时间:2023-04-28 09:20:25
引言:寻求写作上的突破?我们特意为您精选了4篇纳米技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
NanoscienceandNanotechnology–theSecondRevolution
Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.
Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor
I.引言
纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。
II.纳米结构的制备———首次浪潮
有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。
“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在Stranski-Krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100A/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mW)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如III组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。
很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。
在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。
III.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮
为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。
—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。
—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。
—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(Ti和Cr)、半导体(Si和GaAs)以及绝缘材料(Si3N4和silohexanes),还用在LB膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。
—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。
—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到Si3N4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出GaAs纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。
—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。
—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400Gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmX40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:
1)大的戳子尺寸
2)高图形密度戳子
3)低穿刺(lowsticking)
4)压印温度和压力的优化
5)长戳子寿命。
具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。IV.纳米制造所面对的困难和挑战
上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:
1.在一块模版上刻写图形
2.在过渡性或者功能性材料上复制模版上的图形
3.转移在过渡性或者功能性材料上复制的图形。
很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(RIE)或者电子回旋共振(ECR)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。
随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。
另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1À的精度或者更佳。透射电子显微术(TEM)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(STM)和原子力显微术(AFM)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。
2纳米技术在环境污染防治中的应用探讨
2.1在汽车尾气净化方面的应用
在目前汽车尾气处理方面,三效汽车尾气催化转换器运用得最为广泛,而遗憾的是,尽管其在汽车尾气处理方面发挥一定的作用,但其在汽车尾气处理方面也存在着诸多缺陷与不足。例如,这种催化转换器在使用时对燃油及发动机的设计有着较为严苛的要求;此外,随着贵金属价格的上涨,这种催化转换器的价格也将进一步上涨,这无疑将会在一定程度上提高厂家的生产成本,进而给厂家带来一定的压力;最后,这种贵金属转换器的使用也将会对环境造成一定的污染,进而给环境带来更大的压力。而要使这种状况得到进一步的改善,我们可以选用通过纳米技术研发的复合稀土化合物粉体作用净化汽车尾气的催化剂。这种纳米粉体较强的氧化还原性能不仅可以更为彻底地解决汽车尾气排放中有害气体对空气环境的污染,同时其在氧化有害气体的同时还能对这些有害气体进行还原,使之最终转化成对环境无害的相关气体再进行排放。另外,与其他催化剂相比,纳米粉体这种催化剂的吸附能力更强。
2.2在燃料脱硫方面的应用
燃料油使用过程中所产生的二氧化硫一直都是造成环境污染的重要因素之一,这些二氧化硫的排放主要来源于燃料油中的含硫化合物。为此,要进一步降低燃料使用过程中二氧化硫的排放量,在石油的提炼过程中我们就应采取一定的措施来降低其含硫比例和数量。而运用纳米技术研制出的纳米钛酸锌等粉体就可以在很大程度上实现脱硫的目的,可以说,这种粉体是一种较好的石油脱硫催化剂。经过这种纳米粉体的催化作用,燃料油中硫含量将不超过百分之零点零一,也就是说,经过纳米粉体的催化作用之后,燃料油中硫含量将符合相关国际标准。此外,在煤使用过程中,如果其得不到充分的燃烧,不仅会在一定程度上造成资源的浪费,同时还会产生二氧化硫等有害气体,进而造成空气环境的污染,而如果在煤燃烧过程中加入相应的纳米助燃催化剂就可以在很大程度上改善这种现状。
2.3在室内空气净化方面的应用
随着房屋装饰的蓬勃发展,室内涂料及油漆的用量越来越多,室内污染也随之越来越严重。为此,近年来,室内污染越来越受到人们的关注及重视。有关调查及研究证实,刚装修过的房屋内的有机物含量远远超过室外有机物含量,更有甚者超过工业区有机物的含量,而这些有机物含量大多数都会对人体造成一定的伤害,甚至一些有机物可能引发癌症的产生。而运用纳米技术研发的合成稀土光催化剂在降解这些有害物质方面则有着较为突出的表现,这其中有些纳米光催化剂可以使有害物质的降解程度达到百分之百。这种纳米光催化剂的运用原理主要是在光照环境下通过对室内有害物质的有效分解进而达到去除有害气体、改善室内空气质量的效果与目的。此外,这种纳米光催化剂的运用不仅可以在保持原有大气状态的前提下去除掉空气所含有的有害物质,同时还可以在一定程度上使得室内空气中的含氧量得到一定的提升。
2.4在净化水方面的应用
纳滤技术作为在环境污染水处理中一种较为成熟的技术,其在净化水方面发挥着不可替代的作用和功效。纳滤膜因其分离时所达到的渗透压低于发渗透膜,又被称为低压反渗透。纳滤膜使用的优点主要表现在其能够对大分子有机物和多价离子进行有效截留,同时实现小分子有机物和单价离子的顺利通过,这一特性主要得益于其膜表面或膜中间含有一定量的带电基团,进而使得其在某种程度上具备了荷电膜的相关特性。纳滤膜这些鲜明的特性使其在污水处理中具备了不可多得的优势,为此,其在工业污水处理中一直发挥着重要的作用,可以说,纳滤膜的研制及使用为环境污染的治理做出了突出的贡献。
2.5在固体废弃物处理方面的应用
与传统固体废弃物污染处理相比,纳米技术在固体废弃物处理方面的优势显而易见。首先,就分解速度而言,纳米处理剂对于固体废弃物的降解更为迅速,也就是说,运用纳米处理剂对固体废弃物进行分解将更加节约时间。有关实验证明,一些纳米材料降解固体废弃物的速度可以达到传统材料降解固体废弃物速度的十倍,由此可想而知纳米材料在固体废弃物分解方面的巨大优势。此外,运用纳米技术不仅可以将一些固体废弃物的杂质除去,同时还可以将其转换为一些可重复和循环利用的较细粉末。为此可以说,纳米技术在改善固体废弃物给环境造成污染方面发挥着积极的作用。
2.6在控制噪声方面的应用
尽管噪声污染一直不被人们所重视,但有关研究证明,一定的噪声污染将会在很大程度上给人体造成一定的伤害,更为严重地,甚至导致死亡现象。依据噪声污染的来源,我们可以运用纳米技术降低机械设备在运转过程中所产生的摩擦及撞击声。具体而言,我们可以通过对纳米剂的研制及运用使得相关机械设备的表面形成一种较为光滑的保护膜,在机械设备进行运转时发挥一定的作用,进而使得相应的摩擦系数进一步降低,从而达到减少摩擦力、降低噪音的目的,同时还使得相应机械设备的使用寿命在某种程度上进一步延长。
2纳米技术及纳米材料实际应用于水污染治理
水资源污染是我国社会发展过程中突出的环境污染问题,对我国经济发展造成了严重的影响。针对我国传统的水处理方法,采用纳米技术与纳米材料进行水污染治理可以有效改善我国水处理效率较低的情况,对我国纳米技术的发展与环境污染的治理起到了促进作用。无机污染废水是我国主要的水污染问题之一,这些污染物对人体具有极大的危害性,严重者会导致人体患上肝癌与局部肿瘤,属于重点防治问题。针对水中的重金属与无机离子,常规的治理方式往往无法保证污染处理的质量,对我国水污染治理造成一定的影响。在纳米技术实际应用的过程中,可以通过光催化技术及氧化技术,将水中的金属离子及无机离子进行有效的转化与清除,实现无机污水治理的效用。全新的纳米技术更可以将污水中的贵重金属完全提炼出来,达到变废为宝的作用,对我国环境污染与经济发展起到一定的促进作用。有机废水是我国污水治理过程中较为突出的问题,在应用纳米材料及纳米技术进行防治的过程中,可以利用纳米TiO2光催化技术对有机废水进行合理性的降解,使废水中的高浓度有机物得到净化,由于这一技术在实际应用过程中需要相应高频光系统来维持运作,因此,在利用纳米TiO2光催化技术进行有机污水处理的过程中,还可以使用大功率的苯灯电源,利用经济适用的太阳辐射电源来为纳米TiO2光催化技术提供高频光能,以此保证有机废水得到有效地降解与净化,改善我国有机废水污染问题。同时,还可以利用纳米TiO2对农药污染进行源头处治理,利用纳米TiO2的光催化活性对农药废水进行永久性降解,解决农药废水的污染问题。
指纹又称之为手纹,指的是基于人体手部皮肤的纹理。由于指纹的生理结构及特征体系具有高度的特殊性,因此在刑侦领域中作为一种物证,其优越性十分明显。就目前而言,传统的潜指纹鉴定方法还存在一些明显的缺陷,例如:不具灵敏性、不具准确性以及在信息提取过程中常常受到限制等。近年来,随着纳米技术的日益成熟与完善,相关研究者开始研究纳米技术在潜指纹显现方面的应用。鉴于此,本课题对“纳米技术在刑事侦查潜指纹鉴定中的应用”进行分析与探究具有尤为深远的重要意义。
一、传统潜指纹显现方法应用现状分析
显现潜指纹只要是采用一种管线或者一种物质,将其作用在基于指纹印痕的汗液等物质中,让难以发现的汗液指纹变成可以看见的图像。因为指纹中存在的课题表面物质其种类具有繁多性,所以对于指纹显现方法的灵活性有了很高的要求。并且,以显现原理的异同为依据,可将潜指纹显现方法归分为三类:物理吸附法、化学显现法及光学显现法。
物理吸附法主要是对汗液物质的黏附作用进行利用,并把另一种物质吸附至指纹纹线上面,进而达到显色的效果。如果潜指纹中残留的指纹物质大约为750ng的情况下,利用此方法获取清晰度极高的指纹显现。化学显现法主要是对某化学试剂进行利用,然后和潜指纹上的汗液物质作用产生化学反应,让无色指纹编程有色且可见的指纹。如果基于潜指纹当中的指纹植物质的含量大约在150ng的情况下,利用此方法能够获取清晰的可见指纹。光学先宪法主要是利用光线作用在潜指纹上,让其产生光化学效应,进一步获取清晰的显现指纹。
虽然在长期的演变及技术进步之下,传统潜指纹的显现方法得到了广泛的应用;但是,仍旧存在一些问题。首先,很多客观条件不具理想型的指纹样品的显现方法需要进一步完善,如人体皮肤潜指纹。其次,现有的显现试剂与显现方法存在一定程度上的安全隐患。如使用刷显法的情况下悬浮在空气里的粉尘,这类型的粉尘会对技术人员的身心健康造成极其严重的威胁。最后,使用一些有色试剂会对物证的原始状态遭遇严重破坏,还有一些试剂因为价格昂贵,所以在实际应用中不具推广使用的价值。基于上述问题,进行有效解决是非常有必要的,这样才能为刑事侦查的时效性与科学性提供基础与保障。
二、纳米技术在潜指纹显现中的应用分析
将纳米技术应用在潜指纹鉴定中,其效果显著,有多方面的优点,例如:高效、无毒害、无损耗且价格不具昂贵性等。不但能够使指纹鉴定工作对灵敏度的高要求得到满足,而且还使现状之下传统潜指纹的显现方法得到了有效解决。下面笔者便从光致发光显现潜指纹与金属纳米颗粒显现潜指纹两大方面对其应用进行分析与探究。
(一)光致发光显现潜指纹
光致发光显现潜指纹主要是把物理、化学及光学检验三者有机结合的一种方法。利用此方法,灵敏度能够达到单光子水平。把纳米材料和指纹内残留的氨基酸及油脂等物质相融合,将纳米材料的光致发光现象充分利用,进而对几何指纹物质之后的纳米材料发出的荧光进行检测,最终获取清晰度高的指纹图像。该过程便是光致发光显现潜指纹的基本原理。并且,该方法需同时具备两大要素:其一,物质需要能够对激发光进行吸收,这样才能为后面的荧光发射奠定基础。其二,发射光波的厂与激发光波的长需不相同,这样方可在背景情况下对指纹纹线进行识别。现状之下,此方法在检测上常应用到的是具备荧光特性的有机物质。但是,此类物质存在一些明显的缺陷,例如:激发光谱不够宽、成像很难分辨等。并且,它的荧光性能常受到环境因素的强烈干扰,其物质的抗光漂白能力与荧光稳定性极差。另外,它的成像发光时间短暂,使成像技术存在明显缺陷。鉴于上述种种缺陷,刑侦技术人员逐步将研究的重点方向转入了新型光致发光材料的开发及利用上面。
为了使锡箔纸上所留下的潜指纹图像信息能够清晰地识别出,澳大利亚有研究者研制出了一种纳米复合物粉末,该纳米复合物粉末主要是合成壳聚糖包被的硫化镉量子点。另外,硅纳米材料因有很大的负载容量与高比表面积,因此受到了国内外刑侦科学范畴内的广泛重视。英国有研究者将疏水性硅纳米颗粒作为骨架,以离子互相作用为基础,进而和各类染料及荧光探针有效融合,最终融合成一些掺杂硅纳米颗粒。通过实践表明,该掺杂硅纳米颗粒能够在潜指纹的显影实验当中获得优良的效果。美国有研究者将不相同的二氧化硅纳米颗粒掺杂荧光Eu3+感光剂复合物,进一步实施潜指纹显影测试。结果表明,基于四乙氧基硅烷,把1,10- 邻二947氮杂菲作为感光剂,其效果最优化的是金属箔、玻璃以及绿色树叶中的潜指纹显影,展现出了基于刑侦范畴内,镧系元素配体掺杂的干凝胶的应用能力水平。
(二)金属纳米颗粒显现潜指纹
金属材料主要是使金属粉末形式和指纹物质发生物理吸附及静电吸附。进一步使指纹图像信息中的非渗透性客体表面展现出较为新鲜的特质。但是对于粗糙客体表面及遗留时间长的潜指纹显现,其能力是具有局限性的。并且,粉末会致使工作人员的呼吸系统造成极大的威胁性。
随着纳米技术的进步,使得传统金属材料的应用范畴得到了进一步的扩大。在潜指纹的显现中,尝试应用了各种纳米材料,例如二氧化钛、氧化铁以及金属硫化物等。在尝试过程中也获取了一些优良的效果。在这其中,金属纳米颗粒因其稳定性及物理、化学性质较为突出,所以成为了现状之下潜指纹显现范畴应用最具广泛性的金属纳米材料。
金属纳米颗粒具有独特的光学特性,主要体现为以表面为基础的离子体共振。它的颜色可能跟随颗粒半径、形状及基于表面的修饰分子的改变,进而呈现出宽光谱变化,表现最明显的宽光谱变化是由蓝色转变为红色。英国有研究者以金属纳米颗粒的表面为基础,进而对可替宁抗体构建的纳米颗粒进行修饰,采用基于荧光标记中的二抗清晰显示出潜指纹图像。与此同时,还可对该指纹遗留者所遗留下来的基于汗液里的尼古丁水平进行检测,对指纹鉴定中纳米材料的功能性应用进行了扩展。
随着纳米技术的进步,潜指纹检测技术中极其重要的一个发展方向便是荧光检测。有些纳米材料具有优良的光学性质,例如:荧光激发谱较宽、发射谱窄且对称以及发射波长且可调节等。为此,此类纳米材料很好地补充了传统荧光物质所存在的缺陷性。还存在有些纳米材料或者复合材料,具备一系列奇特性能,例如:具有表面效应、小尺寸效应以及宏观量子隧道效应等。并且可在荧光的产生上增强其效应,使指纹显现能力的精准度及灵敏度得到很大程度上的提升。另外,潜指纹检测技术中还有一个重要的发展方向便是多功能集成化与基于设计过程中的一体化。如对抗体等生物分子进行结合,此类杂化纳米复合材料不但可以显现指纹光学图像,还能够进一步使基于特征身份的多方面鉴别得到实现。
三、米技术在刑事侦查潜指纹鉴定中应用所存在的问题及策略
就目前而言,对于纳米科技人才的培养及研究工作的投入,我国表现的尤为重视。并建立了多个纳米研究中心,取得了一系列关于纳米科技的科研成果。但是,对于纳米技术与潜指纹相几何的研究工作尚且还处于起始阶段,所存在的问题具有明显性。
一方面,符合指纹显现要求及条件的纳米材料还处于研究阶段。适应潜指纹显现的纳米材料需具备三个条件:(1)荧光性能具备优良特性。(2)能够在水相中稳定分散。(3)与指纹物质结合时快速且稳固。纳米晶体的种类及尺寸决定了荧光性能,对于水溶性与同指纹物质的亲和力则需要以表面修饰为途径,进而加以改善。对于理想化的纳米材料,需具备以下结构:(1)一个半导体核,例如:CdSe,它的直径巨额东了荧光的波长。(2)一个具备较大化的且带隙的半导体外壳,例如ZnS,它可使量子的产率得到提升。(3)一个亲水层,例如:巯基乙酸,则需要保证自身的水溶性。