神经网络基本原理范文

时间:2023-06-11 08:13:01

引言:寻求写作上的突破?我们特意为您精选了4篇神经网络基本原理范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

篇1

中图分类号:TP183 文献标识码:A 文章编号:1009-3044(2013)14-3362-04

1 概述

数字识别在车辆牌照识别、银行支票识别和邮政储蓄票据识别等领域有着广泛的应用,因而成为研究人员近年来研究的一个焦点[1]。而人脑神经系统模型的建立为人工神经网络的产生提供了理论模型依据, 使其具有模拟人脑部分形象思维的能力[2],因而使其成为人工智能技术的重要组成部分和常用方法。人工神经网络由简单信息处理单元相互连接组成,通过简单处理单元间的相互作用来实现对其所接收信息的处理。而随着人工神经网络技术的快速发展,其为解决模式识别邻域的相关问题提供了新的解决思路和方法,其突出的优点在于它具有对接收信息可进行并行分布式处理能力和自我学习反馈能力,因而吸引了众多研究人员对其进行广泛和深入的研究。而误差反向传播网络(Back-Propagation),即BP神经网络,是一种典型的人工神经网络,它具有人工神经网络的所有优点,因而在众多技术邻域有着广泛的应用[3]。该文首先对BP神经网络的基本原理进行了详细介绍,在分析了其基本原理的基础上,针对数字识别问题,设计了一种利用BP神经网络技术进行数字识别的方法。经实验表明,该方法合理可行,且其识别效果正确有效。

2 相关原理与知识

由于本文针对数字识别问题,利用BP神经网络技术对其进行方法设计和实现,首先必须了解BP神经网络的基本原理,即了解其具体构成形式、模型分类和其功能特点。其次,在了解了BP神经网络基本原理的基础上,进一步了解其所处理数据的特点和组成形式,并根据处理数据的特点和其数据结构设计相应的数字识别方法。下面分别对它们进行详细的介绍。

2.1 BP神经网络基本原理

BP神经网络算法由数据信息流的前向计算,即正向信息流的正向传递,误差信息的反向回馈两个部分组成。当信息流进行正向传递时,其传递方向为从输入层到隐层再到输出层的顺序,器每层神经元所处的状态只会影响下一层神经元的状态。若在最后的输出层没有得到理想的输出信息,则应立即进入误差信息的反向回馈过程[6]。最终经过这两个过程的相互交替运行,同时在权向量空间使用误差函数梯度下降策略,动态迭代搜索得到一组权向量,使得该BP神经网络的误差函数值达到最小,从而完成对信息提取和记忆过程[7]。

2.2 BMP二值图像文件数据结构

由于本文处理的数据源为BMP二值图像,则必须了解其数据结构,才能对其进行进一步的识别方法设计。由数字图像处理基础知识可知,常见BMP二值图像文件的数据结构由以下三部分组成:(1)位图文件头,其包含了BMP二值图像的文件类型、文件大小和位图数据起始位置等信息;(2)位图信息头,它包含了BMP二值图像的位图宽度和高度、像素位数、压缩类型、位图分辨率和颜色定义等信息;(3)位图数据体,其记录了位图数据每一个像素点的像素值,记录顺序在扫描行内是从左到右,扫描行之间是从下到上。因此,根据BMP二值图像数据结构信息,读出所需要的图像数据,并对这些图像数据做进一步的处理。在本文给定的训练图像中,图像数据大小为80个字节,而图像数据体距离其文件头的偏移量为62个字节。但为了减少数据处理数量,该文在进行实验时直接使用位图数据体中的数据,没有通过读出位图文件头来得到位图数据体中的数据。

3 数字识别具体设计方法

由上文可知,该文使用数据源为图像大小为20*20的BMP二值图像,由于是对位图数据体的数据直接进行操作,因此省去了对图像其他数据结构数据的繁杂处理过程,将问题的核心转向BP神经网络的设计方法步骤。

4 实验结果

图4所示为BP神经网络训练及测试结果图。该文选择10个训练样本,通过实验结果可以看出,由这10个训练样本训练出来的BP神经网络对于训练样本中的图像数值识别率达100%,训练时间也比较短,其迭代次数大概为700次左右。对于一些含有噪声的图片,只要噪声系数小于0.85个字符,其数字识别率可达96%。

5 结束语

针对二值图像数字识别问题,该文在对BP神经网络的基础理论进行分析后,设计了一种基于BP神经网络的数字识别方法,并通过实验验证了该BP神经网络用于数字识别的可行性和有效性。而对于BP神经网络存在的收敛速度慢、易陷入局部最优和学习、记忆具有不稳定性等问题,还有待于对其进行一步研究。

参考文献:

[1] 韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006.

[2] 吕俊,张兴华.几种快速BP算法的比较研究[J].现代电子技术,2003,24(167):96-99.

[3] 陆琼瑜,童学锋.BP算法改进的研究[J].计算机工程与设计,2007(10):96-97.

[4] Sven Behnke,Marcus Pfister.A Study on the Combination of Classifiers for Handwritten Digit Recognition,2004.

[5] 马耀名,黄敏.基于BP神经网络的数字识别研究[J].信息技术,2007(4):87-88.

[6] Hasan soltanzadeh.Mohammad Rahmati.Recogniton of Persian Handwritten Digits Using Image Profiles of Multiple Orientations[J].Pattern Recognition Leaers,2004(15).

篇2

2基于BP神经网络和证据理论的评价方法

2.1BP神经网络的基本原理

BP神经网络,是由Rumelhart和McCelland等人(1986)提出的。其基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层通过隐含层传向输出层。若输出层的实际输出与期望输出不符,则转入误差的反向传播阶段,并将误差分摊给各层的所有单元。正向传播与误差反向传播周而复始,一直到网络输出的误差减少到可接受的程度,或预先设定的次数为止。

2.2证据理论的基本原理

①定义1:设为一个互斥又可穷举的元素的集合,称作识别框架,基本信任分配函数m是一个集合2到[0,1]的映射,A表现识别框架的任一子集,记作A哿,式中:m(A)称为时间A的基本信任分配函数,它表示证据对A的信任程度。②Dempter合成法则:假定识别框架下的两个证据E1和E2,其相应的基本信任函数为m1和m2,焦元分别为Ai和Bj,则m(A)=m1(A)茌m2(A)2.3信用风险评估算法为了保证神经网络的收敛和稳定性,本论文中将15个指标分为四组,建立4个神经网络NN1,NN2,NN3和NN4。神经网络的输出设计为(0.1,0.1,0.9)T、(0.1,0.9,0.1)T、(0.9,0.1,0.1)T,表示的信用风险级别分别为高风险、中度风险、低风险,记为A1,A2,A3。将输出归一化,得到向量(a′i1,a′i2,a′i3)T,记作V′i。令mi(Ai)=a′il,i∈{1,2,3,4},l∈{1,2,3},表示由NNi得到的对信用风险级别Ai的基本信任度,即针对事件Ai的证据。之后,再将4个证据利用DS证据理论融合。就可以对信用风险进行评估,最初最终决策。

3应用实例

本次数据采集共发出问卷200份,收回135份,有效问卷92份。将前91组数据分别训练神经网络。再将余下1个样本输入训练好的神经网络,归一化处理输出结果即得该证据对该命题的基本概率分配,而后利用DS证据理论将其融合得到最终优化结果。

篇3

[中图分类号]F270.7[文献标识码]A[文章编号]2095-3283(2013)01-00-02

一、 应用BP神经网络的必要性

随着经济全球化和信息技术的加快发展,我国企业面临着更为严峻的竞争压力。为了适应现代市场需求,企业必须优化配置人力资源,并科学制定人力资源规划。其中,科学的人力资源需求预测是人力资源开发和规划的基础,对人力资源管理活动将产生持续和重要的影响。

企业人力资源需求预测分析方法多种多样。在进行人力资源需求预测时,企业要考虑的因素复杂多变,如企业的目标和经营战略、生产状况的变化、工作设计或组织结构的变化等,而且各种影响因素与预测结果之间的相关性难以用定量的方法表示出来,是非线性相互制约的映射关系。将BP神经网络方法应用于人力资源需求预测领域,弥补和改进了人力资源需求预测分析方法,能较好地实现各指标与需求结果之间非线性关系的映射,对企业人力资源决策具有一定的参考和指导作用。

二、BP神经网络的基本原理

人工神经网络,简称神经网络,是一种包括许多简单的非线性计算单元或联结点的非线性动力系统,是用大量简单的处理单元广泛连接组成的复杂网络。Back-Propagation Network,简称为BP网络,即基于误差反向传播算法的多层前馈网络,是目前应用最成功和广泛的人工神经网络。它由输入层、隐含层和输出层组成。隐含层可以是一层或多层。BP神经网络自身具有的非线性映射、自学习、自适应能力、容易实现并行计算等优点,弥补和改进了供应商选择和评价方法,能较好地实现各指标与评价结果之间非线性关系的映射。

基于BP神经网络,构建供应商的选择评价模型,其基本思想为:假设输入变量为X=(X1,X2,···,Xi)',隐含层输出变量为Y=(Y1,Y2,···,Yj)',输出层变量为Z=(Z1,Z2,···,Zl)',期望输出的目标变量为T=(T1,T2,···,Tl)',Wij、Wjl分别为输入层到隐含层、隐含层到输出层的连接权值(如图1所示)。对于i个输入学习样本X1,X2,···,Xi,已知与其对应的输出样本为Z1,Z2,···,Zl。通过BP算法的学习,沿着负梯度方向不断调整和修正网络连接权值Wij和Wjl,使网络的实际输出Z逐渐逼近目标矢量T,也就是使网络输出层的误差平方和达到最小。

图1三层BP网络结构图三、BP神经网络在企业人力资源需求预测中的应用

根据上述BP神经网络主要思想,以A公司为例,分析如何运用MATLAB工具箱实现基于BP神经网络的企业人力资源需求预测。

1.样本数据处理

选取年份、产值、资产总计、利润4个指标作为输入向量,从业人员作为目标向量(见表1)。在对BP网络进行训练前,应该对数据进行归一化处理,使那些比较大的输入仍落在传递函数梯度大的地方。本例采用MATLAB工具箱中的premnmx()函数把数据归一到[-1,1]之间,如表2所示。

对于BP网络,有一个非常重要的定理。即对于任何在闭区间内的一个连续函数都可以用单隐层的BP网络逼近,因而一个三层BP网络就可以完成任意的n维到m维的映射。本例采用单隐层的BP网络进行从业人员预测。由于输入样本为4维的输入向量,因此,输入层一共有4个神经元,网络只有1个输出数据,则输出层只有1个神经元。隐含层神经元个数根据最佳隐含层神经元数经验公式取15个。因此,网络应该为4×15×1的结构。隐含层神经元的传递函数为S型正切函数tansig(),输出层神经元的传递函数为线性激活函数purelin()。

3.BP网络训练及仿真

建立网络后,对表2中的数据进行训练,训练参数的设定如表3所示,其他参数取默认值。

训练次数12100012目标误差120.00112学习速率120.01训练结果如图1所示,可见经过52次训练后,网络的目标误差达到要求。

图1训练结果网络训练结束后,运用MATLAB工具箱中的sim()函数,将经过归一化后的数据表2进行仿真模拟,获得网络的输出,然后将运算结果通过postmnmx()函数进行反归一化处理,得到BP网络预测值,最后检查BP网络预测值和实际从业人员数之间的误差是否符合要求,如表4所示。

4.预测结果评价

图2反映了该BP网络较好地逼近了输入矢量,即年份、产值(万元)、资产总计(万元)和利润(万元)与目标矢量,即从业人员(人)之间的线性关系。用BP神经网络对现有人力资源状况进行分析拟合,是人力资源需求预测的较理想方法。与传统的人力资源需求预测方法相比,将BP神经网络用于人力资源需求预测,克服了输入矢量和目标矢量非线性、不符合统计规律的问题。BP神经网络模型良好的容错和自学习能力,调用MATLAB工具箱函数,使预测过程更易实现,可以更好地对人力资源进行规划,提高人力资源预测精度。

图2BP神经网络的函数逼近结果将BP神经网络应用于企业人力资源需求预测,能较好地建立起各影响因素与预测结果之间的非线性关系,是企业预测人力资源需求的一种较理想的方法。但BP神经网络也存在着一些不足和问题。主要表现在学习速率太小可能会造成训练时间过长;BP算法可以使权值收敛到某个值,但并不能保证其为误差平面的全局最小值;网络隐含层的层数和单元数的选择一般是根据经验或者通过反复实验确定,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。因此,BP神经网络在企业人力资源需求预测领域的应用仍需根据企业自身实际情况做进一步的改进和完善。

[参考文献]

[1]飞思科技产品研发中心神经网络理论与MATLAB7实现[M]北京:电子工业出版社,2005.

[2](美)海金(Simon Haykin)神经网络原理(原书第2版)[M]叶世伟,史忠植译北京:机械工业出版社,2004.

[3]丛爽面向MATLAB工具箱的神经网络理论与应用[M]中国科学技术大学出版社,1998.

[4]刘跃基于BP神经网络的人力资源估价研究[J]统计与信息论坛,2007(1):96-99.

[5]艳明四种人力资源的定量预测方法及评述[J]统计与决策,2008(7):30-32.

[6]国家统计局固定资产投资统计司,中国行业企业信息中心中国大型房地产与建筑业企业年鉴[M]北京:中国大地出版社,2003-2008.

篇4

1.概述

智能小车实际上是一类轮式移动机器人,其运行原理是依据单片机程序来自动实现行使、转向、加速等运动形式。因此对智能小车运动方式的控制属于机器人学的范畴。对智能小车运动轨迹的控制主要依赖于传感器的信息采集技术和智能控制技术。而在智能小车的运动轨迹控制问题中的一个重要问题是如何实现其自动避障。要完成这一任务,需要解决两个方面的问题,一是利用传感器准确的收集小车所在的环境信息,二是将环境信息自动处理后变成控制信息。实践表明,采用的单一的传感器技术已经不能满足收集充足环境信息的需要,而需要多种类型的传感器相配合,从而获得准确的环境信息。对这些通过多种类型传感器获得的环境信息的处理需要实现不同数据的之间的整合,即需要利用多传感器的数据融合技术。常用的数据融合技术如传统的卡尔曼滤波法、D-S证据推理等,但其核心思想是一致的,即通过对多种信息的融合来实现对目标的识别和跟踪。采用基于多传感器的数据融合技术已经成为智能小车避障控制中的重要研究方向。在本文中将以多传感器的数据融合技术为基础,研究智能小车的避障问题。

2.基于多传感器的数据融合

基于多传感器的数据融合技术需要处理来自多个传感器的实时数据,并进行快速的处理。从传感器获得数据的类型来看,这些数据代表不同的物理含义,如速度、距离、角度等,数据类型和特征也不尽相同,分属于不同的层次,因此对来自多个传感器的数据融合实际上要完成对多层次数据的综合评定,这必须依赖于一定的数据融合结构。

2.1 基于多传感器信息的融合结构

从现有的研究成果来看,基于多传感器信息的数据融合结构主要有四种形式:无反馈分布式融合、反馈分布式融合、集中式融合和反馈并行融合,各类融合结构的主要特点分别为:①无反馈分布式融合。无反馈分布式融合模式需要对每个传感器的数据都进行滤波分析,并完成对各传感器的局部信息融合,最后再实现对多个传感器数据的融合。这类数据融合方式的优点是不需要太大的通信开销,融合速度较快,所需的存储空间也较小。②反馈分布式融合。反馈分布式融合的基本原理和无反馈分布式融合类似,但每个传感器多了一个信息反馈通道,可提高预测和状态估计的精度,但需要更大的通信开销。③集中式融合。集中式融合的主要特点是对所有传感器采集的信息进行状态的估计和预测,通过对每个传感器采集信息的检测判定来实现对所有传感器信息的综合判定。由于采用了所有传感器的全部信息,因此这类融合方法的精度较高,但也需要更高的硬件配置。④反馈并行融合。这类数据融合结构综合了以上三类融合结构的优点,对局部、整体的数据处理效率和精度都很高,但对硬件和数据关联技术等要求也较高,是一类重要的研究方向。

2.2 基于多传感器信息的数据融合方法

基于多传感器信息的数据融合方法主要分为两类,一是基于概率统计的方法,如统计决策法、贝叶斯法等,二是人工智能方法,如模糊控制法、人工神经网络、D-S证据推理等。每种方法可参考有关文献,此处不再一一详述。

3.模糊神经网络基本原理

模糊神经网络是模糊控制理论和人工神经网络理论的耦合技术,能够有效的处理对经验性依赖较高的问题,并能广泛的适用于无法精确建模的系统。而人工神经网络则能够具备自学习能力和快速求解能力。通过模糊控制和人工神经网络的结合,能够形成函数估计器,有效的处理模糊信息和完成模糊推理,其性能比单一采用模糊控制或人工神经网络控制效果更优。模糊神经网络的基本原理为:①定义若干各模糊集合,并形成对应的控制规则。定义神经网络的层次(一般分为三层)和节点数量。②定义输入层。将输入层中的节点与输入向量分量之间实现连接。③定义隶属函数层。以语言变量值构成隶属函数层的节点,与输入层的连接权值固定为1,节点阈值为0。④定义规则层。每一条模糊控制规则定义为一个节点,节点的输出为隶属函数的输出。

4.实例应用

4.1 硬件

在本例中,智能小车所采用硬件平台为STC89C52型单片机,动力系统为AUSRO马达130,驱动芯片型号为TA7267,驱动芯片与单片机相连,其输出端和马达直流电机连接,从而实现对小车的方向控制,小车通过两轮驱动。

小车采用的传感器有两种类型:超声波测距系统和红外传感器系统。超声波测距系统的型号为TCT40-10T/R,红外传感器的型号为索尼CX20106。

4.2 传感器数据融合规则

在采用了5路超声波测距系统后,基本上可以对小车周围的障碍状况有比较可靠的了解,红外传感器的作用是为了弥补超声波测距系统的盲区。对这两类传感器所采集数据的处理方式为:①超声波测距系统和红外传感器同时工作;②若红外传感器的有效探测距离内发现障碍,以红外传感器的数据为准;③其他情况以超声波测距系统的探测值为准。

对5个方向的超声波测距的数据所采用的数据融合流程为:开始选择通道发射超声波盲区延时接收信号计算小车与障碍之间的距离数据融合选择小车动作。数据的融合技术采用模糊神经网络法。

4.3 模糊神经网络的构建

结合智能小车避障控制的需要,在小车车身配置5个超声波系统和一个红外系统,分别完成对前、左、左前、右、右前5个方向的测量,因此模糊神经网络共需要建立起5个输入和2个输出的网络结构。各个输入量的物理含义为小车在上述5个方向的与障碍的距离,神经网络的输出量为小车的前进和停止。以红外传感器采集的数据作为小车运动控制的开关量。隶属函数层的函数形式采用高斯型,模糊语言变量分别为{“远”、“近”},因此结合第一层的5个输入,共构成10个神经元。结合输入层和隶属函数层的情况,输出层的神经元数量为2的5次方,共32个神经元。

4.4 模糊控制规则和样本训练

(1)模糊控制规则

模糊控制规则体现的是人为控制经验的总结,分别对5个方向的超声波探测到的距离信息为基础来控制小车的转向。其基本原则为,若距离障碍较近,则小车停止前进,若距离障碍较远,则小车继续前进。分别以F表示前进、TF表示左转、TR表示右转、在实际控制规则中,共有9条,这里仅举一条来进行说明:若前方障碍较近,且左、左前、右、右前距离障碍较远,则小车左转。将上述规则转换为模糊语言后,即可获得具体的控制规则。具体转换方式可参照有关文献。

(2)模糊神经网络的训练样本

依据上述模糊神经网络的基本组成方式,其模糊输入范围的论域为[0,5],以高斯型隶属度函数来划分距离远近的模糊集合。训练样本的数据量较大,因此这里不便一一列出,神经网络的训练方法可参照有关文献。

4.5 运行效果

在上述的步骤完成后,对小车的避障能力进行了实际验证。实验表明,利用超声波测距系统结合红外传感器后,以模糊神经网络融合上述两类传感器采集的数据可有效的实现智能小车的避障运动。

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页