时间:2023-06-07 09:04:12
引言:寻求写作上的突破?我们特意为您精选了12篇风险评估的定义范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
社会稳定风险评估是指对出台前的重大决策和排查出的不稳定因素进行分析,超前做出稳定风险评价和趋势估计,制定风险应对策略和预案,有效规避、预防、控制可能产生的稳定风险过程。实质是对其可能带来的负面社会影响和不稳定因素进行预防,包括信息收集、研判、制定预案等,从源头上预防和消除风险隐患,促进科学决策、民主决策、依法决策,有助于社会矛盾的化解和的预防。
二、我国社会稳定风险评估工作的现状
重大决策社会稳定风险评估工作在我国已经进入实践阶段,实践中形成了四川“遂宁模式”和江苏的“淮安模式”,这些模式奠定了重大决策社会稳定风险分析的理论基础,为风险评估提供理论支撑。国家政府部门和各大企事业单位在重大决策社会稳定风险评估工作实施推进过程中取得了一定效果和成绩,但由于目前中国社会转型期的部分重大事项中社会稳定风险的分析还不够深入,对重大事项可能引起的风险认识还不够清晰,仍然存在一定问题和不足:
一是部分基层单位和部门对“稳评”工作重视不够。对于日常排查出的不稳定因素和矛盾纠纷的稳定风险评估的不全面,无法掌握风险动态,不能做好风险预警。二是“稳评”工作业务水平亟待提高。在“稳评”工作中对于相关因素的分析不不够专业和全面,无法保障评估质量和评估效果。三是相关部门和群众的民主参与程度不够。专业部门责任意识和群众的主人翁意识不强,不能对即将出台的重大事项理性分析,提前拿出前瞻性的意见和建议。
三、加强社会稳定风险评估的建议
基于对辽河油田形势及“稳评”工作的调研了解、分析思考,可知深入推进社会稳定风险评估工作,是预防和杜绝规模性发生,维护员工群众合法权益的有效保障,有助于企业稳定发展,社会和谐进步。为此,我们提出以下几点建议:
一是要高度重视,广泛宣传,深刻理解“稳评”意义。
只有领导高度重视“稳评”工作,才能真正严格落实“谁主管、谁负责”、“谁决策、谁负责”、“谁审批、谁负责”的要求。随着社会经济的整体发展,企业前期出台的改革措施、政策法规等重大决策的利弊凸显,决策者清醒的认识到认真开展重大事项决策前的“稳评”意义重大。领导对 “稳评”工作的重视是企业风险管理意识的提高,是党的群众路线教育实践活动的延续,是有效落实“稳评”,使其充分发挥作用的前提和基础。
二是要应评尽评,刚性执行,强化推进“稳评”程序。
将“稳评”作为重大决策的“前置条件和刚性程序”,做到应评尽评,评估过程中严格按照“合法合理、科学民主”的原则,依照相关法律法规和政策,制定科学、规范的评估标准,深入调查研究,多渠道、多方式、多层次征求意见,定性与定量分析相结合,充分论证,确保评估工作全面、客观、准确,使评估结果科学、合理、有效,对重大事项决策具有很好的指导意义。
三是要加强培训,提升技能,切实提高“稳评”质量。
高质量的“稳评”结果是确保企业科学决策的前提,而“稳评”工作不仅仅是评估者态度问题和评估程序问题,更是专业知识,评估技能和经验的积累。很多评估项目涉及不同领域的业务知识和以及不同素质的利益群体,多种诱发稳定风险的元素都对“稳评”的执行者和参与者提出了更高的要求。因此,加强“稳评”工作小组和参与人员的业务培训,使其更加了解和掌握相关“稳评”的业务知识和评估方法,提升“稳评”技能等切实提高“稳评”质量。
四是要科学决策,有效处置,合理运用“稳评”结果。
“稳评”结果是重大事项审批和决策的依据之一。我们要严格按照“以人为本、公平效益统一”的原则,统筹考虑发展需要与人民群众承受能力,统筹考虑人民群众长远利益与现实利益,切实维护人民群众合法权益。正确处理改革、发展、稳定的关系,把改革的力度、发展的速度与社会可承受的程度统一起来,实现政治效益、经济效益的有机统一,以“稳评”结果为依据,进行科学决策。不论存在高等级风险、中等级风险、低等级风险,可否实施,最后处理过程中都要做好解释、说服和引导工作,妥善处理相关群众的合理诉求。
关键词:风险 共振 集合
风险评估概述
(一)风险概述
风险的定义。一些学者把风险定义为损害发生的可能性。与上述意见不同,另外一些经济学家把风险定义为损失发生的不确定性,还有一种意见,把风险定义为预期与实际结果的偏离。在本文中,将风险定义为对企业的生存、发展造成损害的可能性,对其控制不当的结果是预期与实际结果的偏离。
风险的分类。风险按其来源分类,可以分为来自企业内部的风险和来自企业外部的风险,简称为内部风险和外部风险。内部与外部的划分,是以企业为界限的。
内部风险。内部风险是指来源于企业系统内部的会对企业的生存、发展造成损害的可能性,如果对内部风险控制不当,会造成企业运行结果与预期目标的偏离。
外部风险。外部风险是指来源于企业系统之外的宏观市场环境中会对企业的生存、发展造成损害的可能性,即宏观环境风险。虽然这些风险发生于企业系统之外,但仍然会对企业产生影响,如果没有及时地发现和应对这些风险,仍然会造成企业目标的偏离。
(二)风险评估
风险评估是对影响企业目标实现的现有的和潜在的风险进行识别和度量并进行评价的过程。广义的风险评估涵盖风险管理的各个要素,而狭义的风险评估仅指对风险的识别和度量。本文所指的风险评估是指狭义的风险评估,即仅包括风险识别、风险衡量和风险评价,重点关注导致风险发生的潜在风险因素、风险发生的可能性大小和风险发生后对企业的影响程度。
基于共振理论的风险评估方法的提出
(一)共振理论的启示
共振理论概述。共振理论是指两个或两个以上的物体具有相同的振动频率,一个物体振动会引起另一个物体的振动,并且在共振情况下的振幅要比单个物体自己振动的振幅要大。由此可见,共振发生的条件是频率相同。共振具有传递性,一个本来静止的物体,可以由另一个物体的振动引起自己的振动。而共振的结果很重要,它的振幅要比单个物体自己振动的振幅要大,具有更强的破坏性。
用共振理论解释企业风险的爆发。本文把企业内、外部的各种风险都进行细分为单个的风险因素,对于各风险因素来讲,其频率就是导致风险因素爆发的根本原因,那么包含了所有内部风险因素频率的集合将其定义为内部风险频率集。同理,将包含了所有宏观环境风险因素的频率的集合称为宏观环境风险频率集。再对这两个集合求交集,即得出风险频率交集,在这个集合中的频率就是将会发生共振的频率。
基于共振理论的定义,在这个交集中的频率是内、外部风险共有振动频率,满足共振的基本条件。而共振具有传递性,本来在企业中处于静止状态的内部风险因素,可能由于宏观环境中风险的振动而随之振动起来,使企业的风险加剧。特别值得关注的是,内、外部风险因素共振造成的破坏力要远大于其单个振动时的破坏力,所以具有这样频率的风险因素是需要重点关注的。
这就可以解释为什么市场环境不好时,失败的企业数量大幅上升,就是因为宏观环境风险频率集变大,与内部风险频率集发生共振的机会就大,而共振产生的破坏力强,一旦超过了企业的承受能力,企业便会走向失败。通过这一理论也可以解释企业的成败是内外部共同作用的结果,如果内部控制系统完美,宏观环境风险没有作用的切入点,那么再坏的环境也不会影响企业。但是,企业没有静止的,只要运动就会伴随着风险。为了更好地应对风险,就要求企业做好风险评估工作。
(二)基于共振理论的风险评估方法概述
1.现有的风险评估方法的缺陷,表现为:
没有系统的评估方法。目前,风险评估的方法虽然多种多样,但其着眼点仅是风险评估中的某一个具体环节,并没有形成完整、系统的评估体系,各个环节各自为战严重地削弱了评估方法的系统性。
忽视外部因素的影响。现在的评估方法,几乎将全部评估重点都放在企业内部因素上,即使有涉及到外部环境因素的,也只是赋予少部分的权重,没有考虑内外因的相互关系。外因是通过内因起作用的,所以不仅要考虑到外部环境因素的作用,也要研究它和内部因素的相互作用关系。
2.基于共振理论的风险评估方法。针对现有风险评估方法的不足之处,本文提出基于共振理论的风险评估方法,力求形成一套贯穿风险识别、风险衡量和风险评价的完整的风险评估体系,并在重视内部因素的同时,考虑外部环境因素的影响。通过分析外部环境因素与内部因素的相互作用关系,对内部风险因素进行修正。通过共振矩阵系统的反映风险评估的各个环节。在重视内部风险的同时,通过共振系数和相关系数显示出环境对于企业的影响作用,力求使评估结果更加准确和切合实际。
基于共振理论的评估方法的具体操作
(一)识别内、外部风险
企业内部风险及其识别。企业内部风险是指来自于企业内部的,由于经营不善或者管理疏漏而形成的风险。它是企业风险的直接来源。企业内部风险由于产生于企业内部,所以企业具有主动权,能够对这类风险施加控制和影响。主要包括营运风险、组织风险、财务风险、人事风险、信息系统风险等。
企业可以以现有的风险清单为基础,从中找出企业中存在的风险因素,但这只有标准化的风险因素。而每个企业都有自己特定的内部环境,许多特有风险因素没有出现在风险清单里。针对这些特有风险,可以运用控制自我评估的方法将其识别出来,以使企业的风险识别工作更加全面。
宏观环境风险及其识别。企业宏观环境,是指那些会给企业带来市场机会或环境威胁的主要社会力量,直接或间接地影响企业的管理。主要包括政治和法律环境、经济环境、科技环境、社会文化环境及自然环境等。宏观环境风险就是在这些环境中存在的对企业构成威协的风险。
在对宏观环境风险进行识别时,可以借鉴战略管理中的PETS分析法并结合企业实际按照政治和法律环境风险、经济环境风险、科技环境风险、社会文化环境风险和其他环境风险进行识别。
(二)构建共振矩阵
首先将整个风险系统分为内部风险系统和宏观环境风险系统,将内部风险系统再向下细分为若干个风险子系统,如营运风险子系统、信息风险子系统、销售风险子系统等。进一步把风险子系统再细分为具体的内部风险因素,记作Ii(i=1,2,3…)。同理,让宏观环境风险系统细分为若干个风险子系统,如政治环境风险子系统、经济环境风险子系统、科技环境风险子系统等,再将各风险子系统中的宏观环境风险因素识别出来,记作Oj(j=1,2,3…)。在此基础之上,构建共振矩阵(如图1)。
共振矩阵是用于列示企业的所有内、外部风险因素的矩阵,其横坐标为内部风险因素,纵坐标为宏观环境风险因素。这样矩阵中各交叉点显示的都是内外部风险的相互作用系数,即后述的共振系数和相关系数。风险矩阵的最大优点在于可以把任何一对内外部风险因素结合起来,评估其相互作用关系,也就是将内外部风险统筹考虑。
(三)进行风险衡量
衡量风险因素的变异程度。本文使用变异程度测定的方法,用变异系数衡量指标的偏离程度。值得注意的是,有一些风险因素是指标形式的,便于量化考核。但有一些指标是定性的,难于量化,这时可以使用专家打分的方法,将这些风险因素量化。变异系数的计算公式为:
其中,V是风险因素的变异系数,用于衡量风险因素与预期指标的偏离程度;S是该风险因素的标准差;X是期望值,在这里可以使用企业的理想指标作为期望,这样计算出的变异系数即是实际与预期的偏离程度,也是风险爆发后的结果。
计算共振系数。如前文所述,那些具有出现在风险频率交集中的频率的风险因素是重点要关注的风险因素。由于共振的破坏力远大于单个风险因素振动时造成的影响,所以那些内外部共振的风险因素的变异系数要以乘数倍增加,这个乘数称之为“共振系数”,记作Gij。但是,在物理学上尚没有计算共振产生的振幅的计算方法,通常都是通过测量得出。之于风险评估工作来说就要依据行业和企业历史数据,利用风险评估人员的经验和个人素质进行评估,估算出一个共振系数,但可以肯定的是共振系数一定大于1。
计算相关系数。相关系数是用于说明两个风险因素间相互作用关系的系数,它的取值范围为[-1,1]。取值为正说明内外部风险正相关,即宏观环境对内部风险因素有放大作用;反之,取值为负,说明内外部风险负相关,即宏观环境对内部风险因素有抵销作用。
(四)风险评价
在进行风险评价环节,首先将所权重分配给各风险子系统,即Wi使之和为1,再在各风险子系统内进行分配权重,分配至各风险因素,即wi,风险子系统内的权重之和也为1,并在风险矩阵中注明。之后,将在风险衡量环节得出的变异系数Vi填入风险矩阵,wi与Vi的乘积即为没有进行修正时的评价结果。但这是不准确的,接下来对这一结果进行修正。所有的相关系数有正有负,其取值范围为[-1,1]。若计算出的相关系数为负数,即表明宏观环境对内部风险因素有弥补作用,则用变异系数Vi乘上(1+相关系数);反之,如果相关系数为正且不为1时,说明宏观环境对内部风险因素有扩大作用,也用变异系数Vi乘以(1+变异系数);而当相关系数为1时,即产生了共振效应,为了与之区别,用共振系数Gij表示。而Gij的取值大于2,其具体数值由评估人员估计产生。由此,可以推出Vi'=[∑(1+Rij)+∑Gij]Vi。最后,得到最终评价结果∑wiVi'。这个结果数值越大,说明与预期偏离越远,说明企业的风险越大;反之,数值越小,说明越与预期值相符,企业面临的风险越小。
参考文献:
1.刘钧.风险管理概论.清华大学出版社,2008
2.James Roth,Ph.D. 郑桓圭译.最佳内部控制评估实务―自我评估与风险评估.中国内部审计协会,1999
3.徐二明.企业战略管理.中国经济出版社,2006
关键词:供应链风险管理;风险评估;粗糙集;灰色系统理论
Key words: supply chain risk manegement;risk assessment;rough set;grey theory
中图分类号:C93 文献标识码:A 文章编号:1006-4311(2011)28-0020-02
0 引言
典型的供应链风险管理包括风险识别、风险评估、风险决策和管理、风险监控四个基本阶段。供应链风险评估是指利用一定的方法措施对供应链风险水平进行评价估算。目前,已有一些学者对此进行了一定的研究。哈里克斯(Hallikas)从风险事件的概率和结果的角度,半定量化地研究了供应链风险评估问题。丁伟东等提出了基于模糊评价方法的供应链可靠性评估矩阵。张彦如等在一定偏好基础上,利用模糊理论和风险评估方法建立了不确定性风险评估模型。蒋有凌、杨家其等针对各风险因素对供应链风险的影响程度和各风险因素相对于供应链风险的权重,运用人工神经元网络与专家系统相结合的方法建立了基于模糊综合评判与人工神经网络法的综合评估模型。本文在以往学者的研究基础上,提出了一种基于粗糙集和灰色系统理论的各医疗风险评估方法。首先运用粗糙集理论确定风险指标的权重,再运用灰色系统理论建立模糊矩阵,评估供应链风险水平。
1 粗糙集理论基础
粗糙集(Rough Set)理论由波兰数学家Z.Pawlak在1982年提出。该理论定义了模糊性和不确定性的概念,是一种处理模糊、不确定性问题的新型数学工具。下面给出粗糙集理论中的有关定义。
1.1 信息系统 令I=(U,R,f,V)为一个信息系统,其中U为论域(非空有限集),R为属性集(非空有限集),V为评价值集。对于任意的A?哿R,有等价关系类ind(A):ind(A)={(x,y)∈U×U│?坌a∈A,f(x,a)=f(y,a)}。称ind(A)为不可分辨关系。U对A的划分表示与等价关系A相关的信息,记为U/ind(A)。
1.2 上下近似集 对于不可分辨关系ind(A),当X?哿U,集合X的上下近似集可以定义为:A(X)=∪{Y∈U/ind(A)│Y?哿X};A(X)=∪{Y∈U/ind(A)│Y∩X≠?I}。其中,集合posA=A(X)表示集合X的正域。
参考文献:
[1]周艳菊,邱莞华,王宗润.供应链风险管理研究进展的综述与分析[J].系统工程,2006.3,24(3).
[2]丁伟东,刘凯,贺国先.供应链风险研究[J].中国安全科学学报,2003,13 (4):64-66.
[3]张彦如, 陈敬贤,郑泉,陈黎卿.基于偏好的供应链不确定型风险模糊评估方法研究[J].运筹与管理,2008.2,17(1).
(二)审计计划的准则差异在审计计划方面,通过比较IIA《工作标准2000——内部审计活动管理》规定,和我国颁布的《内部审计具体准则第1号——审计计划》第十条规定,二者均在审计计划制订阶段体现了风险导向内部审计的思想,奠定了风险因素在整个内部审计工作中的基础作用,但在多大程度上凸显风险导向的思想存在明显差异。IIA将风险作为制订审计计划唯一提到的计划基础,而我国内部审计具体准则是将组织风险和其他因素并列成为年度审计计划的考虑因素。此外,中外内部审计准则关于审计计划中体现风险导向内部审计思想部分的详尽程度也存在不同。IIA的几个相关实务公告对准则给出的大框架进行了补充完善,就这一方面而言比我国准则更为完整、详细、丰富。
(三)其他方面的准则差异在风险管理的准则上,中国起步虽然较晚,但已基本实现与国际接轨,准则覆盖的范围与详细程度和国际基本没有重大差异,但在局部细节方面,比如在没有风险管理部门的企业中,内部审计应如何参与风险管理过程这一问题,IIA提供了解决思路,而我国准则并没有涉及。在管理层对风险的接受方面,国际准则中单独列示,而我国准则却没有关于管理层对风险接受的相关内容,更谈不上凸显风际导向内部审计的思想。
二、在我国推动风险导向内部审计实践的对策
(一)严格区分内部审计与风险管理的职责范围为保证内部审计的独立性,对于分别设立了内部审计和风险管理部门的企业,内部审计部门不能直接参与风险管理过程,两个部门的职能设置必须严格区分、不能有交叉,内部审计必须独立于风险管理过程之外。否则,一方面可能产生互相推诿责任的情况;另一方面,若内部审计在事实上承担部分风险管理部门的职责,在进行内部风险管理审计时,就可能出于对自身评价和自身工作的考虑,无法给出客观公正的结论。对于只设立了内部审计部门而没有设置风险管理部门的企业,内部审计部门应当承担起风险管理的责任,识别、评估并应对风险,执行咨询职能,但不对该过程进行风险管理审计。
一、火灾风险评估的概念
过去,人们往往依靠经验和直观推断来做出决策。随着计算机容量不断扩大和模块技术的发展,风险评估(risk assessment)和风险管理(risk management)技术作为复杂或重大事项决策的必要辅助手段,在过去的二、三十年间,在决策分析、管理科学、运营研究和系统安全等领域得到了广泛的认知和应用[1]。
通常认为风险(risk)的定义为:能够对研究对象产生影响的事件发生的机会,它通过后果和可能性这两个方面来具体体现。风险概念中包括三个因素:对可能发生的事件的认知;该事件发生的可能性;发生的后果[2]。因而,火灾风险(fire risk)包含火灾危险性(发生火灾的可能性)和火灾危害性(一旦发生火灾可能造成的后果)双重含义[3]。
现在,在文献中可以看到的与“火灾风险评估”相关的术语有fire risk analysis, fire risk estimation, fire risk evaluation, fire risk assessment等,但基本上火灾风险评估都是指:在火灾风险分析的基础上对火灾风险进行估算,通过对所选择的风险抵御措施进行评估,把所收集和估算的数据转化为准确的结论的过程。火灾风险评估与火灾模拟、火灾风险管理和消防工程之间有密切关系,为其提供定性和定量的分析方法,简单地如消防安全设施检查表,复杂的就会涉及到概率分析,在应用方面针对的风险目标的性质和分析人员的经验有各种变化[4]。
较多的人倾向于从工程角度来定义火灾危害性(fire hazard)和火灾风险(fire risk)。火灾危害性指:凡是根据已有的资料认为能引起火灾或爆炸,或是能为火灾的强度增大或蔓延持续提供燃料,即对人员或财产安全造成威胁的任何情况、工艺过程、材料或形势。火灾危害性分析在不同的情况下有不同的针对性,目的是确定在一定的条件下有可能发生的可预见性后果。这种设定的条件称为火灾场景,包括建筑物中房间的布局、建材、装修材料及家具、居住者的特征等与相关后果有关的各种具体信息。目前在确定后果方面的趋势是尽可能地利用各种火灾模式,辅以专家判断。此时,危害性分析可以看作是风险评估的一个构成元素,即风险评估是对危害发生的可能性进行权衡的一系列危害性分析。
从系统分析的角度来看,风险具有系统特性和动态特性。风险实际上并非某一单一实体或事物的固有特性,而是属于一个系统的特性。若系统发生变化,很容易就会使事先对风险所做的估算随之发生变化。火灾风险评估模式包括:系统认定,即明确所要评估的具体系统并定义出风险抵御措施的过程;风险估算,即设定关于火灾的发生几率和严重后果及其伴随的不确定性的衡量标准或尺度,计算和量化系统中的指标的过程;风险评估,对该标准或尺度进行分析和估算,确定某一特定风险值的重要性或某一特定风险发生变化的权重[5]。
二、城市区域火灾风险评估的意义及发展概况
在消防方面,随着人们安全意识的提高和建筑设计性能化的发展,对建筑工程的安全评估日益受到重视,比如美国消防协会制定的“NFPA101生命安全法规”是一部关注火灾中的人员安全的消防法规,与之同源的“NFPA101A确保生命安全的选择性方法指南”,分别针对医护场所、监禁场所、办公场所等,给出了一系列安全评估方法,多应用于建筑工程的安全性评估方面[6]。
目前,我国在火灾风险评价方面的研究,大部分是以某一企业,或某一特定建筑物为对象的小系统。例如,由武警学院承担的国家“九五”科技攻关项目“石化企业消防安全评价方法及软件开发研究”,以“石油化工企业防火设计规范”等消防规范和德尔菲专家调查法为基础,设计了石化企业消防安全评价的指标体系,利用层次分析法和道化指数法确定了各指标的权重,采用线性加权模型得出炼油厂的消防安全评价结果[7]。以某一特定建筑物为对象的火灾风险评价也比较多,如中国矿业大学周心权教授,在分析建筑火灾发生原因的基础上,建立了建筑火灾风险评估因素集,并运用模糊评价法对我国的高层民用建筑进行了消防安全评价[8]。
与上述的安全评估不同,城市区域的火灾风险评估的目的是根据不同的火灾风险级别,配置消防救援力量,指导城市消防系统改造,指导城市消防规划。对已建成的城市区域的火灾风险评估必须考虑许多因素,即城市火灾危险性评价指标体系,包括区域内所存在的对生命安全造成危险的情况、火灾频率、气候条件、人口统计等因素,进而评价社区的消防部署和消防能力等抵御风险的因素。除此之外,在评估过程中另一个重要的情况是要关注社区从财政及其他方面为消防规划中所要求的总体消防水平提供支持的能力和意愿。随着城市规模扩大、综合功能增强,在居住区商贸中心、医院、学校、和护理场所增多,评估方法还会相应的改变。现有的城市区域火灾风险评估方法主要出于以下两个目的:
(一)用于保险目的
在火灾保险方面的应用的典型事例为美国保险管理处ISO(Insurance Services Office, ISO)的城市火灾分级法,在美国已经被视为指导社区政府部门对其火灾抵御能力和实际情况进行分类和自我评估的良好方法。ISO方法把社区消防状况分为10个等级,10级最差,1级最好。
ISO是按照一套统一的指标来对每个社区的客观存在的灭火能力进行评估,确定该社区的公共消防级别,这套指标来自于由美国消防协会和美国自来水公司协会所制定的各种国家规范。ISO对城市消防的分级方法主要体现在它的“市政消防分级表(Commercial Fire Rating Schedule, CFRS)”上。CFRS把建筑结构、用途、防火间距与公共消防情况(用公共消防分级数目表达)相关联,再以统计数据加以调节后,来确定相应的火险费用。ISO级别仅被保险公司用作确定火险费用的一个成分。ISO分级系统虽然无法反映出消防组织的其他应急救援能力,但实际上也常用于各个区域的公共灭火力量的确定。
市政消防分级表从1974年开始使用,主要考察某城市区域的7个指标情况:供水、消防队、火灾报警、建筑法规、电气法规、消防法规、气候条件。随着技术进步,该表也不断改进。1980年版抽取了CFRS中对公共消防分级的方法,给出了修订后的灭火力量等级表,指标只包括前3项。被删除的指标或者确少区分度,或者在全市范围内进行评估时太过于主观,而且74表格中包含许多评估标准是具体的规定,如果某一社区的情况没有满足这些规定,则归属为差额分,规定降低了表格可使用的弹性范围,无法正确评估情况和技术的变化。故而ISO分级表被视为越来越“性能化”[9]。
(二)用于消防力量的部署
将信息物理融合技术(cyber physical system,CPS)应用于电力系统,将有效实现系统的智能化发展。然而,电力CPS具有很高的复杂性:
(1)信息采集范围远大于智能电网;
(2)分布式计算设备众多;
(3)控制中心与各种分布式电源和负荷设备联网,并对其直接控制。
因此,其风险来源也相当广泛。目前关于电力CPS的安全风险评估缺少系统地量化方法,不利于整体决策。因此,本文引入模糊风险评估方法,研究电力CPS的风险评估问题。
1 电力CPS的风险分析
电力CPS是一类二元异构的复合网络,其安全问题包括信息空间安全和物理空间安全,以及两者相互作用导致的耦合风险。鉴于电力CPS的特殊性,综合考虑物理层面和信息层面,以火力发电厂为例,表1列举出了电力CPS风险评估的主要参量。
2 综合模糊风险评估模型
三角模糊数(TFN)是一种将模糊的不确定的语言变量转化为确定数值的一种方法,在实际情况中,由于不确定性和信息匮乏,评估这些因素有一定的困难。所以,很多评估结果采用语言变量,例如高、中、低。在本文的研究中,使用TFN表示语言客体的模糊性。
风险的参量评级包括V1,V2,V3,V4,V5,V6,V7,其中V1=非常低,V2=很低,V3=低,V4=一般, V5=高,V6=很高,V7=非常高,这些语言变量通过隶属函数由TFN定义。由重心法得上述七个定性指标V1,V2,V3,V4,V5,V6,V7的重心分别为VG(1)=0.0556,VG(2)=0.1667,VG(3)=0.3333,VG(4)=0.5000, VG(5)=0.6667,VG(6)=0.8334,VG(7)=0.9444,且将V={V1,V2,V3,V4,V5,V6,V7}作为每个子参量的等级集合。用同样的方式,我们可以分别为风险类别C2,C3,C4和C5组成模糊评价矩阵M(C2),M(C3),M(C4)和M(C5)。
层次分析法(AHP)是解决多参数决策问题的一个优良方法。父功能f被分为f1-f5五个子动能,对应风险权重依次为ω1-ω5。设Wi和Wij分别是主要风险类别和其相关参量的相对权重,g(s, l)是每个参量的风险率。下面是求取系统整体风险概率的三步模糊评估法。
第1步,C1的整体风险评估:
上述风险概率计算方法给出了一个整体风险级别的定量表示,基于综合模糊风险评估方法的电力CPS风险评估的主要步骤包括:
(1)确定待评估的电力系统研究对象,进行功能分解,收集相关参量。
(2)计算各子风险的等级。首先用TFN表示出严重性s和可能性l,二者相乘得到风险等级g。
(3)利用AHP分析参数权重。首先基于九标度法构建判断矩阵Z,然后采用和积法求取特征向量,归一化处理得到风险权重W。
(4)构建风险评估层次结构表,综合考虑各个风险水平及权重,通过模糊评价矩阵得到整体风险评估向量,逆模糊化后求取具体数值。
3 算例分析
以某火电厂CPS系统为例,进行量化风险评估,首先使用九分法对风险进行权重评估,通过构建Z矩阵,得到各自权重。
采用和积法归一化处理,得到ω1=3/4,ω2=1/4。同理,得到其他参量的权重分配。从而构建M(C11)矩阵,接下来风险矩阵与M(C11)相乘,得到类别C11的带权重风险水平:
R(11)=[0.055 0.564 0.118 0.263]×M(C11)
=[0.411 0.573 0.017 0 0 0 0] (3)
同理构建M(C12),M(C13),M(C14),M(C15),M(C16),计算得R(12),R(13),R(14),R(15),R(16)。
接下来,权重矩阵W1i与上述风险水平组成的矩阵相乘,得到类别C1的风险水平:R(1)=[0.366 0.624 0.008 0 0 0 0],同样的方法,得R(2)=[0.396 0.597 0 0 0 0 0]。最后,综合类别C1和C2,得到整体风险水平,使用重心法对结果逆模糊化,得到综合模糊风险评估等级。
ARI=0.374×0.0556+0.617×0.1667+0.006×0.3333+0×0.5+0×0.6667+0×0.8333+0×0.9444=0.126
因此,该电力CPS系统的风险等级为0.126,参考关于定性指标的定义,介于V1(非常低)和V2(很低)之间,风险程度较低。
参考文献
[1]赵俊华,文福拴,薛禹胜,李雪,董朝阳.电力CPS的架构及其实现技术与挑战[J].电力系统自动化,2010(16):1-7.
中图分类号:TP393.0 文献标识码:A
1 引 言
随着网络安全问题的日益突出,风险评估越来越受到人们的重视。风险评估一般分为静态评估和动态评估两种,前者评估体系比较完善,评估精确性程度较高,但缺点是评估周期过长,评估模型可能随着时间的推移而不能适用,不能反映网络的实时信息;后者评估能根据网络状况适时的做出风险估计,能及时反映网络风险的动态变化,性能好于静态评估[1,2]。而针对动态风险评估的研究有:基于免疫的网络安全风险检测的模型[3,4],是一种基于入侵时的检测模型;基于隐马尔可夫模型的网络风险评估方法研究[5,6];基于贝叶斯模型的网络风险动态评估方法[7,8], 可以对网络的总体风险和局部要素可能引起风险的程度进行评估。以上文献对网络入侵检测研究较为深入,但侧重于对攻击的动态评估,未能考虑已有风险如何扩散与转移。针对网络风险传播,张永铮等提出了用于评估网络信息系统的风险传播模型[9]和一种求解网络风险传播问题的近似算法[10],对已有风险在网络中的传播进行研究,但其传播模型与算法存在一些缺点:首先,模型中仅考虑了风险传播模型,未能考虑风险引入模型;其次,一个部件上可能存在多个弱点,则该部件对另一部件的同一方向的可问路径可多于一种,则部件不能在有向图中被视为图节点。第三,最小入度的部件感染风险的概率较低,因此其作为风险源的概率不高。第四,若入度最小的部件已经感染风险,其出度不一定是最大的,正如流感爆发在人口密集的地区一样,则其风险不能立即传播出去,存在滞后性,时效性欠佳。
本文在针对网络风险传播问题,结合复杂网络中传播蔓延现象的推广模型 [11,12],提出了一种网络风险传播模型及相关定义,并改进了风险传播算法。
2 推广模型下的风险传播
网络信息的动态风险不仅仅表现为一般意义的风险,其传播可能会对社会造成不可估量的损失,如病毒的传播造成的跨域风险、有害信息的传播造成的社会风险等。为此我们将借鉴复杂网络的传播机理和分析的方法,研究网络风险传播模型。
按照复杂网络的传播蔓延现象的推广模型[11,12]:假设网络中有N个个体,每个个体是三种状态的中的一种:易染态S,感染态I和移除态R,在时刻t,个体i随机的与个体j相连,若i∈S,j∈I,则个体i以概率p得到一个正剂量di(t′),这里di(t′)都服从分布函数f(d)。每个个体都保留着过去T时期中所接受的总的剂量
在本文中,暂不考虑网络风险移除状态,即仅考虑风险在整个网络中如何转移,而未考虑网络风险传播后所造成情况的如何消除。因此上述推广模型应用于风险传播如下:
计算技术与自动化2016年6月
第35卷第2期吕元海等:基于复杂网络的风险传播模型及有效算法
每一时刻t,风险结点j对其直连结点i每发动一次攻击,就会从被攻击结点i中获取一定的信息剂量di(t),则在过去T时期中风险结点获取被攻击结点的信息总剂量为:
3 风险传播模型
3.1 相关定义
定义1.结点:指网络系统中任意一台网络设备上任意可能被利用的最小单元。其中已经被利用的称为风险结点,而尚未被利用的称为非风险结点。
定义2.有向路径:结点A访问结点B时,形成的从A指向B的单向访问关系。这里所说的单向访问关系是指合法或非法的、由主动发起方指向被访问方的访问,而不代表实际信息传输的路径,因为严格的讲,任何两个相连结点之间的链路都是双向的。有向路径概率即为结点访问概率。
定义3.风险传出:指风险结点对其所访问的任一结点造成的损失或影响。
定义4.风险引入:指非风险结点访问风险结点时,由于存在实际信息的交换而受到该风险结点的影响。
这里举例说明一下定义3、4,某病毒利用空气(相当于网络中的信息交换链路)进行传播,当病体A主动接触易染体B时,A将病毒传播给B,其中A主动接触B即为A访问B,病毒传播方向为A到B;反之当易染体B主动接触病体A,也会被感染,同样病毒传播方向为A至B,但为B访问A。
定义5.风险传出公式:设结点n被成功利用的概率为Pn,被利用后对网络系统的危害程度为Wn,利用至该结点的有向路径概率为Pmn,其中m为主动访问n的风险结点,则对结点n而言,产生的风险为Riskn=Pmn×Pn×Wn。
定义6.风险引入公式:设结点n为非风险结点,该结点成功访问风险结点m的概率为Pm,利用至结点m的有向路径概率为Pnm,由结点n发出至结点m的有用消息权重及概率分别为Unm、pnm,由结点m发出至结点n的有害消息权重及概率分别为Hmn、pmn,则对结点n而言,引入的风险为Riskn=Pnm×Pm×(Unm×pnm+Hmn×pmn)。
定义7.风险网络:借鉴张永铮等对风险网络[4]定义,把一个能够描述各结点风险分布与有向路径的网络称为风险网络。风险分布为网络系统各个设备中结点携带风险的分布情况,为内在风险;有向路径即为各结点之间的访问方向,为外来风险的传出与被引入提供可能。
3.2 风险传播模型
1.主动型风险传播模型:也称为主动型风险传出,即利用风险结点已存在的风险对其直连结点进行主动访问(包括非法攻击或可问,下同),产生风险扩散(即风险传出)。如图1(a)所示,结点A为风险源结点,存在至结点B、C、D、E的四条有向路径,设结点A风险结点,至结点B、C、D、E的有向路径概率为PAJ,(J=B,C,D,E),各结点自身被成功访问的概率为PJ,(J=B,C,D,E)[8],则结点A以概率PAJ×PJ(J=B,C,D,E)引起其出度所连结点发生风险,如图1(b)所示。
在实际网络中,路径传播概率可由两结点的所有可能路径计算得出,而结点被成功攻击的概率则有风险传播推广模型计算得出。
4 最大出度算法
针对最小入度最近邻算法[5]的不足,本文设计了一种能更好反映网络风险动态特征的算法――最大出度算法,又分为针对主动型风险传播模型的最大出度算法和针对被动型风险传播模型的最大出度算法。
4.1 风险源结点最大出度算法
Step1:计算未被处理过的风险结点出度值numofoutdegree。
Step2:优先选择最大出度的结点,利用图1所示算法将其风险值沿其出度传播给相邻结点,风险计算方法见定义5。
Step3:传播风险后将该结点标记为color=red。
Step4:重复Step1、Step2、Step3,直至所有风险结点全部被标记。
4.2 零入度非风险源最大出度算法
严格的讲,零入度的结点是不存在的,因此最小入度最近邻算法关于零入度的概念未指明其时间范畴,在本文中,零入度的结点是指在某时间段内不接受访问的结点。
Step A:将网络结点中所有零入度的非风险源结点标记为color=green。
Step B:计算未被处理过的零入度的非风险源的出度值numofoutdegree。
Step C:优先选择最大出度结点,并判断其出度中有无风险结点,若有则选择其出度所连结点中风险值最大的一个作为引入风险源,以概率引入风险,风险计算方法见定义6,将该结点标记为color=pink,断开与引入风险源的有向链接;若无,则重新选择结点,对该结点不进行任何处理直到再次满足条件。
Step D:引入风险后,该结点已为风险结点,如果满足最大出度的条件,则跳转至最大出度算法的Step2继续风险传播。如果暂不满足最大出度的条件,则跳转至Step A顺序执行。
4.3 一般非风险源风险引入
网络结点的风险在传播最后往往会出现如图3所示的情况:结点A、B、C为非风险源结点,D、E为风险结点且RiskD>RiskE,按照文[5]的理论,则其程序在图3情况下停止运行,为了解决这一问题,引入如下算法:
Step a:计算非风险源结点的出度值numofoutdegree。
Step b:优先选择出度最大的结点,若其出度所连接结点中存在风险结点,则选择风险值最大的一个结点作为风险引入源并断开与该风险引入源的有向链路,该结点被标记为color=pink;若不存在,则重新选择。
Step c:引入风险后,该结点已为风险结点,跳至Step b继续执行,直至又出现图3情况,则跳转至Step a继续执行,直至风险传播完毕。
说明:网络结点被初始化为风险结点(color=pink)和安全可信结点(color=green)后,运行风险源最大出度算法和零入度非风险源最大出度算法时,两者发执行,不存在先后次序,而一般非风险源风险引入只是在出现如图3情况下才使用的算法,是为了防止风险传播中忽略此类风险引入导致风险误差较大的情况。
5 算法性能比较
5.1 风险传播机制比较
最小入度最近邻传播算法[5]虽然能够对网络风险传播给出比较精确的结论,但其在理论上有一定的缺陷,如图4所示,假设结点1、2为风险结点,按照最小入度最近邻传播算法,结点1为入度最小的满足条件的风险结点,则其以概率使结点2、4产生风险,同时将自己标记为已处理,如图5(a)所示,然后结点2又满足传播条件,并以概率使结点3、5、6产生风险,并被标记为已处理,如图5(b)所示,两步共计感染四个结点,但其却是在第二步才将风险传给结点6,因而其时效性欠佳。而按照风险源最大出度算法,则优先选择结点2,使其携带的风险迅速被传播给结点3、5、6,如图6(a)所示,再次结点6满足传播条件,并将风险传播给其出度所连的四个结点,如图6(b)所示,两步共计感染七个结点,多于最小入度最近邻传播算法的新感染结点,并且其时效性优势随着网络结点的复杂化而凸显,更容易满足动态网络风险评估的要求。
此外,零入度的非风险源结点不会传出风险[5],因此应在风险传播之前对其进行处理:断开此类结点的所有出度,如图7所示,结点9被认为不会对结点2及尤其是结点10造成风险传播,因此可以断开其所有出度。但本论文认为结点9虽不会对结点10造成直接的风险传播,但是它可能会从结点2引入风险,从而使自己变为风险结点,进而对结点10造成风险传播,如图8所示。
5.2 实验结果对比
本实验实验环境为Microsoft Windows XP Professional,Intel(R) Pentium(R) CPU 1.8GHz,512M RAM。仿真工具为NetLogo 4.0.4、Matlab 7.0.0.19920(R14)。
共同参数:总结点为200,平均度为10,风险结点不超过所有结点入度之和,结点危害性参数W=1,风险结点初始风险值为1,路径传播概率服从[0,0.5] 上的均匀分布。
本文参数:结点被成功访问概率P可利用推广模型计算,其中推广模型的参数p=0.5,f(d)=δ(d-1),g(d*)=δ(d*-3),采用最大出度算法进行传播。
文[5]参数:概率权p(x)=0.5,采用最小入度最近邻算法进行传播。
6 结 论
实验表明:本文方法则是风险呈非线性变化,并且开始变化较快,最后变化缓慢,即在一定的精确度容许的范围内,对风险进行任意时刻的抽样,本文的风险值更接近真实风险,因而动态性能更好。另外考虑的非风险源结点的风险引入,使风险值被忽略的部分被重新计算在内,提高了风险精确度。
参考文献
[1] 吴金宇.网络安全风险评估关键技术研究[D].北京:北京交通大学,2010.
[2] 肖晓春.基于模型的网络安全风险评估的研究[D].上海:复旦大学,2008.
[3] 李涛.基于免疫的网络安全风险检测[J].中国科学(F辑一信息科学),2005,35(8):798-816.
[4] 刘谦. 网络安全风险评估研究[J]. 硅谷. 2009,(14):65-70.
[5] 史志才.网络风险评估方法研究[J].计算机应用, 2008,10:2471-2473.
[6] 陈锋.基于多目标攻击图的层次化网络安全风险评估方法研究[D].长沙:国防科技大学,2009.
[7] 梁玲,陈庶民,徐孟春,等.基于贝叶斯模型的网络风险动态评估方法[J].信息工程大学学报,2007,(1):53-55.
[8] 付钰,吴晓平,严承华. 基于贝叶斯网络的信息安全风险评估方法[J].武汉大学学报:理学版,2006,52(5):631-634.
[9] 张永铮,方滨兴,迟悦,等.用于评枯网络信息系统的风险传播模型[J].软件学报,2007,18(1): 137-145.
桥梁结构形式不同,施工方法不同,其在施工过程中的结构状态大不相同。对桥梁结构进行分析计算,可以发现结构施工过程中的薄弱环节,可全面识别施工风险并针对性的提出风险控制措施。
②现场调研
对桥梁工程施工现场周边环境、施工区域气候条件以及施工单位现场施工情况等进行现场实地勘察,总结风险事件。并随时了解施工现场工程进度等情况变化,同时,通过对施工现场进行跟踪调查,随时发现新的风险事件。
③专家调查
专家调查法是风险识别的主要方法,各领域的专家在专业方面具有丰富的理论知识和实践经验,是获取相关信息的重要对象,可较全面地识别出各类潜在的风险。
二、桥梁施工风险分级综合评估法
桥梁工程包含多种桥型的多种施工方法,是个非常复杂的系统工程,采用单一的评估方法对桥梁工程施工过程进行评估往往不够精确。为此本文提出了基于分级评判的桥梁施工风险综合评估方法。
①一级评判
采用简便的评判方法(如专家调查法、专家评议法等)对风险源进行评估,将风险明显较低的风险源定义为低度风险,其余风险源进入二级评判。
②二级评判
采用较高精度的评判方法(如LEC等)对风险源进行评估,将风险较低的风险源定义为中度风险,其余风险源进入三级评判。
③三级评判
采用高精度的评判方法(如风险矩阵法等)对风险源进行评估,将风险较低的风险源定义为高度风险,风险较高的风险源定义为极度风险。这种分级综合评估方法能够充分发挥各种评估方法的优势,在简化评估繁琐度的同时又能保证较高风险源的评价精确度。这种方法的适用范围包括各种桥型的各种施工方法,是一种实用性较强的风险评估方法。
三、桥梁施工风险评估实例
1.工程概况
湖南省某高速公路大桥,主桥长308.04m,主跨为(80+145+80)m预应力混凝土连续箱梁,施工采用挂篮悬臂浇筑,箱梁单个“T”共分18段悬臂浇筑。悬臂浇筑施工艺流程为:浇筑0号段;拼装挂篮;浇筑1号段;挂篮前移、调整、锚固;浇筑下一梁段;依次类推完成悬臂浇筑;挂篮拆除;合龙。
2.桥梁施工阶段风险识别
2.1事故总结
桥梁事故是桥梁风险事件的主体,对桥梁事故资料的收集总结研究是风险评估的基础。本文主要针对连续梁桥悬臂浇筑施工的特点,通过科技文献、媒体报道及专家调查等途径,收集整理连续梁桥施工相关事故,得出风险事故类型,汇总于表1。同时采用事故致因理论对事故发生的原因和发展规律进行了分析研究,对事故造成的损失等进行了统计,为风险事件的识别和风险评估工作奠定了基础。
2.2结构分析
通过结构分析可以获得桥梁结构详细的受力状态,即可采取有针对性的措施改善结构受力特性。本文对大桥施工过程进行有限元结构分析,对整个施工过程中的结构受力有了全面的了解,为风险事件的识别提供了有力的支持。如“预应力筋张拉时底板崩裂”风险事件,即是通过结构分析结合桥梁事故识别得出。当施工过程中底板脱模过早、混凝土强度不够或预应力管道偏位等意外事件,极有可能发生底板崩裂事故。
2.3现场调研
桥梁施工风险识别现场调研主要对现场自然环境、技术条件和现场管理等进行调查。
①自然环境
大桥位区属亚热带季风湿润气候,春暖多雨,夏季干热,秋凉冬冷。年平均气温17.7℃,极端最高气温40℃,极端最低气温-6.8℃,年平均降雨量1169mm,多集中在6~8月,是湖南省暴雨集中地,易发洪涝灾害。桥址地表水体水系发育,横跨河流,河道内有长期性流水,水量较大,水深最大可达31m。桥位区百年一遇的设计洪水位210.37m,通航水位205.00m,施工水位188.00m,低水位174.89m。桥址所在地形属构造侵蚀丘陵地貌,河谷呈“V”字形,切割较深。桥址区未发现有滑坡、岩溶及断层构造等不良地质现象。
②技术条件
施工组织设计合理,施工机械设备齐全,施工单位长期从事桥梁施工,技术条件较好。
③现场管理
施工单位工程经验丰富,施工现场管理到位。通过对大桥施工现场多次的实地调研,得出的风险事件,参见表1施工风险事件列表。
2.4专家调查
专家调查是本文中采用的主要风险识别方法。桥梁施工风险评估邀请桥梁设计专家2位、施工方面专家2位、科研方面专家2位、管理方面专家3位,共9位从业时间长、经验丰富的专家,对风险事件的识别提出了宝贵意见。向专家组提供了大桥详细的勘察、设计、施工组织设计等资料,专家组根据自己的经验提出了许多的风险事件。
3.施工风险综合评估
桥梁施工风险识别后,进行施工阶段划分,并采用表上作业法对各个施工阶段进行风险事件的识别,确定风险评估的主体。现采用悬臂梁浇筑施工为例进行风险评估说明,该施工阶段包括模板施工,钢筋施工,混凝土浇筑,混凝土养生。
3.1二级评判
采用LEC法进行二级风险评判。该方法采用与系统风险率相关的3种方面指标值之积来评价系统中人员伤亡的风险大小:L为事故发生可能性;E为人员暴露在危险环境中的频繁程度;C为事故发生会造成的后果。风险分值D=LEC,D值越大说明风险越大。
3.2三级评判
三级风险事件评判采用风险矩阵法进行动态估测,具体评价标准参照文献。根据指标体系法对事故严重程度和事故发生的可能性进行分析计算,再对照风险等级标准表得出风险事件等级。
关键词:城市区域火灾风险评估
一、火灾风险评估的概念
过去,人们往往依靠经验和直观推断来做出决策。随着计算机容量不断扩大和模块技术的发展,风险评估(riskassessment)和风险管理(riskmanagement)技术作为复杂或重大事项决策的必要辅助手段,在过去的二、三十年间,在决策分析、管理科学、运营研究和系统安全等领域得到了广泛的认知和应用[1]。
通常认为风险(risk)的定义为:能够对研究对象产生影响的事件发生的机会,它通过后果和可能性这两个方面来具体体现。风险概念中包括三个因素:对可能发生的事件的认知;该事件发生的可能性;发生的后果[2]。因而,火灾风险(firerisk)包含火灾危险性(发生火灾的可能性)和火灾危害性(一旦发生火灾可能造成的后果)双重含义[3]。
现在,在文献中可以看到的与“火灾风险评估”相关的术语有fireriskanalysis,fireriskestimation,fireriskevaluation,fireriskassessment等,但基本上火灾风险评估都是指:在火灾风险分析的基础上对火灾风险进行估算,通过对所选择的风险抵御措施进行评估,把所收集和估算的数据转化为准确的结论的过程。火灾风险评估与火灾模拟、火灾风险管理和消防工程之间有密切关系,为其提供定性和定量的分析方法,简单地如消防安全设施检查表,复杂的就会涉及到概率分析,在应用方面针对的风险目标的性质和分析人员的经验有各种变化[4]。
较多的人倾向于从工程角度来定义火灾危害性(firehazard)和火灾风险(firerisk)。火灾危害性指:凡是根据已有的资料认为能引起火灾或爆炸,或是能为火灾的强度增大或蔓延持续提供燃料,即对人员或财产安全造成威胁的任何情况、工艺过程、材料或形势。火灾危害性分析在不同的情况下有不同的针对性,目的是确定在一定的条件下有可能发生的可预见性后果。这种设定的条件称为火灾场景,包括建筑物中房间的布局、建材、装修材料及家具、居住者的特征等与相关后果有关的各种具体信息。目前在确定后果方面的趋势是尽可能地利用各种火灾模式,辅以专家判断。此时,危害性分析可以看作是风险评估的一个构成元素,即风险评估是对危害发生的可能性进行权衡的一系列危害性分析。
从系统分析的角度来看,风险具有系统特性和动态特性。风险实际上并非某一单一实体或事物的固有特性,而是属于一个系统的特性。若系统发生变化,很容易就会使事先对风险所做的估算随之发生变化。火灾风险评估模式包括:系统认定,即明确所要评估的具体系统并定义出风险抵御措施的过程;风险估算,即设定关于火灾的发生几率和严重后果及其伴随的不确定性的衡量标准或尺度,计算和量化系统中的指标的过程;风险评估,对该标准或尺度进行分析和估算,确定某一特定风险值的重要性或某一特定风险发生变化的权重[5]。
二、城市区域火灾风险评估的意义及发展概况
在消防方面,随着人们安全意识的提高和建筑设计性能化的发展,对建筑工程的安全评估日益受到重视,比如美国消防协会制定的“NFPA101生命安全法规”是一部关注火灾中的人员安全的消防法规,与之同源的“NFPA101A确保生命安全的选择性方法指南”,分别针对医护场所、监禁场所、办公场所等,给出了一系列安全评估方法,多应用于建筑工程的安全性评估方面[6]。
目前,我国在火灾风险评价方面的研究,大部分是以某一企业,或某一特定建筑物为对象的小系统。例如,由武警学院承担的国家“九五”科技攻关项目“石化企业消防安全评价方法及软件开发研究”,以“石油化工企业防火设计规范”等消防规范和德尔菲专家调查法为基础,设计了石化企业消防安全评价的指标体系,利用层次分析法和道化指数法确定了各指标的权重,采用线性加权模型得出炼油厂的消防安全评价结果[7]。以某一特定建筑物为对象的火灾风险评价也比较多,如中国矿业大学周心权教授,在分析建筑火灾发生原因的基础上,建立了建筑火灾风险评估因素集,并运用模糊评价法对我国的高层民用建筑进行了消防安全评价[8]。
与上述的安全评估不同,城市区域的火灾风险评估的目的是根据不同的火灾风险级别,配置消防救援力量,指导城市消防系统改造,指导城市消防规划。对已建成的城市区域的火灾风险评估必须考虑许多因素,即城市火灾危险性评价指标体系,包括区域内所存在的对生命安全造成危险的情况、火灾频率、气候条件、人口统计等因素,进而评价社区的消防部署和消防能力等抵御风险的因素。除此之外,在评估过程中另一个重要的情况是要关注社区从财政及其他方面为消防规划中所要求的总体消防水平提供支持的能力和意愿。随着城市规模扩大、综合功能增强,在居住区商贸中心、医院、学校、和护理场所增多,评估方法还会相应的改变。现有的城市区域火灾风险评估方法主要出于以下两个目的:
(一)用于保险目的
在火灾保险方面的应用的典型事例为美国保险管理处ISO(InsuranceServicesOffice,ISO)的城市火灾分级法,在美国已经被视为指导社区政府部门对其火灾抵御能力和实际情况进行分类和自我评估的良好方法。ISO方法把社区消防状况分为10个等级,10级最差,1级最好。
ISO是按照一套统一的指标来对每个社区的客观存在的灭火能力进行评估,确定该社区的公共消防级别,这套指标来自于由美国消防协会和美国自来水公司协会所制定的各种国家规范。ISO对城市消防的分级方法主要体现在它的“市政消防分级表(CommercialFireRatingSchedule,CFRS)”上。CFRS把建筑结构、用途、防火间距与公共消防情况(用公共消防分级数目表达)相关联,再以统计数据加以调节后,来确定相应的火险费用。ISO级别仅被保险公司用作确定火险费用的一个成分。ISO分级系统虽然无法反映出消防组织的其他应急救援能力,但实际上也常用于各个区域的公共灭火力量的确定。
市政消防分级表从1974年开始使用,主要考察某城市区域的7个指标情况:供水、消防队、火灾报警、建筑法规、电气法规、消防法规、气候条件。随着技术进步,该表也不断改进。1980年版抽取了CFRS中对公共消防分级的方法,给出了修订后的灭火力量等级表,指标只包括前3项。被删除的指标或者确少区分度,或者在全市范围内进行评估时太过于主观,而且74表格中包含许多评估标准是具体的规定,如果某一社区的情况没有满足这些规定,则归属为差额分,规定降低了表格可使用的弹性范围,无法正确评估情况和技术的变化。故而ISO分级表被视为越来越“性能化”[9]。
(二)用于消防力量的部署
当今的消防组织和地方政府要担负日益加重的安全责任,面对来自公众的对抵御各种风险的更多的期望,以及调整消防机构人员、设备及其他预算方面的压力,迫切需要确认某一给定辖区内的具体风险和危险的等级。
具体地说,城市区域风险评估在消防方面的目的就是:使公众和消防员的生命、财产的预期风险水平与消防安全设施以及火灾和其他应急救援力量的种类和部署达到最佳平衡。
关于火灾风险对于灭火救援力量的影响,美国消防界对此的关注可以说几经反复,其间美国消防学院、NFPA等都做了许多工作。直至20世纪90年代,国际消防局长协会成立了由150名专业人士组成的国际消防组织资质认定委员会(theCommissionofFireAccreditationInternational,CFAI),经过9年的广泛工作,制定了“消防应急救援自我评估方法”,和制定标准的社区消防安全系统。另外,NFPA最终还制定了NFPA1710和1720两个指导消防力量部署的标准,分别帮助职业消防队和志愿消防队和改进为社区提供的消防救援的水平。根据NFPA最近的调查,NFPA1710将在全美30500个消防机构中的3300~3600个得到正式的应用,也推广到加拿大有些地区[10]。
英国对消防救援力量的部署标准是依据内政部批准的“风险指标”,把消防队的辖区划分为“A”、“B”、“C”、“D”四类区域,名为“风险分级”系统。其目的是对消防队的辖区进行风险评估,确定辖区内的各种风险区域,进而确定该风险区域发生火灾后应出动的消防车数量和消防响应时间。1995年,英国的审计委员会了一份题为“消防方针”的考察报告,认为这种方法没有充分考虑建筑设施的占用情况、社区的人口统计情况和社会经济因素,也没有把建筑物内的消防安全设施纳入考核范围。故而由审计委员会报告联合工作组与内政部的消防研究发展办公室一起,设立了一个研究项目。该项目的目的是开发一套供消防机构划分区域的风险等级,对包括灭火在内的所有应急救援力量进行部署,用于消防安全设施的规划并能解决上述问题的风险评估方法,再对开发出的方法进行测试。最后Entec公司开发出了计算软件,并于1999年4月以内政部的名义出台了“风险评估工具箱”测试版[11]。
三、国内外近期的城市区域火灾风险评估方法
(一)国内的城市区域火灾风险评估方法
张一先等采用指数法对苏州古城区的火灾危险性进行分级[15],该方法的指标体系考虑了数量危险性,着火危险性,人员财产损失严重度,消防能力这四个因素。1995年李杰等在建立火灾平均发生率与城市人口密度﹑城区面积﹑建筑面积间的统计关系基础上,选取建筑面积为主导参量,建立了以建筑面积为单一因子的城市火灾危险评价公式[12]。李华军[16]等在1995年提出了城市火灾危险性评价指标体系,该体系中城市火灾危险性评价由危害度﹑危险度和安全度三个指标组成,用以评价现实的风险,不能用来指导城市消防规划。
(二)美国的“风险、危害和经济价值评估”方法[13]
美国国家消防局与CFAI于1999年一起,在“消防局自我评估”及“消防安全标准”的工作的基础上,更突出强调了“火灾科学”的“科学性”,开发出名为“风险、危害和经济价值评估(Risk,HazardandValueEvaluation)”的方法。美国消防局于2001年11月19日了该方案,这是一个计算机软件系统,包含了多种表格、公式、数据库、数据分析方法,主要用于采集相关的信息和数据,以确定和评估辖区内火灾及相关风险情况,供地方公共安全政策决策者使用,有助于消防机构和辖区决策者针对其消防及应急救援部门的需求做出客观的、可量化的决策,更加充分地体现了把消防力量布署与社区火灾风险相结合的原则。
该方法的要点集中于两个方面:1、各种建筑场所火灾隐患评估。其目的是收集各种数据元素,这些数据能够通过高度认可的量度方法,以便提供客观的、定量的决策指导。其中的分值分配系统共包括6类数据元素:建筑设施、建筑物、生命安全、供水需求、经济价值。2、社区人口统计信息。用于收集辖区年度收集的相关数据元素。包括居住人口、年均火灾损失总值、每1000人口中的消防员数目等数据元素。
该方法已在一些消防局的救援响应规划中得到应用。以苏福尔斯消防局为例,它利用该方法把其社区风险定义为高中低三类区域,进而再考察这些区域的火灾风险可能性和后果:高风险区域包括风险可能性和后果都很大的以及可能性低、后果大的区域,主要指人员密集的场所和经济利益较大的场所;中等风险区域是风险可能性大,后果小的区域,如居住区;低风险区域是风险可能性和后果都较低的区域,如绿地、水域等,然后再把这些在消防救援响应规划中体现出来。
(三)英国的“风险评估”方法[14]
英国Entec公司研发“消防风险评估工具箱”,解决了两个问题:一是评估方法的现实性,是否在一定的时限内能达到最初设定的目标。经过对环境、管理、海事安全等部门所使用的各种风险评估方法的进行广泛考察之后,研究人员认为如果对这些方法加以适当转换,就可以通过不同的方法对消防队应该接警响应的不同紧急情况进行评估。二是建立了表达社会对生命安全风险可接受程度的指标。
关键词:城市区域火灾风险评估
一、火灾风险评估的概念
过去,人们往往依靠经验和直观推断来做出决策。随着计算机容量不断扩大和模块技术的发展,风险评估(riskassessment)和风险管理(riskmanagement)技术作为复杂或重大事项决策的必要辅助手段,在过去的二、三十年间,在决策分析、管理科学、运营研究和系统安全等领域得到了广泛的认知和应用[1]。
通常认为风险(risk)的定义为:能够对研究对象产生影响的事件发生的机会,它通过后果和可能性这两个方面来具体体现。风险概念中包括三个因素:对可能发生的事件的认知;该事件发生的可能性;发生的后果[2]。因而,火灾风险(firerisk)包含火灾危险性(发生火灾的可能性)和火灾危害性(一旦发生火灾可能造成的后果)双重含义[3]。
现在,在文献中可以看到的与“火灾风险评估”相关的术语有fireriskanalysis,fireriskestimation,fireriskevaluation,fireriskassessment等,但基本上火灾风险评估都是指:在火灾风险分析的基础上对火灾风险进行估算,通过对所选择的风险抵御措施进行评估,把所收集和估算的数据转化为准确的结论的过程。火灾风险评估与火灾模拟、火灾风险管理和消防工程之间有密切关系,为其提供定性和定量的分析方法,简单地如消防安全设施检查表,复杂的就会涉及到概率分析,在应用方面针对的风险目标的性质和分析人员的经验有各种变化[4]。
较多的人倾向于从工程角度来定义火灾危害性(firehazard)和火灾风险(firerisk)。火灾危害性指:凡是根据已有的资料认为能引起火灾或爆炸,或是能为火灾的强度增大或蔓延持续提供燃料,即对人员或财产安全造成威胁的任何情况、工艺过程、材料或形势。火灾危害性分析在不同的情况下有不同的针对性,目的是确定在一定的条件下有可能发生的可预见性后果。这种设定的条件称为火灾场景,包括建筑物中房间的布局、建材、装修材料及家具、居住者的特征等与相关后果有关的各种具体信息。目前在确定后果方面的趋势是尽可能地利用各种火灾模式,辅以专家判断。此时,危害性分析可以看作是风险评估的一个构成元素,即风险评估是对危害发生的可能性进行权衡的一系列危害性分析。
从系统分析的角度来看,风险具有系统特性和动态特性。风险实际上并非某一单一实体或事物的固有特性,而是属于一个系统的特性。若系统发生变化,很容易就会使事先对风险所做的估算随之发生变化。火灾风险评估模式包括:系统认定,即明确所要评估的具体系统并定义出风险抵御措施的过程;风险估算,即设定关于火灾的发生几率和严重后果及其伴随的不确定性的衡量标准或尺度,计算和量化系统中的指标的过程;风险评估,对该标准或尺度进行分析和估算,确定某一特定风险值的重要性或某一特定风险发生变化的权重[5]。
二、城市区域火灾风险评估的意义及发展概况
在消防方面,随着人们安全意识的提高和建筑设计性能化的发展,对建筑工程的安全评估日益受到重视,比如美国消防协会制定的“NFPA101生命安全法规”是一部关注火灾中的人员安全的消防法规,与之同源的“NFPA101A确保生命安全的选择性方法指南”,分别针对医护场所、监禁场所、办公场所等,给出了一系列安全评估方法,多应用于建筑工程的安全性评估方面[6]。
目前,我国在火灾风险评价方面的研究,大部分是以某一企业,或某一特定建筑物为对象的小系统。例如,由武警学院承担的国家“九五”科技攻关项目“石化企业消防安全评价方法及软件开发研究”,以“石油化工企业防火设计规范”等消防规范和德尔菲专家调查法为基础,设计了石化企业消防安全评价的指标体系,利用层次分析法和道化指数法确定了各指标的权重,采用线性加权模型得出炼油厂的消防安全评价结果[7]。以某一特定建筑物为对象的火灾风险评价也比较多,如中国矿业大学周心权教授,在分析建筑火灾发生原因的基础上,建立了建筑火灾风险评估因素集,并运用模糊评价法对我国的高层民用建筑进行了消防安全评价[8]。
与上述的安全评估不同,城市区域的火灾风险评估的目的是根据不同的火灾风险级别,配置消防救援力量,指导城市消防系统改造,指导城市消防规划。对已建成的城市区域的火灾风险评估必须考虑许多因素,即城市火灾危险性评价指标体系,包括区域内所存在的对生命安全造成危险的情况、火灾频率、气候条件、人口统计等因素,进而评价社区的消防部署和消防能力等抵御风险的因素。除此之外,在评估过程中另一个重要的情况是要关注社区从财政及其他方面为消防规划中所要求的总体消防水平提供支持的能力和意愿。随着城市规模扩大、综合功能增强,在居住区商贸中心、医院、学校、和护理场所增多,评估方法还会相应的改变。现有的城市区域火灾风险评估方法主要出于以下两个目的:
(一)用于保险目的
在火灾保险方面的应用的典型事例为美国保险管理处ISO(InsuranceServicesOffice,ISO)的城市火灾分级法,在美国已经被视为指导社区政府部门对其火灾抵御能力和实际情况进行分类和自我评估的良好方法。ISO方法把社区消防状况分为10个等级,10级最差,1级最好。
ISO是按照一套统一的指标来对每个社区的客观存在的灭火能力进行评估,确定该社区的公共消防级别,这套指标来自于由美国消防协会和美国自来水公司协会所制定的各种国家规范。ISO对城市消防的分级方法主要体现在它的“市政消防分级表(CommercialFireRatingSchedule,CFRS)”上。CFRS把建筑结构、用途、防火间距与公共消防情况(用公共消防分级数目表达)相关联,再以统计数据加以调节后,来确定相应的火险费用。ISO级别仅被保险公司用作确定火险费用的一个成分。ISO分级系统虽然无法反映出消防组织的其他应急救援能力,但实际上也常用于各个区域的公共灭火力量的确定。
市政消防分级表从1974年开始使用,主要考察某城市区域的7个指标情况:供水、消防队、火灾报警、建筑法规、电气法规、消防法规、气候条件。随着技术进步,该表也不断改进。1980年版抽取了CFRS中对公共消防分级的方法,给出了修订后的灭火力量等级表,指标只包括前3项。被删除的指标或者确少区分度,或者在全市范围内进行评估时太过于主观,而且74表格中包含许多评估标准是具体的规定,如果某一社区的情况没有满足这些规定,则归属为差额分,规定降低了表格可使用的弹性范围,无法正确评估情况和技术的变化。故而ISO分级表被视为越来越“性能化”[9]。
(二)用于消防力量的部署
当今的消防组织和地方政府要担负日益加重的安全责任,面对来自公众的对抵御各种风险的更多的期望,以及调整消防机构人员、设备及其他预算方面的压力,迫切需要确认某一给定辖区内的具体风险和危险的等级。
具体地说,城市区域风险评估在消防方面的目的就是:使公众和消防员的生命、财产的预期风险水平与消防安全设施以及火灾和其他应急救援力量的种类和部署达到最佳平衡。
关于火灾风险对于灭火救援力量的影响,美国消防界对此的关注可以说几经反复,其间美国消防学院、NFPA等都做了许多工作。直至20世纪90年代,国际消防局长协会成立了由150名专业人士组成的国际消防组织资质认定委员会(theCommissionofFireAccreditationInternational,CFAI),经过9年的广泛工作,制定了“消防应急救援自我评估方法”,和制定标准的社区消防安全系统。另外,NFPA最终还制定了NFPA1710和1720两个指导消防力量部署的标准,分别帮助职业消防队和志愿消防队和改进为社区提供的消防救援的水平。根据NFPA最近的调查,NFPA1710将在全美30500个消防机构中的3300~3600个得到正式的应用,也推广到加拿大有些地区[10]。
英国对消防救援力量的部署标准是依据内政部批准的“风险指标”,把消防队的辖区划分为“A”、“B”、“C”、“D”四类区域,名为“风险分级”系统。其目的是对消防队的辖区进行风险评估,确定辖区内的各种风险区域,进而确定该风险区域发生火灾后应出动的消防车数量和消防响应时间。1995年,英国的审计委员会了一份题为“消防方针”的考察报告,认为这种方法没有充分考虑建筑设施的占用情况、社区的人口统计情况和社会经济因素,也没有把建筑物内的消防安全设施纳入考核范围。故而由审计委员会报告联合工作组与内政部的消防研究发展办公室一起,设立了一个研究项目。该项目的目的是开发一套供消防机构划分区域的风险等级,对包括灭火在内的所有应急救援力量进行部署,用于消防安全设施的规划并能解决上述问题的风险评估方法,再对开发出的方法进行测试。最后Entec公司开发出了计算软件,并于1999年4月以内政部的名义出台了“风险评估工具箱”测试版[11]。
三、国内外近期的城市区域火灾风险评估方法
(一)国内的城市区域火灾风险评估方法
张一先等采用指数法对苏州古城区的火灾危险性进行分级[15],该方法的指标体系考虑了数量危险性,着火危险性,人员财产损失严重度,消防能力这四个因素。1995年李杰等在建立火灾平均发生率与城市人口密度﹑城区面积﹑建筑面积间的统计关系基础上,选取建筑面积为主导参量,建立了以建筑面积为单一因子的城市火灾危险评价公式[12]。李华军[16]等在1995年提出了城市火灾危险性评价指标体系,该体系中城市火灾危险性评价由危害度﹑危险度和安全度三个指标组成,用以评价现实的风险,不能用来指导城市消防规划。
(二)美国的“风险、危害和经济价值评估”方法[13]
美国国家消防局与CFAI于1999年一起,在“消防局自我评估”及“消防安全标准”的工作的基础上,更突出强调了“火灾科学”的“科学性”,开发出名为“风险、危害和经济价值评估(Risk,HazardandValueEvaluation)”的方法。美国消防局于2001年11月19日了该方案,这是一个计算机软件系统,包含了多种表格、公式、数据库、数据分析方法,主要用于采集相关的信息和数据,以确定和评估辖区内火灾及相关风险情况,供地方公共安全政策决策者使用,有助于消防机构和辖区决策者针对其消防及应急救援部门的需求做出客观的、可量化的决策,更加充分地体现了把消防力量布署与社区火灾风险相结合的原则。
该方法的要点集中于两个方面:1、各种建筑场所火灾隐患评估。其目的是收集各种数据元素,这些数据能够通过高度认可的量度方法,以便提供客观的、定量的决策指导。其中的分值分配系统共包括6类数据元素:建筑设施、建筑物、生命安全、供水需求、经济价值。2、社区人口统计信息。用于收集辖区年度收集的相关数据元素。包括居住人口、年均火灾损失总值、每1000人口中的消防员数目等数据元素。
该方法已在一些消防局的救援响应规划中得到应用。以苏福尔斯消防局为例,它利用该方法把其社区风险定义为高中低三类区域,进而再考察这些区域的火灾风险可能性和后果:高风险区域包括风险可能性和后果都很大的以及可能性低、后果大的区域,主要指人员密集的场所和经济利益较大的场所;中等风险区域是风险可能性大,后果小的区域,如居住区;低风险区域是风险可能性和后果都较低的区域,如绿地、水域等,然后再把这些在消防救援响应规划中体现出来。
(三)英国的“风险评估”方法[14]
中图分类号:P429 文献标识码:A 文章编号:1671-7597(2014)10-0197-01
1 气象灾害风险评估定义与意义
1)定义。气象灾害风险评估是根据规划、建设项目所在地的气象要素空间、时间分布特征及其衍生灾害特征,结合现场实际情况,对各类气象灾害可能导致的人身财产损失、社会影响危害等进行综合风险计算分析,为规划建设项目的选址、功能布局、气象灾害防护等级与措施、应对灾害事故方案等方面提出建设性意见的一种评价方法。
2)意义。开展工程建设项目的气象灾害风险评估工作可以有效避免或减轻气象灾害造成的损失,从而有效地保障人们生命财产安全,并有效提高工程建设项目的防灾减灾能力。防御气象灾害一直是国家公共安全工作的重要课题之一,因此开展气象灾害风险评估是气象部门履行政府社会化管理和公共服务职能的重要体现。
2 吉林市开展评估的必要性
1)吉林市地处长白山向松嫩平原的过渡地带,属温带大陆性季风气候,地形复杂,山区、半山区、丘陵、平原、盆地、谷地和湖泊交错分布,气候多样,气象灾害发生频繁,气象灾害风险评估尤为重要。
2)贯彻国家地方法律法规的规定要求。《气象灾害防御条例》《吉林省气象条例》《吉林省气象灾害防御条例》及《吉林市气象灾害防御条例》从国家法律到地方性法规分别规定了建设项目应当充分全面地考虑其在气候方面的可行性和可能受到的气象灾害风险性,尽力避免、减轻气象灾害的影响。吉林市的气象灾害风险评估是贯彻国家法律法规履行部门职能的必然要求。
3 评估现状
吉林市的气象灾害风险评估工作开展于2012年,是由雷电灾害风险评估发展而来,现已形成了以雷电、暴雨、暴雪、大风、大雾、冰雹、高温、严寒等吉林市主要气象灾害对项目可能造成的风险评估。评估范围涉及有大型建设项目、爆炸火灾危险环境、普通住宅、重点工程、人员密集场所等新建、改建及扩建项目,至今已完成了百余个项目的评估。
4 评估报告内容与地位
4.1 评估报告的内容
1)规划或者建设项目概况。根据发改立项确认书、规划建设许可证等相关证件及风险评估现场勘查情况综合得出评估对象概况。
2)气象资料来源及其代表性、可靠性说明。评估使用经省气象主管机构审查通过的气象资料,吉林市城郊气象站因有较长的观测记录,在资料年代和气候环境上其均均有代表性,故选为评估中参证站。
3)吉林市气象灾害历史与现状分析及发展趋势预测。
4)规划、建设项目可能受到的雷电、暴雨、暴雪、大风、大雾、冰雹、高温、严寒等其中一种或多种极端气象灾害并存的危险程度评估,预防及减轻气象灾害影响的措施。
5)规划、建设项目选址地点的气候条件背景分析,极端气象灾害出现的概率,通过对暴雨、雪压、风压等不同重现期的计算得出安全有效、经济合理的设计方案及防灾减灾措施。
6)进行气象灾害风险评估的规划或者建设项目的评估结论及建议,提出应对气象灾害,预防或者减轻影响的意见和建议。
7)其他有关内容。关于评估报告的说明、结束语及开展气象灾害风险评估工作的法律依据等。
4.2 评估报告的地位
气象灾害风险评估结论及建议作为项目建设设计方案的重要依据,并已纳入政府行为,成为建设项目立项阶段行政审批中非行政许可审查的必备要件。
5 几点建议
1)细化评估范围。作为本地化法规,《吉林省气候可行性论证若干规定》及《吉林省气象灾害防御条例》(2013年11月1日起施行)虽都规定了与气候条件密切相关的国家重点建设工程、重大区域性经济开发项目及城市规划、气候资源开发利用项目等应当由气象主管机构组织进行气候可行性论证,但《吉林省气候可行性论证若干规定》也同时规定了气候可行性论证项目的范围,即由县级以上气象主管机构与当地发改委、住建、交通运输以及其他相关部门依法确定。目前吉林市的气象灾害风险评估针对的是所有新、改、扩建建筑物,不区分项目大小及性质,这样容易造成受气象灾害影响较小的小型建设项目对评估工作的错误认识。
2)充分利用气象数据。目前所利用气象台站多年观测记录多是进行气候分析统计及气象极值出现概率统计,应加入闪电定位数据、大气电场及卫星雷达产品的使用,充分体现出气象数据的全面性及科学性。
3)完善丰富评估方法。目前尚未出台气象灾害风险评估方面的技术规范,开展评估只针对规划或建设项目整体,缺乏项目分区评估,如一建设项目内部各个单元的自身参数及周边环境取值不尽相同,所面临的风险值是不同的,相应评估的技术结论意见也不同。
4)建立气象灾害数据库。气象相关部门应当对气象灾害的种类及强度、出现次数和造成损失等情况开展普查,建立完备的气象灾害数据库,使气象灾害风险评估工作能够准确地按照气象灾害的种类和分区进行。
5)提出针对性的评估建议。针对不同的项目,选择其面临的主要气象灾害种类进行评估,选择符合其特性的评估方法和标准,并应根据评估对象特性提出有针对性的评估建议。
6)加强相关部门交流协作。气象灾害风险评估工作是一项技术性很强的工作,涉及的知识面非常广,应加强与城市建设、规划、国土及水利等部门的学习交流,使得评估报告更具科学性。
吉林市的气象灾害风险评估工作开展较早,发展较快,目前已形成了成熟的操作流程,原始气象数据详实可靠,内容全面,评估思路清晰,计算分析精密,结论科学合理的评估报告模板。但评估工作中仍存在一些薄弱的环节,需要通过不断的发展完善来保障评估工作的健康有序开展,为吉林市防灾减灾工作,保障人民的福祉安康作出积极地贡献。
中图分类号:P429 文献标识码:A 文章编号:1672-3791(2012)08(c)-0225-01
雷电是发生在因强对流天气而形成的雷雨云层间和雷雨层与大地之间强烈瞬间放电现象。雷电一般产生于对流发展旺盛的积雨云中,伴有强烈的闪光和隆隆的雷声的同时,还常伴有强烈的阵风和暴雨,有时还伴有冰雹和龙卷风。雷电往往对人员、牲畜、建筑物、电子电器设备等带来损害,甚至引起火灾和爆炸事件。特别是近年来由于高层建筑的不断增多和大量现代化的办公设备投入使用,雷电对人们生产生活的危害越来越大,雷电灾害造成的损失也愈来愈严重。加强雷击防范,对雷电灾害进行风险评估,已变得越来越重要。随着经济的快速向前发展,城市化进程的加快,关系着国计民生重大工程项目的增多,提高重大工程项目防御自然灾害的能力,保证其安全正常运转,是开展雷电灾害风险评估工作的终极目的。无数事例足以证明雷电灾害风险评估工作十分重要,它对完善防雷减灾体系、促进国民经济健康、有序发展具有良好的推动作用。
1 雷电灾害的危害
自然界的雷击分为直击雷、感应雷。直击雷是雷雨云对大地和建筑物的放电现象。它以强大的冲击电流、炽热的高温、猛烈的冲击波、强烈的电磁辐射损坏放电通道上的建筑物、输电线、室外电子设备、击死击伤人、畜等造成局部财产损失和人畜伤亡。而感应雷是由于雷云层之间和雷云与大地之间放电时,在放电通道周围产生的电磁感应、雷电电磁脉冲辐射以及雷云电场的静电感应、使建筑物上的金属部件、管道、钢筋、和由室外进入室内的电源线、信号传输线、天馈线等感应的雷电高电压,通过这些线路以及进入室内的管道、电缆、走线桥架等引入室内造成放电,损坏电子、微电子设备。直击雷和感应雷的入侵通道不同,其次是由于被保护的系统屏蔽差、没有采取等电位连接措施、综合布线不合理、接地不规范、没有安装浪涌保护器(SPD)或安装的浪涌保护器不符合相关规范的要求等,使雷电感应高电压及雷电电磁脉冲入侵概率大大提高,损坏相应的电子、电气设备。
2 雷电灾害风险评估的重要性
灾害风险评估可以从广义与狭义两方面来理解。广义的灾害风险评估,是对孕灾环境、致灾因子、承灾体分别进行风险评估的基础上,对灾害系统进行风险评估;狭义的风险评估则主要是针对致灾因子进行风险评估,即从对危险的识辨,到对危险性的认识,进而开展风险评估,通常是对致灾因子及其可能造成的灾情之超越概率的估算。雷电灾害风险评估属于灾害评估的一种。雷电灾害风险定义为由雷击导致的建筑物及公共设施内的可能平均年度损失。通过对评估项目现场的详细勘察,采集相关数据,结合有关气象资料及设计图纸,依据国标规范对数据具体分析,计算出精确的评估结果,并提出相应的雷电防护设计指导意见。雷电灾害风险评估应该成为开展综合防雷的必经程序,是实现科学防雷、全面防雷的基础和前提。
通过雷电灾害风险评估,可以达到:(1)更全面反映评估对象的防雷现状。准确估算建筑物遭受雷击的概率;当邻近建筑物遭受雷击时,对所评估对象的间接雷击损害风险;雷电波通过服务设施侵入时,对所评估对象的雷击损害风险。(2)知道可能遭受雷击的主要风险分量,提前做好相应防护措施。对防雷对象所在地的地理、地质、气象、环境等条件作充分调查勘测,并结合详细的设计图纸(包括土建、设备、初步设计等分册)取得可靠数据后,把现场勘查采集到的数据,经科学的计算和处理,提供最翔实的评估结果,有针对性采取相应雷电防护措施,消除安全隐患。(3)更合理地采取防雷措施,避免因盲目而造成浪费。从经济价值上知道雷电防护的必要与否,并采取恰当的雷电防护措施,既达到雷电防护,又节约防护成本。
3 雷电灾害风险评估存在的问题及建议
3.1 缺乏配套的实施办法或细则
开展雷电灾害风险评估是社会防灾减灾的一部分,是防御和减轻气象灾害有效手段之一。在施行的《气象法》、中国气象局的《防雷减灾管理办法》,均对气象灾害的风险评估做出了规定,但缺乏配套的实施办法或细则。雷电灾害风险评估作为气象灾害风险评估的组成部分,实施过程中上同样缺乏有力的政策文件支撑,给雷电灾害风险评估管理、操作带来一定的难度。建议在“宏观政策”上狠下功夫,把握雷电风险评估工作的发展思路,不断推动雷电灾害风险评估工作更好更快发展。
3.2 闪电定位资料应用缺乏规范指导和约束