时间:2023-06-27 09:33:08
引言:寻求写作上的突破?我们特意为您精选了4篇高中重点数学知识范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
高中数学函数知识一、一次函数定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。g=S-ft。
六、常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)’2+(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)
高中数学函数知识2二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax’2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax’2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)’2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x’2的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。
对称轴为直线
x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b’2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b’2-4ac>0时,抛物线与x轴有2个交点。
Δ=b’2-4ac=0时,抛物线与x轴有1个交点。
Δ=b’2-4ac
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax’2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax’2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
高中数学函数知识3反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)
对数函数
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
高中化学知识点1有机物的溶解性
(1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。
(2)易溶于水的有:低级的[一般指N(C)≤4]醇、(醚)、醛、(酮)、羧酸及盐、氨基酸及盐、单糖、二糖。(它们都能与水形成氢键)。
(3)具有特殊溶解性的:
①乙醇是一种很好的溶剂,既能溶解许多无机物,又能溶解许多有机物,所以常用乙醇
来溶解植物色素或其中的药用成分,也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。例如,在油脂的皂化反应中,加入乙醇既能溶解NaOH,又能溶解油脂,让它们在均相(同一溶剂的溶液)中充分接触,加快反应速率,提高反应限度。
②苯酚:室温下,在水中的溶解度是9.3g(属可溶),易溶于乙醇等有机溶剂,当温度高高中化学选修5于65℃时,能与水混溶,冷却后分层,上层为苯酚的水溶液,下层为水的苯酚溶液,振荡后形成乳浊液。苯酚易溶于碱溶液和纯碱溶液,这是因为生成了易溶性的钠盐。
③乙酸乙酯在饱和碳酸钠溶液中更加难溶,同时饱和碳酸钠溶液还能通过反应吸收挥发出的乙酸,溶解吸收挥发出的乙醇,便于闻到乙酸乙酯的香味。
④有的淀粉、蛋白质可溶于水形成胶体。蛋白质在浓轻金属盐(包括铵盐)溶液中溶解度减小,会析出(即盐析,皂化反应中也有此操作)。但在稀轻金属盐(包括铵盐)溶液中,蛋白质的溶解度反而增大。
⑤线型和部分支链型高聚物可溶于某些有机溶剂,而体型则难溶于有机溶剂。
⑥氢氧化铜悬浊液可溶于多羟基化合物的溶液中,如甘油、葡萄糖溶液等,形成绛蓝色溶液。
高中化学知识点2一、汽车的常用燃料——汽油
1.汽油的组成:分子中含有5—11个碳原子的烃的混合物
主要是己烷、庚烷、辛烷和壬烷
2.汽油的燃烧
思考:①汽油的主要成分是戊烷,试写出其燃烧的化学方程式?
②汽车产生积碳得原因是什么?
(1)完全燃烧——生成CO2和H2O
(2)不完全燃烧——有CO和碳单质生成
3.汽油的作用原理
汽油进入汽缸后,经电火花点燃迅速燃烧,产生的热气体做功推动活塞往复运动产生动力,使汽车前进。
4.汽油的来源:(1)石油的分馏(2)石油的催化裂化
思考:①汽油的抗爆震的程度以什么的大小来衡量?
②我们常说的汽油标号是什么?
③汽油中所含分子支链多的链烃、芳香烃、环烷烃的比例越高,它的抗爆震性就越好吗?
④常用抗爆震剂是什么?
5.汽油的标号与抗震性
①汽油的抗爆震的程度以辛烷值的大小来衡量。
②辛烷值也就是我们常说的汽油标号。
③汽油中所含分子支链多的链烃、芳香烃、环烷烃的比例越高,它的抗爆震性越好.
④常用抗爆震剂
四乙基铅[Pb(C2H5)4]
甲基叔丁基醚(MTBE).
6、汽车尾气及处理措施
思考:进入汽缸的气体含有什么物质?进入的空气的多少可能会有哪些危害?
①若空气不足,则会产生CO有害气体;
②若空气过量则产生氮氧化合物NOx,如
N2+O2=2NO,2NO+O2=2NO2
其中CO、NOx,都是空气污染物。
汽车尾气中的有害气体主要有哪些?CO、氮氧化合物、SO2等
如何进行尾气处理?
在汽车的排气管上安装填充催化剂的催化装置,使有害气体CO、NOx转化为CO2和N2,
例如:2CO+2NO=2CO2+N2
措施缺陷:
①无法消除硫的氧化物对环境的污染,还加速了SO2向SO3的转化,使排出的废气酸度升高。
②只能减少,无法根本杜绝有害气体产生。
二、汽车燃料的清洁化
同学先进行讨论:①汽车燃料为什么要进行清洁化?②如何进行清洁化?
1.汽车燃料清洁化的原因
使用尾气催化装置只能减小有害气体的排放量,无法从根本上杜绝有害气体的产生,而要有效地杜绝有害气体的产生,汽车燃料就必须清洁化。
2.清洁燃料车:
压缩天然气和石油液化气为燃料的机动车
清洁燃料车的优点?
①大大降低了对环境的污染(排放的CO、NOx等比汽油汽车下降90%以上);
②发动机汽缸几乎不产生积炭现象;
③可延长发动机的使用寿命。
3.汽车最理想的清洁燃料——氢气
讨论为什么说H2是汽车最理想的清洁燃料?
(1)相同质量的煤、汽油和氢气,氢气释放能量最多
(2)氢气燃烧后生成水,不会污染环境。
氢作燃料需要解决的哪些问题?
1、大量廉价氢的制取
2、安全贮氢
介绍两种方便的制氢方法:
①光电池电解水制氢
②人工模仿光合作用制氢
高中化学知识点3一、乙醇
1、结构
结构简式:CH3CH2OH官能团-OH
医疗消毒酒精是75%
2、氧化性
①可燃性
CH3CH2OH+3O22 CO2+3H2O
②催化氧化
2CH3CH2OH+O22CH3CHO+2H2O断1、3键
2CH3CHO+O22CH3COOH
3、与钠反应
2CH3CH2OH+2Na2CH3CH2ONa+H2
用途:燃料、溶剂、原料,75%(体积分数)的酒精是消毒剂
二、乙酸
1、结构
分子式:C2H4O2,结构式:结构简式CH3COOH
2、酸性;CH3COOHCH3COO-+H+酸性:CH3COOH>H2CO3
2CH3COOH+Na2CO32CH3COONa+H2O+CO2
3、脂化反应
醇和酸起作用生成脂和水的反应叫脂化反应
CH3CH2OH+CH3COOHCH3COOCH2CH3+H2O
反应类型:取代反应反应实质:酸脱羟基醇脱氢
浓硫酸:催化剂和吸水剂
饱和碳酸钠溶液的作用:(1)中和挥发出来的乙酸(便于闻乙酸乙脂的气味)
(2)吸收挥发出来的乙醇(3)降低乙酸乙脂的溶解度
总结:
三、酯油脂
结构:RCOOR′水果、花卉芳香气味乙酸乙脂脂
油:植物油(液态)
油脂
脂:动物脂肪(固态)
油脂在酸性和碱性条件下水解反应皂化反应:油脂在碱性条件下水解反应
甘油
应用:(1)食用(2)制肥皂、甘油、人造奶油、脂肪酸等
高中化学知识点41、亲电取代反应
芳香烃图册主要包含五个方面:卤代:与卤素及铁粉或相应的三卤化铁存在的条件下,可以发生苯环上的H被取代的反应。卤素的反应活性为:F>Cl>Br>I不同的苯的衍生物发生的活性是:烷基苯>苯>苯环上有吸电子基的衍生物。
烷基苯发生卤代的时候,如果是上述催化剂,可发生苯环上H取代的反应;如在光照条件下,可发生侧链上的H被取代的反应。
应用:鉴别。(溴水或溴的四氯化碳溶液)如:鉴别:苯、己烷、苯乙烯。(答案:step1:溴水;step2:溴水、Fe粉)。
硝化:与浓硫酸及浓硝酸(混酸)存在的条件下,在水浴温度为55摄氏度至60摄氏度范围内,可向苯环上引入硝基,生成硝基苯。不同化合物发生硝化的速度同上。
磺化:与浓硫酸发生的反应,可向苯环引入磺酸基。该反应是个可逆的反应。在酸性水溶液中,磺酸基可脱离,故可用于基团的保护。烷基苯的磺化产物随温度变化:高温时主要得到对位的产物,低温时主要得到邻位的产物。
F-C烷基化:条件是无水AlX3等Lewis酸存在的情况下,苯及衍生物可与RX、烯烃、醇发生烷基化反应,向苯环中引入烷基。这是个可逆反应,常生成多元取代物,并且在反应的过程中会发生C正离子的重排,常常得不到需要的产物。该反应当苯环上连接有吸电子基团时不能进行。如:由苯合成甲苯、乙苯、异丙苯。
F-C酰基化:条件同上。苯及衍生物可与RCOX、酸酐等发生反应,将RCO-基团引入苯环上。此反应不会重排,但苯环上连接有吸电子基团时也不能发生。如:苯合成正丙苯、苯乙酮。
亲电取代反应活性小结:连接给电子基的苯取代物反应速度大于苯,且连接的给电子基越多,活性越大;相反,连接吸电子基的苯取代物反应速度小于苯,且连接的吸电子基越多,活性越小。
2、加成反应
与H2:在催化剂Pt、Pd、Ni等存在条件下,可与氢气发生加成反应,最终生成环己烷。与Cl2:在光照条件下,可发生自由基加成反应,最终生成六六六。
3、氧化反应
苯本身难于氧化。但是和苯环相邻碳上有氢原子的烃的同系物,无论R-的碳链长短,则可在高锰酸钾酸性条件下氧化,一般都生成苯甲酸。而没有α-H的苯衍生物则难以氧化。该反应用于合成羧酸,或者鉴别。现象:高锰酸钾溶液的紫红色褪去。
4、定位效应
两类定位基邻、对位定位基,又称为第一类定位基,包含:所有的给电子基和卤素。它们使新引入的基团进入到它们的邻位和对位。给电子基使苯环活化,而X2则使苯环钝化。
间位定位基,又称为第二类定位基,包含:除了卤素以外的所有吸电子基。它们使新引入的基团进入到它们的间位。它们都使苯环钝化。
二取代苯的定位规则:原有两取代基定位作用一致,进入共同定位的位置。如间氯甲苯等。原有两取代基定位作用不一致,有两种情况:两取代基属于同类,则由定位效应强的决定;若两取代基属于不同类时,则由第一类定位基决定。
高中化学知识点5一、研究物质性质的方法和程序
1.基本方法:观察法、实验法、分类法、比较法
2.用比较的方法对观察到的现象进行分析、综合、推论,概括出结论.
二、钠及其化合物的性质:
1.钠在空气中缓慢氧化:4Na+O2==2Na2O
2.钠在空气中燃烧:2Na+O2点燃====Na2O2
3.钠与水反应:2Na+2H2O=2NaOH+H2
现象:
①钠浮在水面上;
②熔化为银白色小球;
③在水面上四处游动;④伴有嗞嗞响声;⑤滴有酚酞的水变红色.
4.过氧化钠与水反应:2Na2O2+2H2O=4NaOH+O2
5.过氧化钠与二氧化碳反应:2Na2O2+2CO2=2Na2CO3+O2
6.碳酸氢钠受热分2NaHCO3==Na2CO3+H2O+CO2
7.氢氧化钠与碳酸氢钠反应:NaOH+NaHCO3=Na2CO3+H2O
8.在碳酸钠溶液中通入二氧化碳:Na2CO3+CO2+H2O=2NaHCO3
三、氯及其化合物的性质
1.氯气与氢氧化钠的反应:Cl2+2NaOH=NaCl+NaClO+H2O
2.铁丝在氯气中燃烧:2Fe+3Cl2点燃===2FeCl3
3.制取漂白粉(氯气能通入石灰浆)2Cl2+2Ca(OH)2=CaCl2+Ca(ClO)2+2H2O
4.氯气与水的反应:Cl2+H2O=HClO+HCl
5.次氯酸钠在空气中变质:NaClO+CO2+H2O=NaHCO3+HClO
6.次氯酸钙在空气中变质:Ca(ClO)2+CO2+H2O=CaCO3+2HClO
四、以物质的量为中心的物理量关系
1.物质的量n(mol)=N/N(A)
2.物质的量n(mol)=m/M
3.标准状况下气体物质的量n(mol)=V/V(m)
4.溶液中溶质的物质的量n(mol)=cV
五、胶体:
1.定义:分散质粒子直径介于1~100nm之间的分散系.
2.胶体性质:
①丁达尔现象
②聚沉
高中数学知识点向量:既有大小,又有方向的量.
数量:只有大小,没有方向的量.
有向线段的三要素:起点、方向、长度.
零向量:长度为的向量.
单位向量:长度等于个单位的向量.
相等向量:长度相等且方向相同的向量
&向量的运算
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ
设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积
已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
高考理科数学高频必考考点一、三角函数题
三角题一般在解答题的前两道题的位置上,主要考查三角恒等变换、三角函数的图像与性质、解三角形等有关内容.三角函数、平面向量和三角形中的正、余弦定理相互交汇,是高考中考查的热点.
二、数列题
数列题重点考查等差数列、等比数列、递推数列的综合应用,常与不等式、函数、导数等知识综合交汇,既考查分类、转化、化归、归纳、递推等数学思想方法,又考查综合运用知识进行运算、推理论证及解决问题的能力.近几年这类试题的位置有所前移,难度明显降低.
三、立体几何题
常以柱体、锥体、组合体为载体全方位地考查立体几何中的重要内容,如线线、线面与面面的位置关系,线面角、二面角问题,距离问题等,既有计算又有证明,一题多问,递进排列,此类试题既可用传统方法解答,又可用空间向量法处理,有的题是两法兼用,可谓珠联璧合,相得益彰.究竟选用哪种方法,要由自己的长处和图形特点来确定.便于建立空间直角坐标系的,往往选用向量法,反之,选用传统方法.另外,“动态”探索性问题是近几年高考立体几何命题的新亮点,三视图的巧妙参与也是立体几何命题的新手法,要注意把握.
四、概率问题
概率题一般在解答题的前三道题的位置上,主要考查数据处理能力、应用意识、必然与或然思想,因此近几年概率题常以概率与统计的交汇形式呈现,并用实际生活中的背景来“包装”.概率重点考查离散型随机变量的分布列与期望、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验与二项分布等;统计重点考查抽样方法(特别是分层抽样)、样本的频率分布、样本的特征数、茎叶图、线性回归、列联表等,穿插考查合情推理能力和优化决策能力.同时,关注几何概型与定积分的交汇考查,此类试题在近几年的高考中难度有所提升,考生应有心理准备.
五、圆锥曲线问题
解析几何题一般在解答题的后三道题的位置上,有时是“把关题”或“压轴题”,说明了解析几何题依然是重头戏,在新课标高考中依然占有较突出的地位.考点:第一,解析几何自身模块的小交汇,是指以圆、圆锥曲线为载体呈现的`,将两种或两种以上的知识结合起来综合考查.如不同曲线(含直线)之间的结合,直线是各类曲线和相关试题最常用的“调味品”,显示了直线与方程的各知识点的基础性和应用性.第二,圆锥曲线与不同模块知识的大交汇,以解析几何与函数、向量、代数知识的结合最为常见.有关解析几何的最值、定值、定点问题应给予重视.一般来说,解析几何题计算量大且有一定的技巧性(要求品出“几何味”来),需要“精打细算”,对考生的意志品质和数学机智都是一种考验和检测.
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
导数题考查的重点是用导数研究函数性质或解决与函数有关的问题.往往将函数、不等式、方程、导数等有机地综合,构成一道超大型综合题,体现了在“知识网络交汇点处设计试题”的高考命题指导思想.鉴于该类试题的难度大,有些题还有高等数学的背景和竞赛题的味道,标准答案提供的解法往往如同“神来之笔”,确实想不到,加之“搏杀”到此时的考生的精力和考试时间基本耗尽,建议考生一定要当机立断,视时间和自身实力,先看第(1)问可否拿下,再确定放弃、分段得分或强攻.近几年该类试题与解析几何题轮流“坐庄”,经常充当“把关题”或“压轴题”的重要角色.
高中数学知识点大全1、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之补等于补之并。
Cu(AUB)=(CuA)∩(CuB),并之补等于补之交。
3、ax2+bx+c
+c>0的解集为x,cx2+bx+a>0的解集为>x或x
4、c0的解集为->x或x
5、原命题与其逆否命题是等价命题。
原命题的逆命题与原命题的否命题也是等价命题。
6、函数是一种特殊的映射,函数与映射都可用:f:AB表示。
A表示原像,B表示像。当f:AB表示函数时,A表示定义域,B大于或等于其值域范围。只有一一映射的函数才具有反函数。
7、原函数与反函数的单调性一致,且都为奇函数。
偶函数和周期函数没有反函数。若f(x)与g(x)关于点(a,b)对称,则g(x)=2b-f(2a-x).
8、若f(-x)=f(x),则f(x)为偶函数,若f(-x)=f(x),则f(x)为奇函数;
偶函数关于y轴对称,且对称轴两边的单调性相反;奇函数关于原点对称,且在整个定义域上的单调性一致。反之亦然。若奇函数在x=0处有意义,则f(0)=0。函数的单调性可用定义法和导数法求出。偶函数的导函数是奇函数,奇函数的导函数是偶函数。对于任意常数T(T≠0),在定义域范围内,都有f(x+T)=f(x),则称f(x)是周期为T的周期函数,且f(x+kT)=f(x),k≠0.
9、周期函数的特征性:①f(x+a)=-f(x),是T=2a的函数,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函数,③若f(x)既x=a关对称,又关于x=b对称,则f(x)是T=2(b-a)的函数④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,则f(x)是T=2(b-a)的函数⑤f(x+a)=±,则f(x)
是T=4(b-a)的函数
10、复合函数的单调性满足“同增异减”原理。
定义域都是指函数中自变量的取值范围。
11、抽象函数主要有f(xy)=f(x)+f(y)(对数型),f(x+y)=f(x)?f(y)(指数型),f(x+y)=f(x)+f(y)(直线型)。
解此类抽象函数比较实用的方法是特殊值法和周期法。
12、指数函数图像的规律是:底数按逆时针增大。
对数函数与之相反.
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。
在解可化为a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指数方程或不等式时,常借助于换元法,应特别注意换元后新变元的取值范围。
14、log10N=lgN;logeN=lnN(e=2.718???);对数的性质:如果a>0,a≠0,M>0N>0,
那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.
换底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.
15、函数图像的变换:
(1)水平平移:y=f(x±a)(a>0)的图像可由y=f(x)向左或向右平移a个单位得到;
(2)竖直平移:y=f(x)±b(b>0)图像,可由y=f(x)向上或向下平移b个单位得到;
(3)对称:若对于定义域内的一切x均有f(x+m)=f(x—m),则y=f(x)的图像关于直线x=m对称;y=f(x)关于(a,b)对称的函数为y!=2b—f(2a—x).
(4),学习计划;翻折:①y=|f(x)|是将y=f(x)位于x轴下方的部分以x轴为对称轴将期翻折到x轴上方的图像。②y=f(|x|)是将y=f(x)位于y轴左方的图像翻折到y轴的右方而成的图像。
(5)有关结论:①若f(a+x)=f(b—x),在x为一切实数上成立,则y=f(x)的图像关于
x=对称。②函数y=f(a+x)与函数y=f(b—x)的图像有关于直线x=对称。
15、等差数列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,则am+an=ap+aq;
sk,s2k—k,s3k—2k成以k2d为公差的等差数列。an是等差数列,若ap=q,aq=p,则ap+q=0;若sp=q,sq=p,则sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差数列,则可设前n项和为sn=an2+bn(注:没有常数项),用方程的思想求解a,b。在等差数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等差数列。
17、等比数列中,an=a1?qn-1=am?qn-m,若n+m=p+q,则am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,则有=q,若q≠—1,=q;
sk,s2k—k,s3k—2k也是等比数列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比数列。在等比数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等比数列。裂项公式:
=—,=?(—),常用数列递推形式:叠加,叠乘,
18、弧长公式:l=|α|?r。
s扇=?lr=?|α|r2=?;当一个扇形的周长一定时(为L时),
其面积为,其圆心角为2弧度。
作者简介:尹维香(1979-), 女 ,江苏沭阳人,本科, 中学一级教师 ,主要从事中学数学教学研究.
在教学过程中,高效率高质量教学,并不在于教师知识点传授的多少,而在于教师在教学过程中可以将知识点落实,这是中学数学教师教学过程中应注意的地方,同时也是提升教学质量的关键.
一、钻研教材,挖掘知识点
在中学数学教学过程中,知识点并不是直接呈现给学生的,而是要通过学生的想象思维与逻辑思维推理总结,才能够得出的知识,但是在教学过程中,由于很多学生思维与能力的限制,在学习过程中经常会出现看不懂、不理解的教学现象,因此单凭学生自身去挖掘知识点是很难实现的,这就需要教师的帮助,为此作为一名中学数学教师,一定要认真备课,仔细钻研教材,把教材中所有隐藏的知识点都挖掘出来,学生才能全面的理解数学知识,这是提升学生数学能力与数学成绩的关键[1].
例如在学习《函数的基本性质》这一内容时,教材中对于函数给出了这样的两种性质,首先是函数的单调性,即函数在某一定义域内,任意两个自变量若f(x1)f(x2),则f(x)在区间中为减函数,且在f(x0)处,为函数的最值,这是教材中呈现的知识点,但是函数的最值与函数的区域有何种关系,s是教材中一个隐含的知识点,为此教师可以这样的引导学生,在闭区间中求出函数值域就可有函数最值,但是有最值却未必能求出函数值域,进而加深学生对于函数基本性质的认识.
二、启发教学,揭示知识点
在中学数学教学中,教师可以帮助学生挖掘知识点,但是却不可以将这些知识点灌输式的传授给学生,这样学生只会成为被动接受知识的容器,长期以往学生会对教师产生依赖性,同时还会造成学生对于数学知识学习的抵触心理,不利于学生的数学学习,为此在今后的教学中,教师可以尝试采用启发式的教学方式,通过一些启发活动,让学生自己去揭示知识,这样学生所获得的知识才能真正的属于自己,是教师落实知识点教学的一种体现.
例如在学习《函数与方程》这一内容时,教材只是说明对于二次函数f(x)=ax2+bx+c(a≠0),当f(x)=0就为一元二次方程,即ax2+bx+c=0,所以零点就是一元二次方程的根,那么这时教师就可以采用启发式的教学方法,引导学生思考一个一元二次方程有几个零点?是否有几个零点就有几个根?通过这种启发,引起学生质疑,从而引导学生主动探究,总结判断一个函数是否有零点的方法.
三、例题讲解,强化知识点
教师进行教学时,一节课程只有短短的45分钟,因此在有效的时间内,强化落实知识点十分重要.有效的例题讲解可以加深学生对于知识的认知,同时也可以提升学生的知识运用能力,尤其是经典例题讲解,可以使课堂教学呈现出意想不到的教学效果,由此可以看出,例题的讲解不在于多少,而在于精,在教学中教师可以通过一道例题讲解,让学生联系多个知识点,是教师教学掌控能力的体现,同时也是高效率、高质量课堂教学的体现[2].
例如在学习《直线、平面垂直的判定及其性质》这一内容时,教师就可以从以下三个经典命题出发,从而有针对性的进行讲解:
(1)一条直线垂直于平面内的一条直线,则这条直线与平面垂直( );
(2)两条直线互相垂直,其中一条直线与一个平面平行,那么另外一条直线与这个平面垂直( );
(3)平面内与这个平面一条斜线垂直的直线互相平行( ).
这三个问题几乎涵盖了所有直线以及平面垂直的判定性质,因此在教学中教师只要帮助学生解决这三个问题,就达到了强化教学知识点的作用,这是教学中教师可以掌握的一种教学方法.
四、查漏补缺,补充知识点
在中学数学教学过程中,所涉及到的知识点十分繁杂,这种深度与广度是超出课堂教学时间限制的,因此在教学中即使教师的教学能力再强,也很难将所有知识点面面俱到的传授给学生,而对于学生而言,由于能力的限制不可能将知识全部的理解吸收,因此在教学过程中学生存在知识点缺陷是一种常见的教学现象,但是教师面对这种现象却不能放任不管,这会对学生的成绩提升造成阻碍,为此教师可以通过作业、课堂提问以及课堂测试的方式,对学生掌握的知识信息进行检测,从而有针对性的进行查缺补漏,帮助学生补充这些从前遗漏的知识点,进而消除知识点缺失隐患,但是值得注意的是,学生的知识点缺陷是一个顽症,不能一蹴而就,也不能一劳永逸,教师应该反复的进行填补漏洞工作.
综上所述,在中学数学教学过程中落实知识点对于教师而言是一项艰巨的任务,为此在今后的教学过程中,教师一定要秉持严谨的教学态度,对教学方法以及教学思想进行创新,从而尽可能的将知识点进行落实,从本质上提升中学数学教学质量.