时间:2023-05-25 10:42:55
引言:寻求写作上的突破?我们特意为您精选了12篇量化投资与分析范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
我国现行的招投标资格预审主要是种定性的考察、筛选做出投标人优劣的判断。如何根据对投标人提供的资格预审文件,从定性研究转化为一种定量的分析,对招标人和投标人都是有好处的。它既可以避免以往对投标人的资格预审不合理,又可以使招投标资格预审更具科学合理性和公正性。如果要用科学合理的定量分析投标人优劣的情况,就必须设计与之相配套的科学的评价方法。
基于上述考虑,本文所阐述的量化评价法就是为招标人进行招投标资格预审所设计的,尤其是对于一般性技术要求不高、结构不复杂的建设工程项目,采用量化评价法进行招投标资格预审就比传统的定性评价显得更加科学、简单、快捷。
二、量化评价法
没有量化的资格预审方法是不能称其为标准的。笔者结合我国大多数招标人在工程项目招标的成功经验,提出采用量化评价法确定通过资格预审的投标人的评价方法。量化评价法的招投标资格预审方法适用于技术难度不高、工艺较简单的工程项目招投标的资格预审。招标人根据工程自身实际需要,对投标人的各项信息根据预先设量化好的分值,得出投标人资格预审文件分值的排序。
量化评价法的评分项目共四项,总分100分,四项得分相加即为投标人资格预审的总得分,若投标人总分相同,则同时入围参与投标过程的竟标过程。对于各投标单位的参与资格预审的评分细则现以评分表形式列出,如表1所示。
采用量化评价法由招标人预先制定供投标人使用的资格预审文件,并在资格预审书中告知,对投标人某些相关信息进行量化的评分,并最终根据资格预审的得分排名择优合格的投标人。
运用量化评价法科学的引导投标企业健康的发展,对于招标人也可以在经过长期积累后形成自己的投标企业资格预审合格库。对于那些被招标人认可的投标企业和项目经理免于进行重复审查。投标人参与投标过程中,若投标人已进入招标人的资格预审合格库中,则可直接参与投标过程。若投标人有违反或其他不良行为,则招标人可立即将其从资格中直接删除。
此外,运用量化评价法对投标人参与资格预审时的假借资质、人员、资料弄虚作假等行为,招标人可通过下述方式处理:
第一,要求投标人提供参与招标阶段的保函,同时递交资格预审保证金,以便对投标人在招标阶段的不良行为做出经济处罚。而通过递交资格预审保证金,也可以削弱乱借资质的行为,招标人只需对资格预审保证金的汇款方限定为投标人即可。
第二,对于项目负责人所从事企业的认定可通过多方面适当的途径来获得。实际中有些项目负责人同时从事于不同的企业也是事实存在的,因此,招标人可要求投标人提供拟参与该项目的项目负责人及项目机构人员的社会保险资料,利用我国劳动法规定的“用人单位必须与劳动者签订劳动用工合同”,“必须为企业员工缴纳各类规定社会保险”等条款,为规范“借资”、“挂壳”等投机行为提供有力的辨别方式。
第三,完善对于投标人递交资格预审资料中关于企业或者项目负责人从事过以往工程的业绩材料及相关资质证书的核查。建设行政主管部门应做好备案的工作,确保招标人进行项目招标时可以顺利判断投标人对本工程所提供资料的真实性、准确性,杜绝一个项目机构同时服务于若干不同招标人。对于证件造假弄虚作假,行政主管部门应建立电子信息IC卡制度,并录入数据库黑名单。
三、量化评价法应用于实际的案例分析
某项目招标公告简要信息如下:
1.招标人单位名称公开招标的XX工程(项目名称)已经由该市发展和改革委员会批准建设。工程所需资金来源现已落实。现邀请合格的投标人参加本工程的资格预审。
2.工程概况:
(1)工程规模:XXX城市快速路工程,本道路规划为城市A级道路,道路总长约2000米,规划路宽50米,该工程主要包括道路、桥梁及道路以下综合管线等工程。工程总投资约4000万元。
(2)计划开、竣工时间:XXXX年X月至XXXX年X月。
3.本招标工程不分标段,每位申请人可申请参与该工程的资格预审。
4.申请人应当具备的主要资格条件
(1)申请人资质类别和等级:主项市政公用工程施工总承包贰级及贰级以上资质。
(2)拟选派项目经理的资质等级:市政公用工程贰级以上资质。
(3)企业业绩:有过同类道路工程施工业绩。
(4)项目经理业绩:有过同类道路工程施工业绩。
配合本工程招标公告的资格预审文件要求投标人提供该企业上一年度财务报表、该企业准备投入本项目管理人员的名单附职称证明,并要求投标人提供本企业获IS09000证书或提供本企业获地市级工商管理局重合同守信誉证书或本企业在银行获得的资信等级证书(以上证书非必须提供)。招标人在资格预审文件中规定了对投标人采用资格预审量化评价法择优选择排名前60%的投标人为合格投标人。投标人的各项信息得分以表1为评分标准。
最终参与本工程有9名投标人参与本工程的资格预审,经汇总将9名投标人情况表如表2所示。
二、量化投资“黑箱”中的构造与证券投资学的差异
在传统的证券投资学中,投资组合理论、资本资产定价模型、套利定价理论和期权定价理论是现代金融理论的四块基石。前两者主要依靠均值-方差组合优化的思想,后两者则主要依靠市场的无套利条件。传统的投资方法主要是基本面分析和技术分析两大类,而量化投资则是“利用计算机科技并采用一定的数学模型去实现投资理念、实现投资策略的过程”。从概念看,量化投资既不是基本面分析,也不是技术分析,但它可以采用基本面分析,也可以采用技术分析,关键在于依靠模型来实现投资理念与投资策略。为了分析量化投资对证券投资学的启示,本文从量化投资“黑箱”的各个构成来探讨量化投资与证券投资学中思路和观点的差异。
(一)资产定价与收益的预测
根据组合优化理论,投资者将持有无风险组合与市场风险资产组合,获得无风险利率与市场风险溢价。资本资产定价模型则将此应用到单一证券或组合,认为证券的风险溢价等于无风险利率加上与风险贡献比率一致的风险溢价,超过的部分就是超额收益,即投资组合管理所追求的阿尔法值。追求显著正的阿尔法是资产定价理论给实务投资的一大贡献。基于因素模型的套利定价理论则从共同风险因素的角度提供了追求阿尔法的新思路。其中,法玛和佛伦齐的三因素定价模型为这一类量化投资提供了统一的参考。可以说,在因素定价方面,量化投资继承了资产定价理论的基本思想。对于因素定价中因素的选择,证券投资学认为,对资产价格的影响,长期应主要关注基本面因素,而短期应主要关注市场的交易行为,即采用技术分析。在量化投资中,主要强调按照事先设定的规则进行投资,这在一定程度上与技术分析类似。但是,在技术分析中,不同的人会有不同的结论,而量化投资则强调投资的规则化和固定化,不会因人的差异而有较大的不同。另外,量化交易更强调从统计和数学模型方面寻找资产的错误定价或者进行收益的预测。
(二)无套利条件与交易成本
在证券投资学里,流动性是证券的生命力。组合投资理论、资本资产定价模型以及套利定价理论等都认为市场中存在大量可交易的证券,投资者可以自由买卖证券。这主要是为了保证各种交易都能实现,如套利交易。根据套利定价理论,一旦市场出现无风险的套利机会,理性投资者会立即进行套利交易,当市场均衡时就不存在套利机会。现实市场中往往存在套利限制。一是因为凯恩斯说的“市场的非理性维持的时间可能会长到你失去偿付能力”。二是因为市场总是存在交易费用等成本。但证券投资学中,对市场中套利限制与非流动性的关注较少,这是因为传统金融理论中简化了市场结构。市场微观结构理论研究在既定的交易规则下,金融资产交易的过程及其结果,旨在揭示金融资产交易价格形成的过程及其原因。在市场微观结构理论中,不同的市场微观结构对市场流动性的冲击是不同的。因而,从量化投资的角度看,为了降低交易带来的价格冲击,能实施量化投资策略的证券往往都应有较好的流动性,因为交易时非流动性直接影响投资策略的实施。从这个意义上讲,量化投资时的交易成本不仅包括交易费用,更主要的是要考虑市场交易冲击的流动性成本。
(三)风险控制与市场情绪
在证券市场中,高收益与高风险相匹配。量化投资在追求高收益的同时,不可避免地承担了一定的风险。在证券投资学中,系统性风险主要源于宏观经济因素,非系统性因素则主要源于行业、公司因素,并且不考虑市场交易行为的影响。在量化投资中,较多地使用因素定价模型,不仅会考虑市场经济因素,而且会考虑交易行为等因素,只是不同的模型有不同的侧重点,在多模型的量化投资系统中自然包括了这两方面的因素。除了各种基本面和市场交易的因素风险外,量化投资还有自身不可忽视的风险源。一方面,量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,隐藏着巨大的风险。另一方面,市场冲击的流动性成本也是量化投资的风险控制因素,理所当然地在图1的风险控制模型中体现出来。另外,在一般的投资过程中,市场情绪或多或少会成为风险控制的一个对象。然而,在量化投资中,更多的交易都是通过计算机来实现的,如程序交易等,这样以来,投资者情绪等因素对投资决策的影响相对较小。所以,在量化投资的风险控制模型中较少地考虑市场情绪以及投资者自身的情绪,主要是通过承担适度的风险来获得超额回报,因为毕竟减少风险也减少了超额回报。
(四)执行高频交易与算法交易
在对未来收益、风险和成本的综合权衡下,实现投资策略成为量化投资的重要执行步骤。为了达到投资目标,量化投资不断追求更快的速度来执行投资策略,这就推动了采用高速计算机系统的程序化交易的诞生。在证券投资学里,技术分析认为股价趋势有长期、中期和短期趋势,其中,长期和中期趋势有参考作用,短期趋势的意义不大。然而,随着计算机信息科技的创新,量化投资策略之间的竞争越来越大,谁能运作更快的量化模型,谁就能最先找到并利用市场错误定价的瞬间,从而赚取高额利润。于是,就诞生了高频交易:利用计算机系统处理数据和进行量化分析,快速做出交易决策,并且隔夜持仓。高频交易的基本特点有:处理分笔交易数据、高资金周转率、日内开平仓和算法交易。高频交易有4类流行的策略:自动提供流动性、市场微观结构交易、事件交易和偏差套利。成功实施高频交易同时需要两种算法:产生高频交易信号的算法和优化交易执行过程的算法。为了优化交易执行,目前“算法交易”比较流行。算法交易优化买卖指令的执行方式,决定在给定市场环境下如何处理交易指令:是主动的执行还是被动的执行,是一次易还是分割成小的交易单。算法交易一般不涉及投资组合的资产配置和证券选择问题。
三、对量化投资在证券投资教学中应用的思考
从上述分析可以知道,量化投资的“黑箱”构造与证券投资学之间存在一定的差异,因此,在证券投资的教学中应当考虑量化投资发展的要求。
(一)市场微观结构与流动性冲击
在理性预期和市场有效假说下,市场价格会在相关信息披露后立即调整,在信息披露前后市场有着截然不同的表现。在证券投资学里,一般认为价格的调整是及时准确的,然而,现实的世界里,价格调整需要一个过程。在不同的频率下,这种价格形成过程的作用是不同的。在长期的投资中,短期的价格调整是瞬间的,影响不大。然而,在高频交易中,这种价格调整过程影响很大。市场微观结构就是研究这种价格形成过程。市场微观结构理论中有两种基本的模型:存货模型和信息模型。存货模型关注商委托单簿不平衡对订单流的影响,解释没有消息公布时价格短暂波动的原因。信息模型关注信息公布后信息反映到价格中的这一过程,认为含有信息的订单流是导致价格波动的原因。无论是关注委托订单的存货模型还是关注市场参与者信息类型的信息模型,这些市场微观结构的研究加强了流动性与资产价格之间的联系,强调流动性在量化投资决策中的重要作用。一般的证券投资学中基本没有市场微观结构的内容,因而,为了加强证券投资学的实用性,应关注市场微观结构的内容与发展。
(二)业绩评价与高杠杆
对于证券组合而言,不仅要分析其超额收益和成本,还要考虑其风险与业绩。在组合业绩评价中,一方面要考虑风险的衡量,另一方面则要分析业绩的来源。在证券投资学中,组合业绩来自于市场表现以及管理者的配置与选股能力。对于量化投资而言,市场时机和管理者的能力依然重要,然而,量化投资的业绩评价还应考虑另一个因素:高杠杆。量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,在市场好的时候扩大收益,但在市场不好的时候会加速亏损,这些与传统的业绩评价就不太一样。在一般的证券投资学里,业绩评价主要考虑经风险调整的收益,很少考虑其杠杆的作用,这不仅忽略了杠杆的贡献,而且有可能夸大了投资者的技能水平。
(三)人为因素与模型风险
在量化投资中,非常注重计算机对数据和模型的分析,这突出了量化投资的规则性和固定性。然而,实际中,别看量化采用了各种数学、统计模型,但策略设计、策略检测和策略更新等过程都离不开人的决策。量化交易策略与判断型交易策略的主要差别在于策略如何生成以及如何实施。量化投资运用模型对策略进行了细致研究,并借助计算机实施策略,能够消除很多认为的随意性。但是,量化策略毕竟体现投资者的交易理念,这一部分依赖于投资者的经验,一部分依赖于投资者对市场的不断观察与更新。实际上,人始终处于交易之中,对于市场拐点以及趋势反转的判断主要还是依赖投资者的经验。光大的乌龙指事件充分表明了人为因素在量化投资中的两面性:决策实施依赖于人的设定,而人的设定不仅依赖于经验,而且人还会犯错。人之所以会犯错,一方面是因为人们对市场的认知是不完全的,另一方面则是人们使用了错误的模型。经典的证券投资理论中,股票价格的变动被认为是随机的,小概率事件出现的机会比较小,但是经验研究表明股票收益率具有肥尾现象,小概率事件发生的机会超出了人们原先的认识,即市场还会出现“黑天鹅”。更为关键的是,量化投资更依赖数学和统计模型,这就使得量化投资存在较大的模型风险,即使用了错误的模型。为了防范模型风险,应采用更为稳健的模型,即模型的参数和函数应该适应多种市场环境。近年来,研究表明,证券收益及其与风险因素的关系存在较大的非线性,同时,市场中存在一定的“噪声”,采用隐马尔科夫链等随机过程和机器学习等数据挖掘技术进行信息处理成为量化投资的重要技术支持。
对年轻的A股市场来说,量化投资还是一个新概念。而在国外,定量投资已经走过了近40年的道路,其中的标杆人物正是著名的詹姆斯・西蒙斯(James Simons)。
量化投资的神秘故事
文艺复兴科技公司(Renaissance Technologies)的詹姆斯・西蒙斯(James Simons)是华尔街最成功的对冲基金经理之一。他所管理的大奖章基金对冲基金,从1989年到2006年的17年间,平均年收益率达到了38.5%,而股神巴菲特过去20年的平均年回报率为20%。其20年来年均35%的傲人业绩大幅超过了巴菲特。
然而,颇具神秘色彩的西蒙斯对其投资方法刻意保密。迄今为止人们只知道,他的大奖章基金的赚钱方法是:针对不同市场设计数量化的投资管理模型,并在全球各种市场上进行短线交易。而为了让这些“模型”始终处于绝密状态,西蒙斯甚至不惜代价对那些离职创业的员工强硬地提讼。但实际上,数量化投资的背后并不是神秘而不可知的。数量化投资本身有一套规范而透明的做法,并采用科学、公正而理性的方法对市场进行研究并制定适应市场状况的投资模型和投资策略,并不断进行调整和优化。
其实,数量化投资不是黑盒子,也不是神秘主义,更不是一个战无不胜的秘笈。数量化投资不是靠一个投资模型就能一劳永逸地去赚钱,而且也不是使用一个模型就能解决一切问题,更不是一个模型就能胜任任何市场状况。数量化投资模型只是一种工具,数量化投资的成功与否在于使用这种数量化工具的投资者是否真正掌握了数量化投资。同时,数量化投资模型都必须经历不断的跟踪检验、优化、实证等等过程。数量化投资是一个不断改进的过程,数量化投资中最重要的就是投资者的投资思想,包括对投资的理解、理念、经验,所以模型都是建立在这些投资思想上的。量化只是一种方式和工具,正是采用这种工具和方法来获取经验或者检验经验。
有效规避传统投资短板
人脑在思考问题的时候所能考虑到的因素总是有限的,那么决策的广度肯定是不足的。从选股上来看也有这种问题,每个分析师所能跟踪的股票数量也有限制,不可能看太多的股票,这是传统投资的短板。当然,传统的主动投资方法在决策深度上是有优势的,因为可以把基本面研究做得很深入,从而弥补决策广度的不足,这也是决定成败的关键。信息多,信息快,这是当今资本市场的一大特点。市场中信息的传递速度非常快,而且众多分析师对基本面数据进行不断的挖掘,虽然对个股有深入的分析,但是仍然越来越难以弥补决策广度的不足。
另外,或许有的投资者对市场的预测能力非常不错,从理论上说可以获得很好的超额收益(特别是很多事后看来确实预测准确的情况),但现实中收益常常被投资者主观认知上的情绪化波动侵蚀掉。比如说,大多数投资者可能有自己的判断,但是市场短期的表现可能与其判断相左。这个时候,投资者可能会受市场表现的影响而很容易怀疑自己的判断,此时大多数投资者宁愿相信羊群效应―追涨杀跌。
因此,传统定性投资的短板大致在于我们思考的范围总是有限的、较难以处理信息量多而快的问题、难以避免自身的投资情绪等等,这些都将最终影响到投资者的投资收益状况。然而,科学、公正、客观而理性的数量化投资策略却可以规避这些传统主动型投资策略的短板。
量化技术的五大优势
数量化投资与传统的定性投资方法相比,相同点是,二者都致力于建立战胜市场、产生超额收益的投资组合;不同点是,传统的定性投资方法侧重对上市公司的调研、基金经理个人的经验及其对市场的主观判断,而量化投资管理则更加强调数据的分析和应用,以先进的数学统计技术和模型替代人为主观判断。所以,与传统的定性分析方法相比,数量化投资方法能更为理性、客观地分析和筛选股票,避免投资的盲目性和偶然性,以及主观认识的局限性,它能更有效地控制非系统性风险及一些人为因素导致的风险。定量投资管理将定性思想与定量规律进行量化应用,具有如下五大方面的优势:
纪律性:严格执行数量化投资模型所给出的投资建议,而不是随着投资者情绪的变化而随意更改。纪律性的好处很多,可以克服人性的弱点,如贪婪、恐惧、侥幸心理;也可以克服认知偏差,行为金融理论在这方面有许多论述;纪律化的另外一个好处是可以跟踪和修正。定量投资作为一种定性思想的理性应用,客观地在组合中去体现这样的组合思想。一个好的投资方法应该是一个“透明的盒子”,而不是“黑盒子”。每一个决策都是有理有据的,无论是股票的选择,行业选择,还是大类资产的配置等等,都是有数据支持、模型支持及实证检验的。
系统性:数量化投资的系统性特征主要包括多层次的量化模型、多角度的观察及海量数据的观察等等。多层次模型主要包括大类资产配置模型、行业选择模型、精选个股模型等等。多角度观察主要包括对宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度的分析。定量投资的系统性还有一方面就是数据多,即要对海量数据进行处理。人脑处理信息的能力是有限的,当一个资本市场只有100只股票,这对定性投资基金经理来说是有优势的,他可以深刻分析这100家公司,这可以表现出定性基金经理深度研究的优势。但在一个很大的资本市场,比如有成千上万只股票的时候,强大的定量投资的信息处理能力能反映它的优势,能捕捉更多的投资机会,拓展更大的投资机会。
及时性:及时快速地跟踪市场变化,不断发现能够提供超额收益的新的统计模型,寻找新的交易机会。
(一)资产定价与收益的预测
根据组合优化理论,投资者将持有无风险组合与市场风险资产组合,获得无风险利率与市场风险溢价。资本资产定价模型则将此应用到单一证券或组合,认为证券的风险溢价等于无风险利率加上与风险贡献比率一致的风险溢价,超过的部分就是超额收益,即投资组合管理所追求的阿尔法值[4]。追求显著正的阿尔法是资产定价理论给实务投资的一大贡献。基于因素模型的套利定价理论则从共同风险因素的角度提供了追求阿尔法的新思路。其中,法玛和佛伦齐的三因素定价模型为这一类量化投资提供了统一的参考。可以说,在因素定价方面,量化投资继承了资产定价理论的基本思想。对于因素定价中因素的选择,证券投资学认为,对资产价格的影响,长期应主要关注基本面因素,而短期应主要关注市场的交易行为,即采用技术分析。在量化投资中,主要强调按照事先设定的规则进行投资,这在一定程度上与技术分析类似。但是,在技术分析中,不同的人会有不同的结论,而量化投资则强调投资的规则化和固定化,不会因人的差异而有较大的不同。另外,量化交易更强调从统计和数学模型方面寻找资产的错误定价或者进行收益的预测。
(二)无套利条件与交易成本
在证券投资学里,流动性是证券的生命力。组合投资理论、资本资产定价模型以及套利定价理论等都认为市场中存在大量可交易的证券,投资者可以自由买卖证券。这主要是为了保证各种交易都能实现,如套利交易。根据套利定价理论,一旦市场出现无风险的套利机会,理性投资者会立即进行套利交易,当市场均衡时就不存在套利机会。现实市场中往往存在套利限制。一是因为凯恩斯说的“市场的非理性维持的时间可能会长到你失去偿付能力”。二是因为市场总是存在交易费用等成本。但证券投资学中,对市场中套利限制与非流动性的关注较少,这是因为传统金融理论中简化了市场结构。市场微观结构理论研究在既定的交易规则下,金融资产交易的过程及其结果,旨在揭示金融资产交易价格形成的过程及其原因。在市场微观结构理论中,不同的市场微观结构对市场流动性的冲击是不同的。因而,从量化投资的角度看,为了降低交易带来的价格冲击,能实施量化投资策略的证券往往都应有较好的流动性,因为交易时非流动性直接影响投资策略的实施。从这个意义上讲,量化投资时的交易成本不仅包括交易费用,更主要的是要考虑市场交易冲击的流动性成本。
(三)风险控制与市场情绪
在证券市场中,高收益与高风险相匹配。量化投资在追求高收益的同时,不可避免地承担了一定的风险。在证券投资学中,系统性风险主要源于宏观经济因素,非系统性因素则主要源于行业、公司因素,并且不考虑市场交易行为的影响。在量化投资中,较多地使用因素定价模型,不仅会考虑市场经济因素,而且会考虑交易行为等因素,只是不同的模型有不同的侧重点,在多模型的量化投资系统中自然包括了这两方面的因素。除了各种基本面和市场交易的因素风险外,量化投资还有自身不可忽视的风险源。一方面,量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,隐藏着巨大的风险。另一方面,市场冲击的流动性成本也是量化投资的风险控制因素,理所当然地在图1的风险控制模型中体现出来。另外,在一般的投资过程中,市场情绪或多或少会成为风险控制的一个对象。然而,在量化投资中,更多的交易都是通过计算机来实现的,如程序交易等,这样以来,投资者情绪等因素对投资决策的影响相对较小。所以,在量化投资的风险控制模型中较少地考虑市场情绪以及投资者自身的情绪,主要是通过承担适度的风险来获得超额回报,因为毕竟减少风险也减少了超额回报。
(四)执行高频交易与算法交易
在对未来收益、风险和成本的综合权衡下,实现投资策略成为量化投资的重要执行步骤。为了达到投资目标,量化投资不断追求更快的速度来执行投资策略,这就推动了采用高速计算机系统的程序化交易的诞生。在证券投资学里,技术分析认为股价趋势有长期、中期和短期趋势,其中,长期和中期趋势有参考作用,短期趋势的意义不大。然而,随着计算机信息科技的创新,量化投资策略之间的竞争越来越大,谁能运作更快的量化模型,谁就能最先找到并利用市场错误定价的瞬间,从而赚取高额利润。于是,就诞生了高频交易:利用计算机系统处理数据和进行量化分析,快速做出交易决策,并且隔夜持仓。高频交易的基本特点有:处理分笔交易数据、高资金周转率、日内开平仓和算法交易。[5]高频交易有4类流行的策略:自动提供流动性、市场微观结构交易、事件交易和偏差套利。成功实施高频交易同时需要两种算法:产生高频交易信号的算法和优化交易执行过程的算法。为了优化交易执行,目前“算法交易”比较流行。算法交易优化买卖指令的执行方式,决定在给定市场环境下如何处理交易指令:是主动的执行还是被动的执行,是一次易还是分割成小的交易单。算法交易一般不涉及投资组合的资产配置和证券选择问题。
二、对量化投资在证券投资教学中应用的思考
从上述分析可以知道,量化投资的“黑箱”构造与证券投资学之间存在一定的差异,因此,在证券投资的教学中应当考虑量化投资发展的要求。
(一)市场微观结构与流动性冲击
在理性预期和市场有效假说下,市场价格会在相关信息披露后立即调整,在信息披露前后市场有着截然不同的表现。在证券投资学里,一般认为价格的调整是及时准确的,然而,现实的世界里,价格调整需要一个过程。在不同的频率下,这种价格形成过程的作用是不同的。在长期的投资中,短期的价格调整是瞬间的,影响不大。然而,在高频交易中,这种价格调整过程影响很大。市场微观结构就是研究这种价格形成过程。市场微观结构理论中有两种基本的模型:存货模型和信息模型。存货模型关注商委托单簿不平衡对订单流的影响,解释没有消息公布时价格短暂波动的原因。信息模型关注信息公布后信息反映到价格中的这一过程,认为含有信息的订单流是导致价格波动的原因。无论是关注委托订单的存货模型还是关注市场参与者信息类型的信息模型,这些市场微观结构的研究加强了流动性与资产价格之间的联系,强调流动性在量化投资决策中的重要作用。一般的证券投资学中基本没有市场微观结构的内容,因而,为了加强证券投资学的实用性,应关注市场微观结构的内容与发展。
(二)业绩评价与高杠杆
对于证券组合而言,不仅要分析其超额收益和成本,还要考虑其风险与业绩。在组合业绩评价中,一方面要考虑风险的衡量,另一方面则要分析业绩的来源。在证券投资学中,组合业绩来自于市场表现以及管理者的配置与选股能力。对于量化投资而言,市场时机和管理者的能力依然重要,然而,量化投资的业绩评价还应考虑另一个因素:高杠杆。量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,在市场好的时候扩大收益,但在市场不好的时候会加速亏损,这些与传统的业绩评价就不太一样。在一般的证券投资学里,业绩评价主要考虑经风险调整的收益,很少考虑其杠杆的作用,这不仅忽略了杠杆的贡献,而且有可能夸大了投资者的技能水平。
(三)人为因素与模型风险
在量化投资中,非常注重计算机对数据和模型的分析,这突出了量化投资的规则性和固定性。然而,实际中,别看量化采用了各种数学、统计模型,但策略设计、策略检测和策略更新等过程都离不开人的决策。量化交易策略与判断型交易策略的主要差别在于策略如何生成以及如何实施。量化投资运用模型对策略进行了细致研究,并借助计算机实施策略,能够消除很多认为的随意性。但是,量化策略毕竟体现投资者的交易理念,这一部分依赖于投资者的经验,一部分依赖于投资者对市场的不断观察与更新。实际上,人始终处于交易之中,对于市场拐点以及趋势反转的判断主要还是依赖投资者的经验。光大的乌龙指事件充分表明了人为因素在量化投资中的两面性:决策实施依赖于人的设定,而人的设定不仅依赖于经验,而且人还会犯错。人之所以会犯错,一方面是因为人们对市场的认知是不完全的,另一方面则是人们使用了错误的模型。经典的证券投资理论中,股票价格的变动被认为是随机的,小概率事件出现的机会比较小,但是经验研究表明股票收益率具有肥尾现象,小概率事件发生的机会超出了人们原先的认识,即市场还会出现“黑天鹅”。更为关键的是,量化投资更依赖数学和统计模型,这就使得量化投资存在较大的模型风险,即使用了错误的模型。为了防范模型风险,应采用更为稳健的模型,即模型的参数和函数应该适应多种市场环境。近年来,研究表明,证券收益及其与风险因素的关系存在较大的非线性,同时,市场中存在一定的“噪声”,采用隐马尔科夫链等随机过程和机器学习等数据挖掘技术进行信息处理成为量化投资的重要技术支持。
金融衍生品与量化投资之间的相关性是当前经济发展比较重要的研究议题,两者的有效配合在某种程度上能使投资者获得较为丰富的投资收益,并且将风险以及杠杆性将至最低。就当前现状而言,金融衍生品内容越来越多,而量化投资投资工具呈现多元化的趋势,这为投资者提供了较多的投资方式以及渠道,并使其在最小风险值内获取最大的经济收益。文章主要介绍了金融衍生品及量化投资,重点阐述了两者之间的关联性,最后论述了两者有效融合的前提下如何获得最大的经济效益值。
一、金融衍生品与量化投资概念阐述以及其发展
(一)金融衍生品
金融衍生品在我国经济中运用范围不断扩宽,它是基于经济发展而形成的,是社会发展的必然产物,并且对于全球经济有着深远的影响,比如加剧世界经济一体化、促使金融一体化的逐步形成,金融衍生品在我国经济发展中扮演非常重要的角色,带动了我国实体经济的发展。所谓金融衍生品,它是与金融相关,并由其引发的派生物,属于一种金融交易工具。近年来,随着市场经济发展速度不断提升,我国金融市场逐渐趋向完善,这也为金融衍生品的发展提供了良好的契机,使其发展日益壮大并成为金融市场的主力军,并且与信贷以及货币市场联系日益密切,最终促进了金融资产配置的逐渐完善,即风险管理的复杂链条。从目前情况分析,我国经济发展呈现出良好的前景,相对应的工业以及房地产发展相对较好,在此基础之上,依据高杠杆原理,金融产品自身的优势性彻底被展现出来,并为投资者带来相对较好的经济效益值。但是金融产品也存在一定的风险,可谓是一把“双刃剑”,虽然它可促进金融市场的发展,但如果运用不当将会引发极为严重的后果。上世纪90年代以来,就发生了多起由于金融产品运用不当而引发的经济损失,例如:2008年金融危机波及全球,引发金融危机的原因主要是CDS等金融产品,其在美国金融市场运作中出现风险管理不当的现象,也就是风险失控,继而引发了全球性的经济危机。
金融衍生品主要是基于与金融有关产品的通过不同方式衍生而来,主要包含四种基本形式,分别是远期、期货、期权、互换,其价格的变动规律主要是由基础标的物所决定的,随着它的变化而变化的,而金融衍生品的价值主要与基础工具的相关因素有关,比如利率、汇率、市场价格、指数、信用等级等等,从本质上分析,它属于虚拟的有价证券,在某种意义上而言是一种权利证书,给予投资者基础性的权利,且与实物资本有着很大的区别,能够使投资者获得投资收益。与一般金融产品相比,金融产品有了极大的改良与进步,产品结构更为复杂,其定价模式基本比较单一,主要是以复杂数学模型为主,将多种风险以及因子,如Beta、Delta、Rho、久期等,通过多种方式的映射、组合、分解复合等,继而形成金融衍生品,结构层次多样。金融产品虽然为投资者提供了发展契机,但是也存在极大的风险,这种风险的形成与交易与结算有着直接的关联,上述两种交易形式基本发生在将来,基于高杠杆的影响,市场风险难以有效控制,预测就更难以估计。
(二)量化投资
量化投资在我国金融市场发展中得到了进一步推广,相较于定性投资,量化投资科学性更强,并且具备相应的理论依据。在投资过程中,投资者可以利用数学、统计学,还可以借助数据挖掘等方法,以此构建投资策略,管理投资组合,继而实现风险管理,利用数据模型,借助系统交易信号,系统会自动完成相关交易。从本质上分析,量化投资属于工具,投资者可以通过经验累加,然后利用数学模型的功能性,继而实现信息化的表达。量化投资形式具有自身的优势特点,这也是传统投资形式不可比拟的,它主要将投资者经验累积以另外一种方式呈现,即数学模型,继而转化至计算机中,运用相对科学的计算方式,实现产品投资,随着金融市场的日益完善,数学模型也得以不断优化。无论是数量化的投资,还是依靠计算机程序的投资,对于技术的要求极为苛刻,在业界誉为“黑箱交易”,从某种角度分析,量化投资基本不依赖大脑,而是依据交易系统,继而实施具体的决策,上述交易系统是之前确定的,且形式非常复杂的,这样的系统往往具备较高的精准度。与此同时,交易系统开发需要一定的技术支持,即程序算法设计,部分开发者通常会采取相应措施,加密交易系统,以此保障知识产权不受侵害。外界投资者对此并不清楚,具体运行机制也存在极大的疑问。量化投资者基于交易系统的前提下,收集市场最新的数据变化,同时采集与之相关的信息,将其输送至交易模型里,然后通过科学的计算,数据的挖掘,加密信息的处理,最终敲定资产配置方案,确定交易的最佳时机。按照相关公式进行量化投资在某种程度上是一种相对理性的投资,其自身的优势集中体现在分析策略这一环节,突出明晰性以及一致性,与此同时,运用信息与公式,由此获得的结果基本相同,这在某种程度上对交易者非常有利,避免由于其客观性以及随意性而引发的交易失误。
针对量化投资而言,其涵盖多个方面:就现状而言,主要包括量化资产配置、量化投资交易、风险管理。以资产配置为例,必须要基于行业选择的前提下,以此实施有效配置,然后依据策略组合,在行业内开展相关工作,实行资产优化。量化资产投资,它在某种程度上奠定了总体投资方向,确定发展前景最好的行业、风格和产品。换言之,投资者需要根据市场行情变化规律,选择市场以及产品,然后给予最佳资金分配方案。相较于传统的投资形式,量化投资更具一定的优势,更具科学以及合理性,同时兼具高信度。投资者可以依据数据模型,对整个市场进行有效分析,继而给予相对准确的判断,以此进行理性投资决策。
二、两者之间的关联性分析
金融衍生品与量化投资的有效结合能够起到非常关键性的作用,投资者能够选择相对发展较好的金融产品进行量化投资,由此收获了相对丰富的投资收益,因而探讨两者之间的关联性以及有效融合具有划时代意义。近年来,我国金融市场发展形势良好,也因此带动了金融衍生品的迅速扩大,促进了国民经济的迅速增值。但是以我国现有金融衍生品现状来说,无论是从行业总量、规模,还是参与范围及层次方面来看,金融衍生品都还属于小众市场,仍需不断创新与改革。从目前情况分析,对于大部分的投资者而言,他们对于金融衍生品的了解还不够透彻,这也导致了民主对于金融衍生品的了解甚少,基本都停留在电视或是报纸上对于金融衍生品的看法,这于金融衍生品的长远发展是非常不利的。2008年的金融危机,很多实体企业采取了相应的对策,比如参与期货市场,实施套期保值,以此降低生产经营风险,也在某种程度上扩宽市场发展。
金融市场发展速度的加快,股指期货得以大面积扩散,指数期权也扩大了应用范围,这于我国金融市场发展而言是极为有利的因素,为量化投资提供良好的发展契机,迎来发展机遇。借助量化投资原理,运用相关实践方法,通过计算机程序实施投资交易,这将是之后金融衍生品投资的主流方向。
金融衍生品的诞生是社会发展的必然产物,其功能性集中体现在投资风险规避,它形成的主要动因与投资者关系密切,满足其转移风险的需求,同时实现其套期保值实际需求,这一过程又被称为风险对冲,这样可以使投资者运用相对较少的低成本,基于现货价格变动,达到规避风险的目的。从目前形势分析,量化投资在我国金融衍生品上得到了广泛应用,其对冲实践需要借助相关载体,也就是具备一定的期货市场方可实现,但是基于交易品种单一的现状,这使得量化投资产品在某种程度上具有一定的局限性。随着股指期权的诞生,个股期权的逐步实施,扩大了金融市场的投资发展,让更多的投资者增加了风险规避渠道,推动了量化投资范围的不断扩大。量化交易策略也在某种程度上发生了改变,更具创造性,带动实体经济发展。
金融衍生品的诞生以及投入使用促进了我国金融市场交易的逐步完善,这其中金融衍生品的一个非常重要的功能得到了极大的发挥,即价格发现。所谓价格发现功能,主要从参与者角度出发,他们通过获得信息,且基于价格预期,利用公开拍卖形式,或是借助电脑进行撮合交易,这在某种程度上可以获取市场真实需求,供求关系,并且极具竞争性以及预期性的体系。随着世界经济一体化趋势不断加强,世界金融市场不断扩大,与之相关的金融衍生品应用范围也随之不断扩大,金融交易所的相关交易实现跨越式的进步,通过这种形式形成的价格权威性更强。上述价格通过不同的传播工具不断扩散,如报纸、电视、网络等,范围波及全球,俨然成为市场价格的引领者,这为大众提供了良好的平台,让其透过相关经济信息了解经济动态,以便帮助投资者给予正确的决策,借以提升资源配置效率。量化投资相较于传统投资形式具有一定的优势,这主要体现在两个方面:分别是速度与规则,从某种角度分析,我们可以预期,量化交易应用范围,促使市场报价更为紧密,成交更为频繁,从而增强市场流动性。与此同时,基于量化交易策略而言,其中部分交易存在策略的相似性,这对于未来的金融市场影响颇大,集中体现在市场价格波动这一方面,具体表现为高波动性以及规律性,上述改变与量化投资有着非常直接的关联。
金融衍生品是社会发展的阶段性产物,量化投资是基于传统投资形式基础上的创新与变革,两者之间具有一定的关联性,就好比人和人之间的合作,通过量化投资,金融衍生品能够在某种程度上受益,彰显其风险规避功能,量化投资对于投资者而言是巨大的福音,使其更理性地进行投资,从而避免由于自身主观原因而造成的经济损失,与此同时,能够有效消除非预期损失。针对金融衍生品而言,其不断发展对量化投资而言也是非常有益的,为其提供应用平台,借助不同领域资源整合,从总体角度分析,优化金融市场,交易环境不断完善,并且对投资者影响极大,使其投资理念不断升华,投资水平在某种程度上也得到看提高,继而促使投资者通过结合金融衍生品与量化投资获取丰厚的投资收益。总的来说,金融衍生品与量化投资可谓是相辅相成的关系,彼此相互促进又相互影响,协调好两者的关系对金融市场发展益处多多。
三、结语
总体来说,金融衍生品在我国金融市场的广泛运用极大的促进了国民经济的发展,量化投资是一种相对理想的投资理念,将金融衍生品与量化投资有效融合能够获得良好的成效,这于金融市场经济发展而言也是极为有利的因素,为投资者提供了良好的应用平台,促使其获得比较丰富的投资收益。文章主要介绍了金融衍生品以及量化投资的发展,重点阐述了两者之间的相关性。
参考文献:
[1]李东昌.金融衍生品与量化投资相关性研究初探[J].山东工业技术,2015(06).
[2]张梅.后金融危机时代金融衍生品的风险管理与控制[J].湖南商学院学报,2010(02).
[3]寇宏,袁鹰,王庆芳.套期保值与金融衍生品风险管理研究[J].金融理论与实践,2010(05).
[4]林世光.可拓学在金融衍生品市场风险中的量化分析[J].武汉理工大学学报,2010(11).
一、引言
量化投资在国外的实践已经有了40多年的发展,我国的量化投资起步较晚,从2004年开始出现量化投资的产品,由于缺乏有效的对冲手段,直到2010年4月沪深300股指期货上市之后才能算是真正意义上开始涉足量化投资。[1]
2015年的中国股市跌宕起伏,杠杆配资引发了大幅上涨和断崖式下跌,股市出现罕见的千股涨停、千股跌停、千股停牌的奇观,众多机构投资者和散户蒙受了巨大的损失。但其中少数量化投资基金在大幅波动的市场中却表现相对稳定。量化投资基金和量化对冲策略的稳健,很快引起了全市场的关注,也成为近期银行、券商、信托等机构追捧的新的产品模式。
在此背景下,作者在本文中对于量化投资的概念、特点、策略、理论基础和发展做一个总结,希望为量化投资研究和实践做一些参考。
二、量化投资解读
(一)量化投资的定义
量化投资在学术界并没有严格统一的定义,现有的定义对于量化投资的定义的侧重点各有不同。本文对于量化投资的定义为:
量化投资是指将投资者的投资思想或理念转化为数学模型,或者利用模型对于真实世界的情况进行模拟进而判断市场行为或趋势,并交由计算机进行具体的投资决策和实施的过程。
(二)量化投资的特点
1.投资决策中能够客观理性,克服人类心理对投资决策的影响。传统投资的分析决策,大多数方面都由人工完成,而人并非能做到完全理性,在进行投资决策时,很难不受市场情绪的影响。[2]量化投资运用模型对历史和当时市场上的数据进行分析检测,模型一经检验合格投入正式运行后,投资决策将交由计算机处理,一般情况下拒绝人为的干预,这样在进行投资决策时受人的情绪化的影响将很小,投资过程可以做到理性客观。
2.能够通过海量信息的大数据处理,提高投资决策效率。我国股票市场上有近3000只股票,与上市公司相关的各种信息纷繁复杂,包括政策、国内外经济指标、公司公告、研究报告等,投资者靠自己手工的筛选根本就是力不从心。量化投资的出现为这个问题的解决带来了希望。量化投资运用计算机技术快速处理大量数据,对其进行辨别、分析、找出数据之间的关联并做出投资决策,大大减少了人工的工作量,提高了投资决策效率。
3.能够实现精准投资。传统的投资方法中认为投资是一门艺术,投资决策需要的是投资者的经验和技术,投资者的主观评价起到决定作用。而量化投资有所不同,尤其是在套利策略中,它能做到精准投资。例如在股指期货套利的过程中,现货与股指期货如果存在较大的差异时就能进行套利,量化投资策略和交易技术会抓住精确的捕捉机会,进行套利交易来获利。另外,在控制头寸规模方面,传统的投资方法只能凭感觉,并没有具体的测算和界定,而量化投资必须要设定严格精确的标准。[3]
4.能够快速反应和决策,把握市场稍纵即逝的机会。量化投资往往利用高速计算机进行程序化交易,与人脑相比它能够迅速发现市场存在的信息并进行相应的处理,具有反应快速、把握市场稍纵即逝的机会的特点。量化投资在速度上最出色的运用就是高频交易,与低频交易相对,高频交易是通过高速计算机,在极短的时间内对市场的变化做出迅速的反应并完成交易。[4]
5.能够有效地控制风险,获取较为稳定的收益。与传统投资方式不同的是,量化投资在获得较高超额收益的同时能够更好地控制风险,业绩也更为稳定。相关研究显示,1996年至2005年期间,量化投资基金与以所有传统主动型投资基金和偏重于风险控制的传统主动型投资基金的信息比率对比情况中,量化投资基金的信息比率都是最高,说明量化投资相对于传统投资,能够在获得更高的超额收益的同时,有效地控制风险。
三、量化投资的策略
一般的量化投资的策略指的是用来实现投资理念或模拟市场行为判断趋势从而获取收益的模型。量化投资需要权衡收益、风险、交易成本、具体的执行等各个方面,一般情况下这些方面会形成相对独立的模块。有时候量化投资策略模型也会将风险、成本等方面融合在模型中。
(一)国外量化投资策略的分类
国外习惯上将量化投资的策略分成两大类,一类是阿尔法导向的策略,另一类是贝塔导向的策略。阿尔法策略(alpha strategy)是通过量化择时和调整投资组合中不同资产的头寸大小来获取收益的策略;贝塔策略(beta strategy)是通过量化的手段复制指数或者稍微的超出指数收益的策略。[6]相比而言,量化指数的贝塔策略相对更容易,所以一般情况下所说的量化投资的策略指的是阿尔法策略(alpha strategy)。
阿尔法策略主要有两种类型,分别为理论驱动模型和数据驱动模型。
理论驱动模型是比较常见的类型,这些策略是运用已经存在的经济、金融学的理论,构建策略模型,进行投资决策。理论驱动模型根据输入的数据的不同可以进一步分类,主要有基于价格相关数据的策略和基于基本面数据的策略。
数据驱动模型广泛的被运用于股票、期货和外汇市场,因为采用的数学工具更为复杂,相对而言难于理解,目前使用的还不是很多。与理论驱动模型不同,数据驱动模型认为进行投资决策其实是不需要理论的支持,运用数据挖掘技术,可以从数据(例如交易所的价格数据)中识别出某种行为模式或市场趋势,进而进行预测或者解释未来的模式,从中获取收益。
(二)我国量化投资策略的分类
国内比较常见的量化投资策略主要有两种分类方式,一种是按投资标的所在市场分类区分的量化投资策略,分为现货市场和衍生品市场量化投资策略。现货市场包括股票市场、ETF市场和债券市场,衍生品市场包括商品期货市场、股指期货市场、国债期货市场、外汇市场和期权与其他衍生品市场,国内运用较多的是投资于商品期货和股指期货等期货市场。
另一种分类方式是分为两大类:判断趋势的单边投机策略和判断波动率的套利交易策略。[7]单边投机策略主要包括量化选股和量化择时,套利交易策略主要包括股指期货套利、商品期货套利、统计套利、期权套利、另类套利策略等,目前国内普遍采用的是这种分类方式。
四、量化投资理论的发展
(一)投资理论的发展
量化投资的理论基础最早可以追溯到上个世纪50年代,Markowitz(1952)[8]第一次把数理工具引入到金融研究领域,提出了均值――方差模型和风险报酬与有效前沿的相关概念,这是量化投资接受的最早的严肃的学术成果。Sharpe(1964)[9]、Litner(1965)[10]、Mossin(1966)[11]在马克维茨研究的基础上得出了资本资产定价模型(CAPM),这是如今度量证券风险的基本的量化模型。
20世纪60年代,Samuelson(1965)与Fama(1965)[12]提出了有效市场假说(Efficient Markets Hypothesis,EMH),这为后来在新闻量化交易等方面提供了思路和理论支持。20世纪70年代,金融衍生品不断涌现,对于衍生品的定价成为当时研究的重点。Black和Scholes(1973)[13]将数学方法引入金融定价,他们建立了期权定价模型(B-S模型),为量化投资中对衍生品的定价奠定了理论基础。在该理论之后,Ross(1976)[14]根据无套利原则提出了套利定价理论(APT),该理论是资本资产定价模型(CAPM)的完善和发展,为量化投资中的多因素定价(选股)模型提供了基础,这也是Alpha套利的思想基础。
20世纪80年代,期权定价理论倒向微分方程求解;“金融工程”概念得以产生,金融工程着力于研究量化投资和量化交易。同期,学者们从有效市场理论的最基本假设着手,放宽了假设条件,形成了金融学的另一个重要的分支――行为金融学。
20世纪90年代,金融学家更加注重对于金融风险的管理,产生了诸多的数量化模型,其中最为著名的风险管理数量模型是VaR(Value at Risk)模型,这是量化投资对于风险控制的重要理论基础。[15]
20世纪末,数理金融对于数学工具的引入更加的迅速,其中最为重大的突破无疑是非线性科学在数理金融上的运用,非线性科学的出现为金融科学量化手段和方法论的研究提供了强有力的研究工具[16],尤其在混合多种阿尔法模型而建立混合模型时是非常有效的一种技术。
(二)量化投资的数学和计算基础
量化投资策略模型的建立需要运用大量的数学和计算机方面的技术,主要有随机过程、人工智能、分形理论、小波分析、支持向量机等。[17]随机过程可以用于金融时序数列的预测,在现实中经常用于预测股市大盘,在投资组合模型构建的过程中,可以优化投资组合;人工智能的很多技术,例如专家系统、机器学习、神经网络、遗传算法等,可以运用于量化投资;分形理论用于时间序列进行预测分析;小波分析主要用于波型的处理,从而预测未来的走势;数据挖掘技术可以运用于数据驱动模型,还可以运用于设置模型的细节;支持向量机可以分析数据,识别模式,用于分类和回归分析。
五、国内外量化投资实践的发展
(一)国外量化投资实践的发展
本文认为量化投资在国外的发展已经经历了四个发展阶段:
1.第一阶段从1949年至1968年:对冲阶段。该阶段是量化投资的萌芽阶段,该阶段具体的量化投资实践很少,主要是为量化投资提供的理论基础和技术准备,量化投资脱胎于传统投资,对抗市场波动,通过对冲稳定Alpha收益,但收益率低了。
2.第二阶段从1969年至1974年:杠杆阶段。在该阶段,量化投资从理论走入了实践。在投资思路上,因为原本的Alpha策略收益有限,通过放杠杆扩大第一阶段的稳定收益。实践方面,1969年,前美国麻省理工学院数学系教授爱德华・索普(Ed Thorp)开办了第一个量化对冲基金,进行可转债套利,他是最早的量化投资的者使用者。1971年,巴莱克国际投资公司(BGI)发行了世界上第一只被动量化基金,标志着量化投资的真正开始。
3.第三阶段从1975年至2000年:多策略阶段。在这一阶段,虽有一定的挫折,但总体上量化投资得到了平稳的发展。在投资思路上,由于上一阶段通过杠杆放大收益的副作用产生,放大以后的波动率又增大,从而转向继续追求策略的稳定收益,具体的手段是采用多策略稳定收益。实践方面,1977年,美国的富国银行指数化跟踪了纽约交易所的1500只股票,成立了一只指数化基金,开启了数量化投资的新纪元。[18]1998年,据统计共有21只量化投资基金管理着80亿美元规模的资产。[19]
4.第四阶段从2000年至今:量化投资阶段。这一阶段,量化投资得到了迅猛的发展,并且发展的速度越来越快。投资思路上,运用量化工具,策略模型化,注重风险管理。在实践方面,在2008年全球金融危机以前,全球对冲基金的规模由2000年的3350亿美元在短短的7年时间内上升至危机发生前的1.95万亿美元,受美国次贷危机的影响全球对冲基金规模有较大的回落,直到2008年之后,在全球经济复苏的大背景下对冲基金规模才开始反弹。
(二)我国量化投资的发展
本文认为,到目前为止,我国量化投资的发展的主要经历了三个阶段:
1.第一阶段从2004年至2010年:起步阶段。在这一阶段,由于我国没有足够的金融工具,量化投资在我国发展缓慢。2004年8月,光大保德信发行“光大保德信量化股票”,该基金借鉴了外方股东量化投资管理理念,这是我国最早的涉足量化投资的产品。2010年4月16日,准备多年的沪深300股指期货的在中金所的上市,为许多对冲基金的产品提供了对冲工具,从此改变了以前我证券市场只能单边进行做多的情况。
2.第二阶段从2011年至2013年:成长阶段。2011年,被认为是我国量化对冲基金元年,[21]而随着股指期货、融资融券、ETF和分级基金的丰富和发展,券商资管、信托、基金专户和有限合伙制的量化对冲产品的发行不断出现,这个阶段的量化投资真正意义上开始发展,促使该阶段发展的直接原因就是股指期货的出现。[20]
3.第三阶段从2014年至今:迅猛发展阶段。2014年被认为是“值得载入我国私募基金史册的一年”,基金业协会推行私募基金管理人和产品的登记备案制,推动了私募基金的全面阳光化,加速了私募基金产品的发行,其中包括量化对冲型私募产品。2014年称得上我国量化对冲产品增长最迅速的一年,以私募基金为代表的各类机构在量化对冲产品上的规模均有很大的发展,部分金融机构全年销售的量化对冲基金规模超过了百亿。
2015年,上证50ETF期权于2月9日正式推出,这对于对我国的量化投资有着极大的促进作用。4月16日,上证50与中证500两只股指期货新品种的上市给量化投资带来更多的策略的运用,金融衍生品的不断丰富和发展,为量化投资提供更多的丰富对冲手段,也提供了更多的套利机会。
六、总结
量化投资的技术、策略、硬件设施条件都在飞速的发展,与传统的投资方式相比,量化投资有着自身的特点和优势。尤其是量化对冲产品,以其长期稳健的收益特征,成为目前“资产荒”下对信托、理财产品和固定收益产品良好的替代产品。未来随着我国股指期货、融资融券、国债期货、期权等金融产品的不断创新,以及股指期货市场未来逐步恢复正常,量化投资发展前景不可限量。
参考文献
[1]徐莉莉.量化投资在中国的发展现状[R].渤海证券研究所:金融工程专题研究报告,2012.
[2]廖佳.揭开量化基金的神秘面纱[J].金融博览(财富),2014,(11):66-68.
[3]王力弘.浅议量化投资发展趋势及其对中国的启示[J].中国投资,2013,(02):202.
[4]Durbin,M. All About High-Frequency Trading: The Easy Way To Get Started[M]. McGraw-Hill Press,2010.
[5]蒋瑛现,杨结,吴天宇,等.海外机构数量化投资的发展[R].国泰君安证券研究所:数量化系列研究报告,2008.
[6]Rishi K. Narang. Inside the Black Box: The Simple Truth about Quantitative Trading[M]. Wiley Press,2012.
[7]丁鹏.量化投资――策略与技术[M].北京:电子工业出版社,2014.
[8]Markowitz,H.M.. Portfolio Selection[J].Journal of Finance,1952,2:77-91.
[9]Sharpe,W.F. Capital asset prices: A theory of market equilibrium under conditions of risk[J]. Journal of Finance,1964,19(3):425-442.
[10]Lintner. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets[J].Review of Economics and Statistics,1965,47(1):13-37.
[11]Mossin.Equilibrium in a Capital Asset Market[J]. Econometrica,1966,Vol.34(4):768-783.
[12]Fama,Jensen,and Roll. Investor sentiment and Stock Returns[J]. Journal of Political Economy,1969,(12)34-36.
[13]Black Fischer,and Myron Scholes,1973.The Pricing of Options and Corporate Liabilities[J].Journal of Political Economy,1973,81(3):637-654.
[14]Ross.The arbitrage theory of capital asset pricing[J].Journal of Economic Theory,1976,13(3):341-360.
[15]Jorion,Philippe.Value at Risk:The New Benchmark for Managing Financial Risk (3rd ed.)[M]. McGraw-Hill Press,2006.
[16]戴军,葛新元.数量化投资技术综述[R].国信数量化投资技术系列报告,2008.
[17]丁鹏.量化投资与对冲基金入门[M].北京:电子工业出版社,2014.
[18]郭喜才.量化投资的发展及其监管[J].江西社会科学,2014,(03):58-62.
[19]Ludwig B.,Chincarini. The Crisis of Crowding: Quant Copycats,Ugly Models,and the New Crash Normal[M]. Wiley Press,2013.
[20]曾业.2014年中国量化对冲私募基金年度报告[R].华宝证券:对冲基金专题报告,2015.
据了解,这也是泰达宏利旗下首只量化基金产品。今年以来,跌宕起伏的行情持续考验基金投资管理能力。然而量化基金表现却一枝独秀。银河数据统计显示,2012年一季度,上证综指上涨2.88%,同期标准股票型基金平均业绩为0.31%,而量化基金的平均业绩为2.92%。
逆向投资正当时
“其实对于逆向投资策略,投资者并不陌生,巴菲特名言‘在别人恐惧时贪婪,在别人贪婪时恐惧’就是逆向投资思维的一种表述。”泰达宏利逆向策略基金拟任基金经理焦云告诉时代周报记者,逆向投资策略就是对抗人性从众的心理弱点,避开机构扎堆的热门股、题材股,寻找被市场忽略或股价被严重低估的成长类股票。
在焦云看来,逆向投资强调的不随波逐流,不是简单的和市场趋势作对,也不是简单的掘金冷门股,而是在研判大势的基础上,对上市公司本身的投资价值进行分析,以适当价格介入股价被严重低估的股票,获取估值回归带来的投资收益。
焦云指出,在市场整体震荡,短期内板块频繁轮动的情况下,每一种投资思维都能在市场中占有一席之地。逆向投资策略瞄准被市场忽视、低估、看空的“非主流”股票,极有可能挖掘出一些蕴含着巨大投资潜力的个股,捕捉一些结构性的投资机会。
据焦云介绍,逆向投资在海外已有30多年的发展历史,经过行为经济学先驱丹尼尔・卡纳曼和“逆向投资之父”戴维・德雷曼的努力,逆向投资理论从一种交易策略上升为一种主要的投资策略,据彭博社数据统计,现在全球已有100多只逆向投资基金,规模超过百亿欧元。
1月份,华安基金也申报一只逆向策略股票型基金,目前正在证监会报批程序中。分析认为,受欧债危机、全球经济增长放缓、国内经济结构转型等因素影响,A股在未来较长时期内都将维持宽幅震荡的局面,但其中不乏个股结构性投资机会,这一市场格局为逆向投资策略提供了好机会。
量化基金扩容潮起
除了泰达宏利,今年以来已有多家基金公司已经开始在量化产品方面布局。比如工银瑞信3月刚刚发行了旗下第一只量化基金―工银量化策略股票基金;富国基金开始大力打造旗下围绕量化投资的子品牌。
所谓量化投资,是指通过建立数学模型并应用量化分析方法进行选股和操作管理。量化投资在海外已有逾30年历史,但在国内市场,自2004年光大保德信发行光大保德信量化核心基金才正式起步,至2009年底,量化基金方才相继跟进成立,并迅速发展壮大。据好买基金研究中心数据统计,截至目前,已有16只量化基金成立。
“主要是现在公募基金产品发行越来越多,同质化现象较严重,相较而言,独辟蹊径的量化产品显得吸引力更大。此外,今年年初以来量化基金的不错业绩也支撑了这波扩容。”好买基金研究员刘天天告诉时代周报记者。银河数据统计显示,2012年一季度,上证综指上涨2.88%,同期标准股票型基金平均业绩为0.31%,而量化基金的平均业绩为2.92%。
“在量化投资领域,出现了很多杰出的投资者,如詹姆斯・西蒙斯。” 有着8年海外量化投资经验的工银基本面量化基金经理游凛峰表示,“他们依靠数学模型和神秘的公式扫描市场,捕捉机会。”据了解,詹姆斯・西蒙斯管理的大奖章基金1989-2007年均收益率高达35%,而“股神”巴菲特在同期的平均年回报大约为20%。
一、要解决的问题
(1)问题一:根据所给数据量化分析处理公众投资者的个人状况、信息获取方式、媒体信任程度、风险态度。(2)问题二:在量化分析处理公众投资者的个人状况、信息获取方式、媒体信任程度、风险态度的基础上,建立合适的数学模型分析它们之间的相关性;
二、模型的假设
(1)建模时在所有的问题答卷中剔除那些相关性不大的问题,只从中选取具有代表性的问题,以减少建模复杂度。(2)建模过程中的各变量是相互独立的且数据有很强代表性。(3)证券市场是有效的,且价格的变动具有惯性。
三、模型的建立与求解
(一)对问题一的求解
(1)模型的准备。通过对数据的分析,我们从所有47个问题中选出20个具有代表性的问题,将提炼出的问题分成4大类:个人基本信息状况、信息获取方式、媒体信任程度、风险态度。
(2)模型的求解与量化分析。通过对第一大类个人基本信息状况中所选取的5个问题进行量化分析得到个人基本信息状况的量化分析,在所有调查的616名对象中,女性共有236人,女性投资者占总投资人数将近四成。我国投资者的年龄主要集中在30岁以下,占调查总数的36.4%,其次是30~50岁,占比为31.2%,二者之和占到调查总数的近70%。60岁以上投资者仅占8.4%。尽管中高学历投资者居多,但分析表明,教育程度与投资者收益没有明显关系。其次在广大投资者当中97%的投资者属于中产阶级,62%的投资者目的在于改善生活,83.5%的投资者对上市公司只是部分了解,这也显示出了中国投资者投资证券的意愿不强,市场的积极性未完全调动,但同时也说明了我国证券市场还有很大部分未开发,证券市场前景广阔。
通过对第二大类信息获取方式中所选取的5个问题进行量化分析可知65%投资者投资知识来源于时间和杂志,65.5%的投资者做投资时是经过理性分析的,这反映出我国大多数投资者是属于风险厌恶者或者倾向于风险厌恶,在进行投资时还是比较理性的。其次有77.6%的投资者认为以往的投资经验对现在或未来的投资是有用的。73%的投资者会关注财经新闻的报道,85%的投资者主要从网络,电视,报纸杂志等媒体中获得投资信息。
通过对第三大类媒体信任程度中所选取的5个问题进行量化分析得到的媒体信任程度量化分析表如表1所示。
从表1可以看出53%的投资者最初进入股市的原因是认为有利可图,自己决定进入。对于媒体反复推荐的股票,68%投资者不会购买,对媒体的信任程度还是比较低的。其次有76.6%的投资者觉得媒体上推荐的股票是有一定道理的,但有40.4%投资者之所以相信媒体上推荐的股票是因为自身能力的不足,只好相信媒体推荐。同时,在听取各类人士意见时,35%的投资者相信身边熟悉炒股的朋友。总之,我国投资者对于媒体的信任程度还是偏低的,这同时意味着我国的证券业还有着巨大的发展空间。
通过对第四大类风险态度中所选取的5个问题进行量化分析得到的风险态度量化分析表如表2所示。
根据表2分析显示,投资者的操作模式相对稳定,3个月内换手1次或更短的投资者占比最多,总体来看,投资者的持股时间相对较短,长期投资者占投资者比例较小。从趋势上看,在2008年以来的下跌行情中,投资者更倾向于频繁换手,3个月内换手1次或更短的投资者逐渐增加至62.4%,持股半年内的比例明显下降至28.6%。至于持股一年以上的虽有所增加,但平均占比不高,这部分长期投资者的增加不能排除是因套牢产生的被动长期投资。股票下跌时,只有不到20%的股民会选择低价再买入,再一次反映出我国股民大多数属于风险厌恶者。同时,面对股价下跌,但持有目标是五年时,62%的投资者会维持不动,但面对股价下跌,但持有目标是三十年,只有42%的投资者会继续维持不动。总之,投资者个人承担风险的态度还是比较理性的。
(二)对问题二的求解
(1)模型的准备。证券市场市场参与者众多,市场机制更为复杂,信息不对称现象更为明显。对于风险态度的衡量,在影响证券销售量的因素中,有价格,上市公司市场信誉,投资者的风险态度等。本题中着重量化被调查者的风险态度。为了确定投资者分别隶属于风险厌恶,风险中性,风险偏好哪种类型,我们在分析数据的过程中,给每个问题每个选项赋分的原则如下:1)选A、B、C、D的基础得分分别为1、2、3、4。2)将投资者的态度分为(0~30)风险厌恶型,(31~60)风险中立型,和(61~90)风险喜好型。
相关系数用来反映两者之间的相关性,考虑相关系数r时,我们遵循以下准则:1)当r>0时,表示两变量正相关,r
通过数据分析,我国投资者的总体风险态度是介于风险厌恶和风险中立的,由此可以看出投资者较为希望通过风险投资增加其个人收入。但是由于客观、主观因素,投资者中,持观望态度者较多。
(2)模型的建立与求解。根据题目提供的数据以及前面的赋值,算出所有被调查者的风险态度值,并选出问卷中的第二问跟风险态度进行相关性分析,则有:
结果为a=[1 1 1 2 1 1 4 3 2 1 1 1 1 3 2 2 4 3…1]
对应的风险态度值为b=[44 44 46 45 41 42 47 41 54 46 38 49 51 53 53 50 44 44…47]
根据以上分析可知总体个人状况与风险态度的相关性小,由此得出我国近段时间进行投资的民众数量较大,覆盖到不同民众的方方面面。信息获取方式与风险态度之间联系大、得知在我国的投资领域,投资者的信息获取途径和多少对其投资的方向性还是有较大的影响。媒体信任程度与风险态度之间的相关性适中,可知部分投资者对待媒体信息的态度还是比较冷静。
参考文献:
[1] 杨桂元,黄己立.数学建模[M].合肥:中国科学技术大学出版社,2008.
[2] 李柏年,胡守信.基于MATLAB的数学实验[M].北京:科学出版社,2004.
叫它噱头不仅仅是因为现在近千个正在发行的私募产品中有50%以上是套用各种量化的名头,更为重要的一点是,很多这些所谓的私募量化基金产品其实做的还是以前的信息优势,关系优势,坐庄手法等传统主观和资金推动的老把戏。仅仅利用一些比较初级和简单的量化工具作为借口,勉强地把换汤不换药的老手段用新量化概念加以包装而已。
量化三策
真正的量化投资领域里还可以较为粗略的分成量化套利、量化对冲和量化趋势三个主要的大本营。
其中量化套利属于听起来很高大上,但是经过本土化之后,会发现一个惨酷的事实即所有套利空间都会在比任何市场短很多的时间里被数以亿计的群众们瞬间抹杀。所以量化套利几乎沦落为一个没什么头发的中年IT男在一个喧闹的金融中心的暗淡孤独的角落里含胸偷笑的瞬间。
量化对冲看上去更加接近市场,甚至从某种角度而言胜于市场。因为量化对冲者们嘴里充满了Alpha,Beta,Tracking Error,Sharp Ratio等听起来比营业部老大爷高级很多的术语。他们最基础的理论就是自己可以通过各种手段找到上涨时比大盘上涨更多的股票,同时利用各种衍生产品对冲资产池中的市场整体收益敞口(简单说卖空大盘)。
这是一个听起来很好的主意。这也是最多假量化的存身之所。可是他们真正的选股手段其实还是消息和看K线。同时,他们最痛苦的就是大盘股没有底线疯涨的同时小盘股疯狂的下跌。两边一同积压的结果就是双重亏损。这时如果这个投资组合里再来点中国最近流行的股票质押配资杠杆,那么一个高大上的投资组合马上濒临崩溃。
其实这种量化对冲本身就是一个伪命题。在国外发达市场中的Market Neutral 战略基金也是有一个很本质的问题。那就是在一个被视为捕捉社会经济发展趋势的股票市场里,我们真的需要一个躲避市场趋势的投资方法吗?答案不是绝对的。
最后一个是量化趋势投资。其中量化选股的表现一般情况下比量化择时的策略要更加有效和稳定。
量化三维度
无论哪一种量化投资的方式,其重要的因素都是在如何量化。而笔者能够总结出来的就是量化的三个阶段和水平:
第一、归纳总结量化;第二、线性分析量化;第三、非线性量化;第一种归纳总结性的量化是我们最常见到的一些分析方式。其中广大炒股群众喜闻乐见的各种线和各种指标都是一种归纳总结性的量化。他们主要是一些比较直观经验的总结。例如最为常见的是以移动平均线(MA)和蜡烛图为代表的各种历史价格走势的总结。
其实我们仔细想想这些图本身没有任何神奇的地方,各种MA仅仅是总结了一个价格曲线的过去走势而已。蜡烛图就是用两个维度的方式一次性的展现出一个证券的开盘价,最高价,最低价和收盘价。这些传统的指标其实不具备简单信息总结以外的任何内容。我们可以说30日均线和125日均线相交会时代表了短期价格趋势和较长期价格趋势的背离,但是这种总结又有什么除此类表述以外的任何意义吗?
它们既不会告诉我们这个证券的价格为什么走到今天,也不会对未来有任何有实质性的预期。人们借助对这些线和图发挥出自己很多主观愿望。这不是研究,也不是分析而是简单的自欺欺人。
第二维度体是线性量化分析的世界。在这里,我们最为在意的是两个以上序列之间的相关性和因果性。世界上绝大部分当代量化分析都停留在这个维度里。
首先,我们需要把相关性和因果性有效的区别开来。相关性是一种数据上有效的关系。这种简单的相关性不一定表示两个序列有因果关系。这种仅仅在数据上呈现出的相关性很可能是万千缤纷世界中的一个个巧合。他们不仅仅存在而且会像突来的爱情一样强壮和美丽。例如,美国股市有一段时间里和美国棒球比赛中的某些结果两者之间具有接近于90%以上的相关性。它可能是一个非常有趣的饭后话题,但是没有人敢用一生的积蓄或者数以万计投资者的血汗钱来证明它下次的正确与否。
而今天,我们在互联网和很多领域上都在用数据挖掘的方式对这个世界的各个方面进行探索与发现。职业投资者们在建立各种主观的因果关系后使用数据回测的方法验证这些思路。
但它其实仍然是一个简单跨界的线性相关性的量化方式。同时,这种策略的另一个基础是心理和行为之间的因果性。在一个散户为主的发展中市场,这两个假设暂时较为有效。
最后一种量化投资是非线性的。非线性的量化分析简单而言就是利用复杂体系来解释市场的方法。很多这些复杂系统都会有质变和临界点等特色。
数据显示,普通股票型基金中,排名前三的均为主题基金,如中邮战略新兴产业、财通可持续发展主题、工银信息产业,今年以来截止到9月25日,净值分别上涨65.99%、48.08%、45.73%。最近半年,伴随着二级市场的火热行情,军工、医药、环保、国企改革等基金表现抢眼,受到资金的热捧。
而缩小时间跨度,最近三个月来看,军工类主题基金收益最为明显。富国中证军工、前海开源中证军工分别以42.04%、40.31%的收益率遥遥领先其他指数型基金。这与三季度军工股的走强不无关系,按申银万国分类,29只国防军工类个股今年以来平均上涨62.11%,三季度以来平均上涨40.07%;而全部A股同期的平均涨幅分别为39.4%和27.29%,军工个股涨幅明显领先。仅从三季度看,29只个股中,仅上海佳豪、成飞集成股价下跌,同时有19只涨幅超过30%,占比过半。此外,北方导航股价三季度以来涨幅超过100%。
分析人士认为,随着我国近些年的不断发展以及周边局势的变换,军工行业作为保障国家安全的重器以及国民经济的重要组成,始终受到各方的广泛关注。国家安全战略升级、国防军费开支增长以及军工改革等方面带来的利好,使得国防军工板块展现出了广阔的行业发展空间,在二级市场上的投资机会也将不断涌现。
另外医药主题的投资机会也不容忽视,医药主题基金整体表现同样抢眼,数据显示,市场上9只主动管理的医疗保健基金今年平均涨幅为9.8%,其中,富国医疗保健表现抢眼,截至9月25日,富国医疗保健总回报高达30.18%,对此,业内人士分析认为,医药行业作为消费的重要组成部分,具有需求刚性的特点,由于疾病谱的变化和老龄化的加速,对未来十年的医药投资相对乐观。事实上,随着人口老龄化、以及政府对医药卫生投入的加大,将会推动医药行业业绩提升,业绩优秀的医药主题基金是参与相关投资的良好渠道。
此外,国企改革、新能源、京津冀、文化产业等行业也备受关注,显然主题概念投资已成为市场的共识之一。国金证券分析认为,随着下半年重要会议临近,市场对于改革类的政策将逐步升温,主题投资机会丰富。投资者可利用投资灵活度高、选股能力较强的基金投资配置这些当前较热的主题板块,以更准确更积极地把握住投资机会。
量化基金异军突起
值得一提的是,在今年的结构性牛市行情中,量化基金异军突起,成为一抹挥之不去的亮色。
事实上,量化投资在国内的公募看来并不陌生。2004年7月,国内出现了第一只量化基金――光大保德信量化核心,目前市场有24只主动量化概念基金产品,涉及19家基金公司。
而从今年以来业绩看,量化基金胜过了主动权益产品。数据显示,截至9月25日,量化基金今年来收益为10.5%。从今年业绩榜单前十名中,量化基金占据了两席,其中表现最好的是长信量化先锋,今年以来收益为43.58%,位居第四。紧随其后的是大摩多因子策略,今年来收益为43.06%。此外,华商大盘量化策略和长盛量化红利策略今年来的收益也超34%。
这些人,因其使用高等数学手段决定亿万计资金的投向,而在30年前赢得“火箭科学家”名声。在外人看来,他们有些像中世纪的炼金术师:给他们数据,他们还给你美元!
华尔街的数学传说
实际上,在华尔街上管理资金规模最大的量化技术,并非那么不可捉摸:众多公司使用“因子加总模型”辅助他们选择股票。
这种方法大多基于Fama-French的开创性论文,其基本思想很简单:依据各项基本面指标对于历史上超额回报的贡献程度,来决定这些基本面指标在选出“超级股票”上的“有效性”,并据此赋予这些指标不同的权重;按照上市公司指标在全部篮子股票中的排序,再使用上述步骤中获得的权重对其进行加权加总计算。如果该公司的加权之和排名靠前,则表明该公司的基本面指标符合能够带来超额回报的历史模式,从而有望在未来展现强势。
数学模式大同小异,公司之间的竞争主要集中在两个方面:第一,各公司均投入巨资,研制自己的特有指标;第二,研制更加有效、稳定的加总方式。
传统的基本面分析往往要求基金公司雇佣大量分析师,成本高昂。由于每个分析师能够跟踪的公司数目有限,基金经理不得不在较小的股票篮子中进行选择,有可能错失最好的投资机会,投资组合的分散程度也受到限制。同时,依赖基本面分析进行投资管理要求基金经理进行大量的主观判断,人性弱点(贪婪与恐惧)对投资业绩往往产生较大影响,投资业绩波动较大。使用这种方法建构的投资组合往往无法定量化控制每只个股给投资组合带来的风险。从基金公司的角度而言,这种方法对基金经理个人的依赖较大,一旦出现人员变化,基金业绩也往往随之波动。
量化选股方式将投资决策建立在对历史模式的详尽研究之上,克服了上述缺点。其在美国投资界的应用近20年来大幅提升,管理资产额的上升速度为传统方式的4倍。
回归价值投资
然而,过去数年,定量化基金遭遇了重大打击。2007年,最大的定量化机构对冲基金、高盛名下的Global Alpha遭遇了重大损失,几乎清盘。2008年,众多量化基金再遭滑铁卢。笔者在北美也曾主持研制一个包含上百个指标的量化选股系统,但在实践中,却最终放弃。
实战经历指出该类系统的一个致命弱点是,在实战中,哪一类因子何时发挥作用,是不可预测的。有些时候是价值因子占优,有时候是增长因子占优,而何时其影响力出现变化,难以事先预测。其结果就是分析师与基金经理疲于奔命地试图追赶因子影响力变化的脚步,并据此不断矫正模型。如此,基金经理不得不在使用量化系统的同时,使用个人化的随机判断对量化系统进行纠正――这弱化了它本该享有的优势并导致投资业绩大幅波动。
仔细反思,最主要的问题在于,各预测因子被无机地组织在一起,各个因子之间的互相影响却没有被考虑。也就是说,华尔街模型“从数学到数学”,缺乏对投资哲学的深入理解。
量化技术所具有的优势应该被利用,但数学手段应该被视为手段,而不是主导。一个有希望的发展方向,是将量化技术与价值投资哲学相结合,实现“从哲学到数学”式的投资理念。为此,需要在投资哲学上,梳理价值投资理念的本质。
价值投资在国内市场有众多拥护者,也不乏怀疑者。实际上,国内普通投资者对价值投资的理解有值得深化之处。笔者以为,价值投资的本质有二:
第一,价值投资告诉投资者,市场会犯错。以“5毛钱买进1元钱价值”作为号召,价值投资拒绝接受“有效市场理论”。但事实上,在大多数时候市场是有效的。大多数股票的价格正确反映了所有的信息、知识与预期,当时的价格就是上市公司的内在价值。要获得超额回报,必须去寻找市场可能呈现的“异常”,或者说在何处投资者的平均预期可能落空。价值投资就是寻找“未来”与“预期”之间的歧异。量化系统的设计目标是,要有能力淘汰那95%的普通(有效)情况,而把注意力引导剩余的5%――在那里,“未来”与“预期”有最大的机会出现歧异。
第二,价值投资的另一面,是说任何人都会犯错。当我们集中注意力去寻找“超级股票”的时候,是在下一个极大的赌注。这个赌注是高风险的。所以,请记住索罗斯的告诫:“投资者重要的不是做对还是做错,而是在做对的时候赚多少,做错的时候亏多少。”为对冲第一个赌注的风险,需要寻找最大的安全边际――当我们犯错的时,安全边际将保护我们不致尸骨无存。
安全边际是指,市场涨跌的轮回已经测试过所有情景。该公司在完整的牛熊市周期中,由千千万万投资者的真金实银所测试出来的估值空间。因此,安全边际的定义并非相对市场平均水平更低的PE值这么简单。每家公司都不同于别的公司,将不同公司的估值水平相比较,更多时候带来误导而不是洞察力。应该将公司目前估值水平与该公司调整后的历史范围相比较,并决定“安全边际”存在与否。
在实践中,要寻找在未来可能提供业绩惊喜、而仍在其估值范围下限附近交易的公司。依据此思想,数量化技术可以对所有上市公司的投资机会予以量化评估,进而实现“从哲学到数学”的投资思路。
对中国股市独特性的夸大导致某些论者以为,在中国股市,唯有投机可以赢得超额利润。这其实是伪命题。事实上,正是由于中国股市效率较低且风险奇高,一个系统化评估市场错配与风险衡量的系统,可以发挥最大效率。一切都取决于对市场运行规律的深入把握与技术优势的结合。在实践中,我们开发的量化价值投资体系取得了稳定超越指数的优良业绩。这有力地证明,中国股市的特殊性并没有遮盖其作为投资市场的普遍性。
量化投资开始盛行美国,上海交通大学金融工程研究中心执行主任陈工孟在今年4月称“目前美国量化投资基金规模高达6万亿人民币”,对冲基金中采用量化投资的基金占比高达80%-90%。
可在美国迅速崛起的量化投资一入中国就“蔫”了。自2004年8月第一只以量化投资为主的光大保德信量化核心诞生至2012年末,八年多来量化基金数量也仅有14只,2012年的投资业绩一片“惨绿”,没有亮点。 100倍 目前中国量化投资基金总额不过两三百亿人民币的规模,到2020年至少有100倍的增长空间。
“目前国内的量化基金模型过于趋同,在牛市中效果会很好,熊市中没有对冲工具,下跌是必然的。”中国量化投资研究院常务副院长林健武如此认为。
券商融券券源不足,使得公募基金对冲业务长期以来也只能“纸上谈兵”。在国内,分级基金、指数型基金、指数增强型基金都属于量化投资,只不过都是“被动型产品”,投资收益跟着市场跑,股市上涨才能挣钱。而投资者一直期待在市场下跌中同样能够获取投资红利。
今年2月底转融券的逐步放行,让林健武看到了希望,“未来,市场做空机制将全面形成,中国量化投资也将得到高速发展。”陈工孟更是表示,2020年中国量化投资基金总额至少是美国当前的一半,即3万亿人民币。目前中国量化投资基金总额不过两三百亿人民币的规模,到2020年至少有100倍的增长空间。
“望梅止渴”多时的公募基金都不想输在起跑线上,2月20日以来中欧基金、中海基金等公募把可做空、亦可做多的沪深300多空分级产品报送证监会。
这次公募基金抛出沪深300多空分级产品可能再次“挠”准了基民的“痒”点,那么量化基金规模“增肥”似乎可以预期,但它们是否能够复制“西蒙斯传奇”吗?对投资者来说,投资量化基金机遇与风险又如何估量? 公募开赌场
“这对于个人投资者,是多了便捷的做空方式”,国金证券基金研究中心总经理张剑辉认为,“应该会引起市场更多关注”。这可说是基金圈内人共同的心声了,沪深300分级多空分级基金还未发行,基民关注度不断高升,可又有几人看出它的“隐疾”呢?
在门外只能看热闹,门内才能看出门道。拥有在美国17年量化基金管理经验的嘉实基金董事总经理张自力告诉《英才》记者:量化投资模型通常寻找未来市场上有可能下跌的股票更多一些,“但A股市场稳定度低、波动率较高,设计主动型量化基金仍是个挑战。另外,这次转融券的放开是一个正确的方向,只是目前转融券高成本、期限短,基金只能短线操作,做空一家公司可能需要几年时间,要知道发现上市公司作假,诉讼不是一朝一夕的事。”
也有不同观点,好买基金研究中心首席分析师曾令华则认为“量化投资主要就是模型设计的应用,排除人为因素影响,量化投资特点就是高频交易、快进快出,优势是反应快,所以只有T+0交易的推出才能真正有利于量化投资收益。”
问题或许不同,困难确实存在,看来国内量化基金仍有很长的路要走,公募基金此轮“跑马圈地”目标似乎只有一个:规模扩张。
深谙基金“猫腻”的曾令华一语道破国内量化基金的玄机,“其实多空分级等量化基金就像公募基金在开赌场,只是在基民之间互相找一个交易对手,亏与赚都是基民间的事了。”也有多位业内人士对《英才》记者表示,“多空分级基金本质上是一种工具,基民一旦对市场趋势判断失误,损失也会放大。”
管理费稳稳的揣进自己“腰包”,风险随手塞给基民,公募基金算盘打得实在精明。问题是,基民还会不会一再中招?为何在成熟资本市场创造了投资奇迹的量化投资,在国内公募基金手里却变成了靠“摆场子”稳赚“小钱”的道具? 西餐中国味
量化基金这道原本地道的“西餐佳肴”端上“中餐桌”显然变了味道,是哪个环节出了问题?
原因并不难找,问题之一就出在了“食材”质量上。国内企业上市多是为了“圈钱”,一夜暴富更是成为某些企业上市的终极目标;而成熟的资本市场,企业上市是为了分享公司成长收益。
同任嘉实基金投资委员会委员的张自力箴言道,上市公司股价的表现就应该成为公司的打分表,同时,股市才是一个国家经济的中心,“在美国总统能否连任,股市的表现绝对是决定性的因素之一。”
其次,投资理念上的差异也使“西餐中吃”的公募基金难以体会其中美味。曾在美国管理百亿美元量化基金的张自力说道,上市公司内在价值有很多可以量化的尺度,量化模型在价值投资上有天然的优势。
而在《英才》记者采访中,多位国内业内人士却认为“量化投资就是跟着市场跑,以短期投资为主”。两种看法迥然不同,其间的差异也就决定了量化投资出现南橘北枳的状况。 詹姆斯· 西蒙斯(James Simons)
每个投资的人都知道,投资决策离不开对上市公司现金流量、获利成长、库存流动等数据研究,量化投资是以数据分析为主,而国内基金经理还要四处去拜访上市公司高管,有基金经理笑言:“基金经理不能喝酒不行。”
国内外公募基金的不同心态,也影响了“菜肴”的最终味道。