量化投资与证券管理范文

时间:2023-05-29 08:56:27

引言:寻求写作上的突破?我们特意为您精选了4篇量化投资与证券管理范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

量化投资与证券管理

篇1

证券投资基金是一种特殊的投资方式,在实际的投资过程中,采用的是共同进行风险承担以及利益共享的方式,这一基金类型也被称为“证券基金”。证券投资基金作为一种投资工具,进入门槛低,服务专业,且积累性强,即使投资成本较低,也可将投资分散于不同证券,这样就极大的分散了投资风险。因此,正确投资基金得到了人们的广泛关注。

1 积极开发130/30等数量化投资模型

对国内从事证券基金投资业的基金公司等及时顺应金融形势,尽早开始研发130/30等科学有效的数量化投资产品,从而满足公司旗下众多投资者的投资需求。为了追赶世界先进的潮流,加快中国金融创新,从根本上增强国内基金业的企业竞争实力,研发130/30空头扩展模型等证券投资基金数量化投资模型势在必行。随着国内经济形势高速发展,金融市场形势亦是日新月异。目前,中国证券基金投资业中的卖空改革已经在逐渐开启,在此形势下,相关资产福利业也应抓紧时间,抓住机会,积极开发出符合中国国情和投资者实际需求的基金产品,抓紧研发空头扩展模型等数量化投资模型,以更好的顺应金融市场的发展趋势和实际需求。在数量化投资模型开发过程中,应该注意“拿来主义”,不能一味的照抄国外数量化投资模型,开发时首先要考虑实事求是,符合中国的相关法律法规以及中国金融市场的实际情况,做到既学习了外国的先进经验,又兼顾国内市场现实。从而开发出符合中国实际的数量化投资模型。现实中,130/30数量化投资模型只是众多数量化投资模型中的一种。

2 合理应用数量化投资策略

投资者及受理委托基金公司等资产管理者应用正确数量化投资策略进行投资,可分散减小风险,增加收益。并基于此进行更加科学高效拟合金融市场实际收益率模型和数量化投资策略的开发。基于数量化投资策略不断创新发觉全新投资策略的特点,伴随广大投资者针对这一投资机会的广泛追捧开发,此动量策略的存在的情况会逐渐消失,弱势有效这一中国股市缺失的状况会逐渐改变。数量化投资策略模型只是理想状况下的数字模型,在实际投资中投资者及基金管理者还应注意定期检验,不能生搬硬套模型及应用公式,应根据市场形势,谨慎研究确定投资策略,才能在金融趋势改变时有效规避风险,增加收益。在金融市场中,基金公司应根据市场环境及现实情况,基于相应合理化科学化的数量投资策略,基于数字化投资的有效性制定相应的投资策略,才能有效提高证券市场投资效率,规避风险,增强投资收益。同时应注意听取专业人员根据经验所得出的合理人工判断,拒绝照搬模型公式的错误做法,杜绝全部投资由模型决策,密切注意规避数量化投资策略的趋势改变、相似性及肥尾性。

3 开放卖空政策

国家政策对金融市场存在巨大影响。为了从根本上提高中国证券金融市场效率,对金融市场发展起到积极意义,国家政策要给予支持,譬如对卖空政策采取加大开放政策。如此才能逐渐改善中国证券市场卖空限制大,除指数基金外,其他投资者参与卖空所受禁锢较多,公募基金甚至不能参与卖空,信息表达不充分,远远没有达到弱势有效等诸多限制中国证券市场有效性的不完善方面政策开放属社会实验,对政策所针对方面的影响不言而喻。在政策制定方面目前国内的相应管理层做的还是很好的。譬如,根据当前形势,相应管理层便会制定并开始试行各种转融通业务。在这样的政策环境下,对广大证券金融公司而言,便可以通过相互之间的内部交流与合作的方式,将自身原有的或者通过各种合法途径募集而来的证券和资金进行出借,为需求方提供所需的资金和证券,帮助其更好的开展各种经营活动。 对广大证券基金类公司而言,可以通过此类活动,可有效整合金融市场资源,解决眼下难题。通过复杂严禁的实施设计方案,保证市场的良好发展。

4 降低融券费率

为了提高中国金融证券市场效率,缩短相应价格恢复平衡所需时间,提高中国金融资本市场的有效性,建议相关管理层采取积极措施,譬如对券商降低融券率的政策持鼓励态度。但在一定的条件下,130/30组合的收益率会出现极大的改变。例如,在融券费率处于10%和5%水平的时候,融券率会对130/30组合的收益率产生十分显著的影响。为了避免对中国证券市场的发展产生不好影响,相关管理层在制定政策时要注意规避券商间通过不顾成本盲目降低融券费率等不良手段抢占市场的恶意竞争。鼓励科学的正当竞争。目前国内金融市场中,各证券公司的融资利率基本相同,截至2013年3月19日,业务遍布全国的较大证券公司中,国信、国泰君安、广发、海通这四家公司年融券率和融资利率均为8.6%,相比之下,华安、上海、江海、华泰四家的融资利率虽然也达到同样的水平,但在融券率方面,却呈现出显著高于大证券公司的情况,达到10.6%。综上所述,小证券公司采用较高档,融券费率规模大的公司则采用相同的较低档,相比之下,大证券公司具备较大优势。若小证券公司要在激烈的金融市场竞争中站稳脚跟,建议其利用融券费率存在较大降低空间的优势制定相关政策。

5 结束语

综上所述,研究证券投资基金数量化投资战略决策,可帮助大家进一步提高对证券投资基金以及数量化投资相关问题的理解水平,了解130/30策略对基金业绩的影响,具有一定实践意义。

参考文献:

篇2

传统的证券风险分析当中必然会同一个与之如影随形的概念联系在一起,那就是收益,同时,在西方传统的经济学当中风险和报酬存在着这么一个函数关系,甚至在一些传统的经济学课本上作者为了简化两者之间的关系,将两者简单的归结为一个完美的线性关系,即风险与收益之间是一对一的数学关系,并且存在着这样一个逻辑:风险越大,报酬或者收益也就越大,反之亦然。即使是稍微尊重事实一些的经济学教材也运用了高等数学当中线性回归的方法将两者的关系从非线性回归为一对一的线性关系。除了学界对于风险的分析是从报酬或者收益出发的以外,在国外或者国内的民间也有类似的对于两者关系的表达,例如我国有句老百姓口中经常说到的“富贵险中求”就是对两者的关系的简单认识。因此,传统证券风险分析的源头明显是来源于对于报酬的分析。

(二)传统证券风险量化指标的数学方法的应用

传统的证券风险理论认为证券的总风险=可分散的风险+不可分散的风险,其中可分散的风险主要指的是个别证券自身存在的风险,而不可分散的风险则是指市场风险,下面笔者介绍一下传统证券风险量化的两个重要的指标――标准差与贝塔值。

第一,标准差。传统证券风险理论认为个别证券的风险可以从单个证券的报酬率为起点进行分析。财务投资专家从高等数学当中引入了一个衡量证券报酬率的波动性量化分析的指标――标准差来进行对单项证券风险的判断,进而判断出相同期望报酬率和不同期望报酬率时对于不同投资的选择。测算的步骤如下:第一步,确定各种市场需求下各类需求发生的概率;第二步,计算出期望报酬率,其实质上是对于各类市场需求下的报酬率的加权平均数。第三步:根据标准差的数学公式计算出标准差,σ=[Σ(ri-?)2×Pi]1/2其中ri是第i只证券的报酬率,?是期望报酬率,Pi是第i只证券的报酬发生的概率。结论是在期望报酬率相同的时候,标准差越大证明该证券波动越大,风险也就越大,反之亦然。在期望报酬率不同时引入了另外一个概念即离差,由于基本原理也是根据标准差衍生而得,在此不再赘述。[1]

第二,代表市场风险的贝塔值。我们在第一点中提到的标准差主要衡量的是单项证券的风险,而贝塔值的引入主要是考虑到了证券组合的风险构成当中不可分散的风险即市场风险。而贝塔值的测算公式从数学的角度来说实际上是利用了标准差的升级版公式即协方差,协方差主要是衡量了两组数据之间的相关程度,以此来判断证券组合的报酬率与市场报酬率之间的数理联系,进而判断出不可分散的风险。理论上贝塔值的计算是βi=(σi /σm)ρim,其中βi第i个证券组合的市场风险程度,σi,σm分别第i个证券组合的标准差与市场证券组合的标准差,ρim代表第i个证券组合的报酬与市场组合报酬的相关系数。实际当中β系数可以通过将股票报酬对市场报酬做回归得到,拟合得到的回归线的斜率就是证券的β系数,即β=Ri /Rm。[2]

二、价值投资理念下风险与报酬的关系

价值投资理念是华尔街之父本杰明格雷厄姆所创立,在其传世之作《证券分析》当中明确提出了有关投资与投机概念,其中论及投资界老生常谈的收益与风险的问题时结论与传统证券风险分析有着本质的不同,格雷厄姆明确指出收益与风险之间不存在着数学关系,并且认为证券的价格与收益并非取决于对于其风险的精确数学的计算,而是取决于该证券的受欢迎程度,而这种受欢迎程度本身包含了投资者对于风险的认识,但很大程度上还受到如公众对公司和证券的熟悉程度,证券发行与购买的容易程度等。[3]并进一步指出,无论是理论上还是实际当中,对投资风险进行精确的计算都是不可能成功的,现实当中并没有所谓的期望报酬率的概率经验表,即使存在也是基于对于历史数据的分析得到了,而历史数据之于未来决策的有用性或相关性的大小还有待考证,其研究范围不同于保险公司对于保单的精确测算,例如人寿保险能够明确的了解年龄与死亡率之间的关系是明确的。而证券的风险与报酬之间的关系则没有如此的确定。[4]

三、价值投资理念下传统证券风险量化分析的反思

以上笔者对于传统的证券风险理论与量化方法以及价值投资理念下关于风险与收益的关系进行了论述。笔者认为,价值投资理念下有关论述对于我们重新审视证券投资中风险因素的衡量有着非常重要的意义。

首先,笔者认为,标准差的计算过程本身就存在着无法避免的瑕疵,这一个公式至少有两个基本假设,第一,计算的人必须能够客观的预测出各种市场情况发生的需求概率,并且准确的在各种概率下发生的报酬率;第二,假定历史数据对于未来的投资决策具有确定的相关性。但是在现实生活中根本是无法预测的,这种算法实质上是硬将自然科学当中的数学模型强加到社会问题的研究当中,不可否认的是,目前来说大量的社会问题是无法通过数学来量化的,因为证券的风险当中不仅仅只有报酬因素的影响,还有各种在不同市场条件下的因素决定的,而这些因素又相互的的影响和动态的变化。因此,标准差的方法受到了质疑,后续的离差率、β值的计算自然也就没有了根基。

篇3

其实在“8.16”事件中,光大证券所犯下的错误是很低级的。根据证监会的调查,光大证券策略投资部自营业务使用的策略交易系统,包括订单生成系统和订单执行系统两个部分,均存在严重的程序设计错误。其中,订单生成系统中ETF套利模块的“重下”功能(用于未成交股票的重新申报),在设计时错误地将“买入个股函数”写成“买入ETF一篮子股票函数”。而且该交易系统于7月29日实盘运行,至8月16日发生异常时实际运行不足15个交易日,“重下”功能从未实盘启用,严重的程序错误未被发现。而订单执行系统错误地将市价委托订单的股票买入价格默认为“0”,系统对市价委托订单是否超出账户授信额度不能进行正确校验。并且光大证券的策略投资部长期没有纳入公司的风控体系,技术系统和交易控制缺乏有效管理。此外根据交易软件提供商铭创科技所言,是应光大证券的要求将交易系统中的风控模块去掉,而改放在策略层面来检查风控。可见,只要切实做好风控工作,严格新技术、新策略的上线流程,在交易系统上线之前,做好严格的测试,各种情景模拟和压力测试,那么,光大证券的乌龙指事件是完全可以避免的。

本人丝毫都不怀疑量化投资会在中国市场得到普及,但如何让量化投资在中国市场规范发展却是管理层必须正视的问题。在这个问题上,至少有这样几个方面是需要引起重视的。

篇4

2基于层次分析法AHP证券投资基金业竞争力各权重的确定

层次分析法(AHP)是系统工程中对非定量事件一种评价分析方法。它首先将复杂问题层次化。根据问题和要达到的目标,将问题分解为不同的组成因素,并按照因素间的相互关联以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型。根据系统的特点和基本原则,对各层的因素进行对比分析,引入1~9比率标度方法构造出判断矩阵,用求解判断矩阵最大特征根及其特征向量的方法得到各因索的相对权重。基于AHP的中国证券投资基金业可按以以下步骤进行(:1)构建风险评价指标体系;(2)两两比较结构要索,构造出所有的权重判断矩阵;(3)解权重判断矩阵,得出特征根和特征向量,并检验每一个矩阵的一致性。若不满足一致性条件,则要修改判断矩阵,直到满足为止。计算出最底层指标的组合权重。

2.1确定综合评估体系按照AHP计算方法的要求建立竞争力评价指标体系,即层次结构模型。通常该模型由目标层(最高层)、准则层(中间层)和指标层三个层次组成。本文将证券投资基金业竞争力分为准则层和指标层两个层次的综合评价指标体系,如图所示。

2.2以A层为例确定其指标体系的权重(1)A层次权重确定对应图评价体系,逐一构造判断矩阵,求出权重系数。下面以A层为例确定其A层因素对最高层O层的权重,其它各层应用同样的原理即可求出相应下层对上一层的权重。

2.3组合权重的计算在计算了各级指标对上一级指标的权重以后,即可从最上一级开始,自上而下的求出各级指标关于评价目标的组合权重。最终经过总体一致性检验的证券投资基金业竞争力各指标权重如表5所示。

3证券投资基金业竞争力评价

将2013年数据归一化处理后,根据归一化的上下限及权重综合计算中国基金业竞争力量化处理后的结果为0.63,这表明中国证券投资基金业竞争力的总体水平较好,但较好层次中较差的水平,差距主要来自于产业创新与市场开放度不足上。

友情链接