时间:2023-05-28 08:18:32
引言:寻求写作上的突破?我们特意为您精选了12篇电子电路设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
对EHW的研究主要采用了进化理论中的进化计算(EvolutionaryComputing)算法,特别是遗传算法(GA)为设计算法,在数字电路中以现场可编程门阵列(FPGA)为媒介,在模拟电路设计中以现场可编程模拟阵列(FPAA)为媒介来进行的。此外还有建立在晶体管级的现场可编程晶体管阵列(FPTA),它为同时设计数字电路和和模拟电路提供了一个可靠的平台。下面主要介绍一下遗传算法和现场可编程门阵列的相关知识,并以数字电路为例介绍可进化硬件设计方法。
1.1遗传算法
遗传算法是模拟生物在自然环境中的遗传和进化过程的一种自适应全局优化算法,它借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式,称为染色体或个体。先通过初始化随机产生一群个体,称为种群,它们都是假设解。然后把这些假设解置于问题的“环境”中,根据适应值或某种竞争机制选择个体(适应值就是解的满意程度),使用各种遗传操作算子(包括选择,变异,交叉等等)产生下一代(下一代可以完全替代原种群,即非重叠种群;也可以部分替代原种群中一些较差的个体,即重叠种群),如此进化下去,直到满足期望的终止条件,得到问题的最优解为止。
1.2现场可编程逻辑阵列(FPGA)
现场可编程逻辑阵列是一种基于查找表(LUT,LookupTable)结构的可在线编程的逻辑电路。它由存放在片内RAM中的程序来设置其工作状态,工作时需要对片内的RAM进行编程。当用户通过原理图或硬件描述语言(HDL)描述了一个逻辑电路以后,FPGA开发软件会把设计方案通过编译形成数据流,并将数据流下载至RAM中。这些RAM中的数据流决定电路的逻辑关系。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用,灌入不同的数据流就会获得不同的硬件系统,这就是可编程特性。这一特性是实现EHW的重要特性。目前在可进化电子电路的设计中,用得最多得是Xilinx公司的Virtex系列FPGA芯片。
2进化电子电路设计架构
本节以设计高容错性的数字电路设计为例来阐述EHW的设计架构及主要设计步骤。对于通过进化理论的遗传算法来产生容错性,所设计的电路系统可以看作一个具有持续性地、实时地适应变化的硬件系统。对于电子电路来说,所谓的变化的来源很多,如硬件故障导致的错误,设计要求和规则的改变,环境的改变(各种干扰的出现)等。
从进化论的角度来看,当这些变化发生时,个体的适应度会作相应的改变。当进化进行时,个体会适应这些变化重新获得高的适应度。基于进化论的电子电路设计就是利用这种原理,通过对设计结果进行多次地进化来提高其适应变化的能力。
电子电路进化设计架构如图1所示。图中给出了电子电路的设计的两种进化,分别是内部进化和外部进化。其中内部进化是指硬件内部结构的进化,而外部进化是指软件模拟的电路的进化。这两种进化是相互独立的,当然通过外部进化得到的最终设计结果还是要由硬件结构的变化来实际体现。从图中可以看出,进化过程是一个循环往复的过程,其中是根据进化算法(遗传算法)的计算结果来进行的。整个进化设计包括以下步骤:
(1)根据设计的目的,产生初步的方案,并把初步方案用一组染色体(一组“0”和“1”表示的数据串)来表示,其中每个个体表示的是设计的一部分。染色体转化成控制数据流下载到FPGA上,用来定义FPGA的开关状态,从而确定可重构硬件内部各单元的联结,形成了初步的硬件系统。用来设计进化硬件的FPGA器件可以接受任意组合的数据流下载,而不会导致器件的损害。
(2)将设计结果与目标要求进行比较,并用某种误差表示作为描述系统适应度的衡量准则。这需要一定的检测手段和评估软件的支持。对不同的个体,根据适应度进行排序,下一代的个体将由最优的个体来产生。
(3)根据适应度再对新的个体组进行统计,并根据统计结果挑选一些个体。一
部分被选个体保持原样,另一部分个体根据遗传算法进行修改,如进行交叉和变异,而这种交叉和变异的目的是为了产生更具适应性的下一代。把新一代染色体转化成控制数据流下载到FPGA中对硬件进行进化。
(4)重复上述步骤,产生新的数代个体,直到新的个体表示的设计方案表现出接近要求的适应能力为止。
一般来说通过遗传算法最后会得到一个或数个设计结果,最后设计方案具有对设计要求和系统工作环境的最佳适应性。这一过程又叫内部进化或硬件进化。
图中的右边展示了另一种设计可进化电路的方法,即用模拟软件来代替可重构器件,染色体每一位确定的是软件模拟电路的连接方式,而不是可重构器件各单元的连接方式。这一方法叫外部进化或软件进化。这种方法中进化过程完全模拟进行,只有最后的结果才在器件上实施。
进化电子电路设计中,最关键的是遗传算法的应用。在遗传算法的应用过程中,变异因子的确定是需要慎重考虑的,它的大小既关系到个体变异的程度,也关系到个体对环境变化做出反应的能力,而这两个因素相互抵触。变异因子越大,个体更容易适应环境变化,对系统出现的错误做出快速反应,但个体更容易发生突变。而变异因子较小时,系统的反应力变差,但系统一旦获得高适应度的设计方案时可以保持稳定。
对于可进化数字电路的设计,可以在两个层面上进行。一个是在基本的“与”、“或”、“非”门的基础上进行进化设计,一个是在功能块如触发器、加法器和多路选择器的基础上进行。前一种方法更为灵活,而后一种更适于工业应用。有人提出了一种基于进化细胞机(CellularAutomaton)的神经网络模块设计架构。采用这一结构设计时,只需要定义整个模块的适应度,而对于每一模块如何实现它复杂的功能可以不予理睬,对于超大规模线路的设计可以采用这一方法来将电路进行整体优化设计。
3可进化电路设计环境
上面描述的软硬件进化电子电路设计可在图2所示的设计系统环境下进行。这一设计系统环境对于测试可重构硬件的构架及展示在FPGA可重构硬件上的进化设计很有用处。该设计系统环境包括遗传算法软件包、FPGA开发系统板、数据采集软硬件、适应度评估软件、用户接口程序及电路模拟仿真软件。
遗传算法由计算机上运行的一个程序包实现。由它来实现进化计算并产生染色体组。表示硬件描述的染色体通过通信电缆由计算机下载到有FPGA器件的实验板上。然后通过接口将布线结果传回计算机。适应度评估建立在仪器数据采集硬件及软件上,一个接口码将GA与硬件连接起来,可能的设计方案在此得到评估。同时还有一个图形用户接口以便于设计结果的可视化和将问题形式化。通过执行遗传算法在每一代染色体组都会产生新的染色体群组,并被转化为数据流传入实验板上。至于通过软件进化的电子电路设计,可采用Spice软件作为线路模拟仿真软件,把染色体变成模拟电路并通过仿真软件来仿真电路的运行情况,通过相应软件来评估设计结果。
4结论与展望
2电路与模拟电子技术课程目标
本课程的总体目标是:通过对电路原理、常用电子元器件、模拟电路及其系统的分析和设计的学习,使学生获得电路与模拟电子技术方面的基础知识、基础理论和基本技能,为深入学习电子技术及其在专业中的应用打下基础。其中包括:(1)知识目标:掌握电路基本概念、基本分析和计算方法;会计算电路主要参数;掌握电路波形图画法、建立电路模型的方法;会判断器件类型、电路工作状态;(2)能力目标:培养学生正确使用常用仪表的能力;培养学生正确选择元器件的能力;培养学生检索与阅读各种电子手册及资料的能力;培养学生识读与分析电路的能力;培养学生安装和焊接电路的能力;培养学生电路测试方案的设计能力和对测试数据的分析能力;培养学生排除电路故障的能力;培养学生进行简单电路设计的能力;(3)情感目标:通过趣味案例激发学生好奇心和学习兴趣;通过学习情境挖掘学生的求知欲和创造欲,树立学生自信心。
3电路与模拟电子技术课程设计
本门课程设计的理念是:以学生职业能力的培养为最根本的出发点,理论学习以必须,够用为度,同时进行课证融合。在课程的教学过程中采用多种教学方法和手段:传统的教学法、直观教学法、探究法、启发式教学和多媒体教学手段。
4电路与模拟电子技术课程实施
在课程的实施过程中教师首先进行了学情分析:高职院校的学生学习基础普遍较差,学习能力欠缺,急于求成,缺乏持久性。虽然学生对电类专业课入门的学习具有一定的兴趣,但这种兴趣不够稳定,需要教师创设适度的情境,适时地激发。所以在教学过程中,教师要力求做到将深奥的知识浅显化,抽象的知识形象化。课程的重点难点是半导体器件,放大电路,负反馈。教师对重点、难点的处理方法有:(1)传统的讲解法;(2)直观式教学;(3)配合flas演示;(4)通过万用表测试加深理解;(5)创建学习情境。例如:在半导体器件的讲解部分,可采用直观式的教学法,带领学生认识各种不同的二极管,三极管。对于三极管的讲解,配合万用表测试加深理解。下面以一次课实验课———三极管电流放大特性为例,来说明课堂的教学组织。三极管的电流放大特性这节内容是深入模拟电子技术部分的第一道难关。学生只有深入到心里层面去理解了这节内容,才可以举一反三去理解后续学习的电子元器件。教师采用基于工作过程“教、学、做”一体化的教学设计,把启发式教学贯穿整个教学过程,通过探究实验操作和多媒体仿真,把抽象的理论知识难度降低,达到突破难点,帮助学生化难为易,让学生轻松愉快充满信心地完成学习。
5考核方案
课程的考核方案根据学院教务处的要求,期中成绩占30%,平时成绩占30%,期末成绩占40%。平时成绩包括:课堂考核,课后作业,单元测验。在学期结束前另有为期一周的教学实习,教师根据维修电工的考试内容结合实际情况申报,并由系部统一采购实习耗材。实习的考核分为:优———电路功能完全实现,性能优良,工艺精美。良———电路功能基本实现,性能优良。中———电路功能基本实现,性能不够稳定。及格———在教师辅助制作下,电路功能基本实现。不及格———电路功能未实现且学习态度有问题。
6教学评价
课程的教学评价包括:校内督导评价,同行专家评价,教师自我评价,学生评价。
1概述
nRF902是一个单片发射器芯片,工作频率范围为862~870MHz的ISM频带。该发射器由完全集成的频率合成器、功率放大器、晶体振荡器和调制器组成。由于nRF902使用了晶体振荡器和稳定的频率合成器,因此,频率漂移很低,完全比得上基于SAW谐振器的解决方案。nRF902的输出功率和频偏可通过外接电阻进行编程。电源电压范围为2.4~3.6V,输出功率为10dBm,电流消耗仅9mA。待机模式时的电源电流仅为10nA。采用FSK调制时的数据速率为50kbits/s。因此,该芯片适合于报警器、自动读表、家庭自动化、遥控、无线数字通讯应用。
2引脚功能和结构原理
nRF902采用SIOC-8封装,各引脚功能如表1所列。
表1nRF902的引脚功能
引脚端符号功能
1XTAL晶振连接端/PWR-UP控制
2REXT功率调节/时钟模式/ASK调制器字输入
3XO8基准时钟输出(时钟频率1/8)
4VDD电源电压(+3V)
5DIN数字数据输入
6ANT2天线端
7ANT1天线端
8VSS接地端(0V)
图1所示是nRF902的内部结构,从图中可以看出:该芯片内含频率合成器、功率放大器、晶体振荡器和调制器等电路。
通过nRF902的天线输出端可将平衡的射频信号输出到天线,该引脚同时必须通过直流通道连接到电源VDD,电源VDD可通过射频扼流圈或者环路天线的中心接入。ANT1/ANT2输出端之间的负载阻抗为200~700Ω。如果需要10dBm的输出功率,则应使用400Ω的负载阻抗。
调制可以通过牵引晶振的电容来完成。要达到规定的频偏,晶振的特性应满足:并联谐振频率fp应等于发射中心频率除以64,并联等效电容Co应小于7pF,晶振等效串联电阻ESR应小于60Ω,全部负载电容,包括印制板电容CL均应小于10pF。由于频率调制是通过牵引晶振的负载(内部的变容二极管)完成的,而外接电阻R4将改变变容二极管的电压,因此,改变R4的值可以改变频偏。
将偏置电阻R2从REXT端连接到电源端VDD对可输出功率进行调节。nRF902的工作模式可通过表2所列方法进行设置。
表2nPF902的工作模式设置
引脚
工作模式XTALREXTXO8DIN
低功耗模式(睡眠模式)GND---
时钟模式VDDGNDVDD-
ASK模式VDDASK数据VDD或者GNDVDD
FSK模式VDDVDDVDD或者GNDFSK数据
在FSK模式时,调制数据将从DIN端输入,这是nRF902的标准工作模式。
ASK调制可通过控制REXT端来实现。当R2连接到VDD时,芯片发射载波。当R2连接到地时,芯片内部的功率放大器关断。这两个状态可用ASK系统中的逻辑“1”和逻辑“0”来表示。在ASK模式,DIN端必须连接到VDD。
时钟模式可应用于外接微控制器的情况,nRF902可以给微控制器提供时钟。它可在XO8端输出基准时钟,XO8端输出的时钟信号频率是晶振频率的1/8。如晶振频率为13.567MHz,则XO8输出的时钟信号频率为1.695MHz。
在低功耗模式(睡眠模式),芯片的电流消耗仅10nA。在没有数据发射时,芯片可工作在低功耗模式以延长电池的使用时间。电路从低功耗模式转换到发射模式需要5ms的时间,从时钟模式转换到发射模式需要50μs的时间。
计算机高速数字电路设计技术的发展是电子设计领域一次新的突破,对计算机电子技术的发展有着极大的作用。但是,在现阶段计算机高速数字电路设计技术中却存在一定的问题。例如,信号线间距离对计算机高速数字电路设计的影响,一般情况下,信号线间的距离会随着印刷版电路密集度的增大而变化,越来越狭小,而在这个过程中,也会导致信号之间的电磁耦合增大,这样就不会对其进行忽略处理,会引发信号间的串扰现象,而且随着时间的推移会越来越严重。
1.2 阻抗不匹配的问题
阻抗是信号传输线上的关键因素,而在现阶段计算机高速数字电路设计的过程中,却存在信号传输位置上的阻抗不相匹配的现象,这样极易引发反射噪声,而反射噪声将会对信号造成一定的破坏,使得信号的完整性受到极高速数字电路设计是电子技术行业发展的重要结晶,通过多个电子元件组成,更是将电子技术发挥的淋漓尽致,而且,计算机高速数字电路技术的应用也极为广泛。但是,在实际的应用中,计算机高速数字电路设计技术却受到一些因素的影响,例如,信号线间距离的影响、阻抗不匹配的问题、电源平面间电阻和电感的影响等,都会对计算机高速数字电路技术的运行效率产生影响,要提升计算机高速数字技术的应用效率,必须解决这些影响因素,对此,本文主要对计算机高速数字电路设计技术进行研究。摘要大的影响。
1.3 电源平面间电阻和电感的影响
计算机高速数字化电路设计技术是根据实际的情况,利用先进的电子技术设计而成,在诸多领域都得到广泛的应用。现阶段计算机高速数字电路设计中,由于电源平面间存在电阻和电感,使得大量电路输出同时动作时,就会使整个电路产生较大的瞬态电流,这将会对极端级高速数字电路地线以及电源线上的电压造成极大的影响,甚至会产生波动的现象。
2计算机高速数字电路技术的研究分析
2.1 合理设计,确保计算机高速数字电路信号的完整性
通过以上的分析得知,现阶段计算机高速数字电路设计技术中,由于受到阻抗不匹配的影响,对电路信号的完整性也造成一定的影响,因此,要对计算机高速数字电路技术进行合理的设计,确保计算机高速数字电路信号的完整性。主要分为两方面研究,一方面是对不同电路之间电路信号网的传输信号干扰情况进行研究,也就是以上所提到的反射和干扰的问题,而另一方面,要对不同信号在传输的过程中,对电路信号网产生的干扰情况进行分析。计算机高速数字电路在运行的过程中,会受到阻抗不相匹配的因素而影响到电路信号的传输效率,而且,现阶段计算机高速数字电路运行的过程中,阻抗很难控制,经常会出现阻抗过大或过小的现象,都会对电路信号传播的波形产生一定的干扰,从而对计算机高速电路传输信号的完整性产生直接的影响。为了避免这类情况的发生,要对计算机高速数字电路设计技术展开研究,从正常理论来看,高速数字电路设计难以使电路与临街阻抗的状态相互符合,可以对计算机高速数字电路设计技术进行改进,保持系统处于过阻抗状态,这样就能保证计算机高速数字电路设计不会受到阻抗不等的状态而影响到计算机高速数字电路信息传输的完整性。
2.2 对高速数字电路电源进行合理设计
电源是计算机高速数字电路技术的重要组成元件,通过以上的分析得知,计算机高速数字电路设计中,由于受到电源平面间电阻和电感的影响,使得电源运行过程中会出现过电压的故障,也就是电源的波形质量受到影响,严重影响到计算机高速数字电路运行的可靠性。从理论上来看,如果高速数字电路设计中,电源系统中不存在阻抗的话是电路设计最理想的状态,这样整个信号的回路也不会存在阻抗耗损的问题,系统中的各个点的点位就会保持恒定的状态。但是,在实际中却不会存在这种理想状态,计算机高速数字电路系统运行的过程中,就必须要考虑到电源的电阻和电感因素,而要减少电源面的电阻和电感对电源系统的影响,就必须对其采取降低的处理措施。从当今计算机高速数字电路系统电源材质的分析了解到,电路系统中大多数都是采用大面积铜质材料,如果结合电源系统要求来分析的话,这些材料远远达不到计算机高速数字电路电源的标准要求,这样在系统正常运行的过程中势必会受到一定的影响,对此,要将所有影响因素进行综合性的考虑和研究,可以采用楼电容应用到电路中,这样可以有效的避免或降低电源面电阻和电感对系统的影响,从而有效的提高计算机高速数字电路系统运行的可靠性。
电子线路的干扰也就是在电子产品进行正常工作时,对自己或者是别的设备带来的影响,干扰包括很多方面,其中主要是温度的干扰、振动的干扰、湿度的干扰、声波的干扰以及电磁波的干扰等。同时干扰通常具有干扰源,它可能是设备本身带来的,也可能是设备外部系统带来的,其中电磁干扰在生活中比较常见,并且危害也比较大,不仅对设备周围的事物造成伤害,还容易对设备自身造成伤害。
2电子线路中常见的干扰
2.1电网的干扰
在电子线路常见到的干扰中,电网的干扰分布比较广泛,不仅在繁华的地区,在人烟稀少的地区也有电网的干扰。通常,电网的交流电通过进行整流,然后滤波以及稳压的工作为各种电子线路提供直流电源。在这个过程中,干扰信号和交流电源一块进入电子设备的系统中,导致电子线路出现故障,影响电子线路的正常工作。
2.2地线的干扰
地线的干扰在电子设备系统干扰中占主要部分。通常在电子设备系统中各个电子线路使用同一个直流电源,在这个过程中,各个地方的电子线路的电流都会经过同一个地电阻,这时会形成电压降,而电压降也就是各个电子设备的噪音干扰信号,这也就是地线的干扰。
2.3信号通道的干扰
随着我国经济的快速发展,信号通道的干扰逐渐被人们所关注。在进行远距离的测量工作或者通信工作中,由于距离很远,导致电子设备的输出以及输出信号都比较的长,然而线间却很近,所以信号在传递的过程中,容易受到信号线之间的串扰和电磁场的干扰等,导致传递的信号发生突变,影响电子线路的正常运行。
2.4空间电磁辐射的干扰
在一系列的干扰中,地线的干扰和电网的干扰对人们的影响比较严重,然后是信号通道的干扰和电磁辐射的干扰。对于空间电磁辐射的干扰,工作人员只要确保电子设备与干扰源的距离,并且采取相应的保护措施即可。
3解决电子线路中干扰线路设计法
3.1抗电网干扰的线路设计法
在电子线路中,抗电网的干扰措施可以参考图1。在这个过程中,工作人员主要要确保交流电的稳定,避免电源出现电压过剩或者电压不足的现象。同时选择合理的电源滤波器,消除串模的干扰,然后选择带有屏蔽层的变压器,来减少电容,避免高频信号的干扰,并且采取双T滤波器抑制频率的干扰,最后使用0.01—0.1uF的电容连到直流稳压的电路上来滤除高频的干扰,是电子设备能够正常的工作运营。
3.2抗地线干扰的线路设计法
在电子线路工作中,对于地线的干扰,工作人员可以采取以下措施:首先工作人员一定要使用一点接地的方法,也就是把各个线路整合到一起,从一个统一的地方进行接地处理。但是在印制电路板上由于使用此方法不太方面进行施工,因此工作人员可以采取串联接法来避免噪音的干扰,同时在安装的过程中可以把地线的宽度增大。其次对于强信号和弱信号的安装,一定要分开,保持一定的距离,最后在使用一点接地的方法。同时对于模拟地和数字地也要分开进行安装,避免交叉在一起。除此之外,工作人员一定采取合适的接地线,以便于减少接地电阻。
3.3抗信号通道干扰的线路设计法
在电子线路工作中,对于信号通道的干扰,工作人员主要采取两种措施:一种是双绞线传输,另一种是光电耦合传输。在双绞线传输工作中,工作人员首先选择好两条线,一个是信号线,另一个是地线。在电子线路的工作中使用这种方法,主要是为了避免信号地线的干扰、空间电磁的干扰以及线路之间的串扰等。通常在空间电磁场中,各个绞环里面所产生的感应电动势几乎是相同的。当使用双绞线传输时,每个线之间的感应电动势可以抵消。所以信号在传输的过程中,不会遭到干扰的破坏。除此之外,由于两条线上的信号电流方向相反,且大小相同,可以相互抵消,避免干扰的影响。对于噪音的干扰,工作人员可以采取光电耦合器进行解决。其中光敏三极管和发光二极管是它最重要的组成部分,把它们结合在一起,就能够有效地避免噪声的干扰。除此之外,若是电子设备的各个电路之间都设计成使用光电耦合器进行传输信号,那么即使进入的噪声的信号的内阻比较高,但由于光电耦合器的作用,会使噪音信号变小,因此只能产生微电流,不能够使二极管发光,因此也就阻止了信号地线上噪音的干扰。
EDA技术是以数字电子技术课程知识为基础,具有较强实践性、工程性的专业课程。将数字电路设计从简单元器件单元电路设计,EWB软件仿真提到了更高一级的可编程操作平台上,进一步巩固和提高学生电子电路综合设计能力。但是,传统的教学模式是将两门课程分开,先上数字电路,后上EDA技术,分两学期授课。这样的教学模式存在弊端,减弱了课程之间的联系,降低了学生对数字电路理论的认识程度。通过对EDA技术课程的教学改革,以实训的方式采用项目教学法,使学生在较短的时间内掌握EDA技术基础及其实验系统,从数字系统的单元电路,如译码器、计数器等入手,加深对数字电路基础理论的认识,逐渐完成数字系统设计。
1. EDA技术及其在教学中的应用
1.1 EDA技术
EDA技术即电子设计自动化(Electronic DesignAutomation)是以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果而形成的一门新技术毕业论文格式,是一种能够设计和仿真电子电路或系统的软件工具。采用”自顶向下”的层次化设计,对整个系统进行方案设计和功能划分,系统的关键电路用一片或几片专用集成电路(ASIC)实现,然后采用硬件描述语言(HDL)完成系统行为级设计,最后通过综合器和适配器生成最终的目标器件。图1为一个典型的EDA设计流程。
图1 EDA设计流程图
1.2 EDA技术在教学中的应用
在教学过程中,EDA技术利用计算机系统强大的数据处理能力,以及配有输入输出器件(开关、按键、数码管、发光二极管等)、标准并口、RS232串口、DAC和ADC电路、多功能扩展接口的基于SRAM的FPGA器件EDA硬件开发平台,使得在电子设计的各个阶段、各个层次可以进行模拟验证,保证设计过程的正确性。从而使数字系统设计起来更加容易,让学生从传统的电路离散元件的安装、焊接、调试工作中解放出来,将精力集中在电路的设计上。同时,采用EDA技术实现数字电路设计,不但提高了系统的稳定性,也增强了系统的灵活性,方便学生对电路进行修改、升级,让实验不在单调的局限于几个固定的内容,使教学更上一个台阶,学生的开发创新能力进一步得到提高。
2.课程教学改革实施
2.1课程改革思路
课程改革本着体现巩固数字电路基础,掌握现代电子设计自动化技术的原则来处理和安排EDA技术教学内容。打破传统的从EDA技术概述、VHDL语言特点、VHDL语句等入手的按部就班的教学方法,以设计应用为基本要求,开发基于工作过程的项目化课程,以工作任务为中心组织课程内容,让学生在完成具体项目的过程中来构建相关理论知识。将EDA技术分为四个方面的内容,即:可编程逻辑器件、硬件描述语言、软件开发工具、实验开发系统,其中,可编程逻辑器件是利用EDA技术进行电子系统设计的载体,硬件描述语言是利用EDA技术进行电子系统设计的主要表达手段,软件开发工具是利用EDA技术进行电子系统设计的智能化的自动设计工具,实验开发系统则是利用EDA技术进行电子系统设计的下载工具及硬件验证工具。采用项目化教学方法,以实训的方式展开,让学生在“学中做,做中学”。
2.2课程改革措施
以电子线路设计为基点,从实例的介绍中引出VHDL语句语法内容。在典型示例的说明中,自然地给出完整的VHDL描述,同时给出其综合后的表现该电路系统功能的时序波形图及硬件仿真效果。通过一些简单、直观、典型的实例毕业论文格式,将VHDL中最核心、最基本的内容解释清楚,使学生在很短的时间内就能有效地掌握VHDL的主干内容,并付诸设计实践。这种教学方法突破传统的VHDL语言教学模式和流程,将语言与EDA工程技术有机结合,以实现良好的教学效果,同时大大缩短了授课时数。表1为课程具体内容及实训学时分配。
能力
目标
学习情境
项目载体
课时
QuartusⅡ开发工具使用能力
QuartusⅡ开发环境、实验系统
二选一音频发生器设计
6
VHDL语言编程能力
VHDL语言基本结构
计数器电路设计
6
VHDL语言并行语句
8位加法器设计
8
VHDL语言顺序语句
7段数码显示译码器设计
8
VHDL语言综合运用
数控分频器的设计
8
层次化调用方法
4位加减法器的设计
4
综合开发调试能力
8位16进制频率计设计;
十字路通灯设计;
数字钟设计;
波形信号发生器设计,等。
(任选一题)
20
总计
本课程的重点是电路设计,内容侧重综合应用所学知识,设计制作较为复杂的功能电路或小型电子系统。一般给出实验任务和设计要求,通过电路方案设计、电路设计、电路安装调试和指标测试、撰写实验报告等过程,培养学生综合运用所学知识解决实际问题的能力,提高电路设计水平和实验技能。在实践中着重培养学生系统设计的综合分析问题和解决问题的能力,培养学生创新实践的能力。电子技术课程设计一般要求学生根据题目要求,通过查阅资料、调查研究等,独立完成方案设计、元器件选择、电路设计、仿真分析、电路的安装调试及指标测试,并独立写出严谨的、文理通顺的实验报告。
具体地说,学生通过课程设计教学实践,应达到以下基本要求:建立电子系统的概念,综合运用电子技术课程中所学习到的理论知识完成一个电子系统的设计;掌握电子系统设计的基本方法,了解电子系统设计中的关键技术;进一步熟悉常用电子器件的类型和特性,掌握合理选用器件的原则;掌握查阅有关资料和使用器件手册的基本方法;掌握用电子设计自动化软件设计与仿真电路系统的基本方法;进一步熟悉电子仪器的正确使用方法;学会撰写课程设计总结报告;培养严肃认真的工作作风和严谨的科学态度。
2.电子技术课程设计的教学过程
电子技术课程设计是在教师指导下,学生独立完成课题,达到对学生理论与实践相结合的综合性训练,要求本课程设计涵盖模拟电路知识和数字电路知识,因此课程设计的选题要求包含数字电子技术和模拟电子技术。教学环节可以分为以下四个部分。
2.1课堂讲授。
课程设计开始前,需要确定指导老师。由指导老师通过两学时的教学,明确课程设计的要求,主要内容包括课程介绍、教学安排、成绩评定方法等。在课堂教学环节中,指导老师介绍课题的基本情况与要求,要求学生从多个课题中选择一个。
2.2设计与调试环节。
2.2.1前期准备、方案及电路设计。
前期准备包括选择题目、查找资料、确定方案、电路设计、电路仿真等。在确定方案时要求学生认真阅读教材,根据技术指标,进行方案分析、论证和计算,独立完成设计。设计工作内容如下:题目分析、系统结构设计、具体电路设计。学生根据所选课题的任务、要求和条件进行总体方案的设计,通过论证与选择,确定总体方案。此后是对方案中单元电路进行选择和设计计算,称为预设计阶段,包括元器件的选用和电路参数的计算。最后画出总体电路图(原理图和布线图),此阶段约占课程设计总学时的30%。
2.2.2在实验室进行电路安装、调试,指标测试等。
在安装与调试这个阶段,要求学生运用所学的知识进行安装和调试,达到任务书的各项技术指标。预设计经指导教师审查通过后,学生即可购买所需元器件等材料,并在实验箱上或试验板上组装电路。运用测试仪表调试电路、排除电路故障、调整元器件、修改电路(并制作相应电路板),使之达到设计指标要求。此阶段往往是课程设计的重点与难点,所需时间约占总学时的50%。
2.3撰写总结报告,总结交流与讨论。
撰写课程设计的总结报告是对学生写科学论文和科研总结报告能力的训练。学生写报告,不仅要对设计、组装、调试的内容进行全面总结,而且要把实践内容上升到理论高度。总结报告应包括以下方面:系统任务与分析、方案选择与可行性论证、单元电路的设计、参数计算及元器件选择、元件清单和参考资料目录。除此之外,还应对以下几部分进行说明:设计进程记录,设计方案说明、比较,实际电路图,功能与指标测试结果,存在的问题及改进意见,等等。总结报告具体内容如下:课题名称、内容摘要、设计内容及要求、比较和选择设计的系统方案、画出系统框图、单元电路设计、参数计算和器件选择。画出完整的电路图,并说明电路的工作原理。组装调试的内容,包括使用的主要仪器和仪表;调试电路的方法和技巧;测试的数据和波形并与计算结果比较分析;调试中出现的故障、原因及排除方法。总结设计电路的特点和方案的优缺点,指出课题的核心及实用价值,列出系统需要的元器件清单,列出参考文献,收获、体会,并对本次设计提出建议。
2.4成绩评定。
课程的实践性不仅体现实际操作能力,而且体现独立完成设计和分析的能力。因此,课程设计的考核分为以下部分:设计方案的正确性与合理性。设计成品:观察实验现象,是否达到技术要求。(安装工艺水平、调试中分析解决问题的能力)实验报告:实验报告应具有设计题目、技术指标、实现方案、测试数据、出现的问题与解决方法、收获体会等。课程设计答辩:考查学生实际掌握的能力和表达能力,设计过程中的学习态度、工作作风和科学精神及创新精神,等等。
3.电子技术课程设计的步骤
数字电路时钟实验电路的设计方案种类很多,但大多是静态显示电路。本设计是一种动态显示的数字时钟,使用4位LED数码管,可显示小时和分钟,电路功耗低、显示器件寿命长;采用4.19MHz晶振荡作为时基,计时非常准确;用加速输入脉的方法进行调时、调分,使时间调整更加方便准确;全部使用CMOS集成电路,减少整机功耗,提高了可靠性;虽然动态扫描显示的电路相对比较复杂,但作为实验电路,它用到数字电路各部分知识,如振荡电路、分频电路、计数电路、译码电路、动态显示电路及控制电路等,对于刚刚学习过电子技术基础的学生来说,是非常适合的,对电子爱好者学习电子电路设计也是很适用的。
一、电路组成及工作原理
中图分类号:TP212 文献标识码:A 文章编号:1007-9416(2015)05-0000-00
1 引言
压力传感器在电子产品中的应用比较广泛,其信号调理电路通过对信号的调节变换,使信号达到后续电路的接收要求。电路的误差控制、抗干扰技术对电路的设计至关重要,电路的稳定性直接关系到单片机数据采集系统的准确性和产品的实用性。
本论文的信号调理电路主要用于电子称等衡器的前端信号处理,量程0―5Kg,其最大允许误差±1.5e(分度值e=2g)。本论文从误差分析,力传感器的选定和放大电路的设计三个方面阐述该电路设计思路。
2硬件设计中误差解决方法
降低电路元器件产生的噪声、设置稳压电流源作传感器专用电源,可保证传感器输出信号精度高,纹波小,稳定可靠,选择合适的传感器。
由于组成电路的元件内部会产生一些噪声,并且实验中发现,噪声的功率与输入的电压有直接的关系,而且会对实验的参数产生较大的影响。在试验中对电阻等噪声较大的原件通过元件的噪声参数建立模型来进行系统分析。综合考虑成本及噪声性能,选择噪声较小的NE5532放大器电路,其相对噪声比优于同等价格的其他运算放大器。
传感器采用了N430-5kg应变式压力传感器,量程0~5kg,灵敏度为1.0mV/N,体积小,易携带;额定输出1.0±0.15mV/V,能够满足实验精度要求;并能够使产品具有便携性,力传感器后接电桥的以减少温漂,即电桥压力传感器的电桥电阻设为R1=R2=R3=R4=100Ω,差动工作,应变片使得电桥保持了平衡,使得电桥的输出电压与电阻变化有关,保持了一个即R1=R-R,R2=R+R,R3=R-R,R4=R+R,则电桥输出为
3放大电路的分析与设计
整体电路设计如图3-1所示,包含两级放大电路,通过反馈设计提高了输出的准确性。第一级放大电路采用双运算放大器,此放大器小信号带宽10MHZ,功率带宽140KHZ,转换速率9V/us,符合一般控制电路的设计要求。第二级放大电路采用二阶低通滤波运算放大电路。
通过使用Multisim 12.0仿真软件中的函数发生器模拟在f0=10Hz下的滤波波形,其通带最大衰减为4.165518dB,阻带最大衰减为14.403186dB,其中R9和R11=R10//R12,由R12来确定放大倍数,算得Q=0.5,满足实验设计要求。
由于在 Multisim12.0仿真软件中,没有直接的电荷源信号,考虑到电阻应变式传感器输出为电压信号,改变传感器的应变重量,在形式上是以电压的形式输出的。在电路分析时可以把传感器看作一个电压源,其输出电压在其电电路中将信号传递给放大电路。所以在模拟仿真中,采用了TL431ACD 保证模拟信号输入端的稳定性。
4 软件设计中的误差补偿
采用延迟法进行误差补偿,在系统中, 存在控制开关的抖动干扰。抑制这种噪声方法就是通过延时, 让接通或断开信号稳定后系统再工作, 就可以避免抖动干扰。
5 结语
本设计的放大电路的带宽在890mHZ~123HZ,测得输入为2.756mv时,输出为217.177mv,放大倍数约100倍。整体上对各种误差来源给以充分的估计,并针对不同的情况采取不同的技术措施,以提高系统的抗干扰能力,保证了系统的准确、可靠。
参考文献
[1]庄严.《电子秤与智能仪器的设计》.仪表技术,2002.2.
[2]刘同娟,马向国.《Multisim在电力电子电路仿真中的应-用》.电力电子,2006.2.
1 Proteus 简介
Proteus是英国Labcenter公司研发的多功能EDA(电子设计自动化),它实现了从电路设计到测试、仿真、调试的整个过程。仿真运行通过后再制作实际电路的话,就大大缩短了开发周期,并且降低了开发成本。所以说它为电子电路、单片机应用系统的开发设计以及教师的教学、学生的学习提供了非常有效的方法。
2 单片机应用系统设计与仿真实例
下面通过制作一个简单的单灯闪烁,说明如何使用Proteus实现单片机应用系统的设计与仿真。要求发光二极管一亮一灭的不停闪烁。
2.1 设计电路
利用Proteus绘制电路原理图的步骤如下:
⑴运行Proteus ISIS程序;
⑵单击P命令进入元件选择对话框,选择电路设计中所需的元件;
⑶放置元件到绘图区简单制作,布好局;
⑷设置好元件的参数;
⑸连接导线。
绘制完成的单灯闪烁硬件电路图如图1所示。
图1 单灯闪烁硬件电路图
2.2 编写程序
ORG0030H
LOOP: SETB P1.0
LCALL DELAY
CLR P1.0
LCALL DELAY
LJMP LOOP
DELAY: MOVR3, #250
L:MOV R4, #250
LL:DJNZ R4, LL
DJNZ R3, L
RET
END
编辑好程序保存时,文件的扩展名必须是ASM格式。
编译程序,若编译通过,便得到HEX格式的文件论文开题报告范例。
2.3 加载程序文件
双击原理图中的单片机元件AT89C51,便出现单片机的属性编辑窗口,在“Program File”栏指出HEX格式的程序文件所在的位置,就可将该程序文件加载到单片机中。
2.4 启动仿真,看电路运行效果
单击仿真控制按钮,观察电路的运行状况。
Proteus可以总体仿真运行,也可单步或设置断点仿真。
启动仿真后,能清楚地观察到单片机系统在运行时,各硬件所处的实时状态。
若电路设计合理、程序编写正确,就会看到发光二极管不停地闪烁。
2.5 调试简单制作,修正电路、程序代码
若未出现想要实现的功能,就需进行软硬件调试。
对于硬件电路,可用Proteus中提供的测量仪器仪表对电路进行测试、观察;至于程序,可采取单步或设置断点进行仿真调试。
不断修正电路及程序代码,直到能实现相应功能,并改变元件参数使电路的性能达最优。
注:每次修改完程序后,都必须再编译一次,然后装载到单片机中。
2.6 仿真运行通过,制作实际电路
仿真运行通过后,根据设计的原理图,购买元器件、制板、焊接、测试调试,直至产品制作成功。
Proteus仿真模型是根据生产厂家提供的技术参数文件来建立的,仿真极接近实际简单制作,所以仿真运行通过后制作的实际电路的成功率相当高。
3 引入Proteus的好处
3.1 教学中
1. 教学内容生动形象化
利用Proteus仿真软件和多媒体教学设备,在课堂中通过实例仿真,演示从单片机硬件设计到软件调试的全过程,并演示运行结果,使教学内容生动形象化。
2. 激发学生的学习兴趣,提高教学质量
教学中对实例用Proteus进行仿真,这种结合实际讲解知识点的方法,大大激发了学生的学习兴趣,使知识点变得容易理解、接受,从而提高了教学质量。
3. 拓展学生思维
讲解完知识点后,针对实例,向学生提出相关拓展性问题。比如上例中:
⑴P1.0口线上能否多并联几个发光二极管?改变R2阻值大小的话会出现什么现象?
⑵能不能将P1.0换为32根I/O口线中的其他线呢?若能的话,改为P0的某一口线时需注意什么?
⑶P1.1~P1.7能否像P1.0一样都接发光二极管以及电阻呢?
⑷硬件电路改了简单制作,程序相应地要如何修改呢?。。。论文开题报告范例。。。
通过提问,并适当演示,这样不仅拓展了学生的思维,同时加强、深化了学生对知识点的理解。
3.2 实践中
1. 提高开发速度,降低开发成本
从上例可看出,利用Proteus软件,在绘图区绘制好电路原理图,并将编译后的程序文件加载到单片机中,进行仿真就能观察整个电路的运行情况,验证设计是否达到要求,未达到,即可修整设计方案、修改程序、测试电路,直至成功。这样就无须多次购买元器件板、制板、焊接测试调试等简单制作,省时、省力、省钱,同时也提高了设计效果和质量。
2. 敢于尝试,勇于创新
根据仿真通过后的电路原理图来制作产品,学生就不用担心元器件损坏等问题,就敢于动手去尝试设计电路。通过自己动手,加深了对理论知识的理解,同时培养了学生勤思考、勇于创新的精神。
4 结语
教学与实践中引入Proteus,提高了学生的学习热情。产品制作成功,学生就会很有成就感、满足感,这是一个良性循环。通过不断的实践,学生的动手开发、创新能力就得到了较大的提高。
参考文献:
[1]彭勇.单片机技术.电子工业出版社,2009.8
1.引言
电力电子作为一项新兴技术,因为其变换和传输电能的功能,在生产生活的各个领域受到越来越多的关注。全球性的能源危机使人们的目光开始转向环保型能源,如太阳能、风能,不同形式的能量之间的转换必须依赖电力电子技术。以上海为核心的长江三角地区经济的快速发展,必然会带动电力电子技术的大力发展与应用,同时电力电子技术的发展也相应推动长三角地区经济的迅速发展。
目前国内外高等教育部门均已认识到加强电力电子技术专业教育的重要性。通观全球的电力电子技术教育现状,“改革”的观念渗透到从课堂教育、仿真、实验到专业论文的方方面面。近十年,当高职完成规模建设的过程后,必然实现走内涵发展的道路,实现人才培养目标。我院人才培养目标定位:立足不断探索创新人才培养模式,培养高素质的技术技能型人才。因此,无论从该课程对国计民生的重要性还是从教学务实的角度讲,对于该课程的建设和教学改革都具有重要的实际意义。
2.教学现状
(1)学生方面。对于高职学生,本门课程一般在大二开设,已有电学的基础知识,但是本门课程涉及的电学知识,被遗忘和不扎实现象特别严重,在讲授过程中因为没有掌握基础知识,所以学习这门课程很吃力,以致厌学。
(2)教学方面。近十年来电力电子技术得到飞速发展,新器件和新的控制方法不断出现,《电力电子技术》教学内容必须随自身技术的发展及时更新,但实际授课教材大纲往往内容滞后,与电力电子技术的发展不协调,造成课堂教学与工程实践相脱节;基本沿用传统的以课堂教学为主、验证性实验为辅的教学模式,与先进的现代教学方法和教学手段不相适应,不利于学生对本课程的深入理解;目前课时越来越少,给高职学生的学习和教师教学带来难度。
3.教学方法改革
利用新的教学方法提高学生对电力电子课程的兴趣,被视为电力电子教学改革的重要手段。迅速发展的信息技术和网络技术不仅被应用于实验室建设,而且被广泛作为课程教学的新方法。国内外许多大学都已开发出电力电子的网上授课内容,并以多媒体的形式呈现,其中以瑞士的iPES最著名。
通观国内外高校电力电子教学现状,有很多值得我们学习和借鉴的新方式、新方法,在我国电力电子教学改革中,以下几方面值得注意。
(1)建立系统的观念。在教材编写与课程内容组织的过程中,从电力电子系统的观点出发,将相关知识有机融合,避免将各种电力电子器件、各种结构功能的电路作孤立讲解,因为电力电子电路通常都是几种电路组合在一起构成一个系统实现一定的功能的,仅仅孤立地讲解其中的一个意义不大。
(2)注重电力电子电路的设计,培养学生的电路设计思想和能力。从电路设计的角度出发组织电力电子技术的教学内容,是一种很好的教学方式。哪怕是最简单的电力电子电路的设计,也是一个很好的开端。
(3)课堂教学、仿真、实验并重。在课堂教学中引入各种先进的教学手段,在实验室中引入先进的仿真软件,如MATLAB、PSPICE等,同时下大力气建立电力电子技术实验室。通过各种实验电路搭建完整的电力电子系统,应是实验室的基本功能,而不仅仅是对各种功能电路的验证。
(4)在教学中,为了跟上电力电子技术快速发展的步伐,仅仅讲授教材中的内容是不够的,还应采取调研、讨论、讲座、专题报告等各种形式,使学生对电力电子技术的前沿技术有所把握,为学生未来的科研与工作打好基础。
(5)积极开展电力电子及相关课程的网上教学,用动画、多媒体等先进手段展示电力电子的课程内容,提高学生的学习兴趣。通过交互式网页设计使学生主动参与学习,增强教学效果,如“慕课”(MOOC,大规模在线开放课程)。
4.MOOC+翻转课堂
近年兴起的“慕课”已在全球高等教育界引发热潮,我国北大、清华、复旦等高校相继加入“慕课”平台。同时,国内高校认识到,应借势“慕课”冲击,努力提高教学质量,还能用较低的成本进一步均衡国内高等教育优质资源。建设“中国式慕课”很快由理念变为行动。
翻转课堂是指重新调整课堂内外的时间,教师不再占用课堂的时间讲授信息,这些信息需要学生通过看视频讲座、听播客、网络阅读等形式课后自行学习。教师更多地利用课堂时间对学生进行一对一的互动和指导。
把基于MOOC的翻转课堂法融入《电力电子技术》的教学实践活动中,使师生共同走进课程,体验、思考,成为课程的创造者和主体,这种教学改革在全国范围的课程改革中尚属前沿。
参考文献:
[1]陶生桂,胡兵.长三角地区电力电子技术发展及应用[J].变流技术与电力牵引,2007,1:38.
一、课程体系改革
课堂教学和实验教学是相辅相成的,是学生学习与掌握知识的重要手段。学生在大学期间的学习,是一个认识、实践、再认识、再实践的过程。就认识而言,可以在课堂上认识,也可以在实验室里认识;而就实践而言,也同样可以在课堂上实践。主课程设置上可作如下安排:(1)一年级下学期开设《电路分析》课程并安排实验课,让学生掌握基本的分析电路和设计电路的知识;(2)二年级上学期开设《电子技术基础》课程并安排实验课,在学期末进行两周的电子技术基础课程设计,让学生掌握模拟电路和数字电路的分析和设计知识,锻炼工程实践能力,使学生对电子专业产生浓厚的兴趣;(3)二年级下学期开设《高频电路》《EDA》和《电子电路设计(Protel)》课程并安排实验,培养学生利用计算机设计电路的能力;(4)三年级上学期开设《单片机原理与接口技术》和《传感器原理与应用》两门课程并安排实验,在学期末进行两周的单片机课程设计,让学生制作一个简单实用的电子产品,充分调动学生的积极性,在设计过程中初步掌握程序编制及单片机电路的设计方法,了解电子产品的开发过程;(5)三年级下学期开设《电子测量》和《单片机应用设计》选修课,以单片机为控制核心并结合数字电路和模拟电路设计多个电子产品,使学生熟练掌握程序编制及单片机电路设计方法,熟练掌握各种仪器的使用方法,初步具备独立开发电子产品的能力,为电子设计竞赛培养后备人才。
大学生电子设计竞赛分为全国性比赛和省级比赛,都是每两年举办一次,单数年份为全国性比赛,双数年份为省级比赛,通常在九月初举行。参加竞赛的同学主要为大三的学生,参赛前已系统地完成电子线路理论课和实验课的学习,并掌握了一部分单片机和大规模可编程逻辑器件应用的知识,具有一定的理论基础和动手能力。但是,由于所学各门课程比较独立,同学们普遍缺乏解决实际工程问题和设计制作较大规模应用电路的工作经验。因此,在电子设计竞赛前的暑假,需要对参赛队员进行培训。由于学生已经在《单片机应用设计》选修课中得到锻炼,培训可以在此基础上进行。重点提高学生分析和解决问题的能力、设计制作较大规模应用电路的工作经验和多学科知识的综合应用能力。在培训过程中仿照竞赛要求将同学分组,从较简单的应用电路开始,要求每组学生完成数个难度递增的实验电路设计、制作与调试,并写出详细总结报告。在制作每个电路的训练过程中,鼓励学生用不同的方案实现,培养学生的创新能力。
二、师资队伍建设
现行教育体制目前还存在一些问题,重知识传授而轻素质与能力的培养,重理论研究而轻实践环节的训练,重对传统的继承而轻对现状的突破和创新。认为实验课只是一个辅助环节,实验课的老师可以随意配备,任课老师只要会示波器、信号源和稳压电源等简单仪表的使用就可胜任实验课的教学任务,这种观点是片面的。实验课不单纯是让学生学会仪表的使用,学会测量几个实验数据,更重要的是要帮助他们树立一种系统观念、培养他们系统分析问题、解决问题的能力,提高工程实践能力和培养创新精神。这些不仅要求任课老师有深厚的理论基础,而且还要有较高的业务能力。为此,实验课应该配备一支综合素质高、业务能力强的实验教师队伍。我国现行高等院校大部分实验教师是青年教师,他们理论基础较好,但实践经验缺乏。为了提高教学效果,一方面他们可以向有经验的老教师学习;另一方面,可以到电子企业考察学习,从实际的工作中获取实践经验。