时间:2023-05-24 08:47:30
引言:寻求写作上的突破?我们特意为您精选了12篇桥梁设计分析范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
Abstract: based on the design of the tai Po fengxi bridge construction scheme and technology, the bridge in the choice of bridge design type, bridge at the structure of the system and bridge and approach of the part of the connection for analysis, finally summarized some of the basic bridge design work experience.
Key word: bridge design; Tai Po fengxi bridge; The bowstring arch bridge; Construction technology
中图分类号: U284.15+2文献标识码:A文章编号:
近些年来,随着公路基础设施建设的迅猛发展和人们审美水平的提升,桥梁作为公路工程的重要组成部分,要求其不仅要具备基本的交通运输功能,在景观方面也要有一定程度的造诣。公路桥梁的建设要与附近现有的以及待建的其他设施相匹配,协调运行以方便有效地服务人们的日常生活。深入分析、探讨桥梁设计要求与施工及使用需求之间的关系,这是桥梁建设行业在社会经济快速发展历程中的重要表现,同时也为人们的交通出行带来了更加便捷和安全,以及舒适的条件。此外,理论设计结合实际需求也是桥梁设计理论业内发展的必然趋势。
一、桥梁建设概况
大埔枫溪大桥桥位选址在大埔县枫朗镇下游约1km处,是跨越梅潭河的一座大桥。连接省道(S221)与地方道路,是连接大埔县城与枫朗镇的重要通道。
大埔县位于广东北部、韩江中上游,县境山脉为北南走向,四周高,中间低,中部丘陵广布。散布于四周边陲且海拔千米以上的山峰有27处,最高点海拔1357m――西南部的明山嶂银窿顶,最低处海拔26m――高陂黄竹居的韩江岸。枫朗镇位于大埔县东南部,地处西岩山麓,梅潭河上游,东接双溪,西连本县平原,距大埔县城约18km。大埔县属亚热带季风性气候,昼夜温差大,日照、雨量充足,偶有奇旱和严寒。梅潭河,全长83km多,流域集雨面积1603平方公里,于大埔三河坝汇入韩江。桥位位于枫朗镇下游1km处,桥位区地貌为河流冲击地貌。桥位区出露地层有第四系填土、粉细砂、砂卵石,基岩为侏罗系基岩。桥梁建设区内地下水以孔隙水和基岩裂隙水居多,且赋存于砂卵石层、覆盖土层以及基岩裂缝间隙内。桥位区地下水位基本与河道水位持平,并且地下水位的变化受河流水位及大气降水的影响较大。
桥梁设计概况:全桥跨径合为3×13 m+1×40 m+5×13 m。主桥采用L=40m下承式双肋系杆拱,矢跨比1/4;引桥为13m钢筋混凝土简支现浇T梁。主桥系杆采用预应力混凝土,拱肋与横梁均采用普通钢筋混凝土,以上构件均采用整体现浇施工工艺。桥面设置了1.5%单向纵坡。桥面设置1.5%的双向横坡。主桥桥面全宽10.8m,引桥桥面宽7m。桥梁全长147.6m。
图1桥型总体布置图(立面)
二、桥梁的使用功能及工程方案
我国《公路工程技术标准》要求桥梁设计应依照安全、适用、经济、美观等标准,综合考虑因地制宜、便于施工和检修养护等相关因素。本桥梁建成后能够方便枫朗镇乡民与县城的沟通交流,是一条重要通道。
图2大埔枫溪大桥效果图
1、主跨结构
下承式系杆拱是一种无推力的拱式组合体系,是外部静定结构,兼有拱桥的较大跨越能力和简支梁桥对地基适应能力强的两大特点,当桥面高程受到限制而桥下又要求保证较大的净空时,无推力的拱式组合体系桥梁是较优越的桥型。结合地理位置、工程特点等因素,大埔枫溪大桥主跨采用1-40m下承式系杆拱结构,其设计参数及施工工艺如下分述。
设计参数:
(1)拱肋为等截面普通钢筋混凝土构件,截面尺寸为高0.8m,宽0.6m,两拱肋中心距为7.6m。据结构计算结果,拱顶位置需设置2cm的预拱度,预拱度的设置按照二次抛物线形状进行分配。拱肋采用C50钢筋混凝土分段对称进行浇筑,支架整体现浇施工工艺。
(2)吊杆纵桥向间距2.5m,横向间距7.6m,全桥对称布置。吊杆外露段需进行防腐处理:进行除锈处理,并进行防腐涂装,再用不锈钢管作外套保护。
(3)系杆采用C50预应力混凝土构件,中间区段为等截面形式;系杆与拱肋拱脚处整体浇筑,且于交接处增大系杆与拱肋截面,系杆在端部截面高度为1.8m;系杆外侧悬挑1.3m的检修道板,与系杆整体现浇。
施工工艺:
主桥上部结构施工均采用搭设支架整体现浇。具体施工顺序为:
(1)搭设临时支墩,架设贝雷梁,搭设系杆与横梁现浇的满堂支架。
(2)整体现浇系杆与横梁以及行车道板,待系杆混凝土达到强度之后,进行系杆的第一批预应力张拉。
(3)搭设拱肋支架,整体现浇拱肋,浇筑拱肋时,须对称分段浇筑。
(4)待拱肋混凝土达到强度之后,脱拱架,张拉吊杆。
(5)张拉系杆的最后一批预应力。
(6)拆除系杆支架。
(7)浇筑桥面铺装、防撞护栏以及附属设施。
2、引桥结构
引桥上部采用13m跨径的钢筋砼简支T梁结构,下部采用桩柱式结构。
引桥部分的施工:由于常水位较浅,1#、6#~8#桥墩长期处于无水区域,按正常施工进行即可。2#、5#桥墩位于浅水区域,可采用土袋围堰进行防护。引桥下部结构均采用钻孔灌注桩,墩柱及盖梁现浇,上部结构采用支架整体现浇的13mT梁结构形式,并采用先简支后桥面连续的施工工艺。
3、桥面系
桥面横坡为1.5%,通过桥面铺装来调整,桥面铺装采用C40防水混凝土,厚度为10~14.5cm。主桥桥面行车道外侧设置防撞护栏,检修道外侧采用钢管、钢板制作的简易栏杆。桥面排水对称设置于防撞护栏内侧,间距6~8m。
4、桥台与路基衔接
桥梁下部结构有桥墩和桥台(包括基础)组成,主要作用是承担与路堤衔接的任务,并平衡路堤侧向的土压力,防止路堤回填土因土质疏松而坍落。大埔县城岸桥台基础位于杂填土上,且左右桩基位置置于斜坡上,要求先对桩基四周进行挡土墙支护工程,回填杂土工程完成后,方可进行桩基钻孔施工。溪背坪岸侧无水下工程,按照正常的施工要求进行施工即可。锥坡及台背回填采用砂砾石,要求分层压实,压实度不小于95%。
三、桥梁设计中的经验总结
通过分析总结大埔枫溪大桥的设计及施工,归纳出以下桥梁设计工作的经验:
(1)桥梁设计建设必须全面考察桥位的地质条件。据区域地质资料,场地无区域性构造通过,据钻探显示,场地孔深范围内未发现断层形迹,场地划分为对建筑抗震有利地段,场地稳定性较好,适宜采用拱式结构桥。
(2)设计时要注重桥梁的实际使用功能。该桥处于省道上,且交通功能要求高,考虑水文因素,大埔县雨季较长,年平均降雨量250.3亿立方米,桥位区地下水位基本与河流水位持平,因此在设计时考虑了桥面排水问题。该桥在工程方案的确定初期吸取了许多合理的建议,做了很多详细的解释。
(3)桥梁设计时重视景观效果对桥梁各方面的影响。由于各方面的条件限制,该桥在改善桥型结构美观方面的花费较多、难度大,因此主要在桥梁的附属结构如栏杆、照明灯具等方面改善了其美观效果。
当代公路桥梁设计综合融入了科学发展观,全方位深入分析了桥梁设计、施工、运营、养护等一系列工作环节,阐明了桥梁结构工程的耐久性、行车行人的安全性、成本控制的经济性、预防灾害的有效性、养护维修的方便性以及设计造型的美观性。
综上所述,我国从1978年开始,随着国内桥梁建设发展飞快,在这个过程中对桥梁结构设计的需求也推动了桥梁结构分析技术的进步。桥梁是我们日常生活中除了公路以外最为重要的交通枢纽,为人们带来便利,在设计时应该多方位的考虑桥梁的各方面性能,确保顺利施工。
参考文献:
一、前言。
进入二十一世纪我国经济飞速发展,城市化进程以及道路交通也在不断建设和发展。因此道路桥梁建筑行业的规模在不断扩大和加快,形式各样的桥梁设计也在不断拔地而起。在近几年的不断建设中路桥设计积累了丰富的经验,道路建设中桥梁是十分重要的也是与人们的生活密不可分的,在城市建设中,桥梁不仅仅是交通系统中的重要组成部分,也是城市化进程中的标志性建筑。
二、道路桥梁的设计原则及分析
(一)、道路、桥梁的设计原则
设计中资源利用是否经济合理,尊重实际, 技术先进,实事求是, 是否科学,完全取决于设计的水平和质量。具体而言,在设计中应坚持以下原则:
(1)、 在道路桥梁设计中,严格执行国家现行的设计规范和国家批准的技术标准。
(2)、设计中尽量采用标准化设计,积极推广应用“可靠性设计方法”、“结构优化设计方法”等现代设计方法。
(3)、 设计中注意把握因地制宜,就地取材,节省建设资金的设计原则。在满足建设功能要求的同时,利用一切可能地节约投资、节约多种资源,缩短建设工期。
(4)、道路桥梁设计中积极采用技术更加先进、经济上更加合理的新结构、新材料。
道路桥梁的设计者应考虑对施工现场的水文、地质、气象、河道等基本状况做到熟悉、了解,对施工中存在疑问之处应重新调查或是勘察。从而能有效避免由于基础资料原因造成的安全问题。
(二)、设计中注意桥梁的线形安全
在过去的道路桥梁的设计中,为了方便现场施工,桥梁无论长短,往往布置成直线在桥梁的布线设计中,造成了超长的直线桥梁在大规模的桥梁设计中,而超短的直线急弯桥梁却成了小河以及山区的桥梁设计现状,增加了事故发生的概率性。
(三)、 设计桥梁平曲线
根据实际调查分析的结果可知,就平曲线半径与事故关系的研究说明,小半径曲线段所发生的事故的可能性更大。时速为100km/h的道路桥梁,当桥梁的平曲线半径小于2000m,发生事故的概率明显提高,由此可作为曲线半径的安全下限。其他道路则以设计时速按照相应的比例进行取值。与此同时,缓和曲线的设置对圆曲线上的安全特性具有明显的影响。由此,一般而言,平曲线都应设置缓和曲线。
(四)、设计桥梁的安全掌控
根据交通心理学的研究成果桥梁的直线长度不应超过以车辆计算形成速度70秒的长度距离。在桥梁的平面设计中桥梁的直线段长度,中长直线的桥梁使驾车者的反应敏感度降低,车速较高,从而引发了交通安全事故。同向平曲线之间以短直线相连,形成了所谓的“断背曲线”,相应的车辆在行驶经过这样的线路时,往往将直线段看做两端曲线相反的弯曲,线形并不连接在一起。由此,同向曲线之间的最小直线长度不应小于设计车速(以Km/h)的6倍(长度以m)。综合上述研究成果,道路桥梁的直线长度过长和过短都将影响行车的安全,根据交通安全的理论分析,可通过计算得出道路桥梁适宜长度的数值。
三、平纵线形组合以及衔接设计
(一)、弯坡叠加桥梁的设计
根据直观状况分析,这样的设计形式并不利于行车。平面曲线阶段有纵坡存在,形成了弯坡叠加状况,是高速公路桥梁设计中的常见的形式。可通过对坡和弯的组合进行安全特性的研究和设计,利用设计指标求的DC的值,并利用经验公式得到预测事故的值。同时对于预测事故值相对较大的区域,可采用工程改造,以增加标志等措施减少交通安全隐患。
(二)、平面直线与曲线的联接
具体恰当的直线长度以及衔接曲线的半径取值,应根据桥梁的设计车速以及桥位的地形,确定道路安全的设计区间范围。在以前的设计过程中,桥梁的设计为了适应地形,从而造成了长直线与小半径的曲线相连,而根据道路行驶安全分析表明,长直线与小半径的曲线衔接处往往由于车辆高速行驶的惯性容易引发安全的隐患。
(三)、 纵坡与平曲线的衔接设计
纵坡在于平曲线进行衔接的过程中,坡长越长、坡度越大,其所衔接的平曲线半径越小,发生事故的概率也将越大。根据相应的规律,在桥梁设计中通过计算由相同衔接方式的区段,并进行一定的改进。 道路桥梁设计过程中,较长的下坡接上下半曲线是具有危险倾向的设计,容易导致车辆在高速行驶状况下驶入平曲线,从而造成事故隐患。
(四)、平衡桥梁上平面曲线与竖曲线
根据现有的研究结果表明,平竖曲线平衡的半径推荐值的设置应综合考虑安全和成本等要素。 桥梁位于小半径如2000m以下平曲线上并且竖曲线部分或全部重叠时,应充分考虑平曲线的半径大小平衡状况,从而有益于交通安全。
四、桥面横向布置
(一)、设计中应注意考虑行车道数量
根据现有的道路形成安全运营调查比较考虑行车道的数量,四个车道采用在高速公路的桥梁中,从而保证了车道数量的设置满足了桥梁设计过程中的安全经济原则。当车辆的速度为120km/h,交通量超过四车道的道路桥梁可采用六车道或是八车道。当车辆形成速度小于120km/h,六车道或是八车道的采用应经过相关的技术认证。二级和三级公路在我国一般采用的是双车道,采用单车道的是四级公路。当二级公路的混合交通量较大时和,可采用两快两慢四个车道。城市的桥梁设置一本可采用六车道和八车道,只有很少的部分采用两个快车和两个慢车道等四个车道。根据实际的交通事故的调查表明,不应采用三车道的断面布置形式。
(二)、行车道宽度设计
在我国实行的是高速公路、一级公路桥梁采用3.75m的车道宽度,四级公路桥梁采用3.5m的车道宽。
(三)、残疾人通道的设计
设计者应考虑城市桥梁的人行道设计,应专门考虑残疾人轮椅的上下行走要求,相应的道路桥面施工则应满足残疾人能自主推行的宽度确定。
五、设计中桥孔布置
(一)、设计中通航河流的桥孔布置
在具体的设计过程中,应根据船运、筏运等的通航特点,充分考虑河床演变造成的航道变化,将通航孔设定在稳定的航道上,必要时还应预留通航孔。通航河流上,桥下的通航孔位置以及孔的数量直接影响了桥梁的是施工规模以及设计的难度。
(二)、河流中有流冰及漂浮物河流桥孔布置
在设计中应考虑有封冻以及流冰现象的河段,首先应调查冰层的厚度、冰块的最大尺寸、冰块的密度以及流冰的速度等基本的资料。桥孔布置过程中充分考虑到冰块的排泄,桥梁的墩台应建立破冰和防撞等措施。在有大量的漂浮物以及冲积物的河流中,桥孔的布置应保证河流中洪水和泥沙的顺利宣泄。
六、结语
作为设计者应充分考虑施工是设计指导的,设计中不能任意发挥,更不能生搬硬套,设计的重点放在施工中的环节上,做到设计明确易理解,这样才不会发生施工人员比照设计图无法顺利施工或按图施工却出现不同效果的情况和现象。施工到一定程度发现问题采取补救措施,整个工程造价势必受到影响。
参考文献:
[1]胡长青. 道路桥梁设计与施工 [J]. 科协论坛(下半月), 2011,(06).
[2]杨大为. 现代路桥施工中钢纤维混凝土的施工技术研究[J]. 科技致富向导, 2011,(23) .
一、前言
桥梁设计中全寿命设计理论核心内容利用了全面的、联系的、发展的观点,全面分析桥梁规划、设计、施工、运营、养护、拆除等一系列过程,系统性的研究了工程结构的耐久性,车辆行人的安全性,养护维修的便捷性,成本效益的合理性,防火减灾的高效性,外观造型的协调性,进而提高桥梁在其寿命期限内的服务水平。分析研究桥梁的全寿命设计理论是桥梁建设事业顺应社会经济发展的需要,是满足人们对于安全、便捷、经济、舒适交通出行的需求,更是桥梁设计理论事业发展的必然要求。
二、全寿命设计特点
1、全局性
桥梁全寿命设计特点之一的全局性特点是指基于桥梁设计理论和设计方法为基础的,分析桥梁设计总结其本质,对其科学的设计系统实行研究及综合评价的过程。桥梁设计过程的指导思想是倡导全面的、联系的、发展的观点,而并不是自某一个阶段或者某一个部门的角度出发,需要关注更多的桥梁全寿命设计周期内的所有影响因素,使得桥梁的各种性能需求的得到均衡、得到满足,从而实现追求桥梁全寿命设计这件艺术品的多种效应。
2、创新性
桥梁全寿命设计特点之二的创新性特点是指需要具有动态灵活的、创新思维的设计过程,一座桥梁的设计体现了设计工程师的想象能力,利用手中的有限信息,经过思维发散、创新设计,实现一种自定性至定量的全过程,桥梁设计工程师在全身心工作中,需要考虑用户、业主、社会等多方面的需求,然后利用自己的知识,最终规划出一个客观实际的、详细生动的、满足众多需求的具体量化设计作品。
3、多目标性
桥梁全寿命设计特点之三的多目标性特点是指在桥梁的设计过程中,包括了整体概念、性能结构、外观造型、维护保养、生态效应、风险评估、全寿命成本等一系列的设计行为。为了实现全寿命时期内整体性能的最佳目的,桥梁的设计过程中要实行适宜的协调、有效地衔接每个设计阶段,实现高效的整体设计工作,设计过程当中的工程顺序或工作内容不需要一定有严格的界定,很多时候都在有效衔接每个设计阶段的状况下通过交叉完成的。在桥梁各个设计阶段之中或者整体设计过程之中,设计工作不只是依靠有序的工作循环便能够完成的,而是需要经过多次的循环,并且需要经过多次类似的修改或完善,因为每个设计阶段过程中肯定会存在着交叉或相互重叠情况。
三、全寿命设计过程
1、总体概念设计
桥梁工程师进行桥梁设计时,首先根据业主的需求及建设桥梁的目的,开展总体概念设计构思,全面把握事物的相互联系,为桥梁的建设条件、设计准则、使用寿命年限、投融资估算、投资效益等制定出设计的原则。在这段时期,桥梁设计的核心内容不仅要把握全寿命设计有别于现行设计的特征,而且要分析全寿命设计的规律,提出建设桥梁的设计理论蓝图及其设计原则。总体概念设计作为桥梁设计工作的首项任务,是十分重要的决策过程。
2、结构性能设计
以全寿命设计理论为基础的桥梁结构性能设计,需要桥梁工程师发挥主观能动性,发挥经验及其创新能力。在总体概念设计原则下融合外观造型设计,保证桥梁在使用寿命前提下,把时间参数引入结构细部设计,保证结构的耐久性等性能满足相应的目标值。全寿命的桥梁结构性能设计是把业主需求转成桥梁技术性能说明,利用技术研究、拟定结构构造尺寸、结构受力分析、构造设计及细部设计,从而形成各选方案,保证设计意图及目标可以在建设过程中,还有在桥梁的使用寿命时期内均得以实现。桥梁结构性能设计是以总体概念设计为原则,考虑外观造型设计、需求,结合桥梁规定的使用年限而开展的一系列设计工作。
3、桥梁养护设计
以全寿命设计理论为基础的桥梁养护设计,在桥梁工程师设计过程中除了要分析桥梁的建设期,更要考虑桥梁的使用及养护期,通过桥梁设计把传统的重建设轻养护的习惯,转成建设与养护并重,要担负起全寿命期的责任。所以为保证桥梁有长久的使用寿命,桥梁工程师在进行桥梁设计时,首先要全面考虑结构设施的性能、有效的资源利用、应急处理灾难后果、养护成本、安全性运营、保证环境质量等。通过分析构件的各种类型、各种方案的不同效果,实现对桥梁养护时机、养护措施、养护策略的设计,同时提出合理养护维修要求,而不是待桥梁竣工通车后,再凭借经验采取哪坏修哪的事后处理途径。
4、全寿命成本分析
前言
在目前的桥梁设计中,对于耐久性更多的只是作为一种概念受到关注,既没有明确提出使用年限的要求,也没有进行专门的耐久性设计。随着我国交通建设事业的迅速发展,这些倾向在一定程度上导致了当前工程事故频发、结构使用性能差、使用寿命短的不良后果,也与国际结构工程界日益重视耐久性、安全性、适用性的趋势相违背,也不符合结构动态和综合经济性的要求。
一、 桥梁耐久性差的主要原因分析
1.1 施工和管理水平低
目前国内有许多桥梁出现耐久性不足问题,甚至刚建成就出现耐久性不足的问题,这与施工质量、施工工艺、施工管理以及材料进场控制等方面都有或多或少的关系,典型的问题有钢筋保护层不足及构件裂缝超过允允许宽度(其原因包括水泥选用、混凝土配比、振捣和养护不当及预应力施加不合理等)。这些缺陷短期不会对桥梁的正常使用产生明显的影响,但却会对结构的长期耐久性产生非常不利的危害。
1.2 设计理论和结构构造体系不够完善
除了在施工和管理中存在问题的同时,在桥梁设计领域,特别是关于桥梁施工和使用期安全性的问题还有许多可以改进的地方。目前许多设计人员往往只满足于规范对结构极限强度和正常使用强度计算上的安全度需要,而忽视从结构体系、结构构造、结构材料、结构维护、结构耐久性以及从设计、施工到使用全过程中经常出现的人为错误等方面去加强和保证结构的安全性。有的结构整体性和延性不足,冗余性小;有的计算图式和受力路线不明确,造成局部受力过大;有的混凝土强度等级过低、保护层厚度过小、钢筋直径过细、构件截面过薄;这些都削弱了结构耐久性,会严重影响结构的安全性。不少桥梁、虽然满足了设计规范的强度要求,仅用了5~10 年就因为耐久性出了问题影响结构安全。结构耐久性不足已成为最现实的一个安全问题,设计时要从构造、材料等角度采取措施加强结构耐久性。不同的环境和使用条件、不同的设计对象都会对结构体系提出不同的布局和构造等方面的要求。规范再详细也不能包罗本应由
设计人员解决的各种问题、规范更新得再快也适应不了新认识、新技术、新材料快速发展
对结构提出的各种新的要求。因此,合理可靠的结构设计除了满足规范的要求外,还要求
设计人员具有对结构本性的正确认识、丰富的经验和准确的判断。
二、 桥梁设计耐久性的改进方向
2.1应该更加重视结构的耐久性问题
桥梁在建造和使用过程中,一定会受到环境、有害化学物质的侵蚀,并要承受车辆、
风、地震、疲劳、超载、人为因素等外来作用,同时桥梁所采用材料的自身性能也会不断退
化,从而导致结构各部分不同程度的损伤和劣化。在大跨桥梁领域,国内从上世纪80 年
代以来,修建了大量的斜拉桥;虽然迄今为止出现倒塌或严重损害的例子很少,但已经有
多座桥梁因为拉索的耐久性问题而不得不提前换索,既影响了使用又增大了经济损失。
需要指出的是,很多这类问题与没有进行合理的耐久性设计有关,这也促使人们重新认识桥梁的耐久性问题。大量的病害实例也证明,除了施工和材料方面的原因,影响结构耐久性的决定性因素是来自构造上(也即设计上)的缺陷。
国内从上世纪90 年代开始重视了对结构耐久性的研究,也取得了不少成果。这些研
究大多是从材料和统计分析的角度进行的,对如何从结构和设计的角度及如何以设计和
施工人员易于接受和操作的方式来改善桥梁耐久性却很少有人研究。结构的耐久性设计
与常规的结构设计有着本质的区别,目前需要努力将耐久性的研究从定性分析向定量分
析发展。
2.2重视对疲劳损伤的研究
桥梁结构所承受的车辆荷载和风荷载都是动荷载,会在结构内产生循环变化的应力,
不但会引起结构的振动,还会引起结构的累积疲劳损伤。由于桥梁所采用的材料并非是均匀和连续的,实际上存在许多微小的缺陷,在循环荷载作用下,这些微缺陷会逐渐发展、合并形成损伤,并逐步在材料中形成宏观裂纹。如果宏观裂纹不得到有效控制,极有可能会引起材料、结构的脆性断裂。早期疲劳损伤往往不易被检测到,但其带来的后果往往是灾难性
的。疲劳损伤过去一直被认为是钢桥设计中的核心问题,由钢结构疲劳引起的钢材开裂
案例较多,亦有不少因疲劳断裂引起桥梁垮塌的例子。近20 年来,疲劳损伤的研究已进
入混凝土结构,但对于使用期受腐蚀的钢筋混凝土构件的动态性能和疲劳性能的研究还
需加强。对疲劳损伤的研究不仅仅指对整个结构而言,事实上桥梁结构常常由于某些关键部
位的局部疲劳失效而导致整个结构的失效,例如斜拉桥拉索锚固端的疲劳损害。
2.3充分重视桥梁的超载问题
汽车超载主要有三种情况:其一是早期修建的老桥超龄负载运营;其二是桥梁通行
的车流量超过原设计;另一种是车辆违规超载。前两种产生的原因主要是设计荷载的变
化和交通量的增加;后者是车辆使用者违法超载营运,后两种超载现象在我国公路运输
中较为普遍。桥梁的超载一方面可能引发疲劳问题。超载会使桥梁疲劳应力幅度加大、损伤加剧,甚至会出现一些超载引发的结构破坏事故。另一方面,由于超载造成的桥梁内部损伤不能恢复,将使得桥梁在正常荷载下的工作状态发生变化,从而可能危害桥梁的安全性和
耐久性。
三、小结
中图分类号:TU318文献标识码: A 文章编号:
交通事业迅猛发展,公路建设进入黄金时代,随着公路总里程的增加,公路建设逐步由干线网高交通量路段向省际连接段和加密线方向发展,地形条件也逐渐由平原微丘向山岭重丘发展,设计施工的难度越来越大,对公路设计的技术、环保、安全等方面的要求也越来越高。本文笔者探讨了山区公路桥梁设计。
一、上部结构设计要点
山区公路,桥梁所占的比重较大,但一般情况下,特殊的大跨径桥梁相比较是少数。因此,对于数量众多的常见跨径桥梁,其设计原则就是尽量采用施工方便、造价经济的标准化、预制装配化结构。常用的大、中桥标准跨径有16m、20m、 25m、30m、35m、40m、50m,常用的中、小桥标准跨径有6m、8m、10m、13m、16m。横断面型式主要有空心板、预制T梁、预制小箱梁等.一般情况,对于跨径小于30m的桥梁空心板、预制T梁、预制小箱梁等结构形式均可以采用,对于跨径35m、40m、50m的桥梁,根据梁的受力特点,更宜采用T梁或者小箱梁。从造价上讲,20m跨径以下,用空心板截面的桥梁造价相对经济些,且空心板的建筑高度最低,对于较小跨径且桥梁净空不高时,空心板截面最适宜.从受力上讲,对于较大跨径40m、50m的桥梁,用T梁截面则更好。小箱梁无论从造价、施工简便性还是受力等各方面看,可以说是介于空心板和T梁之间的一种截面。因此,对于跨径25m-35m的截面,常采用的是小箱梁的结构形式。当然,也不排除因一些地区由于T梁施工技术的成熟性也常采用T梁截面。
二、下部结构设计要点
下部构造设计主要指桥梁墩台的设计.对于常见高度的桥墩,即墩高小于40m的桥墩多采用柱式墩或Y型薄壁墩,其中又以柱式墩最常用。柱式墩分圆柱和方柱。圆柱施工时外观质量易控制,且与桩基衔接方便,平原地区使用较多。但从美观角度来说,方柱棱角分明,与上构梁体协调,有一定的视线诱导性,较美观。从受力上看,截面积相等的圆柱和方柱,方柱的抗弯刚度要大于圆柱,受力优于圆柱,当体系为连续刚构时,方柱可以方便的调节两个方向的尺度来调整墩柱的刚度,从而达到调整墩柱受力的目的。从施工角度说,圆柱施工更简单,方柱与桩基衔接一般需增设桩帽,增加了工程量,而且对于山区地形横坡较陡,增设桩帽会增加挖方工程量,易引起边坡失稳。Y型墩施工较复杂,在墩高较矮时,从工程造价上考虑不经济。但Y型墩相当于独柱双肢,在墩高较高时,Y型墩只需一套模板,在山区地面横坡差异较大时,或地面情况受限无法采用双柱桥墩时,Y型墩则显示其优点。若地面横坡差异大,修建双柱墩则会形成“高低腿”,同一桥墩,两个墩柱受力差异较大,Y型墩则不出现此问题,同时,横坡差异大时,双柱墩的两套模板搭设费工费料,且对边坡稳定影响较大,Y型墩为独柱,不存在此问题。在墩高较高时,从造价上讲,Y型墩占有优势。因此,对于常见墩高,设计中采用哪种墩柱形式应根据具体地形、上部结构形式、墩高等综合考虑。
山区高速公路桥台一般采用重力式U型台、肋式台、柱式台。根据《墩台与基础》规定,U台控制的填土范围一般为4-10m,所以U台高度最好控制在10米之内。山区桥梁U台一个显著特征就是横向、纵向横坡陡,为了适应地形,减少开挖,节约圬工方量,U台设计时必须合理分台阶。桩柱式桥台由于抗推刚度小,当联长较长,台后填土较高时不宜使用,一般台后填土高度宜控制在5m以下,联长宜控制在150m以内。埋置式肋式台适用范围广一些,但也不宜太高,不宜超过12m。山区高速公路纵向地形陡峭,往往不能设置锥坡,这时采用柱式台或肋式台就会受到较大限制。当地质条件较差时,往往会出现U台下设置桩基的情况。
三、基础设计要点
在桥梁结构设计过程中,做好了上部结构设计、下部墩台设计之后,再下来的设计重点就是基础设计。任何结构物的基础都是与相应的地基相接触,因而设计人员在做基础设计时必须掌握各种桥梁基础结构方面的知识以及相关的工程地质方面的知识。山区桥梁,正是由于其工程地质方面的复杂多样性,导致了桥梁基础设计具有了相当的难度,再加上山区工程地质当中往往会遇到岩溶、滑坡、冻土、黄土等各种不良地质条件,就更加增添了基础设计的复杂性。工程设计人员在做工程设计时,应尽可能的做到环保优先,最大限度的减少对自然环境的扰动,在做基础设计时就更应精心设计,因地制宜的选择最适宜的基础结构型式。
1.基础工程的分类
基础根据埋置深度分为浅基础和深基础。将埋置深度较前(一般小于5米),且施工简单的基础称为浅基础;由于淡层土质不良,需将基础置于较深的良好土层上,且施工较复杂的基础称为深基础。基础埋置在土层内深度虽较浅,但在水下部分较深,如深水中桥墩基础,称为深水基础,在设计和施工中需要作为深基础考虑。公路桥梁及其人工构造物首先考虑用天然地基上的浅基础。当需要设置深基础时常采用桩基础或沉井基础,我国公路桥梁现今最常用的深基础是桩基础。
2.山区桥梁基础工程的常见形式
对于山区公路桥梁,墩台基础形式主要有两类:钻(挖)孔桩基础(嵌岩桩或摩擦桩)和明挖扩大基础。在做设计时,应根据具体地基条件来选择基础形式。一般来说,对于地质条件较好的桥位处,指岩层或地基持力层埋藏位置较浅,一般不大于5米,且基岩稳定,山体平缓,基础边缘距坡面有一定安全距离的情况下,我们首先选择明挖扩大基础。小型构造物,如涵洞、通道,一般也考虑设计为浅基础,若地基持力层达不到承载力要求可考虑采用换填或夯实等方法对地基先进行处理。对于荷载较大,地基上部土层软弱,适宜的地基持力层位置较深时,可考虑采用桩基础。桩基础的设计核心是在满足单桩承载力的前提下,以摩擦桩桩长作为控制指标;嵌岩桩一般取用双控指标:嵌岩深度和基岩强度。目前规范对嵌岩深度无明确要求,设计中一般取用2.5倍桩径。同时,对山区常见的陡坡位置,需按岩面陡坡的安全距离计算有效嵌岩深度,不小于3倍桩径。山区桥梁地质、地形条件复杂,在基础型式选用设计中应慎重考虑。
结束语
总之,我们作为设计者,应不断的丰畜桥梁建设理论和实践知识,对桥粱方案进行探入细致的研究分析,确定合理的桥梁设计方案以满足不断加速的山区公路建设和发展的需要。
【参考文献】
1.1桥梁查勘
为彻底摸清引黄入冀补淀工程沿线跨渠桥梁情况,需要对沿线桥梁逐一进行详细查勘。查勘前,应列明详细的查勘计划,查勘路线、查勘内容。制定查勘表格,表格包括桥梁所在县市、渠道桩号、桥梁类型、桥长、桥梁净宽及总宽,栏杆类型、桥梁梁底高程、破损情况等。将引黄设计线路CAD图导入到GOOLEEarth软件上,在GOOLEEarth三维地形图上顺着引黄线路逐一对沿线桥梁进行标记,并标记桥梁周围村庄或标识性建筑物,方便查勘时准确快捷的找到该桥,节约查勘时间。查勘过程中,一定要与当地政府、村民沟通,掌握桥梁是否在其它工程项目中已有拆除重建、加固或改造的规划,并收集相关批复资料,保证与其它工程项目不产生重叠。查勘过程中一定要注意查勘人员的安全。
1.2勘察资料整理
对查勘资料进行整理,包括整理桥梁总数量、每个县市桥梁的数量,每座桥梁的桥长、桥宽,桥梁类型,破坏情况等,并对在其他工程项目中已有批复的桥梁进行备注,汇总并整理成电子表格,方便分类、查阅。
1.3桥梁分类
根据渠道规划、桥梁现状、桥梁对引黄输水的影响、以及引黄输水对桥梁的影响,将桥梁分以下几种类型。渠道过水断面能够满足引黄输水要求,渠道不需要扩挖,且桥梁自身结构完好,对引黄输水的影响较小的桥梁,维持现状。已经列入其他工程项目的桥梁,维持现状。主梁结构、桥墩等破坏严重,已成危桥,不能满通正常通行,影响引黄正常输水的桥梁,拆除重建。桥梁自身结构破坏较严重,且引黄输水渠道断面不满足过水要求,需要对渠道断面进行扩挖,扩挖后长度不满足要求的桥梁,拆除重建。桥梁自身结构破坏较严重,且桥梁梁底高程低于引黄输水水位,影响正常输水的桥梁,拆除重建。渠道断面不能满足引黄输水要求,渠道需要扩挖,但桥梁主体结构完好的桥梁,采取加长措施。渠道断面宽度能满足引黄输水要求,但需要对渠底进行清淤。桥梁结构完好,但建桥时桩长未考虑将来河底清淤。为保证清淤后,桥梁桩基承载力满足规范要求,加固桥梁下部结构。已经废弃、不再通行、且无新建必要的桥梁,拆除废弃。
1.4设计原则
引黄入冀补淀工程桥梁众多,为便于统一设计、管理,制定设计原则十分必要。引黄入冀补淀工程桥梁设计原则为:满足现行道路、桥梁设计规程、规范。在满足正常运营功能的前提下,桥型设计遵循安全、适用、经济、美观和有利环保的原则,并考虑因地制宜、便于施工、就地取材和养护等因素。结合桥位区地形、地质、水文条件进行桥跨布置;为便于机械化和工厂化施工,加快施工进度,优先选用装配式标准化跨径。桥梁梁底设计高程控制水位取引黄水位与排沥水位的大值,梁底高程按大于控制水位0.5m设计,同时考虑桥面高程不低于两岸堤顶高程。桥梁原位拆除重建时,为避免新桥桩基和旧桥桩基冲突,根据两岸地形及道路情况,优先将桥梁沿道路轴线适当平移;当轴向无法避开时,在条件允许的情况下,适当将桥梁横向平移,错开旧桥桩基;不具备横向平移条件时,在新旧桥桩基重叠位置采用桩接承台型式错开旧桥桩基。
2.设计要点
2.1拆除重建桥梁设计要点
根据桥位处河道开口宽度,水文、地质等合理确定桥梁结构类型、跨度等,拆除重建桥梁基本选用了装配式13m跨钢筋混凝土空心板标准跨径。根据现场调查资料和地方政府规划,以不低于现状道路宽度和规划宽度为原则确定桥宽。拆除重建桥梁均为原位拆除重建,按照制定的错桩原则,在道路轴向无法错开,且横向不能平移时,采用了3根桩接承台,承台上设置两根柱的型式,错开旧桥桩基。控制新旧桥桩基净距不小于50cm,要求施工单位在施工前对桥梁全部桩基坐标进行认真核实、详细查勘旧桥桩位、桩径情况,确认新旧桥桩基不存在冲突后方可施工。
2.2加长桥梁设计要点
引黄入冀补淀工程加长的桥梁大部分建于2008年左右,为2跨13m空心板结构,桥梁结构完好。由于引黄输水要求,渠道需要扩挖,渠道开口断面由26m左右扩挖到40m左右。鉴于桥梁结构完好,将桥梁直接拆除重建将造成大量的资金浪费,因此在渠道扩挖侧将桥梁增加一跨,加长为3跨13m结构。桥梁设计荷载按旧桥部分维持原荷载标准,新加长部分按现行桥梁规范标准设计。旧桥设计荷载标准为公路-Ⅱ级折减,根据现行桥梁设计规范,已经取消公路-Ⅱ级折减标准,因此新加长部分按公路-Ⅱ级荷载标准。桥梁加长方案:在桥下架设支架,做好安全措施,凿除扩挖侧旧桥边跨铺装及护栏、拆除边跨及桥台,保证拆下的空心板梁结构完好、放置到安全场地备用。在旧桥台位置新建桥墩,在扩挖侧渠道开口处新做桥台。为防止新旧桩基冲突,按照拆除重建桥梁的错桩原则,新桥墩采用3棵桩接承台、2根柱设计。新做桥墩、桥成后,将原桥拆除的空心板梁和新预制的空心板梁吊装到位,并新做桥面铺装及护栏,形成3跨13m空心板桥结构。
2.3下部加固桥梁设计要点
引黄入冀补淀工程部分桥梁结构完好,但桥位处渠道需要清淤下挖,下挖深度约3-4m。桥梁原设计未考虑河道下挖,下挖后桥梁桩基承载力不满足规范要求,因此需要对桥梁下部结构进行加固。加固方案为:将桥梁墩柱外包15cm厚的钢筋混凝土,外包范围为墩柱顶部至设计渠道底部,并在渠道底部设置扩大基础,以抵消由于清淤而消减的桩基承载力。外包混凝土前必须将桥梁墩柱进行凿毛,使墩柱钢筋外漏,设置连接筋与桥梁墩柱主筋和外包混凝土主筋焊接,连接筋钢筋的梅花状布置,间距不大于30cm。加固前必须中断桥梁上部交通,同时应加强观测,采取措施保证桥梁整体稳定。
中图分类号:TU997文献标识码: A
下文我们将通过桩基的设计内容和原则、理论与方法以及桩型的选择等方面对公路桥梁的桩基设计进行先要的分析。
2 公路桥梁桩基设计内容和设计原则
在许多情况下,要对桩基施工时的不良环境效应进行评估。为了作出高水平的桩基设计,应该遵循以下的设计原则:
(1)设计前进行必要的基本情况调查。
(2)认真选定适用的、简便可行而又可靠的设计方法,认真测定和选用有代表性的而且可靠的原始参数。
(3)确定桩的设计承载力时应考虑到容许沉降量。
(4)设计桩基时应遵循和执行有关技术规范的规定,但在某些特殊情况下应该灵活对待和处理。
3 公路桥梁桩基设计计算理论与方法
3.1 分析方法
在公路桥梁桩基设计中,首先就要面临一人分析方法的选择问题,在桩基设计的实践中,现行的有两种方法。
3.1.1 结构力学方法
结构力学方法是最早采用的方法,它是将整个结构平衡体系分割成上部结构、基础和地基三个部分,不考虑它们的共同作用,各自独立求解。这种分析方法在计算手段不发达的早期是唯一可行的,但其解算结构与实际情况不符。它只满足了总荷载与总反力的静力平衡条件,却完全未能考虑上部结构与基础之间连接点和基底与土介质之间的接触点上位移的连续条件,从而导致结构内力与变形和基础内力与变形均与实际发生偏离。
3.1.2 上部结构、桩和地基视为整体分析
这种方法比较真实地反映建筑物与桩基的实际受力状态,但对计算机容量提出了更高的要求。为了解决计算机容量问题,现实在考虑共同作用的整体分析中,多采用子结构法及波前法等,前者对于桩基的分析较为有效。
3.2 设计理论
关于公路桥梁桩基的设计计算理论,主要有两种类型,一种是基于容许应力理论的定值设计法;另一种是以概率理论为基础的极限状态设计法。
3.2.1 定值设计法
定值设计方法是传统的桩基设计方法,该法是将荷载和抗力看成不变的定值,根据经验确定的安全系数来度量桩基的可靠度,这与实际情况是不大相符合的。实际上,荷载、承载力、变形参数的实测值都不是定值,而是具有变异性和不确定性的随机变量,因此,定值设计方法存在着两个主要的缺点:一是对所设计对象的可靠度实际上是不明确的;一是在采用相同安全系数条件下,不同地质条件、不同桩基形式(单桩或群桩)、不同桩型、不同成桩工艺和不同性质荷载下的桩基,其实际可靠度是不同的。当然,定值设计法之所以能在长时间内被作为常规方法使用,自有其可取之处,例如它较为简单实用,也并非全靠经验决定问题,它靠限制应力来间接地控制地基沉降量,靠现场桩静载试验确定容许承载力及相应的沉降等作法,实践证明还是合理和科学的。
3.2.2 极限状态设计法
桩基概率极限状态设计法系以可靠指标度量桩基的可靠度,采用以分项系数的极限状态设计表达式进行计算。它运用概率分析方法,对桩基的可靠性(安全度)给出科学的度量,明确地提出了可靠度的定义和可靠指标的计算公式,对桩基的可靠概率作了近似的相对估计,改变了过去采用定值安全系数时主要依靠经验的做法。桩基概率有限状态设计包含两个方面的内容:一是桩基的承载力取不发生破坏或因变形过大无法继续承载的最大值,变形(或裂缝)限制在不影响正常使用和耐久性的限值以内;二是以概率理论为基础,对荷载效应、抗力进行统计分析的基础上,使桩基的失效概率符合规定的限值,即达到一定的可靠度。考虑到若直接采用目标可靠指标来进行桩基设计,由于计算太繁琐,故该法系采用以各基本变量的标准值和分项系数表达式的实用设计表达式来进行设计。而标准值和分项系数的取值均以概率方法确定,这样,设计人员无需进行概率方面的分析运算,仍可按传统的方式进行桩基设计。
4 桩型的选择
在公路桥梁的桩基设计中,桩型与工艺选择应根据荷载性质、桩的使用功能、穿越土层、桩端持力层土类、地下水位、施工设备、施工环境、施工队伍水平和经验以及制桩材料供应条件等,选择经济合理、安全适用的桩型和成桩工艺。
4.1 荷载条件
荷载是选择桩型时首先要考虑的条件,荷载的大小、性质、作用方向和施加方式等都密切地关系着桩型的选择。例如对于要求单桩设计承载力为2000KN的情况,一般只有人工挖孔桩、钻孔扩底灌注桩、预应力管桩以及贝诺特灌注桩和内击扩底沉管灌注桩等几种桩型可以满足要求。当然,荷载条件只是对桩型的选择给予一定范围的控制,桩型的最后选定还要考虑其它一些因素。
4.2 地质条件与环境条件
地质条件是桩型选择要考虑的一个很重要的因素,桩型的选择要求所选定的桩种在该地质条件下是安全的,能符合桩基设计对于桩承载力和沉降的要求。符合这样的要求的桩型可能不只是一种,这就要加上其他条件的限制,例如所选定的桩型能够最大限度地发挥土耳其和桩身的潜在能力,在该地质与环境条件下是可以施工的,最后还要考虑施工质量是否有保证和经济性等。此外,桩的破坏模式与地质条件有关,因而也影响桩型的选择。
4.3 施工条件
除了上述两点的限制条件,还要充分考虑到桩基施工的可行性,即在既定的地质条件和环境条件下,所选定的桩型是否能利用现有施工条件(设备与技术水平、工期等)达到设计要求,以及现场环境是否允许该施工艺顺利实施。当然,也要防止本末倒置的做法,即为方便起见,简单地由现有施工队伍的设备与技术决定桩型,这种作法在工程实践中也并非罕见。此外,地基加固时施工的可用空间也常常是决定桩型的因素。
4.4 经济条件
桩型的最后选定还要看技术经济效果,即考虑包括桩的荷载试验在内总造价和整个工程的给经济效益。为此,对所选桩型和设计方案进行全面的技术经济分析加以论证,并同时顾及环境效益和社会效益。此外,还要考虑工期问题,延误工期是要罚款的,所以,对于桩型选择来说,承包商的经济条件也是一个重要的因素。
5 桩的布置
桩型选定以后,即可考虑桩的布置问题,为了取得较好的技术上经济上的效果,必须对有关因素进行综合的考虑。
5.1 地质条件
在满足荷载条件和规范要求的前提下,桩的布置要适当的考虑地质条件的制约。例如,在粘土地基中布桩,一般需要采用比较大的桩距,以减小地表土的隆起;当桩端持力层为顶面倾斜的基岩或土层中含有漂石时,桩距也应取大值。如果采用预先挖孔或钻孔的办法,桩距可减小。在松砂和砂质淤泥层中,小桩距反而因能挤紧桩周围的土致使对具有负摩擦力的桩基产生有利的作用,故宜将桩距予以适当减小。
5.2 桩型条件
考虑桩距问题,主要是尽量避免地基土中应力重叠所产生的不利影响(过大沉降或剪切破坏),但过分加大桩距,将导致由于承台加大加厚而带来的造价提高,对水下基础而言,还会带来许多不利于施工的技术问题。不同桩型对应力重叠不利影响是不同的,例如端承型群桩由于通过桩侧摩阻力传递到土层中的应力很小,因此桩群中各桩的相互影响较小,应力重叠只发生于持力层的深部,因而可以考虑较小的桩距。
5.3 桩的竖向布置
桩的竖向布置涉及桩长、桩的埋设深度以及持力层这三者的确定问题,这实质上是包含三个相互影响、相互制约的因素的一个问题。
5.3.1 桩长的确定
对桩长的确定应综合考虑各种有关的因素。当然在大多数情况下难以做到面面俱到,在桩基设计中,只照顾和控制主要的影响因素,力求做到既满足使用要求,又能最有效地利用和发挥地基土和桩身的承载能力,既符合成桩技术的现实水平,又能满足工期要求和降低桩基造价。
5.3.2 对桩的埋设深度的考虑
实际上,桩长初步确定了,桩的埋设尝试也就可以在某一小范围内大致确定。不过,要注意桩长并不等同于埋设深度,后者对于桩基设计和桩的工作性能的良好发挥来说,还另有其独特的工程意义。对埋设尝试的考虑,主要是要最好地发挥桩的侧阻力与端阻力,这首先就要涉及一个所谓“尝试效应”问题。对桩的试验研究和工程实践表明,无论是对桩的端阻和侧阻,都存在的一个临界深度,当桩端进入均匀持力层的深度小于临界深度时,极限端阻力一直随深度线性增大,但大于临界深度时,极限端阻力则基本保持恒值不变,柱侧摩阻力也有类似的规律。
5.3.3 持力层的选定
持力层的选定是桩的竖向布置设计的一个重要环节。持力层的强度、刚度以及变形特性都密切地关系着桩的承载力,沉降以及承台分担荷载作用的发挥,而持力层的埋深则直接关系着桩长的确定。一般地说,不容易提出一个选定桩长的通用规则,但对于持力层的选定,可以提供下列一些应当遵循的规则。
(1)所选的持力层就能保证有足够大的满足设计要求的单桩承载力,如果桩尖下有软弱下卧层,桩尖至软弱土层顶面的距离应小于临界厚度或2.0m。
(2)桩尖平面处的地基土应力,不应超过同样深度的基础的容许应力。
(3)对于作用在持力层上的荷载(总荷载中的桩端分担部分),必须保持其安全度及其从而产生的沉降量和差异沉降为上部结构所允许。在验算持力层的承载力时,应考虑作用在桩顶的应力扩散度。
(4)不同桩型要求不同的持力层,而且持力层的好坏也是相对的,某一持力层对于某个桩型不适合,但可能却适用于另一种桩型,例如当设计荷载要求2000KN时,硬塑残积土层对于一般的钢筋混凝土预制方桩并不适用,而若采用内击工扩底沉管灌注桩时,却是理想的持力层。
(5)选择持力层时,要考虑在现实的施工技术水平条件下在各类持力层中成桩的可能性。
(6)在必要的情况下,可以人工改变持力层的状态,例如使用强夯法夯实或灌浆固结等。
6 桩基的承载能力计算
6.1 桩基的竖向承载力
桩基设计的最终目的是使桩基能满足上部结构在承载力和容许变形方面的要求,对这个问题的考虑,工程实践中通常采用的是极限荷载分析和荷载—变形分析两种途径。众所周知,桩的静载试验是确定桩基承载力的最科学的和最广泛被使用的一种方法,但由于它的费用昂贵,费时费工,只限于一些重要的工程才能使用。此外,对于单纯确定承载力来说,工程实践中采用荷载—变形分析途径的也不多,此计算途径多用于桩基的沉降计算。
6.2 桩基的水平承载力
桩基的横向抗力,不仅取决于桩侧土质或地质条件的横向抗和,还取决于桩的弯曲刚度、强度与桩端的约束条件,即桩身的抗弯能力。因此,在确定桩的横向抗力时,必须考虑桩和土的共同作用,即桩—土体系的变形条件。
结束语:通过以上对公路桥梁桩基设计的分析,要做出一个优秀的桩基设计,除了要严格按照设计规范及要求进行设计外,还要充分考虑到工程自身的特点、工程周围的环境、所处的地质条件、经济条件等进行多方面的分析,只有对这些问题综合考虑,才能确保公路桥梁桩基设计的科学性和合理性。
参考文献:
中图分类号:K928.78 文献标识码:A 文章编号:
前言
随着我国改革开放的不断深入,经济的快速发展,人民生活水平也不断提高,很多大城市的车辆爆发式的增加,随之而来的是市政道路承受着达到极限的交通压力,很多道路已经不能满足车辆的行驶要求,市政桥梁在此情况下表现的更为拥堵,很多城市的高架桥,市政快速干道桥都需要拓宽,摆在市政设计人员面前的难题就是必须增加横断面流量。这几乎是解决巨大交通压力的唯一手段。作为市政道路改造的重中之重就是市政桥梁的拓宽改造。
1、桥梁拼宽概述
从近期工程来看,在原有的桥梁上进行加固拓宽处理的工程很多,涉及到的主要技术措施一般遵循如下原理:对承载力不足的构件进行补强,进而大幅提高承载力,满足力学性能的前提下保证了使用性能,成为满通量的基础。一般来看需要进行加固处理的部位有桥墩、基础等承受荷载较大部位。可以看出桥梁拼宽是对其辅助结构进行处理。老旧桥梁的加固及拼宽处理,从设计角度来看完全区别于新建桥梁的设计,必须考虑对原有桥梁结构的利用,对相应结构进行加固,对截面不满足要求的部位进行加宽,这样就要求具体施工人员施工过程中要对加固部位、新建结构部位以及原有老旧结构间连接处的不均匀沉降和徐变的不同步,这样方可满足正常使用的荷载要求。
2、加固拼宽改造原则和技术特点
改造工程一般尽量不影响交通,往往采用半侧道路封闭,半侧进行施工,施工完毕后,转移施工部位,进而封闭部位对调。很多市政管线的设计都是沿着市政道进行设计的,这样进行道路改造就必然要对临近的市政管网造成影响。从以上两个问题即可得出,市政道路的改造涉及到整个城市的大动脉,必须在保证质量的前提下,严格控制工期。可见对于老旧桥梁的改造也要考虑到上述情况,必须考虑到整体要求,保证原有桥梁的结构,采用对原有桥梁两侧拼宽,同时对老旧桥梁的薄弱部位进行加固处理,这样基本保证市政管线的正常使用,相应的也加快了工程进度,保证交通的正常通行,也相应的降低了工程造价。
从施工技术的方面来说,加固往往采用下列几种方法来施工:①由于对桥梁的原有基础不进行破坏,只是对其几何尺寸进行扩大,此种做法必然导致其基础的不均匀沉降,这样将会产生一个后果就是增加了结构的附加应力。从现有的验收规范来看,要求桥梁加固拼宽后,对其沉降要进行实时的观测,所得沉降差不得大于5mm,这样钻孔灌注桩技术就比较适合此种要求,施工过程中可以加长基础桩的长度。同时沉淀层的厚度也大大减少了。②对于老旧桥梁和新建结构之间的徐变有着比较严格的要求,不可以盲目施工,应该严格进行不同部位、不同构件的受力分析,对于相关的梁柱部位的收缩量要严格控制,这事直接导致徐变的位置,新建结构中T型梁最容易产生徐变,但是我们还必须采用此种结构,所以往往使用 UEA 补偿收缩混凝土,这样利用此种特种混凝土的特点来大大降低混凝土的收缩值,收缩值的减少直接就减少了 T型梁的附加应力。③在规范允许的范围内延长梁的混凝土浇筑持续时间,浇筑时间的控制可以保证混凝土前后施工段的衔接质量,保证施工人员后期养护的时间,同时也是对于增加结构处接缝的质量大有好处,减少由于浇筑过快产生的收缩裂缝和后期徐变。
3、桥梁加固拓宽工程技术分析
3.1连接缝的相关技术
桥梁加固拓宽工程施工必须考虑到选择合适的连接缝。从目前我国较为常用的连接缝主要有如下三种形式,包括:主体结构上下部位分离缝、主体结构上下部位连接缝和单一性上部结构连接缝。
3.1.1主体结构上下部位分离缝。当桥梁的上下部结构分离,此种加宽的处理办法在国内较为常用。此种处理办法,对于新旧结构的有效连接达到较好的效果。
3.1.2 主体结构上下部位连接缝。此类处理方式优点在于可以达到很好的连接状态,安全性极佳。经过此种处理办法,新旧结构沉降系数一致,可以共同沉降,但是,必须严格控制新旧结构的沉降量,否则产生了不均匀沉降后,会严重影响结构安全,会出现较多裂缝。
3.1.3 仅上部结构连接。采用这样的连接方式是我国公路既有桥梁连接缝施工中最为常见的,此种改造连接方式从已有给出实例来看效果十分理想,此种连接方式的施工关键也在新老结构下部的不均匀沉降,改造桥梁一般对结构进行如下处理,新施工的桩径要求比老旧结构大一等级,也可对桩长加长,推荐使用嵌岩桩。
3.2老旧桥梁改造加宽施工技术措施。对于老旧桥梁改造过程中,应该对于桥梁拼宽纵向接缝的施工给与重视,以及新旧箱梁悬臂翼缘板的连接方式。必须在上述技术难点上给与足够重视,对于其相关工序同样要严格执行相关规范要求,才能使桥梁的改造质量达到预计要求。
3.2.1 桥梁拼宽纵向接缝施工技术。老旧桥梁改造施工要求不能影响现有的交通情况,施工前必须制定科学合理的施工技术措施,严格选择符合方案的材料,重点控制新旧结构的不均匀沉降。
3.2. 2 新旧箱梁悬臂翼缘板刚接、铰接与搭接。如果施工过程中采用了刚性连接的方式,其结果就是确保桥体表面铺装层以及箱梁悬臂翼缘板成为结构整体,有着较好的受力能力。当铰接处理箱梁悬臂翼缘板时,箱梁悬臂翼缘通过立向传递竖向应力,达到自如滑动的效果,这样可以减少新旧结构间的纵向裂缝,但是对于铰接处的质量控制必须给与重视。
4、实例
取某地桥梁为三跨简支梁桥(15 m+25 m+15 m三跨)。25m跨的为宽99 cm、高110 cm预应力钢筋混凝土空心板, 15m为宽99 cm、高80 cm钢筋混凝土空心板原桥梁宽度为36m,快车道宽度8.5m(两车道),现将桥面拓宽至53m。
梁板加固方案:凿开悬臂部分混凝土并露出钢筋,与新布置的14结构钢筋焊接,然后现浇C50混凝土湿接缝。其次,在全幅梁板顶面采用粘贴钢板法进行加固, A3钢板与空心板间用C50环氧砂浆(环氧树脂掺量10% )粘结牢固。A3钢板上面按梅花型焊接长20 cm的25钢筋,间距为20 cm,以增强钢板与桥面铺装层的粘结力。再次,采用C50混凝土(掺钢纤维1% )进行桥面铺装。选取其中中间位置板为一号板。
4.1加固前原结构的横向分布系数和承载能力
在对旧结构加固前,对梁板的横向分布系数和承载能力分别作了实测结果列于表1和表2。
表一 粱加固前横向系数实测值汇总
4.2加固后的结构的横向分布系数和承载能力
在对结构加固后,对梁板的横向分布系数和承载能力分别作了计算与实测结果列于表3和表4。
表三 粱加固后横向系数计算值汇总
表四 加固后梁板承载能力复核表
根据加固前后的数据对比, 1号梁板所反映的内力情况基本一致。结构加固后,梁板悬臂结构改变连接方式,分布系数有所减小,受力得到有效调整,避免了受力不均的现象。可见,此种加固措施取得了预期的效果。
5、结语
目前国内一般对已有的桥梁进行加固拓宽处理时,老旧桥梁一般采用调整车道,改变车辆荷载分布,为了不做过多结构改变,往往采用对桥梁加贴钢板的施工方法,这样可以增大水平板的横向联系,使桥梁水平荷载分布更加合理。此种做法必将成为国内对于老旧桥梁的改造的有效途径。
参考文献:
目前,在我国市政工程当中,市政桥梁的建设是其中最为活跃的一项基础工程建设,在市政工程建设中发挥着至关重要的作用。市政桥梁建设由于工期长、社会性强、资金额大的特点,使得在桥梁后期的管理与控制当中在一系列的问题,建设工作开展起来非常困难。市政桥梁建设作为城市建设中的一项基础设施,具有一定的公共性。在当前地震多发的背景之下,市政桥梁建设更应该不断加强在抗震方面的性能分析,只有市政桥梁的抗震性能得到有效提升,才能够在地震发生时,有效降低各方面的损失,因此,必须予以重视。
1地震多发背景下市政桥梁设计中隔震设计的重要性
近年来,我国西南地区频繁发生地震等自然灾害,造成了严重的经济损失和人员伤亡,不仅影响了社会的稳定发展,同时,还对遭受灾难的人群带来了巨大的物质损失。因此,在地震灾害如此频繁的背景之下,在市政桥梁设计中进行隔震设计显得尤为重要。隔震装置作为其重要组成部分,通过科学合理的安装,在一定程度上可以保证在地震发生时,桥梁的上部结构不会发生较大程度的位移,从而可以确保桥梁的使用功能更加的稳定,有效降低市政桥梁的后期维护费用。除此之外,通过安装阻力器,其阻力效果可以在地震发生时有效降低由于地震作用力给桥梁带来的危害[1]。21世纪以后,世界各国在市政桥梁的隔震设计方面,取得突破性的研究成果,而我国在这方面的研究还处于较低的水平。因此,充分借鉴国外的先进技术对提高我国市政桥梁抗震新性能具有非常重要的指导意义。
2 地震多发背景下市政桥梁设计中隔震设计的基本原则
在地震多发的背景之下,市政桥梁的隔震设计能否有效提高桥梁的抗震性能,是保证桥梁不受地震危害的基本要求。需要注意的是,相关隔震设计人员应该严格遵循各项基本原则,比如,预先对桥梁进行科学的考察,分析其是否适合采用隔震设计,并且,在对桥梁进行考察时,应该以桥梁的使用周期增长后系统是否能够在地震发生时有效提高能量的吸收为判断依据。而对于不适合进行隔震设计的市政桥梁地段,不能一味地进行盲目施工。另外,如果隔震装置被采用,那么在发生地震后,桥梁的上部结构会发生相对的位移,这必然会影响到桥梁的功能和后期的使用。因此,在发生地震之后,相关人员必须及时对隔震装置进行修复。同时,在选择隔震装置时,应该尽量选择结构简单、震性较强的装置,并在使用时确保科学合理。如果采用的隔震装置,其材料的抗震性能较低,那么相关人员应该采取隔震措施,对桥梁的地基以及周边的地质环境进行科学的勘测[2]。
3地震多发背景下市政桥梁设计中隔震设计的几点建议
3.1重视桥梁细部结构的设计
在市政桥梁的隔震设计中,桥梁的附属结构同样发挥着非常重要的作用。市政桥梁的附属结构主要包括防落梁装置、伸缩缝以及限位装置等。相关桥梁动力时程分析资料显示,市政桥梁的细部结构对桥梁的隔震效果产生直接的影响,在一定程度上,降低了桥梁结构动力的响应。目前,我国在市政桥梁细部结构的设计方面是相关设计人员最容易忽略的问题,造成这一问题的原因,是由于桥梁的附属结构在计算地震响应的方法非常复杂。因此,相关设计人员应该注重市政桥梁细部结构的设计,并保证其良好的连续性[3]。
3.2加强桥梁隔震装置的设计
在市政桥梁的隔震设计中,隔震装置的设计是隔震桥梁抗震设计的主要方面。目前,所采用的方法主要是弹性反应谱法。虽然这种方法被广泛应用于大多数国家,但每个国家的使用规范都不一样,主要是在计算公式方面存在较大的差别。这里所说的计算公式指的是等效阻尼的计算(d2s/dt2+2b*ds/dt+w02s=0,其中s为振幅,w为固有角频率,b为阻尼系数)的计算。以此相比较,对于那些不规则的市政桥梁以及复杂性较强的桥梁,通常采用的方式是时程法。弹性反应法得以广泛推广应用的主要原因有两个方面:一是由于这种方法与现有的计算方法比较相似,容易被大众接受;二是由于计算比较简单。需要注意的是,采用弹性反应谱方法进行隔震设计时,应该不断变换和不断完善。在具体的计算中,由于没有可以直接采用的公式,因此,相关人员必须充分掌握桥梁结构地震响应的具体情况,根据长期积累的工作经验预先制定设计方案,最后再对其设计的合理性进行验证和分析[4]。
4 结语
综上所述,在我国地震灾害频繁发生的背景之下,对我国市政桥梁设计中的隔震设计进行分析显得尤为重要。桥梁作为一项公共设施,其工程质量一定要有严格的保证。为了有效提升市政桥梁的质量,避免在地震等各种自然灾害中造成严重的损失,相关设计人员在进行市政桥梁的设计时,必须注重隔震设计,不断加强抗震性能,确保其使用的安全性。
参考文献:
[1]谢晶晶,宗德玲.关于工程结构抗震设防标准的几个问题的讨论[J].防灾减灾工程学报,2013,66(02):53-54.
道路桥梁作为基础设施建设的重要组成部分,其设计工作是一项非常重要的工程,桩基设计是工程设计的重要基础,因此不仅要了解桩基竖向力所产生的桩基负摩阻力,机理和原因,更要懂得如何计算负摩擦力。
一、桩基的作用及特点
桩可以使部分竖向荷载及水平荷载传递至地基进行承担,达到减轻负荷的作用。同时它还具有抗弯能力和一定的刚度,因此由于工程类别不同,所以桩基类型也存在着很大差别,在普通工业及民用建筑中,主要分为以下几种桩基类型:人工挖孔桩、预制桩、沉管灌注桩和钻孔灌注桩,如果是在基坑支护的工程当中则使用地下连续墙、钻孔灌注桩和止水搅拌桩,道路桥梁工程一般采用钻孔灌注桩和钻埋压装桩,在路基处理过程当中则是采用预应力管桩和CFG桩等。
二、桩基在工程中所起到的具体作用
桩基在工程中所起到的具体作用的主要体现:1)因为桩基础具有较大刚度,所以它会保证上部建筑物发生较小的沉降,同时也可以使其能够均匀的变形,可以更好地满足其使用要求。2)经过周围介质与桩基间的相互接触、摩擦,可以使上覆荷载传递给桩体周围的土体或基础,减轻所产生的压力。从而进一步为上部建筑物起到一定的支撑作用,对其稳定性起到了良好的保证。3)如果遇到地下水位较高或水下施工时,首先就应该考虑用桩基础对地基进行处理,这样可以使工程具有较好的经济性。4)因为桩基具有较大抗拔能力和侧向刚度,所以它能够抵抗倾覆力矩和水平力,同时还能有效减轻地震带来的影响,对建筑物的安全起到了保护作用。5)如果遇到了地基液化的情况,首先可以将桩穿过液化土层,使其能够稳定地层,这样就可以减轻或消除液化土对建筑物所造成的伤害,还可以保证建筑物在遇到各种荷载或者地震条件影响下的安全性。
三.桩基设计的分析
1、计算单桩竖向极限承载力。1)极限承载力的计算属于桩基设计的重要内容,在设计的时候,竖向承载力应满足以下规定:①如果建筑桩基设计是甲级,就应该利用单桩静载试验来确定极限承载力;②当桩基设计为乙级,并且具有简单的地质条件,就可以参照类似的工程条件进行桩基设计,同时还应该结合相应的原位试验等加以综合确定;③如果桩基为丙级时,就可以根据经验参数及原位测试等方式来进行确定。2)极限端阻力、极限侧阻力、单桩竖向极限承载力标准值应按下列规定确定:①例如一般的桩基承载力可根据规范来确定;②然而那些大直径端承型桩,就可以利用深层平板载荷试验确定极限端阻力;如果是嵌岩桩,还可以根据岩基平板载荷试验确定;③通常情况下,桩的极限侧阻力及阻力可通过预埋测试元件的方式通过静载试验确定。与此同时还可以建立标准值与参数之间的经验曲线,最终根据这些经验参数法确定单桩竖向极限承载力。
2、选择桩长及桩型选择。桩型和桩长是桩基设计中必不可少的重要内容,当进行选择时,首先应该对建筑施工现场的环境条件进行勘察,对成桩的桩基对环境可能造成的影响、成桩的可行性、施工工艺、施工工期以及桩基成本等多角度,和对桩基类型和长度进行优化、调整,使其能够在节约投资的基础上对建筑物安全效果有良好的保证。
3、对桩基竖向承载力的计算。当遇到计算竖向承载力时,如果桩基承担轴心荷载,就要保证基桩或复合基桩的竖向力满足要求,如果承担偏心竖向荷载时,那就应该提高其标准;当考虑地震荷载情况时,那么对其竖向承载力的计算就应做到更加严格、仔细。
4、软弱下卧层验算。下卧层的压缩应该按规范要求进行,如果是桩距没有超过6d的群桩基础,那么在桩端持力下所存在的大承载力就应该低于桩端持力层承载力1/3。当考虑桩端硬持力层压力扩散角影响的情况时,那么就可以用实验来对其进行确认。
5、桩项作用效应计算。如果是普通建筑物或是较小荷载的高层建筑,在进行桩基设计时就应考虑到柱、墙等在基桩的桩顶所产生的作用效应,对竖向力及水平力所产生的影响进行考虑;然而如果是需要承担地震荷载的低承台桩基,就更应该进行严格规范的验算了,如果当建筑物位于抗震有利的地段时就可以不考虑地震带来的影响;若是有可能发生8度及8度以上的建筑物区域或受水平力较大的桩基设计的话,那就要考虑承台与桩基的共同效果以及与土体间的弹性抗力作用,最终达到设计准确、科学的设计目的。
6、位移计算与桩基水平承载力。对于保证桩基的安全性,位移的计算及桩基水平承载力起到重要意义,可分为两种类型:单桩基础、群桩基础。1)群桩基础。当遇到力矩较大或水平力的情况时,首先应考虑由承台、桩群、土相互作用产生的群桩效应,然后对基桩水平承载力特征值进行计算,土体类型与承台底部与地基土之间的摩擦系数有较大关系,所以在选取时应该小心谨慎。2)单桩基础。它在承担水平力时应满足其特征值的要求,主要有以下规定:①如果是水平荷载为甲级或乙级的建筑桩基时,那么它的特征值就应通过单桩水平静载试验进行确定:② 然而对于那些桩身配筋率不小于0.65%的混凝土灌注桩,就可以通过静载试验的结果来获取地面处水平位移为10mm所对应的荷载的75%为单桩水平承载力特征值;③当遇到配筋率小于0.65%的灌注桩时,可利用单桩水平静载试验的临界荷载的75%作为特征值。
7、承台的计算、1)对于桩下桩基承台,首先应分别对桩边连线、柱边、变阶处所形成的贯通承台的受剪承载力和斜截面进行验算。如果承台悬挑边形成多个剪切截面时,那么就应该对每个斜截面的受剪承载力进行验算。2)关于条形承台梁的弯矩可按照弹性地基梁进行分析计算;如果遇到桩端持力层较为深厚岩体坚硬且桩柱轴线不重合时,首先可以将桩视为不动的铰支座,其次再按连续梁进行计算。3)对于桩基承台,则应该对其进行正截面受弯承载力的计算,配筋和受弯承载力可根据规范规定进行。
四、桩基设计中应当注意的问题
1、对桩基竖向力及其原理的理解。当桩基与土层之间发生位移时,由于地球所产生的引力作用,桩基受的力一定是朝下方的,所以桩基与土层之间产生了相对的位移,最终形成了剪刀。
2、具备丰富的专业知识。设计者有专门系统的训练和学习的经验,并且能够懂得理论结合实际,熟练地运用理论知识,如果对现实实际情况做了充分的调查和研究,就可以使道路桥梁桩基设计中的安全系数提到一个更高的层次。
结束语
道路桥梁设计是一项非常重要的工程,桩基是工程设计的重要基础,因此不仅要了解桩基竖向力所产生的桩基负摩阻力,机理和原因,更要懂得如何计算负摩擦力。只有这样才能够保证道路桥梁桩基设计更加科学合理,从而更好的提升道路桥梁的安全性和可靠性。
中图分类号: U412.36+6 文献标识码: A 文章编号:
1、工程概况
某高速公路项目路线主要沿河谷布设,桥梁数量较多,但主要以20m和25m装配式预应力混凝土连续箱梁桥为主,上部结构采用2008版通用图,下部结构多采用圆柱式桥墩、柱式或板凳式桥台,桥高在20m以下,本文主要介绍设计中对这些常规桥梁进行抗震设计的情况。
2、计算模型及主要参数
本项目抗震分析主要依据《公路桥梁抗震设计细则》(JTG/TB02-01—2008)(以下简称《细则》)进行。根据《中国地震动参数区划图》(GB18306—
,项目所在区域地震动峰值加速度为0.20g,场地特征周期为0.45s。根据《细则》,这些常规桥梁均为B类桥梁,且进一步判断为规则桥梁,地质条件较好,地基土主要是中密或密实卵石,地基土的比例系数m取为40000kN/m2。计算采用多振型反应谱法进行,建模采用MIDAS/CIVIL2010软件,上部结构采用梁格模型,下部结构采用空间杆系模型,上下部结构之间的连接采用弹性连接,弹簧刚度根据采用的支座按《细则》计算,桩与土的相互作用采用土弹簧进行模拟,弹簧刚度计算按照《公路桥涵地基与基础设计规范》进行,并考虑了2.0的动力系数。图1、图2分别是5×20m和6×25m两种典型跨径装配式预应力混凝土连续箱梁模型图。
图1 抗震分析模型(5x20m) 图2 抗震分析模型(6x25m)
3、分析过程
模型建立后,分别进行E1和E2地震作用下的抗震计算,其中墩柱作为延性构件考虑。
3.1 E1地震作用下的计算
本阶段是弹性计算,计算后应用计算结果对墩柱、盖梁、基础进行强度验算。
3.2 E2地震作用下的计算
对于矮墩(高宽比<2.5),计算后应用计算结果对墩柱、盖梁、基础进行强度验算。
对其他桥墩(高宽比≥2.5),按下列过程进行计算。
3.2.1 墩柱P-M-φ曲线计算
E2作用下,墩柱往往进入弹塑性阶段,进行这个阶段分析时,墩柱的轴力—弯矩—曲率曲线(即P-M-φ曲线)是重要的计算参数。提供M-φ曲线计算功能的程序较多,Midas/Civil也提供了这一功能,但需注意的是,计算时采用的约束混凝土本构关系采用的一般是Mander模型,该模型中的混凝土抗压强度参数采用的是圆柱体抗压强度,而我国规范中混凝土强度参数采用的是立方抗压强度,因此计算时一般要乘以0.85的换算系数。本文计算采用的是XTRACT软件,其中的材料参数均采用《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62—2004)中的值。
计算中采用的轴力,即“P-M-φ”中的“P”值,《细则》7.4.4中规定为“最不利轴力组合”,此处取为E2地震作用下最大轴力与恒载轴力的合力。通过计算可以得到形如图3的曲线。
图3M-φ曲线
3.2.2 顺桥向位移验算
根据《细则》7.4.3计算其最大容许转角,根据《公路桥梁抗震设计细则》7.4.7计算得顺桥向墩顶容许位移。根据M-φ曲线,利用《细则》6.1.6式计算得截面有效抗弯惯性矩:
Ieff=MyφyEc将MIDAS/CIVIL模型中桥墩的截面抗弯惯性矩用上面计算的结果替代,进行E2作用下的计算,得墩顶最大顺桥向位移并进行验算。
3.2.3 横桥向位移验算
根据根据 《细则》7.4.8,采 用MIDAS/CIVIL2010对桥墩进行PUSHOVER分析,计算得塑性铰达到最大容许转角时的墩顶位移,其即为容许位移。将MIDAS/CIVIL计算模型中桥墩的截面抗弯惯性矩用截面有效抗弯惯性矩替代,进行E2作用下的计算,即得墩顶最大横桥向位移并验算。
2.3 能力保护构件计算
根据《细则》6.8条、7.3条进行对墩柱抗剪、盖梁抗弯抗剪,桩基强度进行验算。
2.4 墩柱体积含箍率验算
根据《细则》8.1.2条,对塑性铰区域配箍率进行验算。
4、计算结果及配筋设计方案
墩柱的配筋设计可根据静力计算和E1作用计算结果配置主筋。再以墩柱配筋作为输入进行E2作用计算和能力保护构件计算,确定墩柱抗剪箍筋和桩基、盖梁主筋和箍筋配置。
经计算发现,对本项目常规桥梁(墩高在20m以下,跨径20m、25m),在静力作用和E1作用下的计算内力较小,所需配置的钢筋较少,大部分按构造配筋即可。《细 则》规 定墩柱的最小配筋率为0.6%,根据以前用《公路工程抗震设计规范》(JTJ004—89)计算的经验,该配筋率偏低。参考美国加州《CaltransSeismicDesignCriteria》(《细则》中很多计算方法和理论与该规范一致),将墩柱配筋率控制在1%左右,经验算均通过。在根据能力保护原则计算桩基配筋后发现桩基配筋较柱有大幅增加,为便于桩基和柱钢筋的绑扎,在必要时将桩基钢筋每两根一束布置,使其束数与柱主筋一致,但因此增加了桩基主筋数量,鉴于桩基弯矩随深度减弱较快,分批将主筋截断以节约造价。根据上述原则两种典型跨径不同墩高下的配筋设计结果见表1
表1部分桥梁配筋结果
从上述计算结果中可发现以下规律。
1)在本项目所在区域和公路等级条件下,能力保护构件计算控制构件配筋。
2)由于采用了能力保护构件设计,作为能力保护构件的桩基础,其主筋配置较《细则》前大大增加,配筋率较墩柱大,且墩柱越矮,所需配置的钢筋越多。
3)墩柱箍筋较以前增加很多,有些同样,墩柱越矮,所需配置的箍筋也越多。在《细则》颁布之前,箍筋往往采用直径8mm或10mm的光圆钢筋,其间距15~20cm,柱顶底加密区也仅加密为间距10cm。而根据《细则》能力保护构件计算的箍筋,在塑性铰范围内,需采用直径12mm甚至16mm的螺纹钢筋,间距小至8cm。
5、结语
通过本项目所做的分析及与以前设计的对比发现以下结论。
1)《细则》实施后对桥梁的抗震能力进行了有针对性的加强。
2)《细则》对于墩柱的抗弯并没有提高要求,以前设计的桥梁墩柱,仍可满足要求。
3)由于采用了能力保护设计原则,能力保护构件的承载能力是根据相邻构件的承载能力确定的,所以墩柱的钢筋配置越多,则桩基的配筋、塑性铰区域箍筋、盖梁配筋就越多。
4)由于墩柱越矮,其承载能力越高,导致越矮的墩柱,其塑性铰区域箍筋及与其相邻的桩基、盖梁配筋就越多。尽管《细 则》规定矮墩(墩 高/直径<2.5的墩)不采用能力保护构件设计,但实际计算中发现,未达到矮墩标准,但墩柱很矮,接近矮墩的桥墩,按照能力保护构件设计,其桩基配筋和塑性铰区域箍筋过多,甚至很难满足构造要求。
参考文献:
[1]JTG/TB02-01—2008公路桥梁抗震设计细则[S].
[2]CALTRANSSeismicDesignCriteria[S].
Abstract: This paper introduces the present situation of road and bridge design, on the road and bridge design principles and horizontal and vertical linear combination and connection design are analyzed and discussed in this paper, in view of the existing road and bridge design problems in-depth analysis of research.
Key words: road and bridge; design; problem; analysis
中图分类号:TU2
一、我国道路桥梁设计的现状
桥梁设计是直接决定桥梁工程质量的灵魂,近年来,我国许多桥梁设计表面上大都达到了设计规范强度指标,但实际使用过程中部分桥梁仅仅几年时间就不同程度地出现了桥梁结构安全问题。因此,在道路桥梁设计时应该综合考虑构造、材料等因素,采取切实措施加强桥梁结构耐久性设计。
二、道路桥梁的设计原则及分析
1.道路、桥梁的设计原则
设计中资源利用是否经济合理,尊重实际,技术先进,实事求是,是否科学,完全取决于设计的水平和质量。具体而言,在设计中应
坚持以下原则:
(一)、在道路桥梁设计中,严格执行国家现行的设计规范和国家批准的技术标准。
(二)、设计中尽量采用标准化设计,积极推广应用“可靠性设计方法”、“结构优化设计方法”等现代设计方法。
(三)、设计中注意把握因地制宜,就地取材,节省建设资金的设计原则。在满足建设功能要求的同时,利用一切可能地节约投资、节
约多种资源,缩短建设工期。
(四)、道路桥梁设计中积极采用技术更加先进、经济上更加合理的新结构、新材料。道路桥梁的设计者应考虑对施工现场的水文、地质、气象、河道等基本状况做到熟悉、了解,对施工中存在疑问之处应重新调查或是勘察。从而能有效避免由于基础资料原因造成的安全问题。
2.设计中注意桥梁的线形安全
在过去的道路桥梁的设计中,为了方便现场施工,桥梁无论长短,往往布置成直线在桥梁的布线设计中,造成了超长的直线桥梁在大规模的桥梁设计中,而超短的直线急弯桥梁却成了小河以及山区的桥梁设计现状,增加了事故发生的概率性。
3.设计桥梁平曲线
根据实际调查分析的结果可知,就平曲线半径与事故关系的研究说明,小半径曲线段所发生的事故的可能性更大。时速为100km/h的道路桥梁,当桥梁的平曲线半径小于20Q0m,发生事故的概率明显提高, 由此可作为曲线半径的安全下限。其他道路则以设计时速按照相应的比例进行取值。与此同时,缓和曲线的设置对圆曲线上的安全特性
4.设计桥梁的安全掌控
根据交通心理学的研究成果桥梁的直线长度不应超过以车辆计算形成速度7O秒的长度距离 在桥梁的平面设计中桥梁的直线段长度,中长直线的桥梁使驾车者的反应敏感度降低,车速较高,从而引发了交通安全事故。同向平曲线之间以短直线相连,形成了所谓的“断背曲线”,相应的车辆在行驶经过这样的线路时,往往将直线段看做两端曲线相反的弯曲,线形并不连接在一起。由此,同向曲线之间的最小直线长度不应小于设计车速(以Km/h)的6倍(长度以m)。综合上述研究成果,道路桥梁的直线长度过长和过短都将影响行车的安全,根据交通安全的理论分析,可通过计算得出道路桥梁适宜长度的数值。
三、平纵线形组合以及衔接设计
1.弯坡叠加桥梁的设计
根据直观状况分析,这样的设计形式并不利于行车。平面曲线阶段有纵坡存在,形成了弯坡叠加状况,是高速公路桥梁设计中的常见的形式。可通过对坡和弯的组合进行安全特性的研究和设计,利用设计指标求的DC 的值,并利用经验公式得到预测事故的值。同时对于预测事故值相对较大的区域,可采用工程改造,以增加标志等措施减少交
通安全隐患。
2.平面直线与曲线的联接
具体恰当的直线长度以及衔接曲线的半径取值,应根据桥梁的设计车速以及桥位的地形,确定道路安全的设计区间范围。在以前的设计过程中,桥梁的设计为了适应地形,从而造成了长直线与小半径的曲线相连,而根据道路行驶安全分析表明,长直线与小半径的曲线衔接处往往由于车辆高速行驶的惯性容易引发安全的隐患。
3.纵坡与平曲线的衔接设计
纵坡在于平曲线进行衔接的过程中,坡长越长、坡度越大,其所衔接的平曲线半径越小,发生事故的概率也将越大。根据相应的规律,在桥梁设计中通过计算由相同衔接方式的区段,并进行一定的改进。道路桥梁设计过程中,较长的下坡接上下半曲线是具有危险倾向的设计,容易导致车辆在高速行驶状况下驶入平曲线,从而造成事故隐患。
4.平衡桥梁上平面曲线与竖曲线
根据现有的研究结果表明,平竖曲线平衡的半径推荐值的设置应综合考虑安全和成本等要素。桥梁位于小半径如2000m 以下平曲线上并且竖曲线部分或全部重叠时,应充分考虑平曲线的半径大小平衡状况,从而有益于交通安全。
四、我国道路桥梁设计存在的问题
1.道路桥梁设计存在缺陷
在道路桥梁设计的过程中,设计者很容易出现考虑不全面的问题,从而出现设计缺陷。现实中,设计人员大多会认真考虑道路桥梁结构强度的计算结果设计要满足规范的要求,但在结构体系、结构材料、结构构造、结构维护、结构耐久性以及桥梁设计、施工到使用整个过程中可能经常会出现的各类人为因素等方面综合性考虑不够全面。
2. 道路桥梁设计方案过于陈旧