数学思维的含义范文

时间:2023-06-15 09:28:30

引言:寻求写作上的突破?我们特意为您精选了4篇数学思维的含义范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

数学思维的含义

篇1

情境具有强烈的吸引力,对培养学生的数学思维及创造能力有着至关重要的作用。要形成学生主动学习、积极动脑、踊跃参与的课堂教学氛围,教师就必须深入研究教材,突出学生的主体地位,尊重学生的不同观点,鼓励学生想象、质疑甚至标新立异,给予每位学生发表自己见解的机会,最大限度地消除学生的心理障碍。

如讲到“反比例函数的图像上有点A(3,2),求k的值”时,学生通过代入计算,可以求出k的值。如果教师停留在此不再深入讲解求解的技巧,对下面的反比例函数图像中关于面积的题目的讲解起不到帮助作用。所以可以提问:如果A坐标改为(,),赛一赛谁能最快求出k的值?引导学生探索,最终得出:用去分母的办法可得xy=k,即只要是反比例函数图像上的点(x,y),都满足k=xy。

要求学生充分利用这个等式,接下来就可以出题,如:

若反比例函数的图像过点(2,5),则点( )也在这个反比例函数的图像上。

A.(10,-1) B.(5,2) C.(1,13) D.(2,-5)

有了上面的引入,这题无需求m的值,即可选出答案B。

二、充分揭示数学思维过程

在反比例函数图像上的点,满足xy=k,在平面直角坐标系的第一象限中可随便描几个在同一反比例函数图像上的点,如图1所示。

图1 图2

在描点的过程中,学生可以看出点A(a,b),B(s,t),ab=k,st=k,就是两个矩形的面积。如果把矩形的一条过原点的对角线连接(如图2所示),则可发现SAOD =SAOE =SBOC =SBOF=。进而让学生考虑:如果画在其他象限内的点,是否也有如上的规律?如果把这条对角线与双曲线的另一支交点也画出,那么这条直线和双曲线构成的是什么图形?这个结论对以后的解题是否有帮助?

教学中引导学生运用逻辑思维、形象思维以及直觉思维等多种思维方式,使题目中的相关信息有序化,通过学生的自主思考产生积极的效果或成果,这种创造性思维能力是正常人通过后天的思考、培养就可以具备的。

三、精选练习,紧扣重点

要培养学生的数学思维能力,教学中就必须采用开放式的教学方法,充分揭示解题的思维过程。因为学生学习的数学知识虽然是前人创造性思维的成果,但是学生作为学习的主体处于再发现的地位,学习活动本质上仍然具有发现和创造的性质,因此解题的思维过程比题目答案本身更应值得重视。

如图3所示,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A,B,P分别向x轴作垂线,垂足分别为C,D,E,连接OA,OB,OP,设SAOC=S1,SBOD=S2,SPOE=S3,试比较S1,S2,S3的大小: 。

解答:经过上面知识的学习,如图4所示,因为点A、B在双曲线上,所以S1=S2=。而点P不在反比例函数的图像上,所以S3≠,设PE与双曲线交点为F,连接OF,SOEF=。所以S3>,答案是S1=S2

图3 图4 图5

如图5所示,正比例函数y=x与反比例函数的图像交于A、C两点,ABx轴于B,CDx轴于D,则ABCD的面积= 。

分析:由上面的讨论,直线、双曲线都是中心对称图形,如果一条经过原点的直线和双曲线相交则还是构成中心对称图形,因此A、C两点关于原点成中心对称,即AB与CD平行且相等,则四边形ABCD为平行四边形,那么对角线AC、BD则把ABCD面积四等分。

解答:SABCD是4个AOB的面积,SAOB==,答案是4×=2。

著名德国数学家希尔伯特在哥廷根大学任教时,常常在课堂上即兴提出一些新的数学问题,并立即着手解决。虽然他并非每次都能得到圆满的解答,甚至有时把自己“挂”在黑板上,但他发现的思维过程却使学生受益匪浅。我国数学家华罗庚教授在自己的教学生涯中,也一向重视概念产生、命题形成及思路获得的思维过程的教学,并着意回答学生提出的“你是怎样想出来的”一类问题。这些事例充分说明了展现数学思维过程对于培养学生数学思维的重要作用。

四、激发学生的好奇心、求知欲

李政道说:“好奇心很重要,有了好奇心,才敢提出问题。”教师最重要的一项职责就在于,要把学生的好奇心引导到探求科学知识上去,使这种好奇心升华为求知欲,从而激发学生自主学习的积极性。

经过上面几道求面积的题目训练后,对于下面几题,学生们应该跃跃欲试了。

图6

如图6所示,在反比例函数(x>0)的图像上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4。分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3= 。

解答:可利用面积割补法,把S1,S2,S3放到由P1与x、y轴构成的矩形中,而由P4与x、y轴构成的矩形被四等分,得出S1+S2+S3=SAP1BO=2-0.5=1.5。

如图7所示,两个反比例函数和(其中k1>k2>0)在第一象限内的图像依次是C1和C2,设点P在C1上,PCx轴于点C,交C2于点A,PDy轴于点D,交C2于点B,则四边形PAOB的面积为_________。

图7

解答:构成的阴影部分面积,正好是矩形面积减去两个直角三角形面积,即k1-k2。

教学过程中,只有通过选择和安排合理的、有引导性的问题,才能不断激发学生的好奇心与求知欲。一个恰当而富有吸引力的问题往往能拨动全班学生思维之弦,奏出一曲耐人寻味,甚至波澜起伏的大合唱。因此善问是数学教师的基本功,也是所有数学教育家十分重视并长期研究的一项课题。

五、结束语

数学教学中只有培养学生的“爱学”态度、“乐学”情绪、“会学”技巧、“自学”能力,突出“优化思维品质,培养思维能力”,开阔视野,理论联系实际,培养解决问题能力,才能使学生更适应社会发展。

参考文献

[1] 任樟辉.数学思维理论[M].南宁:广西教育出版社,2001.

[2] 李玉琪.中学数学教学与实践研究[M].北京:高等教育出版社,2001.

[3] 傅海伦数学教学论[M].北京:科学出版社,2004.

[4] 肖利民.数学教学与学生创造思维能力的培养的影响[J].濮阳教育学院学报,2003(2):51-52.

[5] 谢传建.浅谈数学教学中创造思维能力的培养[J].福建教育学院学报,2003(3):62.

篇2

函数关系式包括定义域和对应法则,所以在求函数的关系式时必须考虑所求函数关系式的定义域,否则所求函数

关系式可能是错误。如:

例1:某单位计划建筑一矩形围墙,现有材料可筑墙的总长度为100m,求矩形的面积S与矩形长x的函数关系式?

解:设矩形的长为x米,则宽为(50-x)米,由题意得:

S=x(50-x)

故函数关系式为:S=x(50-x)。

如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量x的范围。也就说学生的解题思路不够严密。因为当自变量x取负数或不小于50的数时,S的值是负数,即矩形的面积为负数,这与实际问题相矛盾,所以还应补上自变量的范围:0<x<50。

即:函数关系式为:S=x(50-x)(0<x<50)。

这个例子说明,在用函数方法解决实际问题时,必须注意到函数定义域的取值范围对实际问题的影响。若考虑不到这一点,就体现出学生思维缺乏严密性。若注意到定义域的变化,就说明学生的解题思维过程体现出较好思维的严密性。

二、函数最值与定义域

函数的最值是指函数在给定的定义域区间上能否取到最大(小)值的问题。如果不注意定义域,将会导致最值的错误。如:

例2:求函数y=x -2x-3在[-2,5]上的最值。

解:y=x -2x-3=(x -2x+1)-4=(x-1) -4

当x=1时,y =-4

初看结论,本题似乎没有最大值,只有最小值。产生这种错误的根源在于学生是按照求二次函数最值的思路,而没有注意到已知条件发生变化。这是思维呆板性的一种表现,也说明学生思维缺乏灵活性。

其实以上结论只是对二次函数y=ax +bx+c(a>0)在R上适用,而在指定的定义域区间[p,q]上,它的最值应分如下情况:

(1)当- <p时,y=f(x)在[p,q]上单调递增函数f(x) =f(p),f(x) =f(q);

(2)当- >q时,y=f(x)在[p,q]上单调递减函数f(x) =f(p),f(x) =f(q);

(3)当p≤- ≤q时,y=f(x)在[p,q]上最值情况是:

f(x) =f(- )= ,

f(x) =max{f(p),f(q)}。即最大值是f(p),f(q)中最大的一个值。

故本题还要继续做下去:

-2≤1≤5

f(-2)=(-2) -2×(-2)-3=-3

f(5)=5 -2×5-3=12

f(x) =max{f(-2),f(5)}=f(5)=12

函数y=x -2x-3,在[-2,5]上的最小值是-4,最大值是12。

这个例子说明,在函数定义域受到限制时,若能注意定义域的取值范围对函数最值的影响,并在解题过程中加以注意,便体现出学生思维的灵活性。

三、函数值域与定义域

函数的值域是该函数全体函数值的集合,当定义域和对应法则确定,函数值也随之而定。因此在求函数值域时,应注意函数定义域。如:

例3:求函数y=4x-5+ 的值域。

错解:令t= ,则2x=t +3,

y=2(t`+3)-5+t=2t +t+1=2(t+ ) + ≥ 。

故所求的函数值域是[ ,+∞)。

剖析:经换元后,应有t≥0,而函数y=2t +t+1在[0,+∞)上是增函数,

所以当t=0时,y =1。

故所求的函数值域是[1,+∞)。

以上例子说明,变量的允许值范围是何等重要,若能发现变量隐含的取值范围,精细地检查解题思维的过程,就可以避免以上错误结果的产生。也就是说,学生若能在解好题目后检验已经得到的结果,善于找出和改正自己的错误,善于精细地检查思维过程,便体现出良好的思维批判性。

四、函数单调性与定义域

函数单调性是指函数在给定的定义域区间上函数自变量增加时,函数值随着增减的情况,所以讨论函数单调性必须在给定的定义域区间上进行。

五、函数奇偶性与定义域

判断函数的奇偶性,应先考虑该函数的定义域区间是否关于坐标原点呈中心对称,如果定义域区间是关于坐标原点不成中心对称,则函数就无奇偶性可谈。否则要用奇偶性定义加以判断。

综上所述,在求解函数函数关系式、最值(值域)、单调性、奇偶性等问题中,若能精细地检查思维过程,思辨函数定义域有无改变(指对定义域为R来说),对解题结果有无影响,就能提高学生质疑辨析的能力,有利于培养学生的思维品质,从而不断提高学生的思维能力,进而有利于培养学生思维的创造性。

参考文献:

[1]王岳庭主编.数学教师的素质与中学生数学素质的培养论文集.北京:海洋出版社,1998.

篇3

在数学教学中往往会出现求解函数的关系式,遇到这样问题时如果忽视了所求函数关系式的定义域,将会使求解函数出现错误的结论。

例1:用长14.8m的钢条来制作一个长方体容器的框架,若所制容器底面一边长为x,且比另一底边小0.5m,求容积V关于边长x的函数关系式。

解:设容器高为h,则4(x+0.5+x+h)=14.8,所以h=3.2-2x

V=x(0.5+x)(3.2-2x)=-2x■+2.2x■+1.6x

本题解答到这里并没有结束,从题目中我们不难发现函数关系式还缺少自变量x的取值范围。此时如果引导学生注意解题思路的严密性,强调函数三要素,学生将会有所发现:

因为边长x和x+0.5以及高h均大于0,所以由:

x>0x+0.5>03.2-2x>0得:0

学生思维一旦缺乏严密性,就很容易忽视函数自变量定义域,所以在用函数方法解决实际问题时,务必注意函数自变量的取值范围对实际问题的影响,对学生加强必要引导和训练。

二、利用函数最值与定义域,培养思维灵活性

数学函数求最值的问题充分体现函数定义域的重要性。如果忽视定义域,将会导致最值的错误。

例2:已知函数f(x)=■,x≥1

(1)当a=■时,求f(x)的最小值。

(2)若对任意x≥1,f(x)>0恒成立,求实数a的取值范围。

分析:此题第(1)问,学生会产生三种思路:①利用单调性的定义证明f(x)的单调性再求最值;②利用导数判断函数的单调性再求最值;③利用均值不等式求最值。而前两种方法都较为繁琐,所以学生很容易偏向第三种解法。

错解:(1)a=■时,f(x)=■=x+■+2≥2■+2=2+■,当且仅当x=■时,即x=±■时,f(x)■=2+■

剖析:尽管学生想到了均值不等式这样简洁的方法,但是忽视了均值不等式的应用条件和函数的定义域。因为±■ 1,+∞,所以“=”取不到,故此解法错误。

(2)在(1)的教训下,学生在解答这一小题时开始注意到“x≥1”这个条件,于是作如下解答:

由f(x)>0恒成立且x≥1可得x■+2x+a>0恒成立,由二次函数的知识可知,只需要令

或者作如下解:

若x■+2x+a>0恒成立,则a>-x■-2x恒成立,则只需要令a大于-x■-2x的最大值即可。又-x■-2x=-(x+1)■-1≤-1,所以a>-1。

但是这两个答案都是错的,都是没能把定义域考虑完全,尽管在开始的变形与转化中已经注意到这个问题,但是随着解题的深入,在思维定势的影响下,定义域又忘了。

正解:思路一,x≥1,若f(x)=■>0恒成立,则只需要x■+2x+a>0恒成立,二次函数g(x)=x■+2x+a在[1,+∞)上递增,若在x≥1时,g(x)恒大于0,则只需要g(1)>0。3+a>0,即a>-3。

思路二,由x■+2x+a>0恒成立可得a>-x■-2x恒成立,设g(x)=-x■-2x,其中,x≥1,则只需要a>g(x)■=g(1)=-3,所以a>-3。

由此我们可以发现,学生在解题过程中的思维严密性和灵活性不是短期内就能养成的,这时,教师应当提醒学生注意自变量的取值范围,这样就可以打破学生的思维定势,提高其灵活性。

三、利用函数值域与定义域的关系,培养思维批判性

在数学函数中当定义域和对应法则确定下来,函数的值也将会随之而确定。因此,我们在解答函数值域的问题时,要高度重视函数定义域的问题。

例3:已知函数f(x)=sinxcosx-sinx-cosx,求f(x)的值域。

错解:设sinx+cosx=t,则sinxcosx=■,所以,f(x)=g(t)=■t■-t-■=(t-1)■-1≥-1,故f(x)的值域为[1,+∞)。

剖析:换元后sinx+cosx=t=■sin(x+■)-■≤t≤■

g(t)■=g(-■)=■+■,g(t)■=g(1)=-1

f(x)的值域是[-1,■+■]。

自变量的取值范围对函数值域非常重要,因此,教师要能够严格要求学生对做完的习题进行检验,发现和修订错误,从而培养学生良好的学习习惯,提高学生思维的批判性和严谨性。

四、利用函数单调性与定义域,培养思维深刻性

在解答函数习题时,千万不能忽略函数的单调性,应强调在给定的定义域区间上函数自变量增加时,函数值随之增减的情况,讨论函数单调性在给定的定义域区间上的变化情况。

例4:指出函数f(x)=■的单调区间。

解:先求定义域:log■(x■2x)≠0,x■2x≠1

又x■2x>0,所以函数定义域为:

(-∞,1-■)∪(1-■,0)∪(2,1+■)∪(1+■,+∞)

设u= x■-2x,则u在(-∞,1-■)和(1-■,0)上递减,在(2,1+■)和(1+■,+∞)上递增。根据复合函数单调性的判断方法,可知f(x)的单调减区间是(-∞,1-■)和(1-■,0);单调增区间是(2,1+■)和(1+■,+∞)。

篇4

函数关系式包括定义域和对应法则,所以在求函数的关系式时必须要考虑所求函数关系式的定义域,否则所求函数关系式可能是错误.如:

例1 某单位计划建筑一矩形围墙,现有材料可筑墙的总长度为100m,求矩形的面积S与矩形长x的函数关系式?

解:设矩形的长为x米,则宽为(50-x)米,由题意得:

S=x(50-x)

故函数关系式为:S=x(50-x).

如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量x的范围.也就说学生的解题思路不够严密.因为当自变量x取负数或不小于50的数时,S的值是负数,即矩形的面积为负数,这与实际问题相矛盾,所以还应补上自变量x的范围:0<x<50

即:函数关系式为:S=x(50-x)(0<x<50)

这个例子说明,在用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响,要跳出数学看数学,培养思维的广阔性.

2. 注重思维的严密性

函数的最值是指函数在给定的定义域区间上能否取到最大(小)值的问题.如果不注意定义域,将会导致最值的错误.如:

例2 求函数y=x2-2x-3在[-2,5]上的最值.

解:y=x2-2x-3=(x2-2x+1)-4=(x-1)2-4

当x=1时,ymin=-4

初看结论,本题似乎没有最大值,只有最小值.产生这种错误的根源在于学生是按照求二次函数最值的思路,而没有注意到已知条件发生变化.这是思维呆板性的一种表现,也说明学生思维缺乏灵活性.

其实以上结论只是对二次函数y=ax2+bx+c(a>0)在R上适用,而在指定的定义域区间[p,q]上,它的最值应分如下情况:

(1) 当-b2a<p时,y=f(x)在[p,q]上单调递增函数f(x)min=f(p),f(x)max=f(q);

(2) 当-b2a>q时,y=f(x)在[p,q]上单调递减函数f(x)max=f(p),f(x)min=f(q);

(3) 当p≤-b2a≤q时,y=f(x)在[p,q]上最值情况是:

f(x)min=f-b2a=4ac-b24a,

f(x)max=max{f(p),f(q)}.即最大值是f(p),f(q)中最大的一个值.

故本题还要继续做下去:

-2≤1≤5

f(5)=52-2×5-3=12

f(-2)=(-2)2-2×(-2)-3=-3

f(x)max=max{f(-2),f(5)}=f(5)=12

函数y=x2-2x-3在[-2,5]上的最小值是- 4,最大值是12.

这个例子说明,在函数定义域受到限制时,若能注意定义域的取值范围对函数最值的影响,并在解题过程中加以注意,便体现出学生思维的严密性.

3. 挖掘思维的深刻性

函数的值域是该函数全体函数值的集合,当定义域和对应法则确定,函数值也随之而定.因此在求函数值域时,应注意函数定义域.如:

例3 求函数y=4x-5+2x-3的值域.

错解:令t=2x-3,则2x=t2+3

y=2(t2+3)-5+t=2t2+t+1=2t+142+78≥78

故所求的函数值域是78,+∞.

剖析:经换元后,应有t≥0,而函数y=2t2+t+1在[0,+∞)上是增函数,

所以当t=0时,ymin=1.

故所求的函数值域是[1, +∞).

以上例子说明,变量的允许值范围是何等的重要,若能发现变量隐含的取值范围,精细地检查解题思维的过程,就可以避免以上错误结果的产生.也就是说,学生若能在解好题目后,检验已经得到的结果,善于找出和改正自己的错误,善于精细地检查思维过程,便体现出良好的思维的深刻性.

4. 植入思维的批判性

函数单调性是指函数在给定的定义域区间上函数自变量增加时,函数值随着增减的情况,所以讨论函数单调性必须在给定的定义域区间上进行.如:

例4 指出函数f(x)=log2(x2+2x)的单调区间.

解:先求定义域:

x2+2x>0 x>0或x<-2

函数定义域为(-∞,-2)∪(0,+∞).

令u=x2+2x,知在x∈(-∞,-2)上时,u为减函数,

在x∈(0,+∞)上时, u为增函数.

又f(x)=log2u在[0,+∞)是增函数.

函数f(x)=log2(x2+2x)在(-∞,-2)上是减函数,在(0,+∞)上是增函数.

即函数f(x)=log2(x2+2x)的单调递增区间(0,+∞),单调递减区间是(-∞,-2).

如果在做题时,没有在定义域的两个区间上分别考虑函数的单调性,就说明学生对函数单调性的概念一知半解,没有理解,在做练习或作业时,只是对题型,套公式,而不去领会解题方法的实质,也说明学生的思维缺乏批判性.

5. 利用思维的灵活性

判断函数的奇偶性,应先考虑该函数的定义域区间是否关于坐标原点成中心对称,如果定义域区间是关于坐标原点不成中心对称,则函数就无奇偶性可谈.否则要用奇偶性定义加以判断.如:

例5 判断函数y=(x-1)2x-1+1的奇偶性.

解:定义域为{x|x≠1}

定义域关于坐标原点不对称

函数函数y=(x-1)2x-1+1是非奇非偶函数.

若学生像以上这样的过程解完这道题目,就很好地体现出学生解题思维的敏捷性

如果学生不注意函数定义域,那么判断函数的奇偶性得出如下错误结论:

f(-x)=-x=-f(x)

函数函数y=(x-1)2x-1+1是奇函数.

错误剖析:因为以上做法是没有判断该函数的定义域区间是否关于原点成中心对称的前提下直接加以判断所造成,这是学生极易忽视的步骤,也是造成结论错误的原因.

综上所述,在求解函数函数关系式、最值(值域)、单调性、奇偶性等问题中,若能精细地检查思维过程,思辨函数定义域有无改变(指对定义域为R来说),对解题结果有无影响,就能提高学生质疑辨析能力,有利于培养学生的思维品质,从而不断提高学生思维能力,进而有利于培养学生思维的灵活性.

友情链接