动力系统分析范文

时间:2023-05-17 10:17:04

引言:寻求写作上的突破?我们特意为您精选了4篇动力系统分析范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

动力系统分析

篇1

近几十年来,汽车技术的发展和进步是以越来越多的电子技术应用紧密联系在一起的。电子技术在在汽车里的广泛应用提高了汽车的性能,有效降低了排放,有力地推进了汽车安全性和可靠性。而汽车电子的进步又总是和汽车半导体的进步密不可分。汽车电子的革新对半导体技术提出了新的挑战,而半导体技术的创新又为汽车电子的进步提供了必不可少的条件。动力系统作为汽车电子里最重要的核心系统之一,半导体技术更是起到了非常重要的作用。半导体器件作为动力系统的基本组成部分,直接影响到整个系统的规划,布局和系统控制战略。下面从微处理器,传感器和汽车功率器件等几个方面介绍半导体技术在汽车动力系统里的应用,创新以及对汽车半导体未来的展望。

随着汽车性能包括排放,可靠性和安全性的不断提高,一代又一代汽车的动力系统发生了非常大的变化。如果比较这一代又一代的汽车动力控制系统,我们会发现,传感器,执行器的数量明显的增加了,控制系统的复杂程度也大大提高了。

为了更有效控制的汽车动力系统,越来越多的传感器被应用到系统当中。传感器可以更准确的各种测量物理参数,以便于系统了解当前的状态,为准确有效的控制提供了可能。一代又一代微处理器的推出,为动力系统提供了越来越强的实时运算能力。半导体功率器件的不断更新和进步,使得执行器,如引擎点火,喷油嘴,结气门体等的控制更加准确和有效。

汽车微控制器的进步和革新

随着汽车应用中对于油耗,排放还有动力性能更高的要求,微处理器面临着巨大的挑战。为了适应以上提到的要求,微处理器在中央处理器运算能力,信号采集以及外设方面,以及对于执行器的控制能力方面都得到了很大的发展。

动力系统的革新和进步,往往和排放法规的推出联系在一起。作为动力系统革新的推动力,新的排放法规的出台总是推动着动力系统的更新换代。为了达到欧2的标准,8位微处理器就足以满足要求。英飞凌的8位微处理器C505今天依然被广泛的使用在这样的系统中。从90年代初开始,由于系统对于微处理器要求的提高,16位微处理器逐渐开始应用在动力系统当中。英飞凌16位微处理器C167以卓越的实时处理能力在市场上得到了广泛的认可。从而在汽车的嵌入式系统中得到了非常广泛的应用。

表:I型试验排放限值及法规执行日期。

图1:发动机及其管理系统的组成。

C167的内核以及设备都是为引擎应用量身定作的。比如用于产生控制信号的功能单元,用于优化点火以及喷油的模数/数模转换器等等都为引擎控制系统提供很多方便。正是由于这些独特的功能使得英飞凌16位单片机至今依然被广泛的应用于动力系统当中。

对于汽车里很多电子马达的控制,比如线控传动系统、启动马达系统或者电子增压涡轮控制,英飞凌8位C868或者是基于C166v2结构的XC164系列提供了最优的解决方案。随着要求的更进一步提高,32位微处理器越来越多的被应用于动力系统控制当中,英飞凌32位Tricore是这个领域的佼佼者。Tricore除了具有RISC结构以外,还集成一个数字信号处理模块。这样系统处理复杂信号的能力得到了大大的提高。

图2:微控制器性能对燃油消耗量的影响。

英飞凌推出的32位微处理器AUDO系列不仅仅具有32位的内核和DSP的处理芯片,同时还集成了一组精心设计的设备。这组外设是为动力系统专门优化的。外设有自己的外设管理模块。它可以独立的完成对于外设的控制。也就是说,外设比如时钟、模数/数模转换、CAN总线的管理都可以由外设管理器直接完成,不需要占用主处理的资源。主处理器程序不会被外设的中断打断。这样明显加强了微处理器的实时性能,系统的实时性能也就相应得提高。这对于动力系统来说是非常重要的。AUDO32位微处理器系列另一个很显著的特点是运行在中央处理器的应用软件和运行在外设管理器里的底层驱动可以分开独立运行。应用程序可以运行标准的操作系统比如OSEK上,而底层的驱动程序就是应用程序和外设之间的接口。AUDO系列微处理器还有一个独立工作的通用时钟阵列,具有完成复杂工作的能力。这种结构为汽车动力控制系统中的喷射控制,点火控制等提供了最优的解决方案。这一系列的外设取代原来要专用芯片才能完成的功能,从而起到简化系统结构,降低系统成本的作用。

汽车功率器件面临的挑战

控制系统最初主要是由分立元器件组成的。随着控制系统越来越复杂,尤其是对于系统诊断和保护功能的新的要求,以及系统把一些特定的功能分配到功率器件当中来完成,分立元件逐渐不能满足这样的要求。今天应用于汽车动力系统中的功率器件大都基于BCD技术(BipolarCMOSDMOS)。这种技术不仅有能够驱动大电流的DMOS结构,还可以集成复杂的逻辑和控制功能,比如过流、过温保护、诊断功能、准确的电流控制,等等。这些功能明显的加强了系统的可靠性,同时为OBD提供了很大的方便。越来越多的功能被集成在功率器件里,这也有效的优化了系统结构,进一步节省了系统的成本。虽然越来越多的智能芯片被运用于系统当中,分立元件以其特有的优势依然常常被应用于动力系统当中,尤其是对于功率损耗特别大的应用,比如柴油喷射系统中。

在动力系统当中,功率器件控制喷嘴,氧传感器加热器,点火装置,风扇以及各种各样的继电器等等。英飞凌提供一个非常全的产品系列,能够被运用于驱动这些负载。从2通道到18通道的低端多通道开关,驱动能力从50mA到10A,基于客户不同的需求,总是可以在这个标准产品系列中选取合适的产品。基于最新的技术和封装英飞凌仍然在不断完善这个驱动产品系列。在这个产品系列中,英飞凌非常重视模块性,可扩展性和灵活性。Lego和Flex产品系列很好的体现了这几个特性,产品系列中不同产品具有很好的兼容性。根据不同的需要,可以把一个或者几个产品结合起来使用。

由于小型汽车市场快速发展,对于汽车动力系统提出了新的挑战。这种挑战在动力系统结构,控制战略方面都产生了很深刻的影响。体现在汽车功率半导体上,系统需要高集成度的产品。由于小型汽车特殊性,为集成多种功率芯片功能于一个芯片当中提供了可能。这样做可以使系统结构紧凑,可靠性增强,相应的系统成本也会大幅的降低。当然这样的系统对于系统的散热处理,芯片的封装技术等方面提出了更加严格的要求。

BCD技术同时具有DMOS,CMOS,Bipolar结构,这使基于BCD的产品可以集成复杂的控制功能,这对动力系统的功能模块划分产生了影响。越来越多地功能在系统功能模块划分中被转移到功率器件当中。以前很多功能需要专用芯片来完成,或者需要占用很多微处理器资源,现在都被集成在功率器件当中。比如在汽油直喷系统中,系统需要一个PeakandHold的功能,这个功能就能够由基于BCD技术的功率半导体芯片非常有效的实现。智能功率半导体芯片还集成了保护和诊断功功能,可以自动诊断短路,过流,过温开路等错误。并且可以对这些错误状态做出相应的处理,比如说过温过流情况下的自动关断。这些诊断信息经过编码后,还可以通过串行通信接口和微处理器进行通信。

汽车传感器的广泛应用

最初传感器在汽车引擎控制里的应用是引擎点火器的控制,系统基于负载和转速来决定点火角度和点火时间。通过这种技术实现的点火控制很简单,已经远远不能适应今天越来越严格的油耗,排放以及动力性能的要求。在现代的系统中,除了负载,转速信号传感器以外,引擎温度,进气管温度,进气量,节气阀位置,氧传感器信号等等都必须被采集和处理。只有采集了这些信号,并对这些信号进行处理,引擎控制系统才能准确掌握引擎的状态,从而完成准确的控制。相比于被动传感器来说,半导体传感器拥有高准确度,高抗干扰性能和很好的耐久性能等优点。因而半导体传感器在汽车领域里逐渐取代被动传感器,得到了越来越广泛的应用。

半导体传感器不仅具有感知部件,还往往集成了很多别的功能,比如信号的预处理,诊断以及信号接口处理等等。英飞凌的集成压力和电磁传感器件,已经在汽车动力系统中,无数次的被应用于测量进气压力,大气压力,传动转速,爆震检测,节气门位置检测,油门位子检测等等。

图3:8缸发动机控制ECU基于英飞凌汽车电子器件。

总结和展望

在半导体芯片在动力总成系统中的应用方面,英飞凌做了许多系统上的工作。英飞凌应用32位单片机、智能功率器件以及部分传感器,成功研制一款8缸发动机的控制器ECU,可以控制所有实际的发动机管理系统负载,并且在这款ECU中不仅仅实现了发动机系统的管理,而且集成了自动变速箱的控制,因此这块ECU被称为动力总成系统电控单元。通过图3、图4可以看到该电控单元的框图,其中主要分为以下几个部分:

1.计算单元;

2.电源单元;

3.传感器以及传感器信号调理单元;

4.发动机管理系统负载驱动单元;

5.自动变速箱系统负载驱动单元;

6.总线传输单元;

7.调试接口单元;

8.发动机及变速箱模拟单元,包括爆震信号模拟等。

图4:8缸发动机控制ECU框图。

通过这一综合的电控单元,可以十分轻松的调试系统,为32位的高速的发动机管理系统以及变速箱管理体统的开发提供了有力的支持。这个系统的主要器件都是基于英飞凌的产品,体现了英飞凌完整的汽车电子产品线。

半导体产品:微处理器,功率芯片和传感器组成了整个动力电子控制系统。汽车电子动力系统对于高集成度的要求,以及控制系统的复杂性的提高必然会导致半导体技术的进一步革新,和一系列新的产品的出现。

在微处理器方面英飞凌将继续上面介绍的AUDO构架,进一步完善产品线。基于AUDO构架卓越的运算能力以及优秀的实时处理能力,英飞凌会推出低端32位微处理器,以适应不同市场的需求。AUDO微处理器的主频将进一步提高。外设功能也将得到进一步的加强。并且AUDO微处理器非常重视可扩展性和软件的兼容性,这为软件的重复使用创造了很好的条件。

篇2

中图分类号:U46 文献标识码:A 文章编号:1672-3791(2017)03(b)-0059-04

现代社会对汽车节能、环保的要求日益增高,研发节能、环保的新型汽车,成为汽车行业的一种发展趋势。但因当前电池技术和工艺瓶颈的限制,纯电动汽车暂时还无法完全取代燃油发动机的汽车[1]。拥有内燃机和电动机两种动力的混合动力汽车,很好地兼顾了电动汽车和传统汽车的优点,从而成为更加务实的选择。混合动力汽车除发动机、电动机、蓄电池、变速器等主要部件外,更重要的是实现能量在各部件间合理分配以提升整车效率的电控系统,所以研究混合动力汽车的电控系统对推动混合动力汽车的发展具有重要的现实意义。

1 混合动力汽车结构概述

混合动力汽车继承和沿用了大部分内燃机汽车的装置和系统,将内燃机、电动机、能量存储装置(蓄电池)有机地组合在一起,驱动系统一般有串联型、并联型和混联型三种布置形式[2],分别如图1、2、3所示。串联型混合动力汽车的发动机可始终在最佳的工作区域内稳定运行,具有良好的经济性和排放性。特别是在汽车低速运行工况时可关闭发动机,只利用蓄电池向外输出功率,降低汽车的排放污染;并联型混合动力汽车的发动机运行工况受汽车行驶工况的影响比较大,适合于在中、高速稳定工况下行驶。而在其他工况下发动机不在最佳工作区域内运行,发动机的燃油经济性和排污指标不如串联型。混联型的布置形式综合了串联型和并联型的共同优点,在汽车低速行驶时,动系统主要以串联方式工作;当汽车在中、高速稳定行驶时,则以并联方式工作。

2 混合动力汽车电控系统类型及结构

随着电控系统的广泛应用,汽车的电控系统已由传统的集中控制系统向现场总线构成的智能化网络系统转化,特别是采用CAN总线网络控制系统的电控技术已成为当今汽车业界的先进技术。混合动力汽车同时拥有内燃机和电动机两种动力,电子控制装置复杂,检测及交换的数据量较大,只有应用高效的电控系统才能实现两种动力的最佳匹配,发挥混合动力的优势[3]。因此,CAN总线构成的电控系统是实现混合动力汽车两种动力合理有效匹配的可靠手段。

为解决能源的协调问题,一种基于CAN总线结构的电控系统在混合动力汽车上得到了广泛应用,其主要由中央控制器、发动机控制系统、电机控制系统及信号反馈和检测装置等几部分组成,具体为整车控制器、发动机电控单元、变速器控制单元、电机控制单元、电池管理系统、高压管理系统、ABS控制单元、仪表及显示系统、监控/标定系统等[4]。整车控制器与各电控子单元、驾驶员及整车共同构成一个闭环控制系统,该系统通过CAN总线从各类传感器上获取驾驶员的操作指令和车辆的运行状态,再通过CAN总线实现各控制单元间信息的共享、交换和传输,最终完成整车动力系统的能量分配。整个控制系统的结构示意图如图4所示,其中驾驶员的各项操作指令位于顶层,整车控制器在中间层,底层为各子控制单元[5]。

3 电控系统各单元控制功能

3.1 整车控制器(VSC)

整车控制器(VSC,Vehicle System Controller),是整个电控系统的核心,具有管理和控制整个车辆的重要功能。主要完成车辆信息采集和驾驶员意图的判别,对采集到的点火、踏板及档位信号、车速、发动机和电动机扭矩和转速、电池电荷状态(SOC)、故障码等主要信息进行迅速处理,并通过内部相应的控制策略,分析计算出发动机、电动机等当前的状态参数,得出满足最佳需求的功率或扭力矩分配、最佳的充电功率、自动变速器的最佳档位控制等,控制车辆的实际运行[6]。当电控系统出现故障时,它会及时对故障进行处理,保证系统的安全运行。

3.2 发动机电控单元(ECU)

汽车发动机电子控制单元(ECU)是发动机控制系统的核心,它根据从各种传感器接受到的信息来控制各种工况下的燃油喷射时刻、喷射量和点火时刻(汽油机),向发动机提供最佳空燃比的混合气,使发动机始终处在最佳工作状态,提高发动机的动力性、经济性和排放性。它通过CAN总线接收整车控制器发出的对发动机的命令,经判断处理后对发动机进行控制,同时也可以通过通讯接口与车内其他电子控制单元进行数据通讯。

3.3 电机控制单元(MCU)

电机控制单元由微处理器、程序和数据存储器、驱动和接口电路及电机调速控制等几部分组成。它不仅能够通过CAN总线接收整车控制器发出的对电动机的控制指令并及时执行,以控制电机的发电与电动状态的切换、电机转速的快慢及输出力矩的正负,还可以向CAN总线发送电机的运转状态,比如实际扭矩、转速、充放电电流、故障码等。同时该控制单元的故障自诊断功能还可保证当电机出现故障时能够自行处理,以保障车辆的行驶安全。

3.4 电池管理系统(BMS)

电池管理系统(BMS)实时监测电池的电压、容量、充放电电流、电池的SOC值,并将这些信息通过CAN总线发送到整车控制器进行处理,以提升电池性能和寿命[7]。同时,BMS还要对电池系统内单体电池的电荷均衡进行监测和控制,以保证电池组正常工作,也会将电池组的SOC值传送到显示系统进行显示。

3.5 高压管理系统

高压管理系统主要负责高压用电设备的上、下电管理,监测高压设备的工作状态,并通过CAN总线向整车控制器报告。遇到故障或紧急情况时采取保护措施,减小电流冲击,防止设备损坏[8]。

3.6 仪表及显示系统

混合动力汽车的仪表及显示系统除动态显示车速、发动机转速、里程、水温、油量等传统信息外,还能接收CAN总线上的讯号,额外显示工作模式、电池SOC值、充放电电流、电机转速等必要信息。驾驶员能够通过仪表及车载显示系统实时了解车辆的运行状态,因而该系统是整个电控系统的眼睛。

3.7 监控与标定系统

该系统最初用来完成整车控制系统开发、调试与检验。在实现其基本功能后,监控与标定系统一方面可以准确及时地检测发动机转速、车速、节气门负荷、真空度、冷却水温、档位、空调状态等车辆参数,并通过CAN总线送往整车控制器进行决策,送往显示系统进行显示;另一方面又可以通过标定系统的接口来优化各个参数,使车辆运行达到最佳效果。

3.8 电动助力转向(ESP)及防抱死制动系统(ABS)

电动助力转向系统(ESP)通过传感器监测驾驶员施加在方向盘上的力矩和车速,然后根据控制单元内置的算法来控制转向助力电机的运行,向驾驶员提供合适的转向助力力矩;防抱死制动系统(ABS)在车辆制动时,监测车轮的滑移率来自动控制制动器制动力的大小,防止车轮抱死,以保证车轮与地面间的最大附着力。当ABS作用时会通过CAN总线网络向其他控制单元告知其状态,从而触发VSC相应的管理模块,终止制动能量回馈功能,以保证车辆安全。

4 电控系统的控制流程与特点

整车控制器(VSC)根据汽车当前的实际运行状态及驾驶员的操作意图确立合理的运行模式(即发动机驱动与电机驱动模式的选择),以保证车辆的驾驶性能。在选定的运行模式下,VSC可通过CAN总线与各子控制单元或系统进行通讯。整个工作过程中,各子控制单元或系统分别采集各自控制对象的信号和动态参数,通过现场总线发给VSC,VSC利用这些信息,通过控制策略的运算来进行信号流和能量流的处理和分配工作,并通过现场总线向各子控制单元或系统发出执行指令。各子控制单元或系统接受执行指令,并根据控制对象的当前动态参数,再发出对控制对象的控制命令。例如,VSC根据采集到的参数和运算策略计算出目标挡位后,会向变速器控制单元(TCU)发送换挡命令,TCU根据指令将控制变速器的执行部件完成挡位变换。

电控系统由主控制单元和子控制单元组成,整体是一个高度集成的控制网络。整车控制器(VSC)作为主控单元,负责管理各个子控制单元的能量分配和子部件系统执行元件的工作,显现了很强的集成性能[9]。而子控制单元将控制任务模块化,每个模块都有一个控制单元来接管,降低了系统的故障率,提高了系统的运行可靠性。不仅如此,这种面向对象设计的分布式系统还提高了系统的可扩展性,便于建设、运行和维护。

5 结语

混合动力汽车有效减轻了能源与环保问题,发展前景十分广阔。电控系统肩负着在不同运行工况和驾驶习惯下提升混合动力汽车动力性、燃油经济性和排放性的责任,同时还要兼顾电池寿命、整车部件的安全可靠性及成本,可谓任道而重远。混合动力汽车的电控系统还需在当前的框架之下不断完善其控制过程,来推动汽车工业的发展,这是我们要为之努力奋斗的方向。

参考文献

[1] 刘春娜.混合动力汽车用电池的市场前景[J].电源技术,2013,37(9):1506.

[2] 于秀敏,曹珊,李君,等.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006,42(11):10-16.

[3] 田江学,屈卫东.CAN总线在混合动力汽车中的应用[J].计算机工程,2003,29(19):174.

[4] 何晶.混合动力汽车电控系统的设计[D].大连:大连理工大学,2005.

[5] 李胜利.混合动力汽车动力总成系统分析与控制策略制定[D].沈阳:东北大学,2008.

[6] 陈素梅,王智晶,龚军.混合动力汽车整车控制系统分析研究[C]//河南省汽车工程科学技术研讨会.2013:289.

篇3

汽车转向系统是用来改变或保持汽车行驶方向的机构。其性能直接关系到汽车的操纵稳定性和舒适性。汽车转向系统的发展历经了无助力转向系统、液压助力转向系统(HPS)、电控液压助力转向系统(EHPS)、电动助力转向系统(EPS)、线控转向系统(SBW)。电动助力转向相比于液压助力转向,改善了汽车的转向助力特性,减少了能量消耗,结构紧凑,质量降低,维护方便,对环境的影响减少。近20几年来,随着电子技术的发展,传感器、电机及其控制理论的发展和完善,EPS技术日趋完善,EPS的助力型式也从低速范围助力型向全速范围助力型发展,并且其控制形式与功能也进一步加强。新一代的EPS则不仅在低速和停车时提供助力,而且还能在高速时提高汽车的操纵稳定性。主要体现在模型创新与试验创新2个方面。

1 EPS系统的基本结构

根据助力电机布置位置的不同,电动助力转向分为转向齿条助力式、转向齿轮助力式、转向轴助力式,如图1所示。

参考文献:

[1] Yuji Kozaki,GoroHirose, Shozo Sekiya. Electric Power steering [J]. Motor & Control,1999:449-459

[2] 余志生.汽车理论(第三版) [M] .北京:机械工业出版社,2002.

[3] Liao Y G, Du H I. Modeling and analysis of electric power steering system and its effect on vehicle dynamic behavior [J]. International journal of vehicle autonomous systems (S1471-0226), 2003, 1(3):351-362.

[4] Ji-Hoon Kim, Jae-Bok Song. Control logic for an electric power steering system using assist motor [J]. Mechatronics (S0957-4158), 2002, 12(3): 447-459.

[5] 徐建平, 何仁, 苗立冬, 等. 电动助力转向系统的建模与仿真分析[C]//中国汽车工程学会2003年学术年会SAE-C2003E206: 654-661.

Dynamics Modeling and Analysis of Electric Power Steering

Ding Zhigang,Zhong Yong

篇4

1 概述

仪征化纤热电生产中心#1炉甲乙侧两台动态分离器于2012年安装完成,投运后未能达到预期效果,其主要表现为制粉系统出力低以及出粉细度调节性较差等情况。2013年期间,对这两台分离器进行了一系列实验、论证,并进行了初步优化,但结果并不理想。2013年7月下旬,对甲侧动态粗粉分离器进行了部分改动,在动静叶之间增加一挡板。并在8月中旬又将回粉锥的间隙调小,但回粉量大的情况还是没有得到根本改善。之后,根据长期的试验、调整及数据分析,找到了造成动态分离器回粉率高、出力不理想的根本原因,即静叶片分离作用过强,而动叶轮分离器作用相对较弱。最后,根据试验和三维模拟的结果及分析,提出以下的改造方案并实施。

2 具体整改措施

(1)增大动叶轮的尺寸。包括直径和高度。目的是增强动叶轮的分离作用,同时可使动叶轮转速与出粉细度有明显的线性关系。(2)安装导流板。对煤粉起到均流作用。可减少小颗粒回粉率,同时提高大颗粒回粉率,从而提高回粉的准确性。(3)去除径向叶片。削弱静叶片的分离作用,相对进一步加强动叶的分离器作用。

3 调试数据分析

2014年9月10日~2014年9月15日,对#1炉甲侧制粉系统进行了调试。从出粉细度及可调性、出粉均匀性指数、制粉出力等多方面的数据进行了试验,并得到了全面的定性和定量的数据结果。由此,可对甲侧动态粗粉分离器改造的具体效果进行以下判定。

3.1 细度调节性的改善(图2)

可见,本次改造后,主要由于动叶轮尺寸增加,导致颗粒受到的离心力增加。出粉细度的调节性能明显增强且线性关系明显。这样的好处包括:(1)对于不同煤种,能够方便的通过细度调节,使出粉细度始终在经济情况下运行;(2)由于出粉细度调节范围更广,尤其是可以调到很细的这种特点,可以完全适应低氮燃烧器改造后的需求。当然,更低的细度R90是以损失部分出力为代价的。鉴于目前#1炉的运行情况,建议排粉机电流保持在16.5~17A,分离器转速维持在20-30rpm的运行方式,此时对应的出粉细度R90=25.2-23.2%,均匀性指数n≥1.2。下述的出力试验也是在该工况下进行的。

3.2 出力的提高

3.2.1 出力试验

2014年9月15日进行了如下试验:将#1炉负荷稳定在220t/h(以下粉位为甲乙两侧平均值)

(1)从上午9:55到下午13:15这段时间(200分钟),甲侧乙侧同时运行,观察#1炉粉仓的粉位变化,从3.8m涨到4.3m;(2)从下午13:15到下午15:10这段时间(115分钟),只运行甲侧,观察#1炉粉仓的粉位变化,从4.3m降到3.3m;(3)从下午17:30到下午19:30这段时间(120分钟),只运行乙侧,观察#1炉粉仓的粉位变化,从4m降到2.9m;从上述的数量关系可以列出含三个未知数的方程组:

式中:x-单位时间内甲侧磨煤机的出力换算成粉位的变化,单位m/min;y-单位时间内乙侧磨煤机的出力换算成粉位的变化,单位m/min;z-单位时间内220t/h负荷下,对于的煤粉消耗量换算成粉位的变化,单位m/min;

最后计算得到(x+y)/z=1.123,也就是说甲乙两侧同时运行后,能够供应的锅炉负荷为:215×1.123=241(t/h)。

相比改造之前甲乙两侧同时运行可维持的最大负荷210t/h,制粉系统的出力提高了:(241-210)/210×100%=13.8%

3.2.2 回粉比例减少。同样在上述工况下,对#1炉甲侧的进粉、出粉和回粉进行取样并化验细度,并和改造前(2013年8月)数据进行对比(表1)。

回粉比例即回粉占进粉的质量比。回粉比例减少23.2%,意味着有23.2%的煤粉不需要回到磨煤机重复研磨,做无用功。出力也就相应的提高23.2%。考虑到改造后的出粉细度R90比改造前的出粉细度R90还要小,所以在相同出粉细度情况下,甲侧磨煤机提高的制粉出力是大于23.2%的。

4 结束语

(1)本次改造实现了预期的效果,达到了改造的目的。一方面,制粉系统出力有了显著提高,单是甲侧的改造,就使得#1炉总的制粉出力相比改造前提高了13.8%。另一方面,出粉细度的调节性能显著增强,且线性关系明显。(2)鉴于试验的结果和#1炉的运行情况,建议#1炉甲侧制粉系统按照如下方式运行:排粉机电流16~17A,分离器转速20~30rpm。此时对应的出粉细度R90在25.2%~23.2%、均匀性指数达到n≥1.2、制粉出力高(甲乙两侧同时运行,能满足241t/h负荷对于的煤粉消耗)、制粉单耗低。

参考文献

友情链接