时间:2023-06-25 09:23:02
引言:寻求写作上的突破?我们特意为您精选了4篇初中数学知识点范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
1、代数部分:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数)
2、几何部分:线段、角相交线、平行线三角形、四边形、相似形、圆。
(来源:文章屋网 )
1.立方和与差的公式初中已删去不讲,而高中的运算还在用.
2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等.
3.二次根式中对分子、分母有理化初中只简单要求,而分子、分母有理化是高中函数、不等式常用的解题技巧.
4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容.配方、作简图、求值域、解二次不等式、判断单调区间、求最大与最小值、研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法.
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授.
6.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点.方程、不等式、函数的综合考查常成为高考综合题.
7.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下与左、右平移,两个函数关于原点与轴、直线的对称问题必须掌握.
1.创设情境教学,培养学生学习兴趣
营造和谐的情景是激发学生学习兴趣、提高学习主动性的重要手段.教师在教学过程中,如果重视培养学生的情感,创造一个充满积极情感的教学环境,就能达到教学的最佳效果.为此,每节课教师都应以一种积极向上的精神面貌走进课堂,用生动有趣的语言,轻松愉快的笑容,适度得体的形体动作来营造课堂气氛,把学生的心牢牢地固定在课堂上.同时教师还应不断地创设问题情境,激发学生潜在的求知欲,使之自觉地去思考,从而提高学习的主动性.此外,教师适时的表扬、鼓励,对学生学习给予肯定的评价,也是提高学生学习兴趣的有效手段.
2.让学生意识到自己的进步,促进学生主动学习
学生在学习过程中遇到困难时,如果是通过自己的努力求得答案,自己概括出定义、规律、法则等,那么他解决问题的积极性将会越来越高,而所得到的知识也将会更牢固.自己克服的困难越多越大,其学习也就越积极.因此,让学生意识到自己的进步,学生就会在愉悦的情绪中产生一种渴求学习的愿望,从而更加积极主动地学习.这就要求教师在教学中做到,该由学生自己去探索的知识,就放手让他们自己去探索,该由学生自己获取的知识,就尽量让他们自己去获取.学生在探索过程中思维受阻时,教师只作适当的提示和暗示,让学生体会到所学会的知识是自己“发现”的,自己“创造”出来的,从而使其体会到自己的成功和进步.这样,学生通过自己的探索和思考而获得的知识,理解必然是深刻的.学生体会到探索的乐趣和成果后,将会更加努力,更加主动地学习.
3.用教师的行为和情感来影响学生,调动他们学习的主动性
教学是师生的共同活动,其中包含着情感的交流.教师与学生在教学活动中逐渐熟悉、亲近,进而发展成为朋友.教师的品格,会成为学生学习的榜样,教师的敬业态度、责任感,甚至一言一行,都会对学生良好品格的培养起到潜移默化的作用.学生往往会将对教师的尊敬和喜爱转化为对该教师所教学科的喜爱.师生情感越融洽,学生就越喜欢老师的课,学习该课程的积极性就越高.反之,就会产生逆反心理,积极性就无从谈起.
二、中差生的转化
1.培养学生自觉学习的习惯,传授正确的学习方法,提高他们的解题能力
教师在布置作业时,要注意难易程度,要注意加强对差生的辅导、转化,督促他们认真完成布置的作业.对作业做得较好或作业有所进步的差生,要及时给予表扬鼓励.对待差生,要放低要求,采取循序渐进的原则,谆谆诱导的方法,从起点开始,耐心地辅导他们一点一滴地补习功课,让他们逐步提高.
大部分差生学习被动,依赖性强.往往对数学概念、公式、定理、法则死记硬背,不愿动脑筋,一遇到问题就问老师,甚至扔在一边不管;教师在解答问题时,也要注意启发式教学方式的应用,逐步让他们自己动脑,引导他们分析问题,解答问题.要随时纠正他们在分析解答中出现的错误,逐步培养他们独立完成作业的习惯.
应该用辩证的观点教育差生,对差生不仅要关心爱护和耐心细致地辅导,而且还要与严格要求相结合,不少学生之所以成为差生的一个很重要的原因就是因为学习意志不强,生活懒惰,上课迟到或逃学,上课思想经常不集中、开小差,作业不及时完成或抄袭,根本没有预习、复习等所造成的.因此教师要特别注意检查差生的作业完成情况,在教学过程中,要对他们提出严格的要求,督促他们认真学习.
三、对教师自身的要求
1.平时教学始终贯彻“实、活、准、精”的原则
“实”即实事求是,从本校、本班、本学科的实际出发,分层次开展教学工作,即因材施教,分类推进.“活”即教学方法和手段要灵活,就是要尽量采用启发式教学法、点拨法、讨论式、图表法,比较法等多种教学手段.如平时对应用题,一般可采用图表法来分析题意,列出方程而求解.其次还要教给学生解题的数学思想方法,重视能力培养,加强“联想、想象、转化”思维训练.如今年中考最后“压卷题”学生做得较好,这都与平时注重数形思想的强化分不开的.“准”即以大纲和教材为准.以课本为主线,严格按照大纲要求,狠抓双基、重视训练,同时,还强调学生解题的规范化和准确率,把这个“准”字渗透到日常的教学和练习中去.“精”即要做到精选、精讲、精练、精评.不搞题海战术,但不练习、不强化也不行,这就要认真备教材、教法、学法,使之有的放矢,事半功倍.
2.把握方向,立足实际,稳步扎实地分阶段地进行复习
紧扣《大纲》与《考纲》,明确复习目标,合理安排“三轮”总复习.
①第一轮复习双基进行归纳复习,全面巩固知识点,适当系统归纳,适当强化“双基”训练,力争后进生“脱贫”.
②第二轮复习时,系统梳理各单元知识、综合训练,做到重点问题重点练,难点问题分层练,易混问题对比练,克服定势灵活练.注意一题多解培养发散思维,多题一解培养化归思维.
③第三轮紧扣“重点”,力求突破.如何解好最后二道题,是本科成绩好坏之关键.因此,需掌握解题方法、解题规律的解剖,联想、数形转化的思想方法的训练.
实践证明在教学中注意采用上述方法对大面积提高数学教学质量有极大的帮助.这就是我们的做法和体会,尚有欠缺,望得到大家的指点,更进一步提高本人的教学水平.
初中数学有效教学的几个着力点
江苏省苏州市吴中区长桥中学215128蔡曙英
在新课程“有效教学”的理念下,要求教师认真分析教材和教学实践相结合,不断积累和掌握有效教学的策略.本文结合教学实践就如何提高初中数学教学的有效性谈几点笔者的看法,探索提升数学学习效率的方法.
一、改进观念,以生为本
意识决定行为.传统的教学观念不能很好地满足学生个性化发展的需求,要想提升教学效果,首先就必须改进我们的观念,对于初中数学教学亦不能例外.初中数学教学要注重哪些观念的改变呢?笔者认为必须改变“师本位”陈旧观念,确立学生的主体性地位.
“以生为本”是新课程教学的核心理念.我们要改变传统的“师本位”教学观念,从传统的注重知识传授转变为注重学法指导.在初中数学教学过程中,教师的作用主要在于激发学生的数学兴趣和探究的积极性,渗透数学思想方法,调动学生的数学思维,同时宏观调控学生的探究方向,参与到学生的探究活动中去,帮助学生顺利完成知识探究,陪同学生一起发现规律、感悟数学思想.
二、细致地分析教材
凡事预则立,不预则废.备课是上好一节课的基础,目前的初中数学概念教学如何备课呢?是不是简单地选择例题让学生在接触概念后就大规模训练呢?这样的做法显然是错误的.备课应该就教学内容和学生的具体学情进行分析,教材分析的过程是找概念间联系的过程.分析教材是教学的第一个环节,是完成教学设计必不可少的环节,细致地分析教材的构架,涉及到哪几部分内容,教材中的几个环节设计的目的是怎样的,涉及到什么数学思想.
例如,勾股定理是苏科版八年级上的一节内容.教材的重点内容有两个方面:(1)认识勾股定理;(2)应用勾股定理解决生活中简单的问题.教材将这2个方面的内容分了4个部分,构成链式的知识结构,有序铺开.教材从一枚邮票的设计导入问题,激活学生的思维;接着安排一个探究活动和一个实验让学生体验知识获得的过程;最后设置简单的问题引导学生应用勾股定理,实现知识的内化.
这节课涉及到的核心数学思想是转化法.
(1)转换的思想.每节数学课都应该有数学味,应该富含数学思想和方法.勾股定理这节课,在邮票的问题情境中,引导学生自主观察和发现三角形边长与正方形面积存在的数学关系.从数学关系出发,渗透转化的数学思想,将问题转化为探究面积的数量关系间接得到边的数量关系.
此外,探索图1中三个正方形的面积关系,这里面涉及到的也是转化的数学思想,借助于“割”或“补”,将“不规则”图形转化为“规则”图形进行面积关系的计算,同时也渗透了整体和局部的意识.
(2)数形结合的思想.发现直角三角形的三边关系是本节课的重点,通过这个问题的探究、讨论和交流,学生自主得到结论――勾股定理,这一过程从图形出发,由数到形,再从图形联想到数量关系,整个过程建立在观察、猜想、交流的基础上,学生的主动性得到很好的发挥.
(3)渗透方程的思想.在教材最后一个环节,知识的简单运用,就一个具体的三角形,已知两边求第三边.这个问题的思考实际上就是从勾股定理出发,结合已知条件建立方程,求出未知量.在简单运用环节,应从实际生活出发,将原始数学问题抽象为直角三角形模型.
三、注重情境创设
传统的教学模式,学生类似于知识收纳箱,处于被动接受知识的学习状态,对于为什么会想到这样去做,又为什么要这样做,全然不知,自然也就无法获得数学素养的提升.从生物学史的发展来看,任何一个知识、方法都是科学家在实践中观察、分析、总结产生和发展起来的,其本身就具有一个“探究”的过程.我们的数学教学不可能让学生回复到科学家从无到有的发现过程,那个太漫长了.不过我们应该创设科学的问题情境激发学生的思维,引导学生发现问题、提出假设、实验探究,在互动探究的过程中接近主要的知识及其所包含的科学元素、科学精神.同时自己发现规律的过程能够有助于提升学生的学习情感,实现知识、技能,过程与方法,情感、态度与价值观三维教学目标的有效达成.
例如,在和学生一起学习“有理数的乘法”这节知识内容时,笔者为了避免教学干巴巴的,过于呆板,因此借助于电脑设置了一个情境:“蚂蚁在数轴上运动”,借此引导学生感悟“有理数乘法法则”.学生在轻松的情境中理解了数学概念.
有时候学生在解决问题时,有可能思维卡壳,这个时候也需要我们老师适当地追问,设置台阶让学生的思维拾级而上.
例如,在和学生一起学习“二次根式”时,有这样一题.
例1已知实数x、y满足条件:y=1-2x+2x-1-3,试求xy的值.
这道题让相当一部分学生感觉到一筹莫展,思维卡壳了怎么办?直接灌输正确的答案肯定是不行的,为此,笔者再次追加问题,设置情境,帮助学生自己发现并解决问题.
追问1:怎么就能解出xy的值?
追问2:要求x、y两个未知量,一个方程够不够,如何解决?
通过这个点拨,学生很自然地去思考从这个等式中有没有其他方程可以挖掘.细心观察的话,就可以看出两个根式下的代数式互为相反数,加上又都在根号下,根据被开方数非负,从而建立不等式组,如此将学生的思维带上路.学生能够求出x,继而求出y,求出xy.
四、注重知识的延展性
“温故而知新,可以为师矣.”初中数学知识具有较强的系统性,我们在教学过程中必须分析学生学了哪些知识,这些知识与新知识有哪些联系,科学设置情境引导学生联 想、引伸,做到温故而知新,发现、探究新旧知识之间的联系以及它们间的结合点,使得对新知识的学习做到有的放矢,比较容易地抓住学习中的重点,突破其难点,有序构建出整个数学知识体系与结构.在教学过程中,设置的例题要具有启发性,学生通过思考能够有效联系原有的解决数学问题的方法.
例如,在和学生学习“二次函数解析式”的求解方法时,笔者选择了如下一题.
例2一条抛物线y=ax2+bx+c,经过两个点(0,0)和点(12,0),且已知抛物线最高点的纵坐标为3,试求出该抛物线的解析式.
分析这道题的解法很多,如何更为有效激发学生的思维,笔者尝试着要求学生自己提出与解题相关的问题,从学生的问题设计来看,主要有如下几个:
设问1:如果用三点式y=ax2+bx+c,如何来确定解析式中的a、b、c的值?
设问2:如果用顶点式y=a(x-h)2+k,如何确定对称轴和顶点的坐标?
设问3:如果用两根式y=a(x-x1)(x-x2),则x1、x2分别是多少?
除了激发学生去想解决问题有哪些方法外,对于训练学生思维的练习题要注意变式训练,确保学生学到的知识具有可拓展性.
五、关注学生思维过程
学生解决数学问题的过程是其真实的思维过程.我们要关注过程,而不要一味的要求学生得到正确的结果.在出现错解时,要分析出错的原因,在此基础上再给学生呈现正确的解答,让学生自己发现和比较,实现对知识认识的深化.
例3已知ABC为等腰三角形,AB=AC,且AB的垂直平分线与AC所在的直线相交成50°的锐角,试求∠B多大.
典型错解学生根据题意画出几何图形如图2所示,因为∠1=50°,MNAB,所以∠A=40°.因为AB=AC,所以∠B=∠C=12(180°-40°)=70°.
错因分析学生在解题中,忽视了ABC顶角∠A可能为锐角,也可能为钝角,所以除了图2的这种几何图形外,应该还有几何图形如图3所示,学生在思考问题时,对几何图形不惟一性的忽视导致了错误.
正解当∠A为锐角时,根据题意画出几何图形如图2所示.
因为∠1=50°,MNAB,所以∠A=40°.因为AB=AC,所以∠B=∠C=12(180°-40°)=70°.
当∠A为钝角时,根据题意画出几何图形如图3所示.
因为∠1=50°,MNAB,所以∠A=140°.因为AB=AC,
1.1以教材中典型的例、习题为背景进行命题
“源于教材又高于教材”已成为全国及各地中考命题的一项准则.在平时单元检测、期中或期末考试等命题中坚持以课本题为源命制测试题,有利于引导学生学习课本,学会看数学书.源于课本的改编题,选题背景更贴近学生的实际.
例1如图1,要在燃气管道l上修建一个泵站,分别向 A,B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?(义务教育课程标准实验教科书《数学》八年级上册P42.)
图1改编题1.若此知识点在《四边形》的单元中考查,可编写为:如图2,菱形ABCD中, ∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是3,则AB长为.
2.若此知识点在平移的综合中考查,可编写为:如图3,当四边形PABN的周长最小时,a =.
图2图3编拟意图:以上两小题是在不同情境下运用基本图形来解决问题,不但考查了学生类比与迁移的能力,而且引导学生在打好基础上下功夫,在教学中,对培养学生的探索精神具有一定引导作用.
1.2以学生作业中的错题为背景进行命题
例2 1.关于x的方程(a -5)x2-4x-1=0有实数根,则a满足( )
A.a≥1B.a>1且a≠5
C.a≥1且a≠5D.a≠5
2.有以下三个命题,判断这三个命题的正确性
①平行四边形是中心对称图形( )
②四边形中只有平行四边形才是中心对称图形( )
③平行四边形不是轴对称图形( )
编拟意图:第1小题是在讲解一元二次方程实数根时,学生容易将一元二次方程的实数根与方程的实数根混淆.第2小题是在教一般平行四边形和特殊平行四边形关系时,学生表面上好像懂了,其实做了这一题后会发现,不懂的学生很多,尤其是第②个,学生认为是错的,理由是还有矩形、菱形.
在实际教学中,把学生的错误当作宝贵的教学资源,从错题中提炼出错误原因,提取共性,编拟成试题,能培养学生思考错题、分析错题、研究错题,引导学生学会反思错误,充分调动学生求知、求思的积极性和主动性.
1.3以中考题为背景进行命题
最激烈的竞争是中考,最优秀的命题是中考题.以中考题为参照命制试题,作为中考复习的模拟题是明智之举.
例3(山东东营) 如图4,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.OA1B1,B1A2B2,B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2 712,312,…,那么点An的纵坐标是.
图4改编题 在平面直角坐标系xoy中,正方形A1 B1 C1O、A2 B2 C2 B1、A3 B3 C3 B2,…,按图5所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b和x轴上.已知C1(1,-1),C2712,-312,则点A3的坐标是,点An的坐标是.
图5编拟意图:改编题在原题的基础上,增加考查正方形的轴对称性,由C1、C2的坐标可求A1、A2的坐标,将新问题转化为原题,确定出A3的坐标,依此类推寻找规律,即可求出An的坐标.灵活运用正方形的性质是解本题的关键.
新课改要求教学中应重视学生发现和解决问题能力的培养,重视知识“过程”的学习,锻炼学生归纳总结的能力,会将学过的问题(做过的作业)进行改编,引导学生提出有一定深度和广度的问题,激发学生积极思考.
1.4以数学竞赛中一些内容和方法为背景进行命题
竞赛题有一定的难度,不能照搬照套;但它的视角,它的立意,它的方法,它的情景却是值得我们平时命题时借鉴和模仿的,改编时要特别注意学生的实际能力.
例如在学习完第七章《二元一次方程组》知识后,给学生出了这样一道阅读题:
例4 阅读下列解题过程,借鉴其中一种方法,解答后面给出的试题:
问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了925元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了320元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知
13x+5y+9z=9.25(1)
2x+4y+3z=3.20(2);
若视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.
解法1:视x为常数,依题意得
5y+9z=9.25-13x(3)
4y+3z=3.20-2x(4)
解这个关于y、z的二元一次方程组得
y=0.05+x
z=1-2x
于是 x+y+z=x+0.05+x+1-2x=1.05.
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组,解答方法同上.
若视x+y+z为整体,由(1)、(2)恒等变形得
5(x+y+z)+4(2x+z)=9.25,
4(x+y+z)-(2x+z)=3.20.
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方程组
5a+4b=9.25(5)
4a-b=3.20(6)
由⑤+4×⑥,得21a=22.05,a=1.05.
评注:运用整体的思想方法指导解题.视x+y+z,2x+z为整体,令a=x+y+z,b=2x+z,代人①、②将原方程组转化为关于a、b的二元一次方程组从而获解.
请你运用以上介绍的任意一种方法,解答下列试题:
购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
品名
次数 1A11A21A31A41A51总钱数第一次购买件数111314151611992第二次购买件数1115171911112984
那么,购买每种教学用具各一件共需多少元?
编拟意图:本题若设购买每种教学用具各一件各需a,b,c,d,e元,则有a+3b+4c+5d+6e=(a+b+c+d+e)+(2b+3c+4d+5e)=1992;以及a+5b+7c+9d+11e=(a+b+c+d+e)+(4b+6c+8d+10e)=2984,可假设(a+b+c+d+e)=x,2b+3c+4d+5e=y,构建新的方程组解决问题.
此类题是引导学生用观察、分析、归纳、猜想、验证等探索方法,得出规律.考查学生的创新能力,锻炼学生探索技巧,在考查高层次思维能力和创新意识方面具有独特的作用.
1.5以古典数学名题作为问题的背景
《新课程标准》指出,数学学习不仅包括数学的一些现成结果,还要包括这些结果的形成过程.以古典数学名题作为问题的背景的主要有杨辉三角、蝴蝶定理、七桥问题、色环问题等,以这些问题为背景主要考察学生的知识迁移能力.
例5 如图6,是与杨辉三角有类似性质的三角形数垒,a、b、c、d是相邻两行的前四个数(如图6所示).那么当a=8时,c=,d=.
图6编拟意图:本题学生通过观察,找出每一行中数据间的相互联系,和行与行间数据的相互联系,然后对数据间的这种联系用数学式子将它表达出来.本题是以我国古代的杨辉三角为背景的规律探索型题,主要考查学生对数据的整理、分析、概括和处理能力,同时考查了学生对类比方法的运用,体现“数学文化”,展现数学文化价值,寓教育于考试之中.
1.6以课题学习为背景进行命题
作为考查学生数学素养的载体,不适宜用未学的“高一级”知识,而是用“同级”的但不是太熟悉的知识;以课题为背景的研究性学习无论是对课程教材的开发,还是对于学生的探索能力和创新意识的培养都具有积极意义.
例6某课题小组对课本的习题进行了如下探索,请逐步思考并解答:
(1)如图7,两个大小一样传送轮连接着一条传送带,两个传动轮中心距离是10m,求这条传送带的长.
(2)改变图形的数量
如图8,将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m,求这条传送带的长.
图7图8(3)改变动态关系,将静态问题转化为动态问题
如图9,一个半径为1 cm的P沿边长为2π cm的等边三角形ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?P自转了多少周?
(4)拓展与应用
如图10,一个半径为1 cm的P沿半径为3 cm的O外沿作无滑动滚动一周,则P自转了多少周?
图9图10编拟意图:本题从课本中学生熟悉的问题入手,通过改变图形的数量,改变图形的动态关系,将理论性思维与动作性思维结合起来,充分体现了研究性学习的基本特征,以学生为主体、以类似科学研究的方式主动地获取知识、应用知识、解决问题.
1.7以与高中内容紧密联系的数学知识为背景
以高中数学知识为命题背景,考查考生的阅读理解能力和信息处理能力,自学能力,同时既能开阔数学视野,有利于完成高中数学与初中数学的和谐接轨,又能有效地考查学生的思维能力和后续学习的潜能.
例7阅读下列材料,并回答下列问题
一般地,如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=-f(x),那么y=f(x)就叫做奇函数;如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=f(x),那么f(x)就叫偶函数.
例如f(x)=x3+x,当x取任意实数时,f(-x)=(-x)3+(-x)=-x3-x=-(x3+x),即,f(-x)=-f(x),所以f(x)=x3+x奇函数.
又如f(x)=|x|,当x取任意实数时,f(-x)=|-x|=x,即,f(-x)=f(x)所以f(x)=|x|是偶函数.
问题:(1)下列函数中:①y=x6;②y=x2+2;③y=31x;④y=x+1;⑤y=x+11x;奇函数是,偶函数是.
(2)请你再分别写出一个奇函数、一个偶函数.
编拟意图:以高中函数知识为背景,是初中函数知识的延伸.由于初中学生已有一定的函数知识,故只需对照题中两例,完成对概念的探究,获取新知识,进而应用新知识,就可以解答问题.(1)中 ①②是偶函数,③⑤是奇函数;(2)如y=x是奇函数,y=2x2-1是偶函数.
1.8以实际生活、生产实践经验作为问题的背景
在实际问题中,条件往往不能完全确定,即条件的不确定性是自然形成的或是实际需要,其不确定性是合理的.从实际材料出发,通过抽象、概括的数学化过程建构数学知识,建立数学模型,以培养学生创新精神和实践能力.
例8为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3∶2,单价和为160元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?
编拟意图:本题主要考查学生分析和解决实际问题,构造数学模型的能力;把实际问题抽象为数学问题,利用转换的方法(即转化为某种类似的数量关系模型),确定实际问题中的已知量和未知量之间的关系,从而解决问题.
19以学生较为熟悉的的图形作为问题的背景
让学生通过对较为熟悉的图形的观察,找出图形间的相互关系,图形本身的特征,然后加以归纳和猜想.主要考查学生的观察、比较、分析、抽象、概括等思维能力.
例9如图11,平面内4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是1个单位长度,正方形ABCD的4个顶点A、B、C、D都在这图11些平行线上,其中点A、C分别在直线l1、l4上,该正方形的面积是平方单位.
改编题如图12,若正方形ABCD的四个顶点恰好分别在四条平行线l1、l2、l3、l4上,设这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).
(1)求证:h1=h3;
(2)如图13,现在平面直角坐标系内有四条直线l1、l2、l3、x轴,且l1∥l2∥l3∥x轴,若相邻两直线间的距离为1,2,1,点A(4,4)在l1,能否在l2、l3、x轴上各找一点B、C、D,使以这四个点为顶点的四边形为正方形,若能,请直接写出B、C、D的坐标;若不能,请说明理由.
图12图13编拟意图:该题主要是考查学生对图形的直觉猜想、归纳能力.利用平行线的性质、正方形的性质和面积计算解决问题,关键是根据平行线之间的距离构造全等的直角三角形.这样既保留了原习题的特点,又有创新,结合考查的目的、要求进行取舍、组合,编制出有坡度、信度高、区分度适中的不同层次的试题.
1.10以陈题为背景进行命题
有一些很平常、很常见的题,学生通常习以为常,解题往往已形成了习惯性思维,但可以改编成一道全新的题,培养学生思维深刻性.
图14例10如图14,D在直线BE上,BE交AC于F,ABC∽ADE,求证:ABD∽ACE.
改编题:如图14,D在直线BE上,BE交AC于F,ABC∽ADE,请找出其他的相似三角形,并证明.
本题还能找到2对: AEF∽BCF,ABF∽CEF.
编拟意图:对于这一类问题通常是在某个旧知识的背景下,给出一个新的问题,要求能在新问题下,联系所学的知识,进一步探索创新,既加深了对原有知识的理解,同时有发展了学生的思维,培养了学生的阅读理解能力和对知识的应用能力.
2命制试题的注意点
(1)命制的新题目要保证背景的公平性,同时要特别注意语言表述的准确性,防止条件变化所引起的歧义,并注意条件的相容性.
(2)命制新题要立意明确,不是作些廉价的转化,机械的组合.现在不少学生思考问题的思维方式往往是:见过没有?做过没有?讲过没有?而不是针对题面信息本身的,告诉我们什么?要求什么?有何联系?选择什么知识与方法?所以,从平时单元检测起,适当引进新题、改编题,可以更好体现对学生能力的考查,更好地培养学生的思维方式与思维品质.