时间:2023-05-17 10:17:04
引言:寻求写作上的突破?我们特意为您精选了12篇动力系统分析范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
近几十年来,汽车技术的发展和进步是以越来越多的电子技术应用紧密联系在一起的。电子技术在在汽车里的广泛应用提高了汽车的性能,有效降低了排放,有力地推进了汽车安全性和可靠性。而汽车电子的进步又总是和汽车半导体的进步密不可分。汽车电子的革新对半导体技术提出了新的挑战,而半导体技术的创新又为汽车电子的进步提供了必不可少的条件。动力系统作为汽车电子里最重要的核心系统之一,半导体技术更是起到了非常重要的作用。半导体器件作为动力系统的基本组成部分,直接影响到整个系统的规划,布局和系统控制战略。下面从微处理器,传感器和汽车功率器件等几个方面介绍半导体技术在汽车动力系统里的应用,创新以及对汽车半导体未来的展望。
随着汽车性能包括排放,可靠性和安全性的不断提高,一代又一代汽车的动力系统发生了非常大的变化。如果比较这一代又一代的汽车动力控制系统,我们会发现,传感器,执行器的数量明显的增加了,控制系统的复杂程度也大大提高了。
为了更有效控制的汽车动力系统,越来越多的传感器被应用到系统当中。传感器可以更准确的各种测量物理参数,以便于系统了解当前的状态,为准确有效的控制提供了可能。一代又一代微处理器的推出,为动力系统提供了越来越强的实时运算能力。半导体功率器件的不断更新和进步,使得执行器,如引擎点火,喷油嘴,结气门体等的控制更加准确和有效。
汽车微控制器的进步和革新
随着汽车应用中对于油耗,排放还有动力性能更高的要求,微处理器面临着巨大的挑战。为了适应以上提到的要求,微处理器在中央处理器运算能力,信号采集以及外设方面,以及对于执行器的控制能力方面都得到了很大的发展。
动力系统的革新和进步,往往和排放法规的推出联系在一起。作为动力系统革新的推动力,新的排放法规的出台总是推动着动力系统的更新换代。为了达到欧2的标准,8位微处理器就足以满足要求。英飞凌的8位微处理器C505今天依然被广泛的使用在这样的系统中。从90年代初开始,由于系统对于微处理器要求的提高,16位微处理器逐渐开始应用在动力系统当中。英飞凌16位微处理器C167以卓越的实时处理能力在市场上得到了广泛的认可。从而在汽车的嵌入式系统中得到了非常广泛的应用。
表:I型试验排放限值及法规执行日期。
图1:发动机及其管理系统的组成。
C167的内核以及设备都是为引擎应用量身定作的。比如用于产生控制信号的功能单元,用于优化点火以及喷油的模数/数模转换器等等都为引擎控制系统提供很多方便。正是由于这些独特的功能使得英飞凌16位单片机至今依然被广泛的应用于动力系统当中。
对于汽车里很多电子马达的控制,比如线控传动系统、启动马达系统或者电子增压涡轮控制,英飞凌8位C868或者是基于C166v2结构的XC164系列提供了最优的解决方案。随着要求的更进一步提高,32位微处理器越来越多的被应用于动力系统控制当中,英飞凌32位Tricore是这个领域的佼佼者。Tricore除了具有RISC结构以外,还集成一个数字信号处理模块。这样系统处理复杂信号的能力得到了大大的提高。
图2:微控制器性能对燃油消耗量的影响。
英飞凌推出的32位微处理器AUDO系列不仅仅具有32位的内核和DSP的处理芯片,同时还集成了一组精心设计的设备。这组外设是为动力系统专门优化的。外设有自己的外设管理模块。它可以独立的完成对于外设的控制。也就是说,外设比如时钟、模数/数模转换、CAN总线的管理都可以由外设管理器直接完成,不需要占用主处理的资源。主处理器程序不会被外设的中断打断。这样明显加强了微处理器的实时性能,系统的实时性能也就相应得提高。这对于动力系统来说是非常重要的。AUDO32位微处理器系列另一个很显著的特点是运行在中央处理器的应用软件和运行在外设管理器里的底层驱动可以分开独立运行。应用程序可以运行标准的操作系统比如OSEK上,而底层的驱动程序就是应用程序和外设之间的接口。AUDO系列微处理器还有一个独立工作的通用时钟阵列,具有完成复杂工作的能力。这种结构为汽车动力控制系统中的喷射控制,点火控制等提供了最优的解决方案。这一系列的外设取代原来要专用芯片才能完成的功能,从而起到简化系统结构,降低系统成本的作用。
汽车功率器件面临的挑战
控制系统最初主要是由分立元器件组成的。随着控制系统越来越复杂,尤其是对于系统诊断和保护功能的新的要求,以及系统把一些特定的功能分配到功率器件当中来完成,分立元件逐渐不能满足这样的要求。今天应用于汽车动力系统中的功率器件大都基于BCD技术(BipolarCMOSDMOS)。这种技术不仅有能够驱动大电流的DMOS结构,还可以集成复杂的逻辑和控制功能,比如过流、过温保护、诊断功能、准确的电流控制,等等。这些功能明显的加强了系统的可靠性,同时为OBD提供了很大的方便。越来越多的功能被集成在功率器件里,这也有效的优化了系统结构,进一步节省了系统的成本。虽然越来越多的智能芯片被运用于系统当中,分立元件以其特有的优势依然常常被应用于动力系统当中,尤其是对于功率损耗特别大的应用,比如柴油喷射系统中。
在动力系统当中,功率器件控制喷嘴,氧传感器加热器,点火装置,风扇以及各种各样的继电器等等。英飞凌提供一个非常全的产品系列,能够被运用于驱动这些负载。从2通道到18通道的低端多通道开关,驱动能力从50mA到10A,基于客户不同的需求,总是可以在这个标准产品系列中选取合适的产品。基于最新的技术和封装英飞凌仍然在不断完善这个驱动产品系列。在这个产品系列中,英飞凌非常重视模块性,可扩展性和灵活性。Lego和Flex产品系列很好的体现了这几个特性,产品系列中不同产品具有很好的兼容性。根据不同的需要,可以把一个或者几个产品结合起来使用。
由于小型汽车市场快速发展,对于汽车动力系统提出了新的挑战。这种挑战在动力系统结构,控制战略方面都产生了很深刻的影响。体现在汽车功率半导体上,系统需要高集成度的产品。由于小型汽车特殊性,为集成多种功率芯片功能于一个芯片当中提供了可能。这样做可以使系统结构紧凑,可靠性增强,相应的系统成本也会大幅的降低。当然这样的系统对于系统的散热处理,芯片的封装技术等方面提出了更加严格的要求。
BCD技术同时具有DMOS,CMOS,Bipolar结构,这使基于BCD的产品可以集成复杂的控制功能,这对动力系统的功能模块划分产生了影响。越来越多地功能在系统功能模块划分中被转移到功率器件当中。以前很多功能需要专用芯片来完成,或者需要占用很多微处理器资源,现在都被集成在功率器件当中。比如在汽油直喷系统中,系统需要一个PeakandHold的功能,这个功能就能够由基于BCD技术的功率半导体芯片非常有效的实现。智能功率半导体芯片还集成了保护和诊断功功能,可以自动诊断短路,过流,过温开路等错误。并且可以对这些错误状态做出相应的处理,比如说过温过流情况下的自动关断。这些诊断信息经过编码后,还可以通过串行通信接口和微处理器进行通信。
汽车传感器的广泛应用
最初传感器在汽车引擎控制里的应用是引擎点火器的控制,系统基于负载和转速来决定点火角度和点火时间。通过这种技术实现的点火控制很简单,已经远远不能适应今天越来越严格的油耗,排放以及动力性能的要求。在现代的系统中,除了负载,转速信号传感器以外,引擎温度,进气管温度,进气量,节气阀位置,氧传感器信号等等都必须被采集和处理。只有采集了这些信号,并对这些信号进行处理,引擎控制系统才能准确掌握引擎的状态,从而完成准确的控制。相比于被动传感器来说,半导体传感器拥有高准确度,高抗干扰性能和很好的耐久性能等优点。因而半导体传感器在汽车领域里逐渐取代被动传感器,得到了越来越广泛的应用。
半导体传感器不仅具有感知部件,还往往集成了很多别的功能,比如信号的预处理,诊断以及信号接口处理等等。英飞凌的集成压力和电磁传感器件,已经在汽车动力系统中,无数次的被应用于测量进气压力,大气压力,传动转速,爆震检测,节气门位置检测,油门位子检测等等。
图3:8缸发动机控制ECU基于英飞凌汽车电子器件。
总结和展望
在半导体芯片在动力总成系统中的应用方面,英飞凌做了许多系统上的工作。英飞凌应用32位单片机、智能功率器件以及部分传感器,成功研制一款8缸发动机的控制器ECU,可以控制所有实际的发动机管理系统负载,并且在这款ECU中不仅仅实现了发动机系统的管理,而且集成了自动变速箱的控制,因此这块ECU被称为动力总成系统电控单元。通过图3、图4可以看到该电控单元的框图,其中主要分为以下几个部分:
1.计算单元;
2.电源单元;
3.传感器以及传感器信号调理单元;
4.发动机管理系统负载驱动单元;
5.自动变速箱系统负载驱动单元;
6.总线传输单元;
7.调试接口单元;
8.发动机及变速箱模拟单元,包括爆震信号模拟等。
图4:8缸发动机控制ECU框图。
通过这一综合的电控单元,可以十分轻松的调试系统,为32位的高速的发动机管理系统以及变速箱管理体统的开发提供了有力的支持。这个系统的主要器件都是基于英飞凌的产品,体现了英飞凌完整的汽车电子产品线。
半导体产品:微处理器,功率芯片和传感器组成了整个动力电子控制系统。汽车电子动力系统对于高集成度的要求,以及控制系统的复杂性的提高必然会导致半导体技术的进一步革新,和一系列新的产品的出现。
在微处理器方面英飞凌将继续上面介绍的AUDO构架,进一步完善产品线。基于AUDO构架卓越的运算能力以及优秀的实时处理能力,英飞凌会推出低端32位微处理器,以适应不同市场的需求。AUDO微处理器的主频将进一步提高。外设功能也将得到进一步的加强。并且AUDO微处理器非常重视可扩展性和软件的兼容性,这为软件的重复使用创造了很好的条件。
中图分类号:U46 文献标识码:A 文章编号:1672-3791(2017)03(b)-0059-04
现代社会对汽车节能、环保的要求日益增高,研发节能、环保的新型汽车,成为汽车行业的一种发展趋势。但因当前电池技术和工艺瓶颈的限制,纯电动汽车暂时还无法完全取代燃油发动机的汽车[1]。拥有内燃机和电动机两种动力的混合动力汽车,很好地兼顾了电动汽车和传统汽车的优点,从而成为更加务实的选择。混合动力汽车除发动机、电动机、蓄电池、变速器等主要部件外,更重要的是实现能量在各部件间合理分配以提升整车效率的电控系统,所以研究混合动力汽车的电控系统对推动混合动力汽车的发展具有重要的现实意义。
1 混合动力汽车结构概述
混合动力汽车继承和沿用了大部分内燃机汽车的装置和系统,将内燃机、电动机、能量存储装置(蓄电池)有机地组合在一起,驱动系统一般有串联型、并联型和混联型三种布置形式[2],分别如图1、2、3所示。串联型混合动力汽车的发动机可始终在最佳的工作区域内稳定运行,具有良好的经济性和排放性。特别是在汽车低速运行工况时可关闭发动机,只利用蓄电池向外输出功率,降低汽车的排放污染;并联型混合动力汽车的发动机运行工况受汽车行驶工况的影响比较大,适合于在中、高速稳定工况下行驶。而在其他工况下发动机不在最佳工作区域内运行,发动机的燃油经济性和排污指标不如串联型。混联型的布置形式综合了串联型和并联型的共同优点,在汽车低速行驶时,动系统主要以串联方式工作;当汽车在中、高速稳定行驶时,则以并联方式工作。
2 混合动力汽车电控系统类型及结构
随着电控系统的广泛应用,汽车的电控系统已由传统的集中控制系统向现场总线构成的智能化网络系统转化,特别是采用CAN总线网络控制系统的电控技术已成为当今汽车业界的先进技术。混合动力汽车同时拥有内燃机和电动机两种动力,电子控制装置复杂,检测及交换的数据量较大,只有应用高效的电控系统才能实现两种动力的最佳匹配,发挥混合动力的优势[3]。因此,CAN总线构成的电控系统是实现混合动力汽车两种动力合理有效匹配的可靠手段。
为解决能源的协调问题,一种基于CAN总线结构的电控系统在混合动力汽车上得到了广泛应用,其主要由中央控制器、发动机控制系统、电机控制系统及信号反馈和检测装置等几部分组成,具体为整车控制器、发动机电控单元、变速器控制单元、电机控制单元、电池管理系统、高压管理系统、ABS控制单元、仪表及显示系统、监控/标定系统等[4]。整车控制器与各电控子单元、驾驶员及整车共同构成一个闭环控制系统,该系统通过CAN总线从各类传感器上获取驾驶员的操作指令和车辆的运行状态,再通过CAN总线实现各控制单元间信息的共享、交换和传输,最终完成整车动力系统的能量分配。整个控制系统的结构示意图如图4所示,其中驾驶员的各项操作指令位于顶层,整车控制器在中间层,底层为各子控制单元[5]。
3 电控系统各单元控制功能
3.1 整车控制器(VSC)
整车控制器(VSC,Vehicle System Controller),是整个电控系统的核心,具有管理和控制整个车辆的重要功能。主要完成车辆信息采集和驾驶员意图的判别,对采集到的点火、踏板及档位信号、车速、发动机和电动机扭矩和转速、电池电荷状态(SOC)、故障码等主要信息进行迅速处理,并通过内部相应的控制策略,分析计算出发动机、电动机等当前的状态参数,得出满足最佳需求的功率或扭力矩分配、最佳的充电功率、自动变速器的最佳档位控制等,控制车辆的实际运行[6]。当电控系统出现故障时,它会及时对故障进行处理,保证系统的安全运行。
3.2 发动机电控单元(ECU)
汽车发动机电子控制单元(ECU)是发动机控制系统的核心,它根据从各种传感器接受到的信息来控制各种工况下的燃油喷射时刻、喷射量和点火时刻(汽油机),向发动机提供最佳空燃比的混合气,使发动机始终处在最佳工作状态,提高发动机的动力性、经济性和排放性。它通过CAN总线接收整车控制器发出的对发动机的命令,经判断处理后对发动机进行控制,同时也可以通过通讯接口与车内其他电子控制单元进行数据通讯。
3.3 电机控制单元(MCU)
电机控制单元由微处理器、程序和数据存储器、驱动和接口电路及电机调速控制等几部分组成。它不仅能够通过CAN总线接收整车控制器发出的对电动机的控制指令并及时执行,以控制电机的发电与电动状态的切换、电机转速的快慢及输出力矩的正负,还可以向CAN总线发送电机的运转状态,比如实际扭矩、转速、充放电电流、故障码等。同时该控制单元的故障自诊断功能还可保证当电机出现故障时能够自行处理,以保障车辆的行驶安全。
3.4 电池管理系统(BMS)
电池管理系统(BMS)实时监测电池的电压、容量、充放电电流、电池的SOC值,并将这些信息通过CAN总线发送到整车控制器进行处理,以提升电池性能和寿命[7]。同时,BMS还要对电池系统内单体电池的电荷均衡进行监测和控制,以保证电池组正常工作,也会将电池组的SOC值传送到显示系统进行显示。
3.5 高压管理系统
高压管理系统主要负责高压用电设备的上、下电管理,监测高压设备的工作状态,并通过CAN总线向整车控制器报告。遇到故障或紧急情况时采取保护措施,减小电流冲击,防止设备损坏[8]。
3.6 仪表及显示系统
混合动力汽车的仪表及显示系统除动态显示车速、发动机转速、里程、水温、油量等传统信息外,还能接收CAN总线上的讯号,额外显示工作模式、电池SOC值、充放电电流、电机转速等必要信息。驾驶员能够通过仪表及车载显示系统实时了解车辆的运行状态,因而该系统是整个电控系统的眼睛。
3.7 监控与标定系统
该系统最初用来完成整车控制系统开发、调试与检验。在实现其基本功能后,监控与标定系统一方面可以准确及时地检测发动机转速、车速、节气门负荷、真空度、冷却水温、档位、空调状态等车辆参数,并通过CAN总线送往整车控制器进行决策,送往显示系统进行显示;另一方面又可以通过标定系统的接口来优化各个参数,使车辆运行达到最佳效果。
3.8 电动助力转向(ESP)及防抱死制动系统(ABS)
电动助力转向系统(ESP)通过传感器监测驾驶员施加在方向盘上的力矩和车速,然后根据控制单元内置的算法来控制转向助力电机的运行,向驾驶员提供合适的转向助力力矩;防抱死制动系统(ABS)在车辆制动时,监测车轮的滑移率来自动控制制动器制动力的大小,防止车轮抱死,以保证车轮与地面间的最大附着力。当ABS作用时会通过CAN总线网络向其他控制单元告知其状态,从而触发VSC相应的管理模块,终止制动能量回馈功能,以保证车辆安全。
4 电控系统的控制流程与特点
整车控制器(VSC)根据汽车当前的实际运行状态及驾驶员的操作意图确立合理的运行模式(即发动机驱动与电机驱动模式的选择),以保证车辆的驾驶性能。在选定的运行模式下,VSC可通过CAN总线与各子控制单元或系统进行通讯。整个工作过程中,各子控制单元或系统分别采集各自控制对象的信号和动态参数,通过现场总线发给VSC,VSC利用这些信息,通过控制策略的运算来进行信号流和能量流的处理和分配工作,并通过现场总线向各子控制单元或系统发出执行指令。各子控制单元或系统接受执行指令,并根据控制对象的当前动态参数,再发出对控制对象的控制命令。例如,VSC根据采集到的参数和运算策略计算出目标挡位后,会向变速器控制单元(TCU)发送换挡命令,TCU根据指令将控制变速器的执行部件完成挡位变换。
电控系统由主控制单元和子控制单元组成,整体是一个高度集成的控制网络。整车控制器(VSC)作为主控单元,负责管理各个子控制单元的能量分配和子部件系统执行元件的工作,显现了很强的集成性能[9]。而子控制单元将控制任务模块化,每个模块都有一个控制单元来接管,降低了系统的故障率,提高了系统的运行可靠性。不仅如此,这种面向对象设计的分布式系统还提高了系统的可扩展性,便于建设、运行和维护。
5 结语
混合动力汽车有效减轻了能源与环保问题,发展前景十分广阔。电控系统肩负着在不同运行工况和驾驶习惯下提升混合动力汽车动力性、燃油经济性和排放性的责任,同时还要兼顾电池寿命、整车部件的安全可靠性及成本,可谓任道而重远。混合动力汽车的电控系统还需在当前的框架之下不断完善其控制过程,来推动汽车工业的发展,这是我们要为之努力奋斗的方向。
参考文献
[1] 刘春娜.混合动力汽车用电池的市场前景[J].电源技术,2013,37(9):1506.
[2] 于秀敏,曹珊,李君,等.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006,42(11):10-16.
[3] 田江学,屈卫东.CAN总线在混合动力汽车中的应用[J].计算机工程,2003,29(19):174.
[4] 何晶.混合动力汽车电控系统的设计[D].大连:大连理工大学,2005.
[5] 李胜利.混合动力汽车动力总成系统分析与控制策略制定[D].沈阳:东北大学,2008.
[6] 陈素梅,王智晶,龚军.混合动力汽车整车控制系统分析研究[C]//河南省汽车工程科学技术研讨会.2013:289.
汽车转向系统是用来改变或保持汽车行驶方向的机构。其性能直接关系到汽车的操纵稳定性和舒适性。汽车转向系统的发展历经了无助力转向系统、液压助力转向系统(HPS)、电控液压助力转向系统(EHPS)、电动助力转向系统(EPS)、线控转向系统(SBW)。电动助力转向相比于液压助力转向,改善了汽车的转向助力特性,减少了能量消耗,结构紧凑,质量降低,维护方便,对环境的影响减少。近20几年来,随着电子技术的发展,传感器、电机及其控制理论的发展和完善,EPS技术日趋完善,EPS的助力型式也从低速范围助力型向全速范围助力型发展,并且其控制形式与功能也进一步加强。新一代的EPS则不仅在低速和停车时提供助力,而且还能在高速时提高汽车的操纵稳定性。主要体现在模型创新与试验创新2个方面。
1 EPS系统的基本结构
根据助力电机布置位置的不同,电动助力转向分为转向齿条助力式、转向齿轮助力式、转向轴助力式,如图1所示。
参考文献:
[1] Yuji Kozaki,GoroHirose, Shozo Sekiya. Electric Power steering [J]. Motor & Control,1999:449-459
[2] 余志生.汽车理论(第三版) [M] .北京:机械工业出版社,2002.
[3] Liao Y G, Du H I. Modeling and analysis of electric power steering system and its effect on vehicle dynamic behavior [J]. International journal of vehicle autonomous systems (S1471-0226), 2003, 1(3):351-362.
[4] Ji-Hoon Kim, Jae-Bok Song. Control logic for an electric power steering system using assist motor [J]. Mechatronics (S0957-4158), 2002, 12(3): 447-459.
[5] 徐建平, 何仁, 苗立冬, 等. 电动助力转向系统的建模与仿真分析[C]//中国汽车工程学会2003年学术年会SAE-C2003E206: 654-661.
Dynamics Modeling and Analysis of Electric Power Steering
Ding Zhigang,Zhong Yong
1 概述
仪征化纤热电生产中心#1炉甲乙侧两台动态分离器于2012年安装完成,投运后未能达到预期效果,其主要表现为制粉系统出力低以及出粉细度调节性较差等情况。2013年期间,对这两台分离器进行了一系列实验、论证,并进行了初步优化,但结果并不理想。2013年7月下旬,对甲侧动态粗粉分离器进行了部分改动,在动静叶之间增加一挡板。并在8月中旬又将回粉锥的间隙调小,但回粉量大的情况还是没有得到根本改善。之后,根据长期的试验、调整及数据分析,找到了造成动态分离器回粉率高、出力不理想的根本原因,即静叶片分离作用过强,而动叶轮分离器作用相对较弱。最后,根据试验和三维模拟的结果及分析,提出以下的改造方案并实施。
2 具体整改措施
(1)增大动叶轮的尺寸。包括直径和高度。目的是增强动叶轮的分离作用,同时可使动叶轮转速与出粉细度有明显的线性关系。(2)安装导流板。对煤粉起到均流作用。可减少小颗粒回粉率,同时提高大颗粒回粉率,从而提高回粉的准确性。(3)去除径向叶片。削弱静叶片的分离作用,相对进一步加强动叶的分离器作用。
3 调试数据分析
2014年9月10日~2014年9月15日,对#1炉甲侧制粉系统进行了调试。从出粉细度及可调性、出粉均匀性指数、制粉出力等多方面的数据进行了试验,并得到了全面的定性和定量的数据结果。由此,可对甲侧动态粗粉分离器改造的具体效果进行以下判定。
3.1 细度调节性的改善(图2)
可见,本次改造后,主要由于动叶轮尺寸增加,导致颗粒受到的离心力增加。出粉细度的调节性能明显增强且线性关系明显。这样的好处包括:(1)对于不同煤种,能够方便的通过细度调节,使出粉细度始终在经济情况下运行;(2)由于出粉细度调节范围更广,尤其是可以调到很细的这种特点,可以完全适应低氮燃烧器改造后的需求。当然,更低的细度R90是以损失部分出力为代价的。鉴于目前#1炉的运行情况,建议排粉机电流保持在16.5~17A,分离器转速维持在20-30rpm的运行方式,此时对应的出粉细度R90=25.2-23.2%,均匀性指数n≥1.2。下述的出力试验也是在该工况下进行的。
3.2 出力的提高
3.2.1 出力试验
2014年9月15日进行了如下试验:将#1炉负荷稳定在220t/h(以下粉位为甲乙两侧平均值)
(1)从上午9:55到下午13:15这段时间(200分钟),甲侧乙侧同时运行,观察#1炉粉仓的粉位变化,从3.8m涨到4.3m;(2)从下午13:15到下午15:10这段时间(115分钟),只运行甲侧,观察#1炉粉仓的粉位变化,从4.3m降到3.3m;(3)从下午17:30到下午19:30这段时间(120分钟),只运行乙侧,观察#1炉粉仓的粉位变化,从4m降到2.9m;从上述的数量关系可以列出含三个未知数的方程组:
式中:x-单位时间内甲侧磨煤机的出力换算成粉位的变化,单位m/min;y-单位时间内乙侧磨煤机的出力换算成粉位的变化,单位m/min;z-单位时间内220t/h负荷下,对于的煤粉消耗量换算成粉位的变化,单位m/min;
最后计算得到(x+y)/z=1.123,也就是说甲乙两侧同时运行后,能够供应的锅炉负荷为:215×1.123=241(t/h)。
相比改造之前甲乙两侧同时运行可维持的最大负荷210t/h,制粉系统的出力提高了:(241-210)/210×100%=13.8%
3.2.2 回粉比例减少。同样在上述工况下,对#1炉甲侧的进粉、出粉和回粉进行取样并化验细度,并和改造前(2013年8月)数据进行对比(表1)。
回粉比例即回粉占进粉的质量比。回粉比例减少23.2%,意味着有23.2%的煤粉不需要回到磨煤机重复研磨,做无用功。出力也就相应的提高23.2%。考虑到改造后的出粉细度R90比改造前的出粉细度R90还要小,所以在相同出粉细度情况下,甲侧磨煤机提高的制粉出力是大于23.2%的。
4 结束语
(1)本次改造实现了预期的效果,达到了改造的目的。一方面,制粉系统出力有了显著提高,单是甲侧的改造,就使得#1炉总的制粉出力相比改造前提高了13.8%。另一方面,出粉细度的调节性能显著增强,且线性关系明显。(2)鉴于试验的结果和#1炉的运行情况,建议#1炉甲侧制粉系统按照如下方式运行:排粉机电流16~17A,分离器转速20~30rpm。此时对应的出粉细度R90在25.2%~23.2%、均匀性指数达到n≥1.2、制粉出力高(甲乙两侧同时运行,能满足241t/h负荷对于的煤粉消耗)、制粉单耗低。
参考文献
Abstract: In the sdudy, the geometrical model of toothed chain transmission system was set up by the software of Solidworks and the geometrical model was imported into the ADAMS software to establish the dynamics simulation model of this system. The change of contact force between the outer meshing silent chain and chain wheels was studied, and frequency distribution of the meshing contact force was analysised. The results showed that the contact force was biggest when chain link engaged the tight side of the driving chain wheel. The amplitude of the contact force was biggest when pumping frequency was fundamentalfrequency, which was the The dominant frequency to make vibration noise of toothed chain transmission.
Keywords: toothed chain system; involute sprocket; the meshing contact force; frequency domain analysis
引言:
齿形链传动是各种机械和机械设备中应用较为广泛的动力和运动传递装置,与滚子链相比,齿形链具有噪声低、可靠性高、运动精度高、传动效率高、耐磨性高、结构紧凑、以及负载能力高等显著优势,能够胜任高速、重载、变速变载的复杂工况[1,2]。但是,齿形链与链轮啮合过程中,由于啮合接触力过大,引起周期性振动从而产生噪声和磨损问题,在一定程度上限制了齿形链的推广和应用[3,4,5]。
随着齿形链传动向着高速、重载的方向发展,要求传动系统传递的功率不断增大,链轮转速不断增加,这使得齿形链传动系统啮合冲击问题更加突出,同时也影响了整个系统的可靠性和稳定性。本文利用Solidworks建立了齿形链传动系统的几何模型,然后将其带入Adams中,建立了齿形链传动系统的啮合接触力动力学仿真模型,研究了齿形链与链轮的接触力变化规律,以及啮合接触力的频率分布情况。
1、接触动力学模型
齿形链系统传动过程中,主动链轮带动链条紧边运动,由于链轮与链条啮合点处速度不等,导致啮合冲击,啮合冲击力的大小,是影响传动系统运行稳定性的重要因素[6]。本文基于Solidworks三维建模软件建立了齿形链传动系统的几何模型(图1)。该模型主要由主动链轮、从动链轮和齿形链组成。其中齿形链节距P=15.875,结构形式为4×5型,链条节数LP=50,主动轮齿数Z1=19,从动轮齿数Z2=30。链轮中心距C=200.463 mm。
将齿形链传动系统的几何模型导入Adams软件中。在Adams软件中,通过添加运动副和约束建立齿形链传动系统的约束条件,然后模拟实际工况施加边界载荷条件,来仿真求解齿形链传动系统运动过程中的动态接触力。
2、边界条件与仿真参数
将齿形链传动系统模型导入 Adams 软件中后,对模型添加运动副和约束:在主动链轮输入轴端添加驱动(Motion),同时在从动链轮输出轴端定义负载转矩(Torque)。在主从动链轮与大地、链板与销轴、导板与销轴之间添加旋转副(Revolute),在旋转副上定义摩擦,以模拟相对转动和摩擦阻力,保证虚拟样机模型能够准确的揭示系统的动力学特征。定义主从动链轮与链板、链板与销轴之间的接触力(Contact),采用基于impact函数的实体碰撞接触类型,在接触类型中选择 Solid to Solid 选项,即定义为体与体的接触力[7]。施加的边界条件如图2所示。
仿真时,为了还原真实工况条件,在主动链轮上添加1000rpm的转速;从动链轮上添加阻力矩45 kN,用来模拟负载并保持齿形链处于张紧状态。齿形链系统接触力参数设置如表1所示。
3、仿真结果分析
图3表示的是紧边链条任意链节在从啮入主动链轮到啮出主动链轮的过程中接触力的变化曲线。由该曲线可以看出:当链节啮入主动链轮时,啮合冲击很大,为1217.68 N这是由于在链节与链轮啮合时,作直线运动的链节铰链和以一定角速度作圆周运动的链轮相互接触,二者在压力角方向上的运动速度不等,导致链节和链轮受到较大的啮合冲击力。当链节与主动链轮定位时,随着链轮的继续转动,链节与链轮理论上不发生相对运动,使得啮合接触力减小,且越靠近松边接触力越小。当链节与链轮脱离啮合时,虽然不发生链节与链轮的啮合冲击,但当链节由圆周运动变为直线运动时,松边链节数增大,从而影响齿形链传动动力学和运动学特性,产生了较大的接触力,该阶段啮合接触力最大为465.73 N,由该图可以看出在链节与链轮的紧边啮入点处得啮合接触力大于松边啮出点。
图4表示的是任意链节与主从链轮啮合冲击的整个过程啮合接触力曲线,该过程为从紧边啮入松边啮出松边啮入紧边啮出的周期性过程。图中红色曲线表示链节与主动轮接触力,蓝色曲线为同一链节与从动链轮的接触力。由该图可知:在每一个啮合周期内,链节与链轮在四个接触点处啮合接触力的大小关系为:紧边啮入>紧边啮出>>松边啮入>松边啮出。尽管链轮与链条的啮合接触力曲线变化较为复杂,但在啮合周期内依然呈现规律性的变化趋势。
图5为对仿真计算得到的对链节与链轮啮合接触力变化时间历程结果,进行FFT快速傅里叶变换后得到的啮合接触力在频域的分布情况。
由图5可见,啮合接触力的频谱主要是由啮合频率316.67Hz及其谐波振动频率组成的,并且每个谐波频率成分均为基本激励频率的整数倍。各频率分量不同程度的分布了一定的能量。显然,基频的幅值是最大的,它是产生齿形链传动振动的优势频率;其它谐波频率上的啮合接触力随着频率的升高逐渐降低。
4、结论
关键词:移动通信网络;协调建设;系统动力学
中图分类号:TN929.5
文献标识码:A
文章编号:16738268(2015)05008907
2013年12月,工信部向三大运营商颁发TDLTE(time division long term evolution)牌照,标志着我国移动通信4G时代的来临,由此形成了2G、3G和4G三代移动通信网络同时建设的复杂局面。运营商当前所面临的问题是,2G、3G和4G三代移动通信网络都各有其价值,都需要建设和维护,很难在短期内全面转向4G。这种状况势必造成三代移动通信网络之间相互争夺运营商资源、分散运营商投资方向的后果,给运营商带来投资战略和运营管理上的不利影响。在此背景下,如何在三代移动通信网络建设方面进行取舍和协调,就成为了困扰运营商的战略课题。
为探讨三代移动通信网络的协调建设问题,本文拟分别从财务、竞争和战略三个导向出发,同时引入政策乘子因素,构建三代移动通信网络协
调建设的系统动力学模型,通过系统仿真来模拟三代移动通信网络建设的投资分配情况。
一、相关文献回顾
(一)对网络用户迁移的研究
网络用户迁移直接影响网络规划建设,从客户流失角度出发对电信运营企业迁移用户进行分类,具体可分为跨网迁移客户和网内迁移客户。跨网迁移客户是指从一家电信运营企业转到另外一家电信运营企业,网内迁移客户是指该客户的迁移行为只发生在同一家电信运营企业的内部[1],本文主要考虑网内迁移客户。这类客户产生的重要原因是:运营企业自身不断推出新的产品和服务,客户如果重新选择了新产品或者服务,
那么运营企业自己的新产品或者服务就会吞噬原
来的产品或者服务。影响网络用户网内迁移的因素众多,其中主要因素是网络质量和转网成本。在网络质量相同的情况下,转网成本高,客户忠诚度就高,用户迁移意向就低;转网成本低,客户忠诚度亦低,用户迁移意向就高。在不考虑转网成本的前提下,理性的用户会倾向于选择网络覆盖质量高的网络,如果用户当前所选择的网络覆盖质量低于用户期望水平,用户将放弃该网络而选择能够达到其网络覆盖质量要求的网络。
(二)对网络建设的研究
网络建设的影响因素主要包括网络技术的推动、用户实际需求、运营商建设规划、不同代网络共存与运营平衡问题、网络资源配置情况等几个方面。在市场驱使和技术保障下,我国移动通信网络由3G向4G稳定过渡具有历史的必然性。近年来,云计算、大数据快速发展,对网络的要求越来越高,现有网络已经不能满足当前用户的需求。技术的推动作用为网络演进提供了前提条件,LTE技术能够使现有用户在不换卡、不换号、不登记的情况下使用4G网络提供的业务,保证了2G、3G和LTE网络业务的一致性和连续性。为确保网络演进过程中不同代网络的协调发展,网络建设规划需要兼顾系统间的共存与运营平衡问题,在建设TDLTE网络时要考虑TDSCDMA(time divisionsynchronous code division nultiple access)系统现网的实际部署情况,因地制宜规划建设TDLTE网络。研究发现在3G网络投资建设初期,从收益角度考虑,3G年投入系数占比并非越大越好,而应保持在一个适当的范围里,过大的3G年投入系数比例会使得3G的边际收益下降,而2G的收益又受到限制,最终使得总利润下降,导致2G与3G发展不协调。网络演进是一个缓慢的过程,4G网络虽然能够带来很好的使用体验,但不会在短时间内覆盖一切,2G、3G网络仍会有很长一段的缓冲时间。
现有文献主要对2G网络与3G网络的协调发展进行了深入研究,也有部分文献对2G、3G用户向4G迁移的可行性进行了研究,但都未能对2G、3G和4G三代移动通信网络协调建设的投资分配进行系统分析。
二、变量设置及研究假定
(一)网络协调建设的关键概念
1.投资效益。本文中的投资效益是指投资的财务效益,即指项目实施后所获得的营业收入。在对不同网络建设分配投资额时,如果投资者选择财务导向,他将会倾向于投资能够带来高额收益的网络。
2.市场份额。在市场大小一定的情况下,某种产品的市场份额越高,此种产品相对的竞争优势就越明显。同时,由于移动通信网络存在规模经济的作用,用户市场份额的增加会使单位产品的成本下降,从而间接地提高财务效益。
3.长远发展。网络的发展是一个不断演进和替代的过程,在进行网络投资建设时应充分考虑网络的应用现状和未来的发展趋势,在满足当前用户需求的情况下,要兼顾到现有的成熟技术和标准是否能够与未来的先进技术和标准完美结合,即保障网络的发展具有可持续性,其中包括网络扩容的可持续性、网络更新换代时网络基础设施的兼容性、网络技术的可持续性。
4.用户偏好演变。最能体现网络用户偏好演变的是网络终端产品的演变过程,其中最具有代表性的是手机的演变过程,主要表现在手机功能上的变化。2G网络时代,手机的主要功能是提供语音通话和收发信息,操作简单;3G网络时代,手机的功能不仅包括2G时代手机的功能,同时还集照相、摄像、视频通话等功能于一体,人们可以利用手机快速浏览网页、看网络视频、进行网络视频通话等;4G时代人们的通信工具已经不再局限于使用手机,越来越多的可穿戴智能设备不断被投入市场,最具有代表性的是三星公司生产的智能手表Gear,其不仅具有邮件收发功能,还有摄像和拍照等功能。
(二)网络协调建设的基本原则
1.短期效益与长期效益兼顾原则。目前2G网络用户数量最多,是运营商收入的主要来源,但是2G网络的传输速率低、业务提供能力弱、数据传输质量差等因素,使2G网络不能够满足今后人们对网络的要求,最终会退出历史舞台;3G网络的数据传输速率和传输质量可以满足大多数用户的需求,但是未来网络业务要求网络具有高的传输速率和传输质量,这就需要发展4G网络以满足网络业务发展的要求。因此,应发展2G、3G以获得短期利益,同时需兼顾到企业未来4G发展,以获得长期效益。
2.响应并引领用户需求的变化原则。网络用户的多样化,使得网络用户的需求往往是多方面的,
这就需要企业去分析和引导。可以通过向用户提问、倾听用户谈话等方法来了解用户的不同需求,然后采取相应的措施,以满足不同用户的不同需求,并制定相应的策略来引导用户。
3.保持持续的竞争优势原则。持续竞争优势具有两大突出特征:一是动态性,因为竞争优势都是有条件的,所以企业只有通过不断的自我更新、自我超越创造满足竞争优势的条件,才能实现和保持可持续的竞争优势;二是连续性,长期的可持续竞争优势是由一系列短期的竞争优势积累而成,这些短期的竞争优势可能是一些小的、或者是单独看来并不重要的竞争优势。
(三)系统变量的设置
本文变量包括目标变量、控制变量、中介传动变量和其他辅助变量等四大类型,其中2G、3G、4G网络的中介传动变量类同,仅以2G网络为例进行阐述,各类变量的细分及其物理含义如表1所示。
(四)模型的基本假定
假定1:模型中只存在三种网络,不会随着仿真运行时间的延长而出现更高级别的网络,即未来一段时间内不会有更高层级的网络投入运营。
假定2:网络投资决策仅有财务导向、竞争导向和战略导向可供选择,并且只能选择其中的一种导向作为主要投资导向。
假定3:通过对模型中某省历年人口数据进行分析,发现人口增长速度极其缓慢,故假定未来几年内人口保持不变。
(五)实证演算的数据来源
本文选择“中国移动”Y省分公司作为模拟对象,模型中“某地区人口总量”来源于Y省卫生和计划生育委员会的人口统计信息。2G网络用户数量、3G网络用户数量和4G网络用户数量的初
始值来源于2013年《中国通信统计年鉴》。
三、系统动力学模型构建
基于变量设置及研究假定,构建三代移动通信网络协调建设的系统动力学模型(见图1)。
图1三代移动通信网络协调建设的系统动力学模型
为了便于模型运行,对变量之间的关系式以及变量初始值作如下规定:
1.模型运行起止时间设定为2013年至2018年;
2.地区人口数量为Y省2013年人口数量;
3.2G、3G、4G用户数量的初始值为2013年年底的实际用户数;
4.竞争导向、战略导向、财务导向的取值范围为[0,1];
5.引导偏好乘子、培训技能乘子、入网优惠乘子的取值范围为[0,1];
6.2G、3G、4G用户年新增入网率主要受网络相对规模、运营商的不同导向、入网优惠乘子、引导偏好乘子、培训技能乘子的影响。以2G用户年新增入网率为例,其算式为
2G用户年新增入网率=2G网络相对规模*EXP((财务导向*5+竞争导向*2+
战略导向*3)/5)*EXP(入网优惠乘子+培训技能乘子+引导偏好乘子)*0.5
7.2G、3G、4G用户年迁出率主要受网络相对规模的影响。以2G网络为例,其算式为
2G用户年迁出率=EXP(2G网络相对规模-1)
8.2G、3G、4G用户年增量。该指标主要受当地人口数量、用户总量和用户迁出率的影响。以2G网络为例,其算式为
2G用户年增量=SMOOTH(INTEGER(2G用户年新增入网率*
某地区人口总量*8.1e-005-2G用户总量*2G用户年迁出率), 2)
9.2G、3G、4G用户总量。某代网络自模型运行开始到某年本代网络所有用户的累积量。以2G网络用户为例,其算式为
2G用户总量=INTEG(2G用户年增量,1300)
10.2G、3G、4G年新增网络规模。当某代网络用户的数量增加到一定程度、现有网络容量已经不能够满足所需求容量时,则需要扩大网络规模。以2G网络为例,其算式为
2G年新增网络规模=IF THEN ELSE(2G用户年增量
11.2G、3G、4G年新增投资额。其分为两个部分:一部分是在用户没有新增的情况下,现有网络运营和维护所需要的投资;一部分是当网络用户增加到一定规模时需要对网络容量进行扩大而进行的投资。以2G网络为例,其算式为
2G年新增投资额=SMOOTH(IF THEN ELSE(2G年新增网络规模
12.年总投资额。2G、3G、4G三代移动通信网络年投资额之和,具体算式为
年总投资额=2G年新增投资额+3G年新增投资额+4G年新增投资额
13.2G、3G、4G年新增投资占比。某代网络年新增的投资额占2G、3G、4G三代网络年总投资额的比例。以2G网络为例,其算式为
2G年新增投资占比=2G年新增投资额/年总投资额
四、系统仿真
(一)同一导向下三代移动通信网络的投资结构仿真
通过改变不同导向取值的大小,确定某种导向为主要投资导向,对模型进行仿真分析。其中财务导向下定义财务导向的取值为0.5,竞争导向的取值为0.2,战略导向的取值为0.2;竞争导向下定义财务导向的取值为0.2,竞争导向的取值为0.5,战略导向的取值为0.2;战略导向下定义财务导向的取值为0.2,竞争导向的取值为0.2,战略导向的取值为0.5。对三种导向下的模型进行仿真,得到仿真结果如图2所示。
由图2(a)仿真图形可知,财务导向下2G网络年新增投资占比最大,虽然呈持续下降趋势,但是在2016年之前仍大于0.25,截至2018年处于较低的水平;3G网络年新增投资占比在2015年后开始出现大幅度下降,并于2018年同2G网络年新增投资占比一样处于较低水平;4G网络年新增投资占比呈现出持续上升的趋势,在2015年之后投资超过3G网络年新增投资,紧接着又超过2G网络年新增投资,之后投资占比继续提高,在2018年超过0.75,最终成为投资建设的主要对象。
由图2(b)仿真图形可知,竞争导向下2G网络年新增投资占比呈现持续下降的趋势,并一直低于3G网络年新增投资占比,2018年开始保持较低的水平;3G网络年新增投资占比整体上呈下降趋势,在2015年之前大于4G网络年新增投资,2018年趋向于较2G网络年新增投资占比略高的较低水平;4G网络年新增投资占比在未来的年份里呈现持续上升的趋势,在2015年超过3G网络投资,到2017年超过0.75。
由图2(c)仿真图形可知,战略导向下2G网络年新增投资占比呈现持续的下降趋势,并始终处于最低水平,在2017年之后保持很低的水平;3G网络年新增投资占比整体上呈下降趋势,但一直高于2G网络的年新增投资占比,2018年开始保持很低的水平。4G网络的投资占比在未来的年份里呈现出持续上升的趋势,并始终高于2G、3G网络年新增投资,2015年超过0.50,2017年高达0.80。
综合图2,可以看出三种导向下4G网络年新增投资占比均会逐年增加,最终达到很高水平,这意味着4G网络将成为未来的主导网络;2G、3G网络年新增投资占比均逐年降低,并在2017年之后处于低水平,表明2G、3G网络将逐渐退出历史舞台。
(二)同一代移动通信网络在不同导向下的投资结构仿真
对图2进行重组,得到同一种网络在三种不同导向下的仿真图(见图3)。
由图3(a)仿真图形可知,三种导向下2G网络的投资占比最终会趋向于较低水平,这意味着2G网络在未来5年内将逐渐退出历史的舞台。但在不同的导向下,2G网络年新增投资占比存在略微差别。财务导向下2G网络年新增投资占比明显高于其他两种导向下的年新增投资占比,战略导向下2G网络年新增投资占比最低,竞争导向下2G网络年新增投资占比居于前两者之间。
由图3(b)仿真图形可知,在不同导向下3G网络年新增投资占比的趋势基本相同,均是整体呈现下降趋势。区别在于2016年之前3G网络年新增投资占比在竞争导向下明显高于另外两种导向,并且高于0.25;在战略导向下3G网络年新增投资占比处于三种导向下的最低水平。
由图3(c)仿真图形可知,在不同导向下4G网络年新增投资占比的趋势基本相同,均是呈现逐年增加的趋势。不同的是,在同一年份上不同导向下投资占比的幅度有所差异,其中战略导向下4G网络年新增投资占比最高,最低的是财务导向下4G网络年新增投资占比。
综合图3,可以看出2G网络在财务导向下投资占比明显高于竞争导向和战略导向下的投资占比,3G网络在竞争导向下的投资占比高于财务导向和战略导向下的投资占比,4G网络在战略导向下的投资占比远高于财务导向和竞争导向下的投资占比。
(三)战略导向下政策乘子对4G网络投资结构的影响
首先,调整导向参数,使模型处于战略导向;之后,保持3个乘子中其中2个乘子大小不变,调整另外的一个乘子大小,观察乘子改变前后4G网络年新增投资占比变化情况。仿真结果如图4所示。
图4中,1为战略导向下各个政策乘子均为0.2时的曲线;2为战略导向下仅把引导偏好乘子调制为0.5时的曲线;3为战略导向下仅把培训技能乘子调制为0.5时的曲线;4为战略导向下仅把入网优惠乘子调制为0.5时的曲线。
由图4可知,当三种政策乘子由0.2增加为0.5,4G网络年新增投资占比均会升高。不同的是,不同政策乘子的改变所产生的影响程度不同,
其影响程度大小为:入网优惠乘子>引导偏好乘子>培训技能乘子。
五、结论与启示
针对三代移动通信网络对投资计划和企业资源的争夺与矛盾,本文构建了网络协调建设的系统动力学模型。通过系统仿真,展示了财务导向、竞争导向和战略导向下,三代移动通信网络的投资结构及其动态演变。从整体趋势上看,未来五年,4G网络的投资占比会逐渐上升,而2G和3G网络的投资占比会逐渐下降;但在当前,财务导向下将提升2G网络的投资占比,竞争导向将提升3G网络的投资占比,而战略导向将提升4G网络的投资占比。
入网优惠、引导偏好、培训技能等政策乘子的改变,会影响三代网络的投资占比。运营商可以根据自己的导向偏好,运用政策乘子进行投资比例的调节,确定特定时期需要重点投资的网络类型。
从长远来看,选择战略导向加强4G网络建设将是运营商的合理选择。为了引导2G、3G网络用户向4G网络迁移,运营商可以制定相关的转网促进政策,比如,对新入网的4G用户赠送免费流量,促进潜在用户积极入网;组织4G网络体验活动,使用户真切感受4G所带来的高速流畅等。
参考文献:
[1]迟准.电信运营企业客户流失预测研究[D].哈尔滨:哈尔滨工业大学,2012:1819.
[2]LEE J,FEICK L.The impact of switching costs on the customer satisfactionloyalty link:Mobile phone service in France[J].Journal of Services Marketing,2001(1):3548.
[3]赵送林,黄逸B,陈婷,等.2G用户向3G迁移的策略分析[J].北京邮电大学学报:社会科学版,2010(3):6572.
[4]AHN J H,HAN S P,LEE Y S.Customer churn analysis:Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry[J].Telecommunications Policy,2006(10/11):552568.
[5]李艳军.移动通信网络建设中的需求因素[J].科技传播,2013(2):184199.
[6]廖川西.3G向4G过渡的必然性及实现途径[J].通信与信息技术,2010(4):5153.
[7]尹凤庆,冯征.2G/3G用户“三不”转入LTE网可行性分析[J].电信工程技术与标准化,2011(2):4651.
[8]印顺.TDLTE网络建设方案研究[D].长春:吉林大学,2014:812.
中图分类号U464 文献标识码A 文章编号 1674-6708(2011)35-0058-02
1 背景技术
汽车尾气有害物排放,对汽油机有CO、HC和NOx;对柴油机而言,除CO、HC、NOx外,还有微粒和烟度。而这些尾气排放物的生成直接与发动机的燃烧过程有关。为了减少发动机的各种有害物排放,目前有很多控制方式,如氧化催化转化装置、还原催化转化装置、三元催化转化装置、稀薄NOx催化转化装置以及EGR系统等,虽然这些措施在一定程度上减少了部分有害气体的排放,但是在空燃比、可靠性、耐久性等方面存在诸多缺陷。例如,EGR系统已经成为降低柴油机NOx排放量的有效技术措施,但在大、中型柴油机上的应用仍受到耐久性和可靠性的影响,并且实施较大的EGR率也带来了燃油消耗率和黑烟恶化等问题。
从上述的现有技术中不难看出,目前减少发动机尾气有害气体排放的是措施,或是利用催化转换装置或是控制燃烧,而尾气有害气体排放物的生成直接与发动机的燃烧过程有关。但这些措施都是在复杂的燃烧过程中产生了有害气体之后才采取的。均不能从根本上解决发动机尾气有害气体的排放问题。为克服背景技术中的不足,本文的目的在于提供一种在发动机进气环节的空气分离系统,该系统将吸入其内的空气分离成氮气和富氧气体,氮气排入大气,富氧气体与燃料混合供入气缸燃烧或者通过进气道进入气缸并与气缸内燃料燃烧,这样氮气不参与燃烧过程,也就抑制了NOx的生成,所以不需再采取催化转化装置或控制燃烧等措施了,这样就实现了本较好的节能减排的目的。
2 技术方案
一种发动机进气空气分离系统,主要通过使用Na-X型沸石和Li-X型沸石的压力回转吸附法实现发动机进气空气中氮气与氧气的分离。包括用于进气的空气进气口,并在进气口初安装有滤清器,用于滤去空气中的微粒和水蒸汽,系统含一套吸附装置,吸附装置包括两个吸附器A、B和两个二次吸附器C、D;吸附器与二次吸附器之间分别有气管相连,其中A与C、B与D相对应。吸附器的进口端分别设有供气电磁阀与抽空电磁阀;抽空电磁阀与真空泵相连。二次吸附器出口端安装有缓冲器,缓冲器出口端设有分离电磁阀,富氧气体通过分离电磁阀经进气道进入发动机气缸或与燃料混合后进入发动机气缸。
吸附器进口端导入Na-X型沸石,吸附器进口端导入Li-X型沸石。二次吸附器进口端导入Na-X型沸石,二次吸附器进口端导入Li-X型沸石。二次吸附器体积较小于吸附器,安装在吸附器的出口端主要是为了进行氮气的二次吸附,从而提高氧气的纯度。吸附过程的吸附压力为1巴~1.1巴;抽空过程的解吸压力为100毫巴~400毫巴。供气电磁阀、抽空电磁阀、分离电磁阀均由控制器统一控制,定时开闭。吸附装置亦可根据发动机需氧量的增加实现并联,即用多套吸附装置同时供气。真空泵的动力由发动机主动轴提供。缓冲器的作用是为了使供气气流均匀。
研究表明采用上述技术方案,可以达到以下有益效果:
本文所提出的发动机进气空气分离系统,通过使用Na-X型沸石和Li-X型沸石的压力回转吸附法实现发动机进气空气中氮气与氧气的分离。有效的分离出了氮气,得到的富氧气体与燃料混合供入气缸燃烧或者通过进气道进入气缸并与气缸内燃料燃烧,这样氮气不参与燃烧过程,也就抑制了NOx的生成,亦不需再采取催化转化装置或控制燃烧等措施,这样就实现了较好的节能减排的目的。
图中:1.气缸;2.分离电磁阀(1);3.缓冲器(1);4.二次吸附器(C);5.吸附器(A);6.滤清器;7.空气进气口;8.供气电磁阀(1);9.抽空电磁阀(1);10.真空泵;11.供气电磁阀(2);12.抽空电磁阀(2);13.吸附器(B);14.二次吸附器(D);15.缓冲器(2);16.分离电磁阀(2);17.进气道
3 工作原理
结合图1,发动机进气空气分离系统主要通过压力回转吸附法实现发动机进气空气中氮气与氧气的分离。包括用于进气的空气进气口,并在进气口初安装有滤清器,用于滤去空气中的微粒和水蒸汽,系统含一套吸附装置,吸附装置包括吸附器(A)、吸附器(B)和二次吸附器(C)、二次吸附器(D);吸附器与二次吸附器之间分别有气管相连,其中A与C、B与D相对应。吸附器的进口端分别设有供气电磁阀、与抽空电磁阀;抽空电磁阀与真空泵相连。二次吸附器出口端安装有缓冲器,缓冲器出口端设有分离电磁阀,富氧气体通过分离电磁阀经进气道进入发动机气缸或与燃料混合后进入发动机气缸。
结合图1具体介绍吸附装置的工作循环:
0s时刻:吸附器(B)已经完成吸附过程;
0~30s:
吸附器(A)5、二次吸附器(C)4 :供气电控阀(1)6、分离电控阀(1)2“开”抽空电控阀(1)9“闭”,空气由空气进气口7进入通过滤清器6,过滤掉微粒和水蒸气,混合气体流出滤清器6通过供气电磁阀(1)8进入吸附器(A)5,吸附器(A)5内Na-X型沸石和Li-X型沸石吸附混合气体内的氮气、二氧化碳、水蒸气,剩余气体(氧气、氩气及少量的氮气、二氧化碳、水蒸气等)通过二次吸附器(A)4进行再次吸附,主要吸附上个工序所遗留的少量的氮气、二氧化碳、水蒸气等气体。从二次吸附器(A)4流出的富氧气体(氧气、氩气)经过缓冲器(1)3、分离电磁阀(1)2进入进气道,从而供入发动机气缸1。
吸附器(B)13、二次吸附器(D)14:供气电控阀(2)11、分离电控阀(2)16“闭”抽空电控阀(2)12“开”,通过真空泵10将吸附器(B)13 和二次吸附器(D)14抽至负压,吸附剂所吸附的氮气得到解吸,并排到大气。
30s时刻:吸附器(A)5已经完成吸附过程;
30~60s:
吸附器(A)5、二次吸附器(C)4 :供气电控阀(1)6、分离电控阀(1)2“闭”抽空电控阀(1)9“开”,通过真空泵10将吸附器(A)5和二次吸附器(C)4 抽至负压,吸附剂所吸附的氮气得到解吸,并排到大气。
吸附器(B)、二次吸附器(D):供气电控阀(2)、分离电控阀(2)“开”抽空电控阀(2)“闭”,空气由空气进气口进入通过滤清器,过滤掉微粒和水蒸气,混合气体流出滤清器通过供气电磁阀(2)进入吸附器(B),吸附器(B)内Na-X型沸石和Li-X型沸石吸附混合气体内的氮气、二氧化碳、水蒸气,剩余气体(氧气、氩气及少量的氮气、二氧化碳、水蒸气等)通过二次吸附器(D)进行再次吸附,主要吸附上个工序所遗留的少量的氮气、二氧化碳、水蒸气等气体。从二次吸附器(D)流出的富氧气体(氧气、氩气)经过缓冲器(2)、分离电磁阀(2)进入进气道,从而供入发动机气缸。
在电力工程中将自动化技术应用到电力系统中不仅能使电力系统的安全运行得到保障,还能让人们的日常用电需求得以满足,从而在根本上让电力系统的管理能力得到提高,保障系统能够供电安全。电力系统在基于科学技术的支持下结合自动化技术,这在很大程度上对电力系统的发展起到了保障作用。除此之外,电力系统与自动化技术的融合除了能够让电力系统自动化管理与监控能力得到提高,使电力系统得以安全运行以外,还能让相关工作人员的工作效率与需求同样得到提高。
1电力系统与自动化技术的概述
1.1电力系统
为了使人们日常用电需求得到满足,作为生产电能中最为重要组成部分的电力系统,其通过合理的传递将完成生产的电能传递给人们使用。另外,对于电力工程中的相关技术、设施及方案都可以总称为电力系统。其主要作用是生产、运输及运用电能。总所周知,电力属于一种能源,然而这种能源最大的缺陷就是在其运行过程中不能存储电能,如果不能在产生电能的过程中对其进行合理有效的利用,就会发生能源浪费的现象。正是为了解决这一问题便出现了电力系统自动化,从而使能源浪费减少,对电力行业的发展起到促进作用。
1.2自动化技术
所谓自动化,主要指的是一种特定的仪器,其在计算机的作用下成产并传递电能以供人们使用。对于计算机而言,其核心技术主要就是具有较高综合性的自动化技术,在对自动化技术进行操作使用时,可以将部分智能性质的硬件作为其基础,从而合理的控制整个电路系统,同时让电能生产工作的质量和效率得以保证。自动化控制系统在通常情况下主要控制和装置电力系统,同时还会组成二者间的监测和控制信息通道。
2电力工程中电力系统自动化技术的要求
对于电力系统自动化技术而言,其要求非常严格,它不仅对电力系统各元器件和元器件之间的协调有要求,同时还对电力设备的寿命提出了要求。首先,在电力运行方面要求能够实时采集和监测整个或电力系统局部运行参数;其次,在元器件方面要求各元器件都能经济实用,并且安全可靠,同时能够提供相关依据在电力系统的控制和调节上,使绝大多数自动化系统可以直接调控电力系统;最后,电力系统自动化还要让电力系统各部分、各级之间能够实现协调,使自动化系统成为电力系统经济、安全运行的保障。
3电力系统自动化技术在电力工程中的应用
3.1智能保护技术与综合自动化技术
我国信息化技术在社会不断发展的基础上其水平得到了不断提高,当然,这其中也包含了自动化技术。当前,我国智能保护技术已在发展过程中有了较大成就,在对其进行使用时可以通过综合自动化分层设施应用与各级电压电站中。为了使电力系统智能保护技术的安全与稳定性得以保证,可以在智能自动化保护设施的基础上,制定出一项包含人工智能技术、微机技术以及自动化技术在内的全新理论。配电网管理在通常的运行过程中可以通过结合自动化技术、通信技术以及计算机技术等,从而使电力系统运行的整体质量得以保证,这在很大程度上促进了电力企业的发展,对供电安全度及效率也起到了强化作用。
3.2仿真技术
仿真技术会对电力系统及其自动化技术在运行期间所产生的大量数据信息进行部分分析,并从其中将有价值的数据信息找出来,再合理的进行利用。同时,为了合理的对电力系统进行控制,可以在实际使用仿真技术时利用其对电力系统运行稳定性的保障作用,进行电能实验工作,并且可以通过分析电力系统的运行现状来对相应的监控设备与系统进行设置,通过这些操作才能建立起一个全新的实验环境。
3.3PCL技术
作为计算机技术与机电碰触控制技术重要组成部分的PCL技术,在其运行过程中可能会有电能生产出来并被存储,从而保证能够顺利进行编辑程序工作。首先,在实际运行PCL技术期间生产电能问题将得到有效解决,能够顺利进行电力系统自动化工作。其次,同传统的电力系统相比,PCL技术在灵活性、可靠性及稳定性方面都要高出一筹,并且PCL技术的应用还能使能源的损耗得以降低。
3.4计算机技术
在电力系统中处于非常重要的位置的计算机技术是其关键组成部分,计算机在电力系统的实际运行过程中可以扩大其运行范围,同时可以使电力系统输配电和发电量工作质量及效率得到保证。与此同时,在电力系统中应用计算机技术还能够对自动化技术的发展起到促进作用。
4电力工程中电力系统自动化的发展
4.1自动化水平更加的综合性发展
在未来电力系统自动化的发展过程中,其发展方向将不断向着集成化及智能化发展,这里所说的集成与智能化主要是指电力自动化的基本功能能够实现,而尤其关键的一点是能够使电力系统智能化实现及时掌握信息功能,对出现的大部分故障能够及时发现并采取相应解决措施,在最到程度上让损失减到最小。同时,能够将收集数据信息与信号处理技术结合起来,从而简化分布系统。另外,发展智能化可以让劳动量减少,解放人手,这在电力部门方面就能够让维修工人的就业减少,从而使资金得到节省。
4.2在配电系统中使用载波通信技术
目前,对于配电系统来讲最常见的技术之一就是通信技术,而在现代通信技术发展过程中光纤技术又因其自身所具有较高稳定性及传输速率等特点成为关注行业内的焦点,对光纤技术的应用将会是未来电力系统中一种非常有效的措施,然而,对光纤技术的使用需要较高的成本,且只有很小的实施可能性,所以,最有可能实施引入的就是载波通信技术,在对载波通信技术的研究中发现其不仅作用与光纤通信相同,而且其具有更高的可靠性,更快的传输速率。
4.3电力技术更加贴近用户
经济的发展带动了电力行业的发展,现阶段的电力系统自动化技术也愈加完善,由于当前客户对于电能的需求量越来越大,为了尽可能满足客户,就必须对电力系统自动化服务进行改善。目前,有一种采用一系列高科技技术的用户电力技术能够满足有较大用电需求量的客户,并且其电压在供电时能够保持非常稳定,这样就使得因电压引起的巨大不稳定性得以减少,实现柔性配电。这样一方面使电源质量得到保证,另一方面也是对用户用电负责的一种方式。
4.4电力系统更加的集成化和综合化
对于电力系统自动化技术而言,至关重要的一点就是要在降低成本的同时使经济效益还能有所提高,对此必不可少的就是加强信息集成与系统功能的集成,所以在系统中的数据和功能可以被集成,使得功能可以统一化。
4.5更加智能化
在不断发展并趋于完善的电力自动化技术支持下,电力系统自动化水平将大大提高,逐步向智能化发展的方向发展,而智能化是电力系统自动化技术发展的必然趋势。随着智能电网研究的深入,电力系统将得到优化,故障容错性能将大大提高,使电力系统的运行更加稳定可靠。
5结束语
综上所述,电力系统自动化技术不仅能够对电力系统及自动化技术的发展起到促进作用,让电力系统运行质量得到保证,而且还能使电力系统供电的安全与可靠性也得以保证,是电力工程中一项全新的技术与重要措施,对我国电力行业的发展有着重要意义。通过本文简单的分析与探讨,电力系统自动化技术尚且还有一些不足之处,因此,还需要专业技术人员进一步对电力系统自动化技术加强研究。
参考文献
1 配电自动化简介
配电自动化指:利用现代电子技术、通信技术、计算机及网络技术与电力设备相结合,将配电网在正常及事故情况下的监测、保护、控制、计量和供电部门的工作管理有机地融合在一起,改进供电质量,与用户建立更密切更负责的关系,以合理的价格满足用户要求的多样性,力求供电经济性最好,企业管理更为有效。
配电自动化是一个庞大复杂的、综合性很高的系统性工程,包含电力企业中与配电系统有关的全部功能数据流和控制。从保证对用户的供电质量,提高服务水平,减少运行费用的观点来看,配电自动化是一个统一的整体。
配电自动化包含以下几个方面:
馈线自动化。馈线自动化完成馈电线路的监测、控制、故障诊断、故障隔离和网络重构。其主要功能有:运行状态监测、远方控制和就地自主控制、故障区隔离、负荷转移及恢复供电、无功补偿和调压等。
变电站自动化。变电站自动化指应用自动控制技术和信息处理与传输技术,通过计算机硬软件系统或自动装置代替人工对变电站进行监控、测量和运行操作的一种自动化系统。变电站自动化以信号数字化和计算机通信技术为标志,进入传统的变电站二次设备领域,使变电站运行和监控发生了巨大的变化,取得显著的效益。
变电站自动化的基本功能有:数据采集、数据计算和处理、越限和状态监视、开关操作控制和闭锁、与继电保护交换信息、自动控制的协调和配合、与变电站其他自动化装置交换信息和与调度控制中心或集控中心通信等项功能。
配电自动化及管理系统是利用现代电子技术、通信技术、计算机及网络技术,将配电网实时信息、离线信息、用户信息、电网结构参数、地理信息进行集成,构成完整的自动化管理系统,实现配电系统正常运行及事故情况下的监测、保护、控制和配电管理。它是实时的配电自动化与配电管理系统集成为一体的系统。
2 配电自动化及管理系统
2.1 配电自动化及管理系统的等级划分及结构 根据配电网规模、地理分布及电网结构,分为特大型、大中型和中小型系统。主要由主站系统、子站系统、远方终端、通信系统组成。
2.2 配电自动化及管理系统的主要功能
2.2.1 配电自动化及管理系统的主站 配电自动化及管理系统主站是整个配电自动化及管理系统的监控、管理中心。其主要功能有实时功能和管理功能:实时功能:数据采集、数据传输、数据处理、控制功能、事件报告、人机联系、系统维护、故障处理等。
管理功能:指标管理、地理信息系统(GIS)、运行管理、设备管理(FM)、辅助设计(AM)、辅助工程管理、应用软件等。
2.2.2 配电自动化及管理系统的中心站 在特大城市的配电自动化及管理系统中可设中心站,是下属主站经加工处理后的信息汇集、管理中心。主要负责全局重要信息的监视与管理,特大城市电力部门可根据各自实际情况,确定本局配电自动化及管理系统中是否设置中心站。
2.2.3 配电自动化及管理系统子站(或称配电自动化系统中压监控单元)
配电自动化及管理系统子站是为分布主站功能、优化信息传输、清晰系统结构层次、方便通信系统组网而设置的中间层,实现所辖范围内的信息汇集、处理以及故障处理、通信监视等功能。具体功能有:数据采集、控制功能、数据传输、维护功能、故障处理、通信监视等。
2.2.4 配电自动化及管理系统远方终端 配电自动化及管理系统远方终端是用于中低压电网的各种远方监测、控制单元的总称,它包括配电柱上开关监控终端FTU(Feeder Terminal Unit)、配电变压器监测终端TTU(Transformer Terminal Unit)、开闭所、公用及用户配电所的监控终端DTU(Distribu-tion Terminal Unit)等。具体功能有:数据采集、控制功能、数据传输、维护功能、当地功能等。
3 电力自动化管理系统
3.1 规划和建设好配电网架 规划和建设好配电网架,是实现配电自动化及管理系统的基本条件。常用的配网接线有树状、放射状、网状、环网状等形式,其中环网接线是配网最常用的一种形式。将配电网环网化,并将10kV馈线进行适当合理的分段;保证在事故情况下,110kV变电容量、10kV主干线和10kV馈线有足够的转移负荷的能力。
3.2 加强领导,统筹安排,分步实施 配电自动化及管理系统的开发和应用,是从传统的管理方式向现代化管理方式的飞跃,其涵盖的内容十分广泛,涉及部门诸多,为此,必须加强领导,统一规划,因地制宜,分步实施,以实现最佳的投入产出比。
3.3 解决好实时系统与管理系统的一体化问题 由于配电自动化(DA)涉及的一次设备成本较大,目前一般仅限于重要区域的配网使用,而AM/FM/GIS则可在全部配网使用。若使用一体化可通过AM/FM/GIS系统在一定程度上弥补DA在这方面的不足,故配电自动化及管理系统的实时SCADA和AM/FM/GIS的一体化颇为重要。所谓一体化,就是指GIS作为计算机数据处理系统平台的一个组成部分,整个系统的实时性和数据(包括图形数据)的一致性得以保证,使得SCADA和AM/FM/GIS通过一个图形用户界面(GUI)集成在一起,从而提高系统的效率和效益。
3.4 配置合理的通信通道 通信系统信道的选用,应根据通信规划、现有通信条件和配电自动化及管理系统的需求,按分层配置、资源共享的原则予以确定。信道种类有光纤、微波、无线、载波、有线。主干线推荐使用高中速信道,试点项目建议使用光纤。
3.5 选择可靠的一次设备 对一次开关设备除满足相应标准外,还应满足配电自动化及管理系统的要求。
4 小结
配电自动化及管理系统具有实时性好、自动化水平高、管理功能强之特点,能提高供电可靠性和电能质量、改善对用户的服务,具有显著的经济优越性和良好的社会综合效益。配电自动化及管理系统的建设是一项系统工程,所以要在按照城网建设规划的前提下,因地制宜,积极采用、合理选用、推广应用配电自动化及管理系统。
中图分类号:U463文献标文献标志码:A文献标DOI:10.3969/j.issn.2095-1469.2012.01.002
Methodology for Thermal Analysis of Multi-system in Engine Underhood
Gao Qing1,2,Qian Yan1,2,Ge Fei3,Y.Y.Yan4
(1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun,Jilin 130025,China;
2. College of Automotive Engineering,Jilin University,Changchun,Jilin 130025,China;
3. R&D Cent.,China First Automobile Works Group Corp.,Changchun,Jilin 130011,China;
4. University of Nottingham,Nottingham NG7 2RD,UK)
Abstract:The thermal control of automotive power supply system and air conditioning system is one of core problems of vehicle thermal management. for the traditional internal combustion engines, the multi-system thermodynamic processes in engine underhood deal with water jacket cooling, air conditioning, supercharger intercooler, oil cooling, etc. This paper sums up the technology development and progress on the vehicle thermal management, discusses the current status of the underhood thermal flow and heat transfer analysis and further indicates numerical model establishment, simulation analysis and calculation method, including one dimensional(1D) analysis, three dimensional (3D) analysis and lumped parameter analysis. By analyzing the basic model of computational fluid dynamics(CFD) platform, these works will provide support and help for promoting the progress of vehicle thermal management analysis.
Keywords:vehicle;thermal management;underhood;numerical simulation
汽车动力舱内部结构复杂,半封闭的空间内包含了车辆的动力及传动装置、冷却系统,以及汽车空调系统等整车重要组成部分。当前,能源危机日益严峻,对汽车燃油经济性以及排放的要求也越来越高。为了解决这一问题,许多新技术和新装置应运而生,这些装置使动力舱内的位置更加紧凑、复杂。在运行状态下,各系统的热状态之间难免产生相互影响,不利于各系统的散热。因此,动力舱内的热流动问题以及研发更加高效的热管理系统,已经成为改善车辆散热性能、提高整车动力性的关键[1-3]。
无论是常规发动机汽车,还是新能源电动汽车,其热管理的两大核心问题都是动力源温控与汽车空调系统,以及协同控制问题。通常,它们的热过程交织在动力舱内,发生复杂的热交互影响。因此,其合理有效的匹配设计一直困扰着工程师,也制约着汽车动力性、经济性、排放性和舒适性的进一步提高。因此,基于汽车热管理发动机冷却设计和空调设计的集成开发具有很大的技术空间和潜力。
20世纪80年代,国际上一些著名汽车公司就开始关注将汽车热管理分析融入新产品开发设计中,美国汽车工程师学会(SAE)每隔两年召开一次车辆热管理系统国际会议[4]。近年来,我国也开始关注汽车热管理技术的发展,特别是动力舱内多系统热流体力学分析等问题,并在发动机冷却系统和空调设计中,逐步解决实际问题。
早期动力舱热管理分析手段主要是传统的试验方法,一般需要进行整车试验,虽然得到一些试验结果,但是试验条件和分析项目有限,耗用大量的人力物力,试验周期长,不利于开展更广泛的研究。近年来,随着计算机技术发展,数值计算和模拟仿真工具发展相对完善,使数值模拟技术的应用已经成为动力舱热管理技术的主要手段,并取得了突破性进展[2]。利用一维以及三维CFD软件对动力舱进行热流动模拟仿真分析,不但能够克服试验方法的局限性和各种困难,而且得到的结果准确性也越来越高,特别在一些细节上更为直观,更利于研究和解决实际问题。
为此,本文通过总结作者相关工作,系统归纳当前汽车热管理中动力舱热分析技术的发展形势和趋势,以及数字化仿真分析的基本方法,进一步认知动力舱多系统热力学问题,为推动汽车热管理分析平台建设提供支持和帮助。
1 动力舱热流动数值模拟方法
当前汽车动力舱热流动分析数值模拟方法主要包括一维分析和三维分析。其中的热管理系统模型包括5个主要部分:空调循环系统(Air Conditioning Circuit)、发动机冷却循环系统(Engine Cooling Circuit)、空气侧机舱循环系统(Underhood Airside Circuit)、发动机系统(Engine Lubrication Circuit)和进、排气系统循环(Intake and Exhaust Circuit)。
从一维分析到三维分析,再到一维多系统耦合分析,以及工业化设计,国际先进汽车制造商无不加强计算机辅助开发,进行多系统间的相互作用和影响分析,使设计流程越来越接近更加客观的复杂情况,同时处理多项方案,在简化试验过程的基础上,结合试验过程,评估多项设计方案,实现数字模拟技术的完善。目前国际先进的汽车热管理及其空调一体化设计开发平台通常更加重视数字化设计工作的建设,同时也希望指导汽车空调等系统的精细设计与开发。
1.1 一维仿真方法
动力舱热流动问题分析的一维仿真方法是从整体角度出发,从工业设计和开发的角度,着重分析各个系统之间的相互影响。目前应用于车辆热管理的一维仿真软件主要有英国Flowmaster International公司开发的FLOWMASTER一维设计分析平台,奥地利MAGNA公司开发的KULI一维设计分析平台,比利时LMS公司的AMESim一维设计三维分析混合平台以及美国Gamma Technologies公司的GT-COOL一维仿真平台等。
1993年,通用汽车公司的研究者们基于一维空气流道假设建立了一种工程分析方法,它利用少量数值模拟和试验数据,对更多工况冷却空气流量进行预测分析,但该方法无法准确考虑存在复杂回流的情况[5]。1999年,VALEO发动机冷却实验室研究者基于一维空气流动计算方法,分析了散热器尺寸、风扇尺寸、风扇罩以及车速对轿车冷却系统性能的影响,并与风洞试验结果进行比较,指导发动机舱的布置设计[6]。2001年,Valeo发动机冷却研究所(简称VEC)使用FLOWMASTER建立了动力舱模型,对其提出的降低油耗量和尾气排放的电子控制单元(Electronic Control Unit,ECU)控制策略进行了模拟,证明了模拟计算结果指出的控制方法可以使油耗量和尾气排放量达到最低[7]。
近年来,国内也进行了一些相关研究。2008年,上海交通大学研究者利用仿真软件AMESim建立发动机各子模块和仿真模型,着重建立发动机系统仿真模型开展分析,并利用试验台架对发动机系统仿真模型进行验证,其中利用系统仿真模型进行机油泵优化设计,并与原机油泵的相关参数进行对比,结果证明优化后的机油泵更加合理[8]。2009年,同济大学研究者以某重型柴油机为原型,利用KULI软件建立了发动机冷却系统模型,进行了瞬态工况下冷却液温度以及油温度变化的仿真研究[9],获得了良好结果。
1.2 三维数值模拟方法
事实上,一维分析更加关注性能分析和因素关联性表征,而三维分析更有利于现象行为分析、微观细节表征和数值试验预测。因此,三维仿真方法与一维仿真方法相比,动力舱热流动问题分析的三维数值模拟方法更加注重细节,可以关注系统的细节和局部分析,指导工程设计。应用于汽车热管理分析的主要三维软件有美国Thermo Analytics公司与福特汽车公司联合开发的新一代高级热管理设计与分析工具RadTherm,美国ANSYS公司集成的CFD高级流体仿真软件FLUENT以及CD-adapco Group公司开发的复杂流动的流体分析商用软件包STAR-CD等。
1999年至2000年,通用汽车公司Damodaran[10]等人和雷诺汽车公司Gilliéron [11]等人使用FLUENT软件对发动机舱内流场和温度场进行预测,通过风洞试验进行验证,探讨了使用计算流体力学方法解决发动机舱热问题的可行性。2002年,通用汽车公司的Yang Zhigang和德尔福汽车系统公司的James等人使用三维数值模拟方法,对汽车前置冷凝器、散热器和风扇模块的排列方式进行了研究,对各种设计下发动机舱内的流场和温度场进行了比较分析[12]。2007年,Tai [13]通过CFD方法分析了进气格栅形状及位置,以及多孔介质模型参数设置对流场形状的影响,并与一维计算结果进行了耦合分析,提供了车辆前端设计的方法。2009年,Subramanian[14] 对舱内散热空气回流进行了研究,由于舱内布置形式不合理,导致散热器出口处的空气形成的回流,造成散热器散热能力较差,通过改变动力舱结构,防止回流产生,使散热器保证良好的散热效率。
国内方面,2004年,东风柳州汽车有限公司研究人员使用CFD软件对某型两厢车发动机舱的高低速流动进行了三维数值模拟,得到发动机舱流动特征、散热能力及结构改进建议[15]。2005年,华中科技大学研究人员[16]使用FLUENT软件计算汽车外流场与发动机舱内流场,以及发动机舱的散热特性和温度场特性,利用发动机舱空气最高温度值判别温度状态是否满足设计要求。
2 动力舱三维基本模型
动力舱内包含多个系统及装置,主要是以换热器和风扇为主的单元形式。为使三维模拟接近实际,必须抓住这些装置的主要特征,有针对性地采用软件中的基本模型及模块进行模拟,本文主要针对FLUENT软件中的模型,归纳以下的模拟方法。
2.1 热交换器
动力舱中具有热交换性质的装置包含空调系统的冷凝器,涡轮增压系统的中冷器,发动机冷却系统的散热器等。这些装置一般具有多翅片、多管路和狭小缝隙特征。在动力舱模拟过程中,难于对其具体结构以及特征进行有效仿真,但它们宏观共性均具有压降特性的通气形态,同时冷热流体互换,一种流体将热量传递给另一种流体。借助该显著特征,三维模拟主要采用4种基本模型对热交换器单元的流动及换热过程进行三维模拟,分别为散热器模型、多孔介质模型、多孔跳跃模型以及换热器模型。
2.1.1 散热器模型
散热器模型(Radiator模型)是一种对热交换单元简化的模型,即不考虑模型厚度,热交换元件被假定成一个无限薄的面,只对其速度与压降特性以及换热特性进行模拟,以便突出体现热交换。散热器模型是将压降和热交换系数作为散热器法相速度的函数而定义其数学模型。
华中科技大学研究者[16]曾在货车内流场分析中,对冷凝器、中冷器、散热器都采用了这种模型,通过试验数据拟合出压强损失系数与速度的关系式以及散热系数与速度的关系式,以模拟散热器特性。2009年,索文超等[17]将散热器简化,定义压力损失系数为多项式,并输入散热器单位面积的散热量来进行模拟。
2.1.2 多孔介质模型
多孔介质模型(Porous 模型)是近年来用于对动力舱内热交换单元进行模拟的重要手段,模拟分析中假设热交换单元如同多孔介质,实现有形模拟,达到冷热流体换热,通过输入惯性阻力系数、粘性阻力系数等参数以及多孔介质固体部分的体热生成率等参数来定义通过多孔介质后流体的压降及热交换特征。
丁铁新等[18]对装载机整车罩壳内的散热器用多孔介质模型进行了模拟,多孔介质的物性通过液压油散热器试验确定。同时,毕小平等[19]对换热器芯体应用了多孔介质模型,通过输入空气流过多孔介质时的压力损失和多孔介质向空气的散热量进行了模拟。
2.1.3 多孔跳跃模型
多孔跳跃模型(Porous Jump模型)实际上是多孔介质模型的一维简化,类似于模拟已知速度与压降特性关系的薄膜,与多孔介质模型相比,多孔跳跃模型的收敛性和稳定性较好,节省计算资源[20]。其具体过程也是将模型简化为无限薄面,通过介质表面渗透性、压力跳跃系数等参数体现多孔跳跃介质的特征。
西北工业大学研究者[21]利用多孔介质的Darcy定律,结合风阻性能试验,得到多孔跳跃介质表面渗透性和压力跳跃系数,对散热器进行了模拟。2009年,袁侠义等[3]采用同样的方法模拟了动力舱内的散热器冷凝器等。
2.1.4 换热器模型
换热器模型(Heat Exchanger模型)可分两种,分别为传热单元数模型(Number of Transfer Units,NTU)和简化效率模型。前者的NTU模型中,不考虑冷却剂的相变,即可以用于模拟散热器、中冷器等单相流情况;后者的简化效率模型中,冷却剂性质可以被定义为压强和温度的函数,因此可以计算相变换热器,如空调冷凝器。
在换热器模型中,冷却剂的温度是沿流动方向变化的,可将热交换器划分成一些传热单元,通过定义冷却剂路径、冷却单元数量、冷却剂性质以及压降等参数来逐个对每个传热单元进行计算,最终得到整个热交换器的流动及换热特性。这种方法与上述几种计算热交换器的方法相比,考虑了冷却剂侧的流动与外部空气侧传热耦合效应,使模拟结果更贴近实际。
清华大学研究者[22]曾将散热器划分为多个计算单元区域,应用效能-传热单元数(ε-NTU)法进行换热计算。这种计算方法可以考虑到冷却剂温度沿流动方向的变化。2009年,周建军等[23]对散热器的热力学特性采用了换热器模型结合试验数据进行模拟,而其阻力特性采用了多孔介质模型,获得较好的分析结果。
2.2 风扇
动力舱内的风扇起着组织舱内气流,引导气流通过热交换元件的重要作用,气流通过风扇后有一个压升,一般采用的传统方法是以风扇性能曲线对风扇进行模拟。若考虑到风扇的转动对于流场产生的影响,目前在FLUENT中可采用MRF模型(Moving Reference Frame模型)或者滑移网格模型(Moving Mesh模型)。
2.2.1 风扇模型
风扇模型(Fan模型)是将风扇的几何特征和流动特征参数化,简化成一个无限薄的面,模拟风扇对流场的影响。在风扇边界条件中,风扇一般以风扇性能曲线,即静压与流速的函数关系曲线,风扇中心和旋转轴位置,以及径向速度和切向速度来模拟风扇流动特征。Fan模型具有计算速度快、稳定性高的特点。但Fan模型的缺点是其很依赖前期的试验数据,而这些试验数据又受试验时的环境和条件的影响[24]。
目前,对于风扇的模拟基本上都采用了风扇模型这种方式进行。
2.2.2 MRF模型
MRF模型(Moving Reference Frame模型)是一种定常计算模型,认为网格单元做匀速运动,这种方法适合计算区域上各点的速度等特征基本相同的问题,例如旋转的风扇。MRF模型是最简单的用于处理模型中有运动物体存在的一种方法。在使用MRF模型时,需要对计算域内的不同运动方式的子区域进行划分,单独对每个子区域进行运动方式的控制,子区域间可通过相接面进行数据交换。与Fan模型相比,MRF模型可获得更多的信息,如叶片上的流场、风扇特性、风扇效率以及叶片上的载荷分布等。
德国贝尔公司Knaus等[25]曾使用MRF模型,通过对动量方程添加科式离心力的方式对风扇进行模拟。丁铁新等[18]在对风扇模拟的几种方法进行比较之后,对风扇叶片等细节未做较大简化,直接用MRF模型进行模拟也得到了较为满意的结果。
2.2.3 滑移网格模型
滑移网格模型(Moving Mesh模型)是用于模拟风扇旋转效应的另外一种方法,采用这种方法计算出来的流场就是实际的流场,可以实时地观察到风扇的空间位置变化[18]。但与MRF模型相比,这种方法的计算时间长,计算量大,目前还是比较难于把握。
2.3 其它部件
在动力舱内部,还存在着一些辅助的部件,膨胀水箱、蓄电池以及发动机进排气装置等。一些塑料元件可以当作绝热边界来进行处理,而金属元件可以先给定一定的固定温度,从模拟计算的结果中,提取出相应位置的散热量,再将其作为边界条件,重新进行计算[26]。或者也可当作固定热源处理,给予一定的体积热源。
3 一维与三维联合应用
一维仿真计算周期短,可控性强,可从整体角度把握系统,研究系统中各部分间的影响关系和关联特性。而三维数值模拟计算关注细节和微观现象,可以观测到一维仿真无法观测到的局部情况,如面体内的流场、温度场、速度场等,观察到一些因素的作用和趋势。随着计算机资源的提升,计算方法的进步,以及客观工程分析要求,越来越多采用一维与三维联合应用。动力舱热流动分析数值模拟的趋势是将一维仿真与三维模拟计算结合起来,发挥两者的优势,从而达到更好的模拟效果[27]。
奥地利的AVL公司致力于将热管理系统内外流动联合仿真,在热管理系统空气侧流场使用SWIFT软件,热管理系统模拟使用一维热流体系统分析软件FLOWMASTER,发动机缸内燃烧和水套内流动使用三维热流体数值模拟软件 FIRE,并通过 CRUISE软件实现一维和三维系统计算数据的交换和衔接[2]。
英国MIRA公司和 JAGUAR公司利用 FLUENT
计算了发动机舱内流动与传热,使用 FLOWMASTER对冷却系统循环进行仿真,使用GT-POWER对发动机工作过程进行模拟,并将3个密切关联、相互影响的计算系统的边界条件和计算结果进行整合,各自的模拟结果为其它部分的计算提供边界条件,交换数据,互相修正,系统地研究了热管理系统性能和发动机舱内的流场以及温度场分布[28]。事实上,随着汽车和发动机数字化工程的发展,逐步完善的发动机过程仿真、空调过程仿真及整车行驶热空气动力学过程仿真等促进了动力舱多热力系统模型分析方法的不断进步。
4 结论
动力舱是车辆的重要的组成部分,也是汽车热管理涉及的主要问题。动力舱散热直接影响整车的动力性及经济性,致使动力舱热流动分析越来越受到重视,也成为评估和优化整车性能的重要途径。动力舱热流动分析涉及复杂的流动、传热、发动机工作过程、空调运行过程,以及环境热舒适性等诸多问题,面临多系统交互和性能制约,既要从全局角度进行掌控,也要从局部细节进行具体分析。一维与三维联合仿真是未来汽车开发设计的发展需求,因此集成各个系统之间耦合分析必将是未来的发展趋势。
参考文献(References):
KUMAR V,SHENDGE S A,BASKAR S. Underhood Thermal Simulation of a Small Passenger Vehicle with Rear Engine Compartment to Evaluate and Enhance Radiator Performance[C]. SAE Paper 2010-01-0801.
MAHMOUD K G,LOIBNER E,WIESLER B,et al. Simulation-based Vehicle Thermal Management System Concept and Methodology[C]. SAE Paper 2003-01-0276.
袁侠义,谷正气,杨易,等. 汽车发动机舱散热的数值仿真分析[J].汽车工程,2009,31(9):843-853.
Yuan Xiayi,Gu Zhengqi,Yang Yi,et al. Numerical Simulation on Vehicle Underhood Cooling [J]. Automotive Engineering,2009,31(9):843-853.(in Chinese)
张毅.车辆散热器模块流动与传热问题的数值分析与实验研究[D].杭州:浙江大学,2006.
Zhang Yi. Experimental and Numerical Study on Flow and Heat Transfer of Vehicle Heat Exchangers Module[D]. Hangzhou:Zhejiang University,2006. (in Chinese)
SHIMONOSONO H,SHIBATA Y,FUJITANI K. Optimization of the Heat Flow Distribution in the Engine Compartment[C]. SAE Paper No.930883.
NGY S A P. A Simple Engine Cooling System Simulation Model[C]. SAE Paper 1999-01-0237.
CHANFREAU M,JOSEPH A, BUTLER D,et al. Advanced Engine Cooling Thermal Management System on a Dual Voltage 42V-14V Minivan[C]. SAE Paper 2001-01-1742.
曹旭. 发动机热管理仿真与试验研究[D]. 上海:上海交通大学,2008.
Cao Xu. Engine Thermal Management Simulation and Test[D]. Shanghai:Shanghai Jiao Tong University,2008. (in Chinese)
顾宁,倪计民,仲韵,等. 基于KUL I的发动机热管理瞬态模型的参数设置与仿真[J].计算机应用,2009,29(7):1963-1977.
Gu Ning,Ni Jimin,Zhong Yun,et al. Parameters Setting Parameters and Simulation of Transient State Model in Engine Thermal Management Based on KUL I[J]. Journal of Computer Applications,2009,29(7):1963-1977. (in Chinese)
DAMODARAN V,KAUSHIK S. Simulation to Identify and Resolve Underhood/Underbody Vehicle Thermal Issues[J]. Journal Articles by Fluent Software Users,JA118,2000.
GILLIÉRON P. Renault Chooses Fluent for Underhood Aerodynamics[Ol]. FLUENT Newsletters,NL167,1999.
Yang Zhigang,BOZEMAN J,Shen F Z,et al. CFRM Concept at Vehicle Idle Conditions[C]. SAE Paper 2003-01-0613.
TAI C,CHENG C,LIAO C. A Practical and Simplified Airflow Simulation to Assess Underhood Cooling Performance[C].SAE Paper 2007-01-1649.
SUBRAMANIAN S,BANDARU B,BALAJI B. Minimization of Hot Air Re-circulation in Engine Cooling System [J]. SAE Paper 2009-01-1153.
唐因放.发动机舱散热的CFD研究[J].北京汽车,2009 (4):1-4.
Tang Yinfang. CFD Study of the Vehicle Underhood Cooling[J]. Beijing Automotive Engineering,2009(4):1-4. (in Chinese)
蒋光福. 汽车发动机舱散热特性研究[D]. 武汉:华中科技大学,2005.
Jiang Guangfu. Research of the Heat Transfer Performance in the Automobile Engine Compartment [D]. Wuhan:Huazhong University of Science and Technology,2005. (in Chinese)
索文超,毕小平,吕良栋.履带车辆动力舱空气流场的CFD模拟与试验研究[J].装甲兵工程学院学报,2009,23(2):29-32.
Suo Wenchao,Bi Xiaoping,Lü Liangdong. Research on CFD Simulation and Test of Airflow Field in Engine Compartment of Tracked Vehicles[J]. Journal of Academy of Armored Force Engineering,2009,23(2):29-32. (in Chinese)
丁铁新,林运,盛明星.整车罩壳内空气流动的数值模拟研究[J].柴油机设计与制造,2006,14(3):20-24.
Ding Tiexin,Lin Yun,Sheng Mingxing. Numerical Simulation of Air Flow Inside a Vehicle Cover[J]. Design & Manufacture of Diesel Engine,2006,14(3):20-24. (in Chinese)
毕小平,王普凯,刘西侠,等.环境温度和压力对坦克柴油机冷却空气影响的CFD仿真[J].内燃机工程,2006,27(4):43-46.
Bi Xiaoping,Wang Pukai,Liu Xixia,et al. Study of Effect of Enviroment Temperature and Pressure on Cooling Air for Tank Diesel by Using CFD Simulation[J]. Chinese Internal Combustion Engine Engineering,2006,27(4):43-46. (in Chinese)
Fluent Inc. FLUENT User's Guide[Z]. Fluent Inc,2006.
刘传超.卡车外流及发动机舱内流计算与散热研究[D].西安:西北工业大学,2005.
Liu Chuanchao. The Research of Camion’s Outflow and Heat Radiate Characteristic Analysis for Engine Cabin[D]. Xi’an:Northwestern Polytechnical University,2005. (in Chinese)
罗建曦.汽车热管理系统集成空气侧热流体分析研究[D].北京:清华大学,2004.
Luo Jianxi. Airside Thermal Fluid Analysis for Vehicle Thermal Management System Integration[D]. Beijing:Tsinghua University,2004. (in Chinese)
周建军,杨坤.数值模拟在整车热管理中的应用[J].上海汽车,2009 (7):16-17.
Zhou Jianjun,Yang Kun. Application of Numerical Simulation in Vehicle Thermal Management[J]. Shanghai Auto,2009 (7):16-17. (in Chinese)
GULLBERG P,LOFDAHL L,NILSSON P.Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow[C]. SAE Paper 2011-01-2182.
KNAUS H,OTTOSSON C,BROTZ F,et al. Cooling Module Performance Investigation by Means of Underhood Simulation[C]. SAE Paper 2005-01-2013.
袁侠义.汽车发动机舱热管理研究与改进[D].长沙:湖南大学,2010.
Yuan Xiayi. Investigation and Improvement on Underhood Thermal Management [D]. Changsha:Hunan University,2010. (in Chinese)
一、推进自动化,必须提高档案标准化、规范化水平
目前,档案信息自动化系统的现状是档案标准化、规范化滞后和应用软件多而乱,这些都严重影响了系统整体水平的提高。目前系统的主要矛盾不是硬件设备的缺乏,而是硬件的功能并没有充分发挥。笔者认为对这一问题取得共识是系统建设思想上的一次飞跃,它使我们的观察事业从计算机系统扩大到整个档案信息管理。这一认识上的转变给我们的启示是档案信息自动化的内涵包括档案工作的各个方面和各个环节,其中,首要的是档案业务要规范,档案标准要建立健全和真正实施。档案标准和规范本身也是一个系统工程,要推进档案自动化建设,必须抓好档案标准化、规范化,掌握好两者相辅相成、互相促进的辩证关系。
二、有重点地抓好数据库建设
目前,档案信息自动化系统从总体上看仍处于与由文件处理向信息管理系统的过渡阶段,完成这一部的关键在于数据库建设。开发和建设数据库系统是国家档案信息工程的核心和基础,是工程的主体。数据库的含义是依托先进的信息技术对资料进行科学的管理和方便的使用。建立数据库系统是一项长期的任务,要经过由低到高、由单个到群体的循序渐进过程。经过试点,数据库经验中最主要的有领导重视,统一认识,坚持计算机技术人员同档案业务人员协同配合;面向应用,建立“活库”,以利用频率和使用效率考核数据库的“活性”;突出重点,由单一库向系统库发展等。当前若能把综合数据库的完善提高和各单位档案目录库建立起来,通过网络连接形成开放的分布式数据库群,将使自动化系统效率大大提高一步。
三、自动化建设要着眼于提高系统的整体水平
根据系统论思想和集成化要求,档案信息自动化建设的着眼点应是整个系统,组成系统的纵向和横向的各个节点都应达到一定水平,并通过网络加以联通,这样才能发挥整体优势,提高系统的综合能力。部分节点甚至一个重要节点的障碍,都可能造成系统的梗阻。当然,要求每个节点的装备水平和应用能力齐头并进是不现实的,在一些单位进行较高水平的试点,以取得值得推广的经验,对整个系统是有利的,但其基本出发点应是为了提高系统的整体水平,只有少数先进的节点不可能组成先进的系统。
四、实事求是的改进管理体制
集中统一是管理任何社会化大生产所必需的方式,信息自动化这一高新技术系统也不例外。人机结合是自动化系统的建设方针,其含义为档案业务人员直接使用微机开展工作,这一是研究自动化系统管理是必须考虑的原则之一。档案信息自动化系统的管理体制,要能使高度集中管理和方便使用相结合。目前,我国档案信息自动化系统的管理体制,同时存在集中统一管理不力和使用不方便的问题,主要方面是集中统一管理不力,这同我国档案工作是在各专业基础上发展起来的和系统建设从“微机起步”有关。应下决心解决分散现象,从管理制度上保证业务及时规范、标准,硬软件的选用,上下各个层次和各专业办公自动化等都应纳入统一的档案信息自动化系统管理之中,实行集中统一管理,不能各行其是自建系统,造成信息分割和资源浪费。也要下决心结局方便实用的问题,如长期将档案部门的“硬任务”集中于一个部门,在档案部门这一信息系统之内再组建一个“档案信息系统”,就很难提高档案工作整体水平。建立集中统一管理下的分散式系统,是较理想的模式,但这种高技术结构,必须有较强的管理能力和技术能力不具备这些条件,从集中向分散过渡,反倒有可能退回到分散式。
五、充分发挥系统建设资金的使用效益
档案自动化系统建设是档案部门投资最大的项目,在资金筹集和管理镁用方面,较好的做法是多渠道筹措资金,实行中央拨款、地方拨款、单位自筹和争取外援相结合,资金使用上做到按项目管理,进行项目论证并跟踪考核。目前存在的主要问题之一是没有在国家和地方财政长期建设发展计划中立项,档案信息自动化项目资金大多通过领导特批解决,为此耗费了各级档案部门领导很大精力。
六、重视人才管理
“组织结构在管理信息系统中起着重要的作用,它是信息决策、任务执行和监督管理等重要活动的载体,揭示了组织单位人员管理的层次,反映了人与工作、决策、责权之间的联系。”组织结构对于一个组织单位中如何完成业务流程的建模和提高管理、生产效率是至关重要的,任何一个用户脱离组织结构执行业务是没有意义的。硕士论文,代码替换。
我公司于2006年7月投入使用了与启明星铝业信息中心联合开发的信息管理系统。经过几年的使用,运行效果良好。由于2008年年底与中电投宁夏能源公司重组,造成了组织结构的变动。集团公司本部的职能部门变成了集团公司下属股份公司的职能部门,集团公司本部新设立了10个职能部门,又增加了煤化工等二级公司,我信息中心由原股份公司职能部门变成集团公司二级分公司。硕士论文,代码替换。如何将原有的组织结构更换为重组后的组织结构,成为中心的一项重要任务。
经过软件开发人员的反复论证,一致认为在现有的组织机构上更改对信息系统的影响最小。目前的信息系统大部分的业务数据都集中在股份公司这一块,所以尽量保持这部分的组织结构数据变动最小是关键。经讨论决定,备份数据库后对信息系统组织结构进行如下变动:
1.在当前组织结构上增加的部门机构。硕士论文,代码替换。
2.建立新旧组织机构代码转换表。硕士论文,代码替换。硕士论文,代码替换。
3.停用原集团公司本部职能部门和其他调整过的部门,使用新部门代码。
4.调整新的领导类型表。
5.将数据库中的与组织结构代码相关的表进行新部门代码替换。
6.将旧组织结构中的人员调整到新组织结构中。
7.搭建旧信息系统,方便停用的部门查询历史数据。
方案确定后,开始进行前期准备工作。新组织结构的调整和新旧组织结构代码转换表在测试环境中完成,对数据库中与组织结构代码相关的表进行了一一核实,并完成了更新SQL语句的编写工作。前期准备工作完成后,发通告告知信息系统使用人员系统停用的具体时间段,然后在该时间段进行信息系统组织结构切换。经过4个小时,顺利的将新组织结构融入到系统中,使用至今没有异常情况。
这次信息系统组织结构的切换是比较成功的,没有出现预想中可能出现的问题,业务工作一切正常。事前分析了数据库中各个业务表的使用情况,所以做到了最小的调整范围,只改动了领导类型表,组织结构表,电子公告表等部分数据。
这个案例根据实际情况进行了分析、调整,并没有对数据库里的组织代码伤筋动骨。假设我们对数据库里所有表的组织结构都要修改,或者其他比如物料编码、项目编码等字段进行新旧替换,必须要对数据库里所有存在这些字段的表进行代码替换。硕士论文,代码替换。这种替换工作量的大小取决于在设计数据库时对这些特定字段的字段名和编码规则的规范程度。
如果这些特定字段的字段名在数据表的字段名里明确表示或者有明确性关键字,例如组织结构字段的字段名里有唯一关键字为zzjg,我们可以用存储过程来完成对数据库中包含“zzjg”的字段遍历,即完成对数据库中组织结构字段的新旧替换。首先,找出当前数据库的所有用户表名,SQL语句为:
CREATE PROCEDURE dbo.xgzzzd
@关键字 as varchar(50)
AS
declare @表名 varchar(40)
declare @字段名nvarchar(50)
declare@js nvarchar(250)
DECLARE bmz CURSOR FOR
select name from sysobjects where xtype= 'u'
open bmz
Fetch NEXT FROM bmz into @表名
while (@@fetch_status=0)
begin
然后再根据遍历出来的表名找字段,SQL语句为:
DECLARE bmd CURSOR FOR
select a.name from syscolumns ainner join sysobjects b on a.id=b.id where b.name=@表名
open bmd
Fetch NEXT FROM bmd into @字段名
while (@@fetch_status=0)
begin
再判定字段是否为组织结构字段,如果是,进行新旧代码替换,SQL语句如下:
if(@字段名 like 'zzjg%')
begin
set @js ='update '+@表名+' set '+@字段名+'=b.替换代码 from '+@表名+'a inner join 组织结构替换表 b on a.'+ @字段名+'=b.旧组织代码 where '+@字段名+' = '+@关键字
exec sp_executesql@js
end
Fetch NEXT FROM bmd into @字段名
end
close bmd
deallocate bmd
Fetch NEXT FROM bmz into @表名
end
close bmz
deallocate bmz
Go
上述存储过程实现了对数据库中组织结构字段的遍历和替换,前提是组织结构字段名必须有明确性标识。我们也可以通过寻找其他规律判定字段是否是组织结构字段,但规范性的字段名肯定要比其他判定条件节省效率,这就要求我们在设计数据库中的表时对字段有规范性的约束,例如字段名、字段类型、编码规则等,通过这些约束确定该字段在数据库中的明确性标识,避免与其他字段名混淆。
我公司的信息系统数据库中各表的组织结构字段名并不规范,所以用上面的存储过程是不行的,可以用判定字段类型和编码等方式来确定是否为组织结构字段。
由此得出,数据库中设计中,表和字段设计的规范性和标准性是非常必要的,这样对以后可能发生数据替换操作非常有利,即节省时间,又节省工作量,完全不用担心认为的操作失误。
参考文献:
1.《现代组织工作流管理系统体系结构设计》,2009-11-19,club.ev123.com/doc/41140_1.html