故障检测与诊断范文

时间:2023-06-08 09:09:09

引言:寻求写作上的突破?我们特意为您精选了4篇故障检测与诊断范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

故障检测与诊断

篇1

一、概述

现代化工业技术发展突飞猛进,现代工业自动化程度越来越高,系统规模也越来越大,简单控制系统已经不能达到工业生成的需求,大规模、综合性、复杂的自动化系统运用越来越广[1]。自动化设备和系统结构的日益复杂和集成化,使得系统发生故障的机率也增加,故障的产生会毁坏设备,影响系统正常运转,甚至造成人员伤亡。国内外由于设备故障所引起的设备损坏、锅炉爆炸、道路塌陷,不仅造成经济损失也造成人员伤亡,社会影响及其恶劣。为了达到以人为本同时维护经济的目的,可以加强系统的稳定性、可靠性、鲁棒性和安全性,但任何设备都不可能无限期使用,这就需要防患于未然,因此故障检测技术应运而生。

二、故障检测重要性

故障检测技术是是一门多学科融合交叉性学科[1],如:信号提取则依赖于传感器及检测技术;信号降噪离不开信号处理技术;状态估计和参数估计方法以系统辨识理论为基础;鲁棒故障诊断涉及到鲁棒控制理论知识;此外数值分析、概率与数理统计等基础学科也是故障检查和诊断不可缺少的方法。多门学科知识的支撑确保了故障诊断技术的迅速发展,在工业领域也应用广泛,如化工生产、冶金工业、电力系统、航空航天、机器人等生产的各个领域。

三、故障检测技术经济效益

数据显示[2],故障检测技术与经济发展息息相关,对故障检测技术的研究与发展越来越多,在工业生产中也得到了应用和推广。通过故障诊断技术的推广,大大降低了设备维修费用,各国在故障诊断技术上的投入也逐渐增加。日本对故障检测与诊断技术的投入占其生产成本的5.6%,德国和美国所占比例分别为 9.4%和7.2%。在冶金工业生产中,我国每年承担的设备维修的费用就高达 250 亿元,金额庞大,然而如果应用故障检测与诊断技术,每年可以减少事故发生率同时也能节约 10%~30%的维修费用。因此故障检测能带来经济效益,不容小觑。

四、故障检测的分析方法

(一)状态估计法

状态估计法一般分为两步:首先求取残差,再从残差数据中提取故障特征从而实现故障诊断。目前状态估计法的故障检测诊断方法方兴未艾,如H2估计[3]、鲁棒故障检测与反馈控制的最优集成设计方法[4]等。

(二)等价空间法

低阶的等价向量在实现过程中较易实现但性能不佳,而高阶的等价向量能够得到较理想的性能参数,但以较大的计算量和计算时间为代价。为了解决上述问题,文献[5]采用窄带IIR滤波器运用于等价空间法中,在几乎不改变计算量的前提下,提高系统检测性能,但此方法会产生较高的漏报率。

(三)参数估计法

参数估计法是因为模型参数和相应的物理参数的特点不同,分别统计这两类参数的变化特性来分析和确定故障。物理参数携带重要的信息,具有物理含义,因此,可以分析物理参数的特点,如果异常可以确定故障位置。与状态估计法比较,参数估计法能更有效的故障确定。参数估计法研究越来越丰富,故障诊断方法新成果倍出[6]。

(四)热门的分析方法

(1)小波分析技术

小波分析由于具有时频域局部化特性[7],可任意调节时间窗和频率窗,因此突变信号能够检测出来。但是,小波基选取一直是在小波信号分析没能解决的问题,也是研究的一个难点,针对同一信号采用不同的小波基进行分析其分析结果往往不同。通过小波分析可以检测信号的奇异点,在信号降噪和信号分析中应用广泛。小波变换是结合时域和频域的分析方法,特征提取方便,在故障检测中应用较广。小波分析对单一的故障源检测效果明显,但较复杂情况,如多故障源效果不佳。

(2)神经网络技术

神经网络技术是根据模式识别理论,采用分类器理论,用神经网络进行故障分析和诊断。采用人工神经元网络进行故障诊断一般有四种方式[8]:神经元网络计算残差;神经元网络分析残差;神经元网络进一步分析确定故障点;神经元网络自学习过程进行自适应误差补偿。

(3)小波包分析和神经网络结合技术

用有限元法建立系统动力学模型[9],再根据系统采集信号进行小波包分解,建立基于小波包能量谱指标。把信号指标作为改进BP神经网络的输入特征参数,用分步识别方法进行识别。

(五)展望

故障检测技术运用广泛,用单一方法进行处理存在准确度和精确度的问题,因此可以考虑多学科技术结合的方法,进一步提高准确度和精确度。

参考文献:

[1] 周东华, 胡艳艳. 动态系统的故障诊断技术. 自动化学报. 2009, 35(6).

[2] 周福娜. 基于统计特征提取的多故障诊断方法及应用.[博士学位论文].上海:上海海事大学, 2009.

[3] Fadali M S, Colaneri P, Nel M. H2robust fault estimation for periodic systems[C]MProc. American Control Conference,Denver, Colorado,2003: 2973-2978.

[4]钟麦英,张承慧, Ding S X.一种鲁棒故障检测与反馈控制的最优集成设计方法[J].自动化学报, 2004, 30(2): 294-299.

[5] Ye H, Wang G Z, Ding S X. An IIR filter based parity space approach for fault detection[C] Proc. the15th IFAC World Congress, Barcelona,2002.

[6] Abidin M S Z, Yusof R, Kahlid M, et al. Application of a model based fault detection and diagnosis using parameter estimation and fuzzy inference to a DC-servomotor[C] Proc.2002 IEEE International Symposium on Intelligent Control, Vancouver, Canada,2002:783-788.

篇2

中图分类号[U8] 文献标识码A 文章编号 1674-6708(2011)50-0144-01

机场助航灯光系统是飞机飞行安全的保障,是机场非常重要的一个目视助航设备。在一个中型的机场中,其助航灯光包括了跑道中线灯、跑道边灯、进近灯、末端等、顺序闪光灯、坡度灯等共计上千盏灯。机场助航灯光系统保障着飞机的安全起降,安全问题不容许丝毫的差错,助航灯光系统是否完好无损十分关键。在实际机场应用中,如何保证助航灯光系统的正常工作,如何及时的检测助航灯光系统的故障,也就变成保障安全的大问题。助航灯光系统中自动监视功能就可以很好的满足这一要求。我国目前较大规模机场使用的都是国外的助航灯光巡检系统,自己在助航灯光巡检监控系统方面的研究还没能形成成熟的系统,不能在实际中应用。不断学习,努力探索,寻求自己的助航灯光故障诊断系统,解决国内机场的燃眉之急。

1 助航灯光故障检测

助航灯光故障的检测主要通过自动监控,实行远程巡检,它的主要硬件设计包括了单片机、过零检测模块、模数转换模块、调制及隔离变压器模块、晶闸管驱动模块、进水检测模块、串口通信模块、单片机模块等。

1.1 灯暗检测和灯泡开路检测

灯暗检测实际上就是对灯电压进行检测,检测灯泡两端的电压。检测灯电压可以判断灯泡的输出功率,在使用6.6:6.6的隔离变压器时,一次测电流和二次侧电流是相同的。灯泡两端的电压反应了灯泡输出功率的大小,是判断灯暗的一个替代参数。灯暗的原因要么是灯泡经过长时间的使用,老化使得电阻减少,电压降低,从而导致灯暗。要么是灯泡中的灯丝出现靠丝现象,使得线圈被短路减小电阻,降低两端电压,减少功率,导致灯泡发暗。而灯泡开路检测则是对灯泡电流大小的检测。一个比较稳定的干路电流在隔离变压器的一次侧流过时,如果二次侧有正常的负载也会流过一个比较稳定的电流。当开灯光级设置越低时,电流越小;或则当负载的电阻越小时,电流越大。灯泡在使用过程中,新旧程度对电流的影响不大。而灯泡处于开路时,其负载电阻无穷大,电流就会急剧减小。在这一特点作用下,二次侧电压升高达到一定的数值时,通过对电路电压进行采用就可以判别灯泡是否断芯。

1.2 上行信号的调制

上行信号是指远程巡检单元向主控制单元上传的信息,这是灯光巡检中远程巡检单元和主控制单元之间通过调解和调制进行的有效通信中的一个方向。调制信号频率是工频50Hz,所以调制信号可以跨过隔离变压器,然后上传回主控单元。

1.3 上行信号的解调

经过电压互感器采样,然后经信号调理电路把调光器回路电压分为两路,一路过零检测电路,进入单片机;另一路经差分放大器处理,然后进行模数变换。进行采样12次,时间在2ms内。12次数据分为4组值,每组数据求一个平均值。所得的3个平均值分别与单片机中预先计算好并存储起来的对应数据进行比较,有调制的信号,其数值相比没有调制的信号明显要小。在差处理下,就可以得出“1”、“0”信息。

2 助航灯光故障诊断系统设计

2.1 主控单元解调程序

主控单元过零检测电路实时检测正过零点后,经过P3.3通道信号向单片机请求中断,然后执行中断程序。单片机读取转换值,2ms内进行采样12次,所得到的结果分成每组4个数据的3组,每组数据求其平均值,然后把求得的平均值与预先计算好并存储好的数值进行做差处理,如果差值大于设定值则为“1”,否则为“0”。重复过程3次,如果得到3个结果均为“0”,则说明没有下达命令;如果得到3个结果均为“1”,则说明肯定有下达命令;如果得到结果中有一个为“1”,则返回,要求上位机重新发送命令。

2.2 远程巡检单元调制程序

由P1.0和P1.2发送信号,经P3.7通道把正过零点后信号送入单片机,触发晶闸管开关。由于电压上加载了调制信号,所以电压输出就产生了畸变。

2.3 远程巡检单元故障定位程序

一个周期定位50ms,每个周期采样10次,每次采样之间间隔10ms,结果存放在寄存器中。每个周期采样的10次结果计算平均值,然后与设定的值作比较。在比较中,采样结果大于或则等于设定值,则灯已经损坏。

3 实际应用中的实验与结果

选择机场进近灯做灯泡断丝实验,结果实验的6盏灯判断全部正确,没有一盏误报。而灯暗实验中,电压波动率在5%以下,也基本能满足实际应用的要求。进水实验中,通过实验人员的实地检查,检测到进水的隔离变压器桶,其进水深度确实达到了设定值,而没有检测到进水的隔离变压器桶,则均未发现进水现象。以上实验结果表明,助航灯光故障检测准确度高,传输数据准确,电源足够稳定,操作灵活方便,在实际机场的应用中,能基本满足助航灯光故障检测与诊断的要求。

4 讨论

当然,笔者仅仅是从助航灯光故障检测的基本原理出发,浅显探析了其故障检测的方面。而实际应用中的助航灯光故障检测,要复杂多样得多,需要研究人员进一步探索,进一步完善才能达到实际应用的客观要求。而助航灯光故障诊断系统的设计,笔者更是仅仅点出了其大致的工作原理,要达到实际设计应用的要求,还需要全面细化,落实到细节,以及具体程序的编写和完善工作。

篇3

中图分类号:V647 文献标识码:A DOI:10.16400/ki.kjdkz.2016.10.072

Abstract Aerospace fault diagnosis is the key to ensure the space work smoothly, this paper starts from the development of aerospace fault diagnosis and fault tolerant processing technology, the shortcomings of the aerospace fault detection in the presence of are analyzed, and combined with the specific problems of fault-tolerant processing technology design, is very important to enhance the level of fault treatment in spacecraft.

Keywords aerospace fault; detection; fault tolerant processing technique

0 引言

自从1903年俄国科学家齐奥尔科夫斯基发表《用喷气装置探测宇宙空间》,并从理论上论证采用多级火箭可以克服地球引力进入太空之后,特别是在哥达德、奥伯特、布劳恩、科罗列夫等一代科学巨匠的不懈努力之下,飞向太空终于在20世纪中叶从梦想变成了现实。

1 航天器故障的主要特点

1.1 航天器故障的危害性较大

航天器无论质量还是体积都足以对人的安全构成较大的危害。因此,航天器如果结构较为复杂,则很有可能在使用的过程中产生质量层面的问题。此外,航天器的元件比较容易产生质量故障。因此,航天器对精密仪器的质量要求较高,如果航天器在精密性仪器产生质量方面的问题,将会使航天器难以根据固定的模式进行故障的处理,也无法保证航天器可以提前结束对故障性因素的处理。还有一些航天器在实施任务处理的过程中,并不能保证当前的实用技术可以适应系统的技术处理方案,使得一些航天器在应用的过程中可能产生坠亡的问题,导致航天器的应用过程出现一系列的经济损失。航天器如果产生较为严重的质量问题,不仅会在问题的发生阶段出现质量问题,也很有可能影响到后来的技术研制工作的计划,使航天器的后续使用难以得到有效的保证。

1.2 航天器运行环境较为特殊

航天器在使用的过程中,难以保证具备足够的使用性能。因此,必须随时对航天器应用过程中的技术细节加以调整,使航天器具备充分适应运行环境的特点。此外,要结合航天器使用过程中的运行轨道特点,对全部的空间环境加以分析,使航天器可以在空间环境的带动之下进行运行性能的有效控制,保证航天器可以在操作的过程中凭借动力因素的特点加以技术性处理。航天器的运行还受到温度因素的影响较多。因此,航天器必须能够有效的针对噪音问题进行运行环境的适应,而技术应用过程中的电磁干扰等问题很有可能在外部因素的影响下发生变化,最终造成航天器的运行环境发生改变。航天器在应用的过程中,所处的整体外部环境与航天器生产过程中的日常环境并不一致,因此,航天器很有可能在元器件的质量发生问题的情况下受到零部件质量问题的干扰,造成零部件难以在实验过程中正常运行,形成较为强烈的质量问题。

1.3 航天器本身资源有限

航天器在运行的过程中,必须使用计算机系统对诸多资源因素加以研究和处理,因此,所有的计算机配置工作,都必须保证在能源处理过程中实现配置方案的优化。除此之外,必须结合全部的能源应用特点,对燃料质量控制过程中的故障分析机制加以研究,使全部的故障诊断工作都可以在容错技术的有效支持之下进行故障诊断机制的重构。此外,必须结合故障诊断技术的有效性分析结果,对全部的故障诊断机制加以研究,因此,航天器在诸多事务共同影响之下,难以预留足够的空间用来应对航天器的资源处理问题,也难以保证适应航天器运行模式的变化问题。还有一些航天器的资源储藏工作必须保证与航天器的运行技术相适应,因此,航天器在进行运行可靠性分析的过程中,必须使全部的应用技术都能与资源储藏现状相适应,这就使得航天器的资源储藏问题难以有效的保证与航天器的其它飞行性任务相适应。

2 航天器故障检测工作中存在的问题

2.1 信息资源融合角度的故障处理问题

目前,一些航天器在故障处理机制的设计过程中,并没有充分按照传感器的运行方式进行惯性因素的设计,使得一些传感器只能在技术层面上应用较差处理的方式进行信息资源的处置,无法从根本上适应传感器的应用技术要求。传感器的信息资源是保证航天器应用质量的关键。但是,一些传感器由于信息处理领域存在不确定性问题,难以保证传感器对诸多有效的信息资源实施完整的处理,也无法使传感器可以将信息资源以互补的形式完成设计,因此,必须通过互补性机制构建的方式进行传感器的不确定性因素的分析。但是,很多航天器在技术处理过程中,并不能从信息资源价值的角度实施航天器故障的有效分析,使得很多的航天器难以从故障处理有效性的角度进行航天器性能的控制,使得一些航天器只能简单的凭借传感器的基础性能进行故障处理机制的构建,难以保证航天器可以有效的整合全部信息资源的价值。还有一些航天器在处理故障因素的过程中,难以保证信息资源具备足够的有效性,使得信息系统无法完整的保证与信息利用机制相适应,造成很多信息资源的可信度难以得到充分的保障。

2.2 航天器闭环系统存在诊断技术问题

航天器在应用技术的选择方面,具备很强的复杂性,此外,航天器的控制系统不仅需要对常规的控制技术加以处理,还必须对航天器的全部组成构件加以研究。因此,所有的航天器都会在使用故障因素的影响下产生工作系统的紊乱。除此之外,必须对系统已经产生的故障进行分析,并对系统全部的运行故障进行关联机制的控制,使后续的系统运行活动可以在具备更强关联性因素的特点下进行故障处理机制的构建,确保故障能够在处理的过程中更加有效的同数据资源相适应。但是,一些航天器的避免系统并不能对诸多的航天器分支系统进行技术性处理,造成很多的航天器资源难以适应部件运行过程中的技术应用要求。还有一些航天器难以在使用的过程中对相关故障性因素实施处置,使得很多的部件运行程序难以在检测技术运行时间的有效控制下进行任务的处置,造成很多任务难以有效的凭借检测技术的应用特点进行测量机制的构建。还有一些航天器在闭环系统的质量诊断方面,并不能保证对闭环系统的全部的信息资源实施有效的采集处理,造成很多的闭环系统难以结合故障的具体存在特征进行信息检测机制的处理,最终导致很多的检测技术难以适应系统运行状态的控制要求。

2.3 模型诊断技术的应用不足

目前,很多航天器在实施诊断技术应用的过程中,都将硬件资源的质量控制作为工作的重点,这虽然能够保证诊断技术的应用可以增强航天器的技术处理质量,却容易导致很多的航天器无法在系统复杂性因素的影响下进行运行水平的提高。还有一些硬件资源在进行可靠性研究的过程中,并不能对已经产生的故障信息实施新型技术的重构,导致很多的信息资源无法应对现阶段的刚性需求。还有一些航天器必须对体积较大的液体燃料资源进行质量控制,导致很多的燃料处理程序难以适应动力基础的处理要求,虽然很多的模型诊断工作都可以适应燃料箱的技术应用特点,却难以充分保证所有的动力学模型都可以在航天器的质量控制过程中实施有效的技术性处理,也难以使全部的模型诊断技术可以在故障处理过程中实现诊断水平的提高。

3 航天故障诊断和容错处理技术的实践方案

3.1 运用信息融合技术实施故障诊断

首先,必须对航天器运行过程中的全部信息融合技术进行整合处理,使信息资源的控制工作可以在融合技术的有效支持之下实施传感器的质量控制。除此之外,必须对全部的传感器装置实施惯性因素的有效判断,以便传感器装置的诸多容错技术都可以在不同类型的传感器装置共同影响下实现容错技术的合理控制,提升传感器运行过程中的信息资源价值。在应用传感器对大量信息实施处置的过程中,必须保证所有的信息资源可以适应信息采集程序的要求,使全部的信息都可以在航天器运行过程中产生足够的互补性影响,确保所有的信息采集机制能适应资源互补性处理的要求。要加强对多种类型的传感器资源的关注,使传感器可以利用互补机制进行信息采集模式的适应,确保所有的信息资源都可以结合传感器应用程序的要求进行合理的分析机制的处理,切实保证传感器能够在有效的整合分析过程中实现信息资源处理质量的提高。

3.2 完善闭环系统质量控制机制

首先,必须加强对航天器运行过程中系统复杂性的关注,通过系统各类组成部件的有效分类管理,对航天器质量控制工作推进过程中的系统复杂性加以研究,使所有的系统质量控制工作都可以结合系统正常运行的技术性要求实施处置,以便系统可以有效的应对质量控制工作推进过程中的各项故障特点,并使全部的数据处理机制可以同数据运行的异常特点保持一致。在完成故障传播机制处理之后,必须对全部的系统运行质量关联性特点实施传播技术的处理,使得很多的故障性因素难以根据故障的实际特点对故障的实际呈现状态加以控制。因此,必须结合闭环控制技术的运行要求,对系统之间的各个组成部件是否具备足够的关联性加以研究,使后续的系统故障特点能够在传播模式的影响下得到更好的处理,保证数据资源的全部处置工作可以适应系统的关联性运行特点。

3.3 提升模型在航天器故障处理中的应用深度

首先,必须对航天器的所有组成材质进行质量可靠性分析,使后续的硬件资源可以结合系统的复杂性特点进行航天器的质量控制,保证航天器可以有效的增强全部的成本工作执行要求。其次,技术性因素的控制必须保证同成本控制的要求相适应。可以结合模型应用程序的特点,对故障诊断过程中的信息重构技术加以分析,使航天器的运行工作能够同全部的燃料装置形成结合,共同保证航天器装置可以在力学模型的技术指导下加以处置。

4 结论

容错技术和故障诊断技术是保证航天器运行质量的重要技术,深入地分析航天故障诊断技术的发展历程,并集合航天工作中的主要技术性问题进行容错处理技术的设计,能够很大程度上增强容错处理技术的实施质量。

参考文献

[1] 胡绍林,孙国基.基于系统仿真的故障检测与诊断技术[J].系统工程理论与实践,2014.21(6):8-14.

篇4

一、故障征兆的模拟检测与诊断

(1)振动法。当振动可能是引起故障的原因时,即可用振动法进行试验。基本方法如下。①连接器。在垂直和水平方向上轻轻摇动连接器。②配线。在垂直和水平方向上轻轻摆动配线。连接器的接头、支架和穿过开口的连接器体等部位的配线都应仔细检查。 ③零部件和传感器。用手轻拍装有传感器的零部件,检查是否失灵。

(2)加热法。如有些故障只在热车时出现,可能是由有关零部件或传感器受热而引起的。可用电吹风机或类似加热工具加热可能引起故障的零部件或传感器,加热后再检查是否出现故障。

(3)水淋法。当有些故障是在雨天或高湿度的环境下产生时,可以用水喷淋在车辆上,检查是否发生故障。

(4)电器全接通法。当怀疑故障可能是因用电负荷过大而引起时,可接通车上全部电气设备,检查是否发生故障。

二、利用简单仪表检测诊断

(1)用万用表检测诊断的一般原则。①除在测试过程中有特殊指明者外,不能用指针式万用表测试ECU和传感器,应使用高阻抗数字式万用表(内阻应不小于10kΩ)或汽车专用万用表。②首先检测熔丝、易熔线和接线端子(连接器)的状况,在排除这些部位的故障后再用万用表检测。③在测量电压时,点火开关应处于“ON”位置,蓄电池电压应不小于11V。④在用万用表检查防水型连接器时,取下防水套。表笔插入连接器检查时,不可对端子用力过大。⑤测量电阻时要在垂直和水平方向上轻轻摇动导线,以提高准确性。 ⑥检查线路断路故障时,应先脱开ECU和相应传感器的连接器,然后、测量连接器相应端子间的电阻,以确定是否有断路或接触不良故障。⑦检查线路搭铁短路故障时,应拆开线路两端的连接器,然后测量连接器被测端子与车身(搭铁)之间的电阻。电阻值大于1M时表明无故障。⑧在拆卸发动机电控系统线路之前,应首先切断电源,即将点火开关断开( OFF),拆下蓄电池负极搭铁线。⑨测量两个端子或两条线路间的电压时,应将万用表的两个表笔与被测的两个端子或两根导线接触;测量某个端子或某条线路的电压时,应将万用表的正表笔与被测的端子或线路接触,而将万用表的负表笔与地线接触。⑩检查端子、触点或导线等的导通性,是指检查端子、触点或导线是否通路。

(2)用万用表检测的基本操作方法。①电阻测量方法。将万用表置于电阻挡的适当位置并校零后,即可以测量电阻值。电控系统的元器件的技术状况,都可以用检测其电阻值的方法来判断。②直流电压测量的方法。将万用表选择在直流电压挡,将表笔接至被测两端。用测量电压的方法可以检查ECU所发出的各种控制信号电压、电路上各点的电压以及元器件的电压降。③断路(开路)检测方法。如果如图1所示的配线有断路故障,可用检查导通性或检查电压的方法来确定断路的部位。

a.检查导通性方法。首先脱开连接器A和C,测量它们之间的电阻值,如图2所示。若连接器A 端子1与连接器C端子1之间的电阻值为无穷大,则它们之间不导通(断路);若连接器A端子2与连接器C端子2之间电阻值为0,则它们之间导通(无断路)。

然后脱开连接器B,测量连接器A与B、B与C之间的电阻值。若连接器A端子l与连接器B端子1之间的电阻值为O,而连接器B端子l与连接器C端子1之间的电阻值为无穷大,则表明连接器A端子1与连接器B端子1之间导通,而连接器B端子l与连接器C端子1之间有断路故障存在。

b.检查电压方法。在ECU连接器端子加有电压的电路中,可以用检查电压的方法来检查断路故障,如图3所示。在各连接器接通的情况下,ECU输出端子电压为5V 的电路中,依次测量连接器A端子1、连接器B端子1、连接器C端子1与车身(搭铁)之间的电压,如果测得的电压值分别为5V、5V 和OV,则可判定在连接器B端子1与连接器C端子l之间的配线有断路故障存在。

④短路检查方法。如果配线短路搭铁,可通过检查配线与车身(搭铁)是否导通来判断短路部位,如图4所示。

三、利用故障自诊断系统检测诊断

友情链接