时间:2023-06-14 09:33:26
引言:寻求写作上的突破?我们特意为您精选了4篇人工智能研究综述范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
1 引言
人工智能用于异常数据检测的方法很多,传统的如基于统计(statistical-based)的方法、基于距离(distance-based)的方法 [1]、基于密度(density-based)的方法[2],基于聚类的方法[3]等。但这么传统的异常数据检测方法仍然存在着一些缺陷与不足。基于统计的数据检测方法要求预先知道被检测数据的分布情况,基于距离的方法中距离函数与参数的选择存在较大的困难,基于密度的数据检测方法方法时间复杂度较高,这些问题极大地限制了异常数据挖掘算法在现实中的应用。本文重点论述人工智能方法用于异常数据挖掘的发展史,分析和比较各自的优缺点。
2 常用于异常数据挖掘的几种人工智能方法的分析
2.1 神经网络方法
神经网络模型主要由三层结构组成,主要包括输入层、隐含层和输出层。第一层为输入层,输入层的节点代表多个预测变量,输出层的节点代表多个目标变量,位于输入层和输出层之间的是隐含层,神经网络模型的复杂度取决于隐含层的层数和节点数。每一层的节点都允许有多个。神经网络模型主要用于解决回归和分类两类问题,其结构图如下图所示。
从上图可得,节点X1,X2,X3作为神经元的输入,代表多个预测变量,它可以是来自神经网络的信息,也可以是另一个神经元的输出;W1,W2,……,Wn是神经元的权值,表示各个神经元的连接强度。通过神经网络模型的结构图可知,该方法的实现过程:首先将每个训练样本的各属性取值同时赋给第1层即输入层;各属性值再结合各自的权重赋给第2层(隐含层的第1层),第1层隐含层再结合各自的权重输出又作为下一隐含层的输入,最后一层的隐含层节点带权输出赋给输出层单元,输出层最终给出各个训练样本的预测输出。
2.2 蚁群聚类算法
在数据挖掘中,聚类是一个活跃的研究领域,涉及的范围较广。许多计算机学者们通过模仿生物行为提出一系列解决问题的新颖方法。蚂蚁搜索模式样本所归属的聚类中心的概率计算公式如式(1)。
(1)
其中,α,β为参数,初始聚类中心为随机选取的k个模式样本点。τ(i,j)为样本Xj到聚类中心mj之问的信息素i=1,2, …,n,j=1,2, …,k ;η(i,j)为启发函数,其表达式如式(2)所示。
(2)
其中,dj为模式样本Xj到聚类中心mj的欧氏距离为(i=1,2, …,n,j=1,2, …,k)。
蚂蚁搜索整个模式样本空间,形成一个聚类结果后,聚类中心mj各分量的值为该类Cj中模式样本各属性的均值,计算公式如(3)。
(3)
2.3 基于知识粒度的异常数据挖掘算法
粒计算是人工智能领域新发展起来的一个研究方向,该方法针对不确定性信息进行处理。它主要包括三种模型,分别是粗糙集模型、模糊集模型与商空间模型。该方法的基本思想是利用不同粒度上的信息进行问题求解。该理论在多个领域得到了广泛的应用,如数据挖掘、决策支持与分析和机器学习等。知识粒度为异常数据挖掘处理不确定性数据提供一种新的解决方法。基于知识粒度的异常数据挖掘算法,该算法不需要预先知道数据的分布情况,并且采用知识粒度度量各个对象间的距离与异常度时,能有效挖掘出异常数据。
3 各方法的比较
通过以上各种方法的分析,各种方法具有各自的优点以及不足之处。基于聚类的数据挖掘方法侧重与于聚类的问题,该问题极大地限制了该算法在实际生活中的应用。神经网络方法用于数据挖掘,是人工智能中较早应用于数据挖掘领域的方法之一,能够较好的进行异常数据的挖掘,但是该方法的层数的确定比较困难,同时该方法的时间复杂度比较高;蚁群聚类算法是在聚类算法的基础上改进推广而得,能够达到异常数据检测的目的,但该算法的收敛速度慢,而且算法存在随机移动而延长聚类时间。
4 结束语
异常数据挖掘研究是一个有价值的研究问题,近年来引起越来越多的学者关注和研究,从而使得异常数据挖掘算法取得了新的进展,在生态系统分析、公共卫生、气象预报、金融领域、客户分类、网络入侵检测、药物研究等方面得到了广泛的应用。希望本论文中的方法可以给读者提供更多异常数据挖掘方面的思路,并且能够很好的将人工智能中的方法运用异常数据挖掘中,克服各种方法不足,让人们能够更好的应用。
参考文献
[1]Knorr E. Alothms for Mining Distance based Outliers in Large Datasets[C] //Very Large Databases(VLDB’98). New York: Proc of Int Conf, 1998: 392-403.
[2]Breunig M M, Kriegel H P. Sander, LOF: Identifying Density-Based Local Outliers[C]// ACM SIGMODC onference Proceedings. [S.I]:[s.n.],2000.
[3]王鑫等.数据挖掘中聚类方法比较研材[D].济南:山东师范大学管理学院,2006.
[4]魏海坤,徐嗣鑫,宋文忠.神经网络的泛华理论和泛化方法[J].自动化学报, 2001,27(6):806-814.
[5]庞胜利,吴瑰丽.人工神经网络在大型桥梁健康监测系统中应用研究[J].石家庄铁道学院学报,2002,15(2):63-65.
[6]金微. 蚁群聚类算法分析[J].计算机光盘软件与应用,2011,(13):199, 202.
[7]陈玉明,吴克寿,孙金华.基于知识粒度的异常数据挖掘算法[J].计算机工程与应用,2012, 48(4):118-121.
[8]苗夺谦,王国胤,刘清等.粒计算:过去、现在与展望[M].北京:科学出版社, 2007.
【关键词】人工智能;发展现状;未来展望
【Keywords】artificial intelligence; current situation of the development; future
【中图分类号】TP18 【文献标志码】A 【文章编号】1673-1069(2017)04-0107-02
1 引言
2016年年初,韩国围棋国手李在石与围棋程序Alpha Go对弈中首战失利,再一次将人工智能拉入了公众的视野,使其成为2016年度话题度最高的科技之一。不可否认,近些年来人工智能发展迅速,很多人工智能产品已经开始进入人们的家中,如扫地机器人、智能保姆等,虽然它们还没有美国大片《终结者》中所描述得那么先进,但从前遥不可及的人工智能概念正在一步步变为现实却是不争的事实。人工智能的现状如何,它又将如何发展,都是学界较为关注的课题。
2 人工智能综述
2.1 人工智能的概念
人工智能即AI,其英文全称为Artificial Intelligence。人工智能的概念要从人工和智能两方面来了解,所谓人工就是指人工智能脱胎于人类的文明,是人类智慧的产物;而智能则是指具有人工智能的计算机或其他子设备可以模拟人类的智能行为和思维方式,人工智能是计算机科学的一个分支,它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。
2.2 人工智能的现实应用
如今的人工智能机器,可以在胜任一些复杂脑力劳动的同时,辅助人类进行记忆和逻辑运算等活动。现阶段学者已经研制出了一些可以模拟人类精神活动的电子机器,经过完善升级,这些电子机器将有希望超越人类的能力,协助人类完成一些执行难度较大的工作。但是目前研制出的自动化系统或者机器人虽然可以代替部分人类劳动,却还没有到达可以实现人类多方面协调和自我学习升级的智能水平,要制造出一款可以完全拥有人类智慧的机器,还需进一步深入研究。还有一些人工智能产物经常应用于各种商业用途,例如单位内部的客户信息系统,决策支持系统,以及我们在世面上可以看见的医学顾问、法津顾问等软件。
3 人工智能发展现状
3.1 智能接口技术研究现状
人工智能接口研究就是为了实现人机交流,为此学者必须从理论和实践两方面努力,解决计算机对文字和语言的理解与翻译、对自我的表达等功能问题。由于智能接口技术的研究和应用,计算机技术的发展获得了极大的推动力,在运行速率和人机交流等方面都有巨大提升。
3.2 数据挖掘技术研究现状
数据挖掘技术主要是对各类模糊的、大量的应用数据、人未知的、潜在已经存在的数据进行整理挖掘进行细致的研究,寻找出对研究有用的数据。目前,数据库、人工智能、数理统计已经成为数据挖掘技术的三大技术支撑,以基础理论、发现算法、可视化技术、知识表示方法、半结构化等作为研究内容,为数据挖掘技术的发展提供理论和技术支持。
3.3 主体系统研究现状
主体系统可以实现机器意图和想法的生成,是一种智能方面更接近人类的自主性实体系统。自主系统可以完成一些相对独立、自主的任务,甚至可以通过调整自我状态,应对环境和特殊情况的变化,进而保证自身规划任务的完成。在多主体系统研究中,主要是从物理和逻辑思维方面对主体进行智能行为的分析研究。
4 人工智能发展中面临的问题
4.1 识别功能的困惑
计算机识别技术研究在近些年取得了大量成果,其产品的实际应用范围较广,但不可否认的是,计算机识别的模式是基于一定的算法和程序设定的,其识别机制完全不同于人类的感官识别,因此,在计算机进行识别,尤其是图形识别时,对各种印刷体、文字、指纹等清晰图形可以快速识别,但对于相似度较高的物体,计算机识别能力相对较弱,识别失败的情况较为普遍。语音识别主要研究各种语音信号的分类。语音识别技术近年来发展很快,但是缺点是识别极易受到干扰,发音不标准的语音较易引发识别错误。
4.2 GPS功能的局限性
GPS是企图实现一种不依赖于领域知识求解人工智能问题的通用方法,但是问题内部的表达形式和领域知识是分不开的,用谓词逻辑进行定理归结或者人工智能通用方法GPS,都可以从分析表达能力上找出其局限性,这样就减少了人工智能的应用范围[1]。
5 人工智能的未来应用展望
人工智能与人生活最息息相关的应用范围就是融入人们的衣食住行和教育等方面,这也是人工智能未来最普遍的应用方向。
5.1 无人驾驶的汽车
奔驰、丰田等很多大型汽车企业都在研究o人驾驶的汽车,像007电影中的那种拥有自主辨别路况、自动驾驶等功能的汽车也许很快就会成为现实。自动驾驶的汽车要搭载的技术并不只人工智能一种,它还需要将自动控制和视觉计算等新型技术集成应用,改变现有汽车的体系结构,赋予其自动识别、分析和控制的能力。因此,自动驾驶汽车需要实现三方面的技术突破:其一,实现利用摄像设备、雷达和激光测距机来获得路况信息;其二,实现利用地图进行自动的车辆导航;其三,根据已有信息数据对车辆的速度和方向进行控制。未来的自动驾驶汽车还可以通过车辆之间的信息互通和互相感应,来协调车速和方向,避免车辆碰撞,实现自动驾驶车辆的安全行进。
5.2 智能化的课堂
当前已经有一些智能化的教学软件,教师们可以在这些软件上把教学课件传送给学生,并进行授课答题,学生还可以与教师弹幕互动,使课堂变得妙趣横生,方便了教师的授课活动。对于学生而言,能够在期末十分便捷地回顾上课的错题,甚至能够在几年后翻阅学习过的课件;对于教师而言,能够精细地知道学生对知识的掌握程度,甚至能够发现最积极和最懈怠的学生。未来的智能课堂将更具有时间延展性,学生不仅可以在课堂学习知识,还可以利用智能电子设备进行课前预习和课后复习,从而使学生可以在更加趣味性的氛围中进行自主学习安排。
5.3 自动化的厨房
今后的厨房将会更加智能化,当你做饭时,设定好你想要的菜谱,准备好所需的食材,烹调设备即可将饭菜制作得恰到好处。它会根据你食材的新鲜程度,为你推荐最适合的菜谱,并计算出其营养参考标准,并为你推荐其他食物,使膳食营养均衡。当你家中某样食材不足时,物流公司便会将时下最新鲜的这一食材送至你家中[2]。
6 结语
人工智能这一概念是在1956年提出的,在当时,人工智能还只是人们头脑中的一种幻想,而在60年后的今天,人工智能的梦想已经逐渐照进现实,它甚至渗透进了工业、医学、服务等多个领域,可以说人工智能正在改变着我们生活的世界。但对于人工智能这个人类创造出来的技术,人们也存在一定的担忧,人工智能将向何方发展?人工智能发展到极致会不会脱离人类的控制?人工智能会不会超越人类的智慧?在诸多问题围绕下,人工智能技术依然在迅猛发展,它的未来如何,让我们拭目以待。
中图分类号:V355 文献标识码:A 文章编号:1671—7597(2013)041-118-01
1 研究背景
随着时代的发展,计算机技术因其优越性在多个领域得到广泛应用。“计算机学科的一个重要分支就是人工智能,它与基因工程、纳米科学被列为21世纪三大尖端技术”,它为人工智能技术在航空业的应用创造了条件。现代航空业的迅猛发展,带来空中交通流量的飞速增长。目前,航空业经常出现空中交通堵塞、拥挤等现象,迫切需要引进先进的技术手段,提升空中交通技术,改进管理手段,有效提升空域容量与空间利用率。
根据空中交通管理的理论特点,以及空中交通管理技术特点,人工智能技术在空中交通管理中的应用研究逐渐引起了人们的重视,并取得较大发展。人工神经网络在空中交通流量预测、飞行间隔控制、飞行冲突智能调配等方面的研究初见成效。但我国空中飞行流量需求的日益增大,迫切需要将人工智能技术有效运用到空中交通管理中,建立人工智能空中交通管理辅助系统,真正实现类似专家功能的新型空中交通管理系统。本文基于这样的认识,尝试将人工智能技术应用到空中交通管理系统中,有效提升空中交通的空域容量,使空中交通更加有序,更好地服务于积极社会的发展,提升人们的生活质量。
2 人工智能技术概况阐述
“人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的”从计算机应用系统的层面来理解,人工智能研究的主要内容是如何制造出人造的智能机器,以及人造的智能系统,具备模拟人类智能活动的能力,从而延伸人们智能的一门科学。
人工智能领域的研究始于1956年,“人工智能”这个术语第一次出现于达特茅斯大学召开的一次会议上。随后人们逐渐在问题求解、自然语言理解、自动程序设计、专家系统、逻辑推理与定理证明、博弈、学习以及机器人学等领域展开研究,成功建立了具有一定程度的人工智能计算机系统。随着研究的不断深入,人工智能理论得到不断的丰富与发展。随着计算机硬件的快速发展,计算机的存储容量不断扩大、运行速度不断提高、价格低廉,人工智能技术的发展将会给人们的生活、工作等带来更大的影响。
3 空中交通管理人工智能系统构成简述
人工智能技术在空中交通管理中的应用有助于建立人工智能辅助系统,建立新的空中交通管理模式。“但不要忘记采用不同的技术和运作概念也会带来不同的空中交通管理模式,特别在新技术层出不穷的今天,我们更不能忽略这个方面。”,它能使空中交通流量管理高效、有序、安全,有效提升空中交通的空间与时间利用率,对空中飞行冲突进行有效的预测与解决。空中交通管理的核心是科学合理安排空中交通流量。飞行流量的智能化管理、飞行冲突的预测、飞行冲突的解决等方面是人工智能辅助系统研究的侧重点。空中交通管理人工智能辅助系统由飞行流量管理模块、冲突探测与解脱模块、辅助决策模块等三个附属系统构成。这几个模块间的关系是在冲突探测与解脱模块与飞行流量管理模块之中渗透辅助决策模块,最终形成智能飞行流量管理、智能冲突探测与解脱模块系统,它们能够为空中管制员提供有效的决策辅助信息,切实减轻空中管制员的工作负担,提高空中飞行的安全性与管制效率。
4 空中交通管理人工智能辅助系统的实现方式
4.1 飞行流量管理辅助决策的实现
人工智能系统飞行流量管理模块主要将空域资源“空闲”的概念与A算法与辅助决策进行结合。其具体操作过程是根据飞行流量管理数据库,储存或读取数据,计算流量,预测冲突,依据基本容量模型,建立A算法数学模型,对空中航班进行动态与静态排序,最终完成人工智能技术对空中飞行流量的辅助决策作用。
建立准确客观的飞行流量管理数据库非常重要。这些原始数据必须可靠、准确、及时,因为它直接影响到辅助决策的有效性;开放数据库间的互连主要依靠ODBC ,它是数据库之间连接的标准,为SQL语言的存取提供标准接口;再依据数据库的信息,运用飞行动力学知识计算出飞机在具体时间应该到达的位置,以及到达具置的准确时间,合理的安排飞行架次;飞行流量冲突预测主要通过将流量与相应的容量比较,列出具体的冲突时间、冲突地点、存在冲突的飞机架次;最后调整航班与起降,对冲突航班及时调整,确保交汇点、航路、机场、管制区等畅通。人工智能中的A 算法可以有效针对基本容量模型对飞机进行排序,对飞行计划的来源、内容及状态转化等进行研究,生动模拟飞行计划实施过程。“空闲”概念可以使冲突航班时刻调整在受限区域内。
4.2 飞行冲突探测与解脱辅助决策的实现
飞行冲突探测与解脱辅助决策系统能够向空管员提供高效的避撞辅助方案,有效弥补管制员决策过程中的不足,对飞行冲突情况进行分析,寻找出积极的解脱方案。
飞行冲突探测与解脱辅助决策系统推理过程大致包括以下几个方面:突中航空器、突中航空器优先等级评估、冲突类别评定、避撞应对方案、建立避撞路线。推理选择最主要的过程是推理机制,为了完成推理过程,该系统中还必须包括一系列的规则:航空器优先级别评定规则、避撞方案确定规则、避撞空管规则、建立避撞路线规则等;还要建立层次型结构及模块化知识库,确保避撞推理的有效运作,保证知识库得到有效维护,并且能够及时的更新。
5 结束语
人工智能技术在空中交通管理中的应用,必将使空中交通管理更高效、更安全、更有序,必将最大程度的提升空域的利用效率。人工智能技术的应用领域是广泛的,相信随着人们对人工智能技术研究的不断深入,人工智能技术必将在更多方面提供智能化辅助管理服务,使人工智能技术不断的服务于社会经济,服务于人们的需要。
参考文献
中图分类号: S776.035
人工智能与电气运动控制是集电机、电子、自动化、计算机、智能控制和知识工程为一体的新兴交叉学科,其知识、技术和产品在工业、国防、交通、运输、民用等行业应用十分广泛。当前,电气运动控制系统运行条件的复杂化不断提高,同时对控制的智能化与精确化要求也越来越高,因此深入研究智能运动系统的设计、制造、运行规律,探索该方面的高层次科学研究、工程技术应用成为当务之急。
1.人工智能的概述
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能是一门新的技术科学,它的研究、开发是为了模拟、延伸和扩展人的智能,这是一种理论、方法、技术及应用系统。电气自动化是研究与电气工程有关的系统运行、自动控制、电力电子技术、信息处理等领域的一门学科。随着现代技术的发展,为了减少运行成本,提高工作效率,把人工智能的先进研究成果与电气自动化控制相结合,实现了技术的又一次突破。
2.电气工程中智能控制的功能实现
(1)收集处理数据:对于所有开关量、模拟量,人工智能控制器都能对其进行实时采集,在要求明确的情况下,人工智能控制器能自动处理或存贮。(2)界面显示:设备和系统的运行状态都会在模拟画面上真实的显示出来,可从中了解到模拟量、计算量、隔离开关、断路器等实际的状况。有问题时,画面上会挂牌检修功能,还会形成对应得历史趋势图。(3) 运行监视:在设备的模拟数值、开关量状态出现问题时,智能监视就起到了很大的作用,它会自己报警,还会记录下事件的过程。(4)人工控制:操作人员只需要通过键盘或鼠标就可以对断路器及电动隔离开关进行控制,系统会对操作人员进行限制性的操作,对值班起到很大作用。(5)故障录波:故障录波较为详细,包括波形、开关量和顺序记录等。(6)分析不对称的应用,进行负序量计算等。(7)及时进行参数的设定和修改从而定值得到保护。(8)模糊控制、神经网络控制、专家系统控制是人工智能控制的主要的三种方法。
3.电气自动化技术中人工智能的应用分析
(1)电气设备设计中人工智能的应用。由于电气设备的具体设计是综合性、复杂性、专业性的过程,其涉及的范围也十分广,包括了电磁场、电子技术、变压器、电机、专业电路等领域,另一方面,这对其设计者也提出了更高的要求。通过人工智能方面的技术,能够实现大批较难迅速解决处理的模拟过程与相关繁琐计算,这就加强了设计过程内的工作精度和效率。当然,在电气设备设计进行的时候还要区别不同的情况与具体算法,比如说遗传算法会用在优化设计中,而专家系统总是用在开发性设计中。
(2)电气控制技术中人工智能的应用。电气自动化的控制技术可以实现强化分配、交换、流通、生产等关键环节,在加大财力投入的同时尽可能减少人力,以便提高电气系统中的运作质量与效率。电气设备控制系统里面人工智能技术的应用包含了神经网络控制、专家系统控制与模糊控制等,而在实际的应用过程中,使用最多的则是模糊控制,这主要是源于其简单化的控制,同时又和现实情况联系密切。
(3)人工智能对日常操作的影响。电力系统不仅影响着电力系统建设的自动化水平,对日常的管理工作的影响也十分重大。人工智能技术应用于日常操作中,可以帮助实现以家用电脑操作进行系统操作,简化电流调整、设备操作界面,并且可自动进行日志生成和储存、报表自动生成等功能。电气系统日常操作中引进人工智能技术,不仅能够简化各种操作、规范各种文件样式和规格,并且能够实现操作的简便性和可视性。
(4)电气故障诊断中人工智能的应用。在电气设备的故障诊断过程中,使用最为广泛的即是神经网络、专家系统、模糊理论等人工智能技术,尤其是对电气电动机、发电机进行的故障诊断。当前,电气系统中变压器的故障诊断通常适用方法为分析气体和分解变压器油中分解的气体,借助人工智能法可以有效提高相关诊断的准确性,其中人工智能技术通过结合模糊理论与神经网络,来完成故障诊断知识的神经网络以及模糊性的共同诊断过程,这样就可以从根本上提高诊断故障的全面性与准确性。
4.结束语
电气自动化控制革新离不开人工智能的大力支持。人工智能在自动化控制方面的优势越发的突显。促进人工智能在电气自动化控制中的应用以解决传统方法不能解决的复杂系统控制问题。
在电气自动化领域,人工智能应用集中体现于专家系统、自动程序设计、定理证明、逻辑推理、各类问题求解等方面,因此,在电气自动化技术中充分挖掘并利用人工智能的功能与效力,这样才能使工作更加顺畅、高效。
依据国内需要及本学科在国际上的发展趋势,今后人工智能与电气结合的研究方向及内容是:⑴智能控制理论与技术;⑵电气驱动自动化;⑶智能控制理论在电气运动系统中的应用;等。
参考文献
1.罗兵。人工智能原理及应用[M],机械工业出版社,2011-08-01