outlook风格的窗口,它可以通过鼠标单击选择右边是J链视图还是U链视图;右边上面是数据输出视图(J链或U链),右边下面是数据输入视图,它显示的电子飞行仪表系统的心跳和自由文电的应答信息。
4主要技术难点
4.1多线程技术数据链测试系统最大可支持的为同时在J链发送200批/400ms,U链发送100批/400ms,二十多个事件型数据不定期的发送,周期数据每批最多有65个字节,事件型数据最多有240个字节。要完成这么大数据量的输出,一般的在定时器里设置400ms时间输出是无法实现该功能的。为此该软件采用了多线程技术,分别创建了J链目标数据输出线程和U链目标数据输出线程,在线程里设置400ms等待时间。
4.2配置文件装载数据链测试系统有空中、水面、陆地、电子战等目标数据,该数据在J链时最多有200批目标,每批目标最多有30多个属性,包括目标编识号、目标属性、目标位置等,如此多的目标完全手动输入的话,测试工作量太大了。为此,该软件建立配置文件,测试人员可以通过修改配置文件,一次性将目标属性全部输入,同时能够将目标属性保存进配置文件,可供下次调用。
4.3数据结果的打印输出为了更好的调试产品软件,数据链测试系统软件里增加了输出RS422数据的打印显示功能,将已经输出的RS422数据按数据类型打印在TXT文档里,通过比较每个字节数据,可以很好的验证产品软件,协助产品软件自测试和软件排故。