神经网络研究现状范文

时间:2023-06-29 09:32:52

引言:寻求写作上的突破?我们特意为您精选了12篇神经网络研究现状范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

神经网络研究现状

篇1

一、人工神经网络概述

要对人工神经网络技术的应用进行了解,首先要掌握人工神经网络的基本模型和结构。它的结构是并行分布的,通过大量的神经元的模型组成,是用来进行信息处理的网络。各个神经元之间相互联系,相互之间联系的方式很多,每个特定的链接之中都有相应的权系数,而各个神经元的输出是特定的。

二、人工神经网络技术的应用现状

人工神经网络技术由于其结构上的优势和对信息处理的高效性,使得在很多方面都有广泛的应用,例如,运用人工神经网络技术进行图像处理、智能识别、自动监控、信号处理、机器人监控等,使得其在生活的各个方面都发挥了重要的作用,为交通、电力、军事等部门提供了便利。下面对人工神经网络技术的具体应用做简单的分析。

第一,BP神经网络。基于人工神经网络技术的BP神经网络,在进行优化预测、分类和函数逼近等方面有着广泛的应用。网络的应用大体有分类、函数逼近、优化预测等方面。比如,将胃电图和心电图进行分类,对某些函数的最小二乘进行逼近,对工业生产过程中的数据进行整合,对电力系统中的负荷量和一些数据进行优化和预测等。特别是在进行时间序列的预测中,发挥着重要的积极作用。使用BP神经网络还能对国家经济发展中的一些数据进行处理。相对其它人工神经网络技术的网络而言,BP网络复杂性较低,所以在很多工业产业上应用较多。在某些需要进行控制的系统内,BP神经网络能够对系统进行有效的控制。其具体的优势主要有以下几点:利用BP神经网络在识别和分类中的优势,能够及时快速的判断一些系统中的故障,相比以往的谱分析技术,其工作效率有了较大的提高。BP神经网络中也存在着一些不足,表现在其网络的鲁棒性和容错性不够,在对故障进行判断和检测时,不能有效地确保其准确性。此外,这种算法的收敛速度不快,在选择网络隐层节点中还没有形成完善的配套理论。这些都在某种程度上对其应用造成了影响。

第二,ART神经网络。基于人工神经网络技术的ART神经网络,广泛的应用在对图像、语音。文字等的识别过程中。其在某些工业产业中也普遍应用,主要应用在对系统的控制方面。例如,对故障判断,问题预警和事故检测等较为繁琐的生产过程进行控制,进行数据挖掘,从有关的数据中找到能够应用的数据。ART神经网络在应用中的优势主要是其具有很强的稳定性,能够在环境变化的情况下稳定的工作,其算法也十分简单而且为快速。其缺点主要是在要求对参数和模型等进行准确的判断时,其网络的结构还需要进行完善。

第三,RBF神经网络。基于人工神经网络技术的RBF神经网络目前在建模、分类、函数近似、识别、信号处理等方面有着广泛的引用。比于其他的神经网络,RBF神经网络的结构较为简单,其在非线性的逼近上的效果较为显著,收敛的速度也较快,能够有效的对整体进行收敛。其存在的缺点是,在函数逼近方面还不够完善,仍然要进行性改进。

第四,Hopfield神经网络。作为反馈神经网络的一种,Hopfield神经网络能够在连接性较高的神经网络中进行集中自动的计算。目前其在工业产业中有着广泛的应用。优点是,对于一些线性问题,避免了只是用数学方法所带来的繁琐,在进行数模之间的转化时,能够快速准确的进行。

三、人工神经网络技术的发展

人工神经网络技术和理论的不断发展和进步,在较多领域中,人工神经网络技术引起了人们的关注。但是,目前在技术的运用和技术本身仍存在着一些问题。

篇2

关键词:

人工神经网络;岩土工程;应用

岩土工程的研究对象分为两大类:其一为岩体;其二为土体。岩土工程涉及的介质存在两大特性,即模糊性和随机性,这两大特性又统称为不确定性。近年来,不少学者在岩土工程研究过程中,提出了人工神经网络这一概念,即利用人工神经网络,将其应用到岩土工程研究领域当中,从而为深入了解岩土工程的某些介质特征奠定有效基础[1]。从岩土工程研究的优化及完善角度考虑,本文对“人工神经网络在岩土工程中的应用”进行分析意义重大。

1人工神经网络分析

1.1人工神经网络概念

对于人工神经网络来说,是一种对人脑结构与功能进行反映的数学抽象模型;主要通过数理策略,经信息处理,进一步对人脑神经网络构建某种简化模型,进一步采取大量神经元节点互连,从而形成复杂网络,最终完成人类思维及储存知识的能力的模拟。神经网络无需构建反映系统物理规律的数学模型,与别的方法比较,在噪声容忍度方面更强[2]。与此同时,还拥有很强的非线性映射功能,对于大量非结构性以及非精准性规律存在自适应能力,具备超强的计算能力,可完成信息的记忆以及相关知识的推理,且其自身还具备自主学习能力;与常规算法相比,优势、特点突出。

1.2BP网络简述

从研究现状来看,基于实际应用过程中,人工神经网络模型大多数采取BP网络。BP网络即指的是多层前馈网络,因多层前馈网络的训练通常使用误差反向传播算法,所以将BP网络称之为属于一类误差反向传播的多层前馈网络。对于其网络而言,具备输入节点和输出节点,同时还具备一层隐层节点与多层隐层节点,基于同层节点当中不存在耦合状态。其中的输入信号从输出层节点依次传过各个隐层节点,进一步传输至输出节点,每一层节点的输出只对下一层的节点输出产生影响。

2人工神经网络在岩土工程中的应用分析

在上述分析过程中,对人工神经网络的概念有一定的了解,由于其模型算法的优越性,可将其应用到岩土工程研究领域当中,从而为解决岩土工程问题提供有效凭据。从现状来看,人工神经网络在岩土工程中的应用主要体现在以下几大方面。

2.1在岩石力学工程中的应用

岩石力学工程是岩土工程中尤为重要的一部分,将神经网络应用到岩石力学工程当中,主要对岩石非线性系统加以识别,同时还能够为工程岩体分类提供有效帮助,此外在爆破效应预测方面也具备一定的应用价值。对于人工神经网络来说,存在从有限数据中获取系统近似关系的优良特性,而岩石当中的各项参数之间又存在很复杂的关系,并且难以获取完整的参数集。在这样的情况下,使用人工神经网络技术,便能够使岩石非线性系统识别问题得到有效解决[3]。此外,有研究者将岩石抗压强度、抗拉强度以及弹性能量指数等作为岩爆预测的评判指标,进一步对岩爆预测的神经网络模型进行构建,然后预测了岩爆的发生与烈度。通过计算得出结论:采取人工神经网络方法进行岩爆预测行之有效,值得采纳借鉴。

2.2在边坡工程中的应用

对于岩土工程中的边坡工程来说,边坡失稳状况突出,且是由多因素造成的,比如边坡失稳的地质形成条件、诱发因素的复杂性以及随机性等。与此同时,由于边坡动态监测技术从目前来看尚且不够成熟,因此边坡失稳在岩土工程研究领域一直视为是一项难以解决的工程项目。而对于神经网络方法来说,因其具备非常好的预测功能,因此相关岩土工程研究工作者通常会采取人工神经网络对岩土工程中的边坡工程问题进行求解。并且,从现有研究成果来看,将人工神经网络应用于岩土工程的成果突出。有学者对影响岩质边坡的稳定性的相关因素进行了分析,包括地形因素、岩体因素以及外部环境因素等,并构建了边坡稳定性分析的BP网络模型[4]。此外,还有学者将大量水电边坡工程的稳定状况作为学习训练样本及预测样本,对以人工神经网络技术的边坡岩体的稳定性进行了研究,结果显示,采取人工神经网络对边坡岩体的稳定状况进行预测可行性高。

2.3在基坑工程中的应用

采取人工神经网络对基坑变形进行预测主要分为两种情况:其一,对会影响基坑变形的各大因素及位移的神经网络模型加以构建;其二,把变形监测数据作为一个时间序列,以历史数据为依据,将系统演变规律查找出来,进一步完成系统未来发展趋势的分析及预测。有学者针对基坑变形利用了人工神经网络方法进行预测,结果表明:对前期实测结果加以应用,使用此方法能够对后续阶段的基坑变形实时预测出来,并且预测结果和实测结果保持一致性。此外,还有学者根据具体工程项目,采取人工神经网络,对深基坑施工中地下连续墙的位移进行了深入分析及预测,结果显示:使用人工神经网络方法进行分析及预测,在精准度上非常高,值得在深基坑工程相关预测项目中使用[5]。

2.4在地铁隧道工程中的应用

在地铁隧道施工过程中,存在地表变形和隧道围岩变形等状况,为了深入了解这些状况,可将人工神经网络应用其中。有学者在对地层的影响因素进行分析过程中,列出了可能的影响因素:盾构施工参数、盾构物理参数以及地质环境条件,进一步利用人工神经网络,构建了人工神经网络模型,进一步针对盾构施工期间的地层移动进行实时动态预测,最终得到了不错的预测成果。此外,还有学者对BP网络算法进行改进,然后对某地铁工程中隧道上方的地表变形进行了未来趋势预测,结果表明:和其他地表变形预测方法相比,人工神经网络预测方法的应用价值更为显著。

3结语

通过本文的探究,认识到基于人工神经网络模型的算法具备很高的优越性,由于岩土工程地质条件复杂,为了深入研究岩土工程,可将人工神经网络应用其中。结合现状研究成果可知,人工神经网络在岩石力学工程、边坡工程、基坑工程以及地铁隧道工程中均具备显著应用价值。例如:将人工神经网络应用于岩石力学工程当中,能够预测岩爆的发生与烈度;应用于边坡工程当中,能够边坡工程的稳定性进行精准预测;应用于基坑工程当中,实现对基坑工程变形的实时动态监测;应用于地铁隧道工程当中,能够进一步了解地铁工程中隧道上方的地表变形情况。

总而言之,人工神经网络在岩土工程中的应用价值高,值得相关工作者采纳应用。

作者:张洪飞 单位:山东正元建设工程有限责任公司

参考文献

[1]郑惠娜.章超桦.秦小明.肖秀春,等.人工神经网络在食品生物工程中的应用[J].食品工程,2012(01):16-19.

[2]邹义怀.江成玉.李春辉,等.人工神经网络在边坡稳定性预测中的应用[J].矿冶,2011(04):38-41.

篇3

0 引言

期货市场传递的价格信息能比较准确地反映未来供求状况的预期情况及其变动趋势,是市场供求状况的超前反应,对现货市场的波动有着特有的前瞻性。因此,选择有效的期货预测方法来分析和预测期货市场,对保障金融市场的稳定和维护整个经济体系有着重要的作用。由于期货价格的变化是一个非线性的时间序列,因此使用传统的统计方法直接对期货价格进行分析和预测,其预测结果的偏差是比较大[1]。基于神经网络的期货预测研究是神经网络技术在金融领域应用的一个非常重要的方面[2],那是因为RBF神经网络具有大规模并行数据处理以及非线性模拟能力[3]。但是,目前在采用RBF神经网络进行期货预测的众多文献中[4-5],大多的只是单纯使用RBF神经网络对大量数据进行学习、模拟。本文试图通过目前对基于RBF和数据挖掘技术的期货预测的研究现状进行梳理、比较,为期货预测的研究起借鉴和启示意义。

1 我国期货市场现状及发展

1.1 我国期货市场的现状

作为商品流通体制改革、价格市场化的重要产物及市场经济发展的一个重要标致,我国期货市场历经20多年的探索实践,取得了令人瞩目的成绩,在相关产业及国民经济发展中开始发挥越来越重要的作用,尤其是在服务国民经济、促进现代农业的发展、影响国际大宗商品价格等方面中正在成为国家宏观调控的一个抓手。

1.2 我国期货市场的发展趋势

中国的期货市场作为一种新生事物经过十几年的发展,从无到有,并且逐渐走向规划化。回顾从前,我国期货市场的发展可以说是坎坷多难,道路曲折。审视现在,我国的期货市场已进入规范发展的时期,并且正不断地走向成熟。展望未来,我国宏观经济环境良好,长期基础制度建设积累了一定基础,外部环境不断改善,期货市场风险控制能力逐渐加强,同时科学化管理水平稳步提高,这些都为期货市场的健康、快速发展奠定了坚实的基础。

2 数据挖掘简介及RBF神经网络算法概述

2.1 数据挖掘简介

近年来,随着Internet、计算机技术、信息技术和数据库技术的快速发展,计算机在各行各业中的使用也越来越广泛。由此产生的数据,随着时间的积累也越来越多。在这海量的数据中隐藏着许多重要的信息,但是目前的数据库系统却无法发现这些数据的内在联系,更无法根据现有的数据来预测其未来的发展趋势。而数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的一个过程。

2.2 RBF神经网络概述

径向基函数(RBF-Radial Basis Function)神经网络是在80年代末由J.Moody和C.Darken提出的一种神经网络模型,RBF网络是由输入层、隐含层和输出层构成的三层前向网络[7-9],其拓扑结构如图1所示。神经网络信息的传输为:对于输入层,只负责信息的传输。对于隐含层:每个神经元将自己和输入层神经元相连的连接权值矢量 与输入矢量之间的距离乘以本身的阈值作为自己的输入。隐含层神经元采用径向基函数作为激励函数,通常采用高斯函数作为径向基函数。对于输出层,它对输入模式的作用做出响应。由于输入到输出的映射是非线性的,而隐含层空间到输出空间的映射是线性的,从而大大加快学习速度并避免局部极小问题。

图1 RBF神经网络结图

隐含层和输出层采用径向基函数作为激励函数,该径向基函数的一般高斯函数表达式如下式:

由此可知,需要选择合适的权值wi和神经网络中心ci即可实现非线性基函数的线性转换,从而实现从现有数据到未来数据的预测。

3 RBF和数据挖掘技术在期货市场中网络模型的比较

3.1 基于主成分分析的RBF神经网络模型

RBF神经网络模型[11-12]使用基于主成分分析法对原始数据进行降维,再用这些个数较少的新变量作为RBF神经网络的输入进行模拟预测。利用SPSS软件,选择前3个成分作为主成分;同样利用SPSS软件,得到其成分矩阵。然后,设计一个三层的神经网络,输入层有3个神经元,输出层神经元为1个。利用下式对输入、输出值进行标准化,可使得输入、输出值均落在[-1,1]之间。

Xn=2*(x-minx)/(maxx-minx)-1

利用MATLAB的神经网络工具箱中用newrb函数设计这个径向基函数网络,用其做函数逼近时,可自动增加隐含层神经元,直到达到均方误差为止。经过试验,该网络模型的预测误差较小,见图2。

图2 两种方法预测期货后5日均价结果比较

由于主成分之间是相互独立的,所以由各主成分组成的输入空间不存在自相关性,从而有效地简化了RBF神经网络在高维时难以寻找网络中心的问题,提高了预测精度。不过径向基网络本身对扩展速度的选择没有一个固定的标准,不同的值得到的结果又较大的偏差,这是该网络模型的一个缺陷,值得深入地研究。

3.2 基于分段取中心值的RBF神经网络模型

由于RBF神经网络对近似线性时间序列数据预测误差较大,我们提出了一种改进的算法。该算法以分段取中心值算法为依据,使径向基函数中心点值的确定更加合理,从而使近似线性时间序列数据预测的准确度提高。

RBF网络模型[13]的学习过程可分为两步:RBF网络径向基函数的中心与宽度选择,网络输出层和隐含层权值之间的确定。改进的RBF网络模型采用改进的分段取中心值算法来确定RBF网络径向基函数的中心与宽度,同时利用最小二乘法来确定网络输出层和隐含层之间的权值。

最后确定RBF神经网络的权值,再利用MATLAB进行训练、计算。经过述理论分析和期货预测实验结果可以知道,提出的基于分段取中心值算法的 RBF 神经网络在时间序列变化较平缓且近似有规律的小幅度的上升或下降时具有较佳的拟合性能,同时也说明了 RBF 神经网络在期货预测上的准确性和可行性,为短期期货价格的走势提供了参考。

4 结论与讨论

上述研究表明,RBF和数据挖掘技术在期货预测中的应用比较广泛。总结当今神经网络的研究取得的成果,对几种RBF网络模型进行梳理、比较和研究,可以知道RBF和数据挖掘技术对期货交易的短暂的走向可以做出预测。同时,这几种RBF神经网络算法还是存在很多的不足之处,需要更加深入地进行研究,才能对期货交易进行更好地预测,使得期货市场发展的更好,我国的金融市场更加稳定。

【参考文献】

[1]申,申荣华.改进的RBF神经网络对期货价格的预测分析[J].现代商贸工业,2008,11:183-184.

[2]蒋综礼.人工神经网络导论[M].北京:高等教育出版社,2001.

[3]李学桥.神经网络工程应用[M].重庆:重庆大学出版社,1995(24).

[4]高博,王启敢,张艳峰.权证定价中的神经网络方法[J].统计与决策,2010(14).

[5]张秀艳,徐立本.基于神经网络集成系统的股市预测模型[J].系统工程理论践,2003(9).

[6]张屹山,方毅,黄琨.中国期货市场功能及国际影响的实证研究[J].管理世界,2006,04:28-34.

[7]葛哲学,孙志强.神经网络理论语MATABLER2007实现[M].北京:电子工业出版社,2007-09.

[8]刘志杰,季令,叶玉玲,等.基于径向基神经网络的集装箱吞吐量组合预测[J].同济大学学报:自然科学版,2007,35(6).

[9]郑丕谔,马艳华.基于RBF神经网络的股市建模与预测[J].天津大学学报,2006,33(4).

[10]刘书明,苏涛,罗军辉.Tiger SHARC应用系统设计[M].西安:西安电子科技大学出版社,2004.

篇4

中图分类号:TP183文献标识码:A文章编号:1009-3044(2008)30-0710-02

A Review of the Research and Development of the Artificial Neural Nets

WANG Hui

(Xinjiang Petroleum Institute,Urumqi 830000,China)

Abstract: This paper reviews the history and the current situation of the theory of neural nets. It discusses two aspects: the Vapnik-Chervonenkis dimension calculation and the data mining in neural nets. It also touches upon such research areas as calculation theory, methods and application of neural nets.

Key words: neural nets;Vapnik-Chervonenkis dimension;Data Mining

1 引言

本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年McCulloch和Pitts结合了神经生理学和数理逻辑的研究描述了一个神经网络的逻辑演算。他们的神经元模型假定遵循一种所谓“有或无”(all-or-none)规则。如果如此简单的神经元数目足够多和适当设置突触连接并且同步操作,McCulloch和Pitts证明这样构成的网络原则上可以计算任何可计算的函数,这标志着神经网络学科的诞生。

2 发展历史及现状

2.1 人工神经网络理论的形成

早在40年代初,神经解剖学、神经生理学、心理学以及人脑神经元的电生理的研究等都富有成果。其中,神经生物学家McCulloch提倡数字化具有特别意义。他与青年数学家Pitts合作[1],从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP模型,他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。50年代初,神经网络理论具备了初步模拟实验的条件。Rochester,Holland与IBM公司的研究人员合作,他们通过网络吸取经验来调节强度,以这种方式模拟Hebb的学习规则,在IBM701计算机上运行,取得了成功,几乎有大脑的处理风格。但最大规模的模拟神经网络也只有1000个神经元,而每个神经元又只有16个结合点。再往下做试验,便受到计算机的限制。人工智能的另一个主要创始人Minsky于1954年对神经系统如何能够学习进行了研究,并把这种想法写入他的博士论文中,后来他对Rosenblatt建立的感知器(Perceptron)的学习模型作了深入分析。

2.2 第一阶段的研究与发展

1958年计算机科学家Rosenblatt基于MP模型,增加了学习机制,推广了MP模型。他证明了两层感知器能够将输入分为两类,假如这两种类型是线性并可分,也就是一个超平面能将输入空间分割,其感知器收敛定理:输入和输出层之间的权重的调节正比于计算输出值与期望输出之差。他提出的感知器模型,首次把神经网络理论付诸工程实现。1960年Widrow和Hoff提出了自适应线性元件ADACINE网络模型,是一种连续取值的线性网络,主要用于自适应系统。他们研究了一定条件下输入为线性可分问题,期望响应与计算响应的误差可能搜索到全局最小值,网络经过训练抵消通信中的回波和噪声,它还可应用在天气预报方面。这是第一个对实际问题起作用的神经网络。可以说,他们对分段线性网络的训练有一定作用,是自适应控制的理论基础。Widrow等人在70年代,以此为基础扩充了ADALINE的学习能力,80年代他们得到了一种多层学习算法。

Holland于1960年在基因遗传算法及选择问题的数学方法分析和基本理论的研究中,建立了遗传算法理论。遗传算法是一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法,从而开拓了神经网络理论的一个新的研究方向。1976年Grossberg提出自适应共振理论(ART),这是感知器较完善的模型,即superrised学习方式。本质上说,仍是一种unsuperrised学习方式。随后,他与Carpenter一起研究ART网络,它有两种结构ART1和ART2,能够识别或分类任意多个复杂的二元输入图像,其学习过程有自组织和自稳定的特征,一般认为它是一种先进的学习模型。另外还有Werbos提出的BP理论以及提出的反向传播原理;Fukushima 提出了视觉图象识别的Neocognitron模型这些研究成果坚定的神经网络理论的继续研究。

2.3 第二次研究的阶段

Hopfield于1982年至1986年提出了神经网络集体运算功能的理论框架,随后,引起许多学者研究Hopfield 网络的热潮,对它作改进、提高、补充、变形等,至今仍在进行,推动了神经网络的发展。1983年Kirkpatrick等人先认识到模拟退火算法可应用于NP完全组合优化问题的求解。这种思想最早是由Metropolis等人在1953年提出的,即固体热平衡问题,通过模拟高温物体退火过程的方法,来找全局最优或近似全局最优,并给出了算法的接受准则。这是一种很有效的近似算法。1984年Hinton等人提出了Boltzmann机模型,借用统计物理学中的概念和方法,引入了模拟退火方法,可用于设计分类和学习算法方面,并首次表明多层网络是可训练的。Sejnowski于1986年对它进行了改进,提出了高阶Boltzmann机和快速退火等。

1986年Rumelhart和McClelland 合著的Parallel Distributed Processing: Exploratio n in the Microstructures of Cognition两卷书出版,对神经网络的进展起了极大的推动作用。它展示了PDP研究集团的最高水平,包括了物理学、数学、分子生物学、神经科学、心理学和计算机科学等许多相关学科的著名学者从不同研究方向或领域取得的成果。他们建立了并行分布处理理论,主要致力于认知的微观研究。尤其是,Rumelhart提出了多层网络Back-Propagation法或称Error Propagation法,这就是后来著名的BP算法。

2.4 新发展阶段

90年代以来,人们较多地关注非线性系统的控制问题,通过神经网络方法来解决这类问题已取得了突出的成果,它是一个重要的研究领域。1990年Narendra和Parthasarathy提出了一种推广的动态神经网络系统及其连接权的学习算法,它可表示非线性特性,增强了鲁棒性。他们给出了一种新的辨识与控制方案,以multilayer网络与recarrent网络统一的模型描述非线性动态系统,并提出了动态BP 参数在线调节方法。尤其是进化计算的概念在1992年形成,促进了这一理论的发展。1993年诞生了国际性杂志Evolutionary Computation。近几年它成为一个热点研究领域。1993年Yip和Pao提出了一种带区域指引的进化模拟退火算法,他们将进化策略引入区域指引,它经过选优过程,最终达到求解问题的目的。

从上述各个阶段发展轨迹来看,神经网络理论有更强的数学性质和生物学特征,尤其是神经科学、心理学和认识科学等方面提出一些重大问题,是向神经网络理论研究的新挑战,因而也是它发展的最大机会。90年代神经网络理论日益变得更加外向,注视着自身与科学技术之间的相互作用,不断产生具有重要意义的概念和方法,并形成良好的工具。

3 神经网络的发展趋势

3.1 神经网络VC维计算

神经计算技术已经在很多领域得到了成功的应用,但由于缺少一个统一的理论框架,经验性成分相当高。最近十年里,很多研究者都力图在一个统一的框架下来考虑学习与泛化的问题 。PAC(Probably Approximately Correct)学习模型就是这样一个框架。作为PAC学习的核心以及学习系统学习能力的度量,VC维(Vapnik-Chervonenkis dimension)在确定神经网络的容量(capacity)、泛化能力(generalization)、训练集规模等的关系上有重要作用。如果可以计算出神经网络的VC维,则我们可以估计出要训练该网络所需的训练集规模;反之,在给定一个训练集以及最大近似误差时,可以确定所需要的网络结构。

Anthony将VC维定义为:设F为一个从n维向量集X到{0, 1}的函数族,则F的VC维为X的子集E的最大元素数,其中E满足:对于任意S?哿E,总存在函数fs ∈F,使得当x ∈ S时fs(x) =1,x?埸S但x∈E时fs(x) =0。

VC维可作为函数族F复杂度的度量,它是一个自然数,其值有可能为无穷大,它表示无论以何种组合方式出现均可被函数族F正确划分为两类的向量个数的最大值。对于实函数族,可定义相应的指示函数族,该指示函数族的VC维即为原实函数族的VC维。

3.2 基于神经网络的数据挖掘

1996年,Fayyad、Piatetsky-Shapiro和Smyth对KDD(Knowledge Discovery from Databases)和数据挖掘的关系进行了阐述。但是,随着该领域研究的发展,研究者们目前趋向于认为KDD和数据挖掘具有相同的含义,即认为数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识。

数据挖掘的困难主要存在于三个方面:首先,巨量数据集的性质往往非常复杂,非线性、时序性与噪音普遍存在;其次,数据分析的目标具有多样性,而复杂目标无论在表述还是在处理上均与领域知识有关;第三,在复杂目标下,对巨量数据集的分析,目前还没有现成的且满足可计算条件的一般性理论与方法。在早期工作中,研究者们主要是将符号型机器学习方法与数据库技术相结合,但由于真实世界的数据关系相当复杂,非线性程度相当高,而且普遍存在着噪音数据,因此这些方法在很多场合都不适用。如果能将神经计算技术用于数据挖掘,将可望借助神经网络的非线性处理能力和容噪能力,较好地解决这一问题。

4 结束语

经过半个多世纪的研究,神经计算目前已成为一门日趋成熟,应用面日趋广泛的学科。本文对神经计算的研究现状和发展趋势进行了综述,主要介绍了神经网络VC维计算、基于神经网络的数据挖掘领域的相关研究成果。需要指出的是,除了上述内容之外,神经计算中还有很多值得深入研究的重要领域,例如:与符号学习相结合的混合学习方法的研究;脉冲神经网络(Pulsed Neural Networks)的研究;循环神经网络(Recurrent Neural Networks)的研究等;神经网络与遗传算法、人工生命的结合;支持向量机(Support Vector Machine)的研究;神经网络的并行、硬件实现;容错神经网络的研究。

参考文献:

[1] McCulloch W S, Pitts W. A Logical Calculus of the Ideas Immanent in Nervous Activity, Bulletin of Mathematical Biophysics, 1943.

[2] N.维纳著,郝季仁译,控制论,科学出版,1985.

[3] Von Neumann J. The General and Logical Theory of Automata, Cerebral Mechanisms in Behavior; The Hixon Sympsium, 1951.

[4] Hebb D O. The Organization of Behavior, New York:Wiley, 1949.

[5] 陈世福,陈兆乾. 人工智能与知识工程[M]. 南京: 南京大学出版社,1998.

篇5

关键词:

BP神经网络;信贷信用;风险预警

我国一直没有建立起符合市场规范的信用体系,信用风险是商业银行面临的最传统最基本的风险形式,也是最难于控制和管理的风险形式。本文建立相应的BP神经网络模型,根据民生银行信贷信用评级指标体系,选取20个企业的信用评级信息作为BP神经网络模型的训练样本,选取10个企业的信用评级信息作为BP神经网络模型的检验样本。将训练样本输入BP神经网络,让BP神经网络根据信贷企业信用得分的输出值与真实值之间的误差不断调节各个神经元之间的权值与阀值,当误差满足要求时,BP神经网络模型完成训练。BP神经网络模型完成训练后,对本文建立的BP神经网络模型进行检验[1]。完成训练的BP神经网络模型将根据企业的信用评级信息计算出企业信用得分的预测值,为商业银行信贷过程中的信用风险进行预测评价,从而使商业银行规避信贷过程中的信用风险,起到风险预警功能。

一、BP神经网络理论

BP神经网络理论是学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传人,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程是周而复始地进行的[2]。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。

(一)BP网络模型

采用BP算法的多层感知器是至今为止应用最广泛的神经网络,在多层感知器的应用中,单隐层网络的应用最为普遍。一般习惯将单隐层感知器称为三层感知器,所谓三层包括了输入层、隐层和输出层。三层感知器中,输入向量为()T12,,...,,...,inX=xxxx;隐层输出向量为()T12,,...,,...,jmY=yyyy;输出层输出向量为()T12,,...,,...,klO=oooo;期望输出向量为()T12,,...,,...,kld=dddd。输入层到隐层之间的权值矩阵用V表示,()T12,,...,,...,jmV=VVVV,其中列向量jV为隐层第j个神经元对应的权向量;隐层到输出层之间的权值矩阵用W表示,()T12,,...,,...,kiW=WWWW,其中列向量kW为输出层第k个神经元对应的权向量[3]。下面分析各层信号之间的数学关系。对于输出层,有:(net)kko=fk=1,2,...,l(1)0netmkjkjjwy==∑k=1,2,...,l(2)对于隐层,有:(net)jjy=fj=1,2,...,m(3)0netnjijiivx==∑j=1,2,...,m(4)以上两式中,转移函数f(x)均为单极性Sigmoid函数:1()1xfxe−=+(5)f(x)具有连续、可导的特点,且有:f′(x)=f(x)[1−f(x)](6)根据应用需要,也可以采用双极性Sigmoid函数(或称双曲线正切函数):1()1xxefxe−−−=+(7)式(1)~式(7)共同构成了三层感知器的数学模型。

(二)网络训练与检验

网络设计完成后,要应用训练样本进行训练。训练时对所有样本正向运行一轮并反向修改权值一次称为一次训练。在训练过程中要反复使用样本集数据,但每一轮最好不要按固定的顺序取数据,通常训练一个网络需要很多次。网络的性能好坏主要看其是否具有很好的泛化能力,而对泛化能力的测试不能用训练集的数据进行,要用训练集以外的测试数据来进行检验[4]。一般的做法是,将收集到的可用样本随机地分为两部分,一部分作为训练样本,另一部分作为检验样本。

二、基于BP神经网络的民生银行信用风险评价研究

(一)建立保险公司投资风险评价指标体系

贷款信用评级财务指标包括贷款企业经营管理能力、贷款企业债务偿还能力和贷款企业持续发展能力。贷款企业经营管理能力包括五个指标,分别是资产报酬率、流动资产周转率、应收账款周转率、主营收入现金含量、成本费用利润率;贷款企业债务偿还能力包括五个指标,分别是流动比率、利息保障倍数、资产负债率、现金流与流动负债比、净资产与贷款余额比;贷款企业持续发展能力包括三个指标,分别是净资产增长率、主营利润增长率、工资福利增长率。贷款信用评级非财务指标包括五个指标,分别财务报表质量评价、企业员工能力、企业经营者履历、企业经营者信誉、行业现状及前景。

(二)BP神经网络模型训练

选取20个企业的信用评级信息作为BP神经网络模型的训练样本。根据民生银行信贷信用评级指标体系,训练样本的输入向量X由18个指标组成,分别是资产报酬率1x、流动资产周转率2x、应收账款周转率3x、主营收入现金含量4x、成本费用利润率5x、流动比率6x、利息保障倍数7x、资产负债率8x、现金流与流动负债比9x、净资产与贷款余额比10x、净资产增长率11x、主营利润增长率12x、工资福利增长率13x、财务报表质量评价14x、企业员工能力15x、企业经营者履历16x、企业经营者信誉17x、行业现状及前景18x。训练样本的输入向量T121718X=(x,x,,x,x)。训练样本的输出向量为Y,代表企业的信用得分。输入BP神经网络模型的训练样本如表1所示。建立的BP神经网络模型为三层网络,拓扑结构为18-5-1。将20个训练样本输入BP神经网络进行训练,让BP神经网络根据信贷企业信用得分的输出值与真实值之间的误差不断调节各个神经元之间的权值与阀值[5]。采用MATLAB7.0神经网络工具箱进行运算,当误差平方和小于10-5时,训练终止。训练样本中各个信贷企业的真实信用得分和BP神经网络模型输出值。

(三)BP神经网络模型检验

由表1可以看出BP神经网络模型输出值与信贷企业真实信用得分的误差很小,下面对本文设计的BP神经网络模型进行检验。BP神经网络模型采用10个企业的信用评级信息作为检验样本。对本文建立的BP神经网络模型进行检验,将10个企业的信用评级信息作为检验样本输入完成训练的BP神经网络模型,完成训练的BP神经网络模型将根据10个企业的信用评级信息计算出企业信用得分的预测值。检验样本中各个信贷企业的真实信用得分和BP神经网络模型预测值如表2所示。根据表2的数据,得到信贷企业的真实信用得分和BP神经网络模型预测值之间误差曲线。检验样本中信贷企业的真实信用得分和BP神经网络模型预测值的拟合度较高,部分样本真实值与预测值基本重合。检验样本中信贷企业的真实信用得分和BP神经网络模型预测值误差值整体较小,最大误差11.7%,最小误差0.27%。假设以绝对误差小于5%为容忍度,那么本文建立的BP神经网络模型的准确率为70%。假设以绝对误差小于10%为容忍度,那么本文建立的BP神经网络模型的准确率为90%。

三、结论

1、检验样本中信贷企业的真实信用得分和BP神经网络模型预测值的拟合度较高,样本21、26、28的真实值与预测值基本重合,样本24、25的真实值与预测值偏差较大。

2、检验样本中信贷企业的真实信用得分和BP神经网络模型预测值误差值整体较小,最大误差11.7%,最小误差0.27%。

3、假设以绝对误差小于5%为容忍度,那么本文建立的BP神经网络模型的准确率为70%。假设以绝对误差小于10%为容忍度,那么本文建立的BP神经网络模型的准确率为90%。计算结果表明本文建立的BP神经网络模型准确率较高,可以为商业银行信贷过程中的信用风险进行预测评价,从而使商业银行规避信贷过程中的信用风险,起到风险预警功能。

参考文献:

[1]许美玲,齐晓娜,李倩等.基于BP神经网络的村镇银行信用风险预警模型的构建[J].河南科技,2014(22).

[2]黄梦宇.基于BP神经网络的手机银行风险预警模型研究[J].时代金融(下旬),2014(4).

[3]迟国泰,陈国斌,迟枫等.基于神经网络的中国商业银行效率综合评价[J].哈尔滨工业大学学报,2006,38(4).

篇6

人工神经网络技术在处理实际问题主要包括两个过程,一个是学习训练过程,另外一个是记忆联想过程。近年来随着人工网络技术的发展,人工神经网络技术在信号处理、图像处理、智能识别等领域已经取得了巨大的改变,为人们研究各类科学问题提供了一种新的方法和手段,使人们在交通运输、人工智能、军事、信息领域的工作更加便捷,近年来随着AI的发展,人工神经网络技术得到了快速的发展阶段。

1人工神经网络技术

人工神经网络技术也称ANN,是随着上个世纪八十年代人工智能发展兴起的一个研究热点,它的主要工作原理对人脑神经网络进行抽象处理,并仿造人脑神经网络建立简单的模型,按照不同的连接方式组成一个完整的网络,因此学术界也直接将它成为神经网络。神经网络其实就是一种运算模型,它是通过大量的节点——神经元连接起来的,其中不同的节点所代表的输出函数也不同,也就是所谓的激励函数;当有两个节点连接起来时称之为通过该连接信号的加权值,也称为权重,这就相当人脑神经网络记忆。人工神经网络技术是采用并行分布式系统,这种工作机理与传统的信息处理技术和人工智能技术完全不同,是一种全新的技术,它克服了传统基于逻辑符号的人工智能处理非结构信息化和直觉方面的缺陷,具有实时学习、自适应性和自组织性等特点。

2人工神经网络技术应用分析

随着人工神经网络技术的发展,它在模式识别、知识工程、信号处理、专家系统、机器人控制等方面的应用较广。

2.1生物信号的检测分析

目前大部分医学检测设备都是通过连续波形得到相关数据,从而根据所得数据对病情进行诊断。人工神经网络技术就是应用了这样的方式将多个神经元组合起来构成,解决了生物医学信号检测方面的难题,其适应性和独立性强,分布贮藏功能多。在生物医学领域该技术主要应用于对心电信号、听觉诱发电位信号、医学图像、肌电荷胃肠等信号的处理、识别和分析。

2.2医学专家系统

传统的医院专家系统是直接将专家的经验、学历、临床诊断方面取得的成绩等存储在计算机中,构建独立的医学知识库,通过逻辑推理进行诊断的一种方式。进入到二十一世纪,医院需要存储的医学知识越来越多,每天产生新的病况和知识,过去的一些专家系统显然已经无法适应医院的发展需求,因此医院的效率很低。而人工神经网络技术的出现为医院专家系统的构建提出了新的发展方向,通过人工神经网络技术,系统能够自主学习、自己组织、自行推理。因此在医学专家系统中该网络技术应用面较广。麻醉医学、重症医学中生理变量分析和评估较多,目前临床上一些还没有确切证据或者尚未发现的关系与现象,通过人工神经网络便能有效地解决。

2.3市场价格预测

在经济活动中,传统统计方法受到一些因素的制约,无法对价格变动做出准确的预测,因此难免在预测的时候出现失误的现象。人工神经网络技术能够处理那些不完整的、规律不明显、模糊不确定的数据,并作出有效地预测,因此人工神经网络技术具有传统统计方法无法比拟的优势。例如人工神经网络技术可以通过分析居民人均收入、贷款利率和城市化发展水平,从而组建一个完整的预测模型,准确预测出商品的价格变动情况。

2.险评价在从事某一项特定的活动时,由于社会上一些不确定因素,可能造成当事人经济上或者其他方面的损失。因此在进行某一项活动时,对活动进行有效的预测和评估,避免风险。人工神经网络技术可以根据风险的实际来源,构筑一套信用风险模型结构和风险评估系数,从而提出有效地解决方案。通过信用风险模型分析弥补主观预测方面的不足,从而达到避免风险的目的。

3人工神经网络技术未来发展

人工神经网络克服了传统人工智能对语言识别、模式、非结构化信息处理的缺陷,因此在模式识别、神经专家系统、智能控制、信息处理和天气预测等领域广泛应用。随着科学技术的进步,AI的快速发展,AI与遗传算法、模糊系统等方面结合,形成了计算智能,很多企业和国家开始大规模研发AI,人工神经网络正在模拟人类认知的方向发展,目前市场已经有很多不少人工智能产品面世。

4结语

通过上述研究分析,人工神经网络技术已经取得了相应的发展,但还存在很多不足:应用范围狭窄、预测精度低、通用模型缺乏创新等,因此需要我们在此基础上不断寻找新的突破点,加强对生物神经元系统的研究和探索,进一步挖掘其潜在的价值,将人工神经网络技术应用在更多领域中,为社会创造更大的财富。

参考文献

[1]周文婷,孟琪.运动员赛前心理调控的新策略——基于人工神经网络技术的比赛场地声景预测(综述)[J].哈尔滨体育学院学报,2015,33(03):15-21.

篇7

模糊系统理论[11]是沟通经典数学的精确性与现实世界中大量存在的不精确性之间的桥梁。它是以模糊集合的形式表示系统所含的模糊性并能处理这些模糊性的系统理论,能够有效地处理系统的不确定性、测量的不精确性等模糊性。Takagi-Sugeno模糊系统(T -S模糊系统)作为函数模糊系统的一种特例,由于构成的各条规则采用线性方程式作为结论,使得模型的全局输出具有良好的数学表达特性,这在处理多变量系统时能有效地减少模糊规则个数,具有很大的优越性[12]。其规则表达如下[13]:

2 T-S模糊神经网络

模糊系统在模糊建模的过程中常存在学习能力缺乏,辨识过程复杂,模型参数优化困难等问题。而人工神经网络具有自学习、自组织和自适应的能力,具有强大的非线性处理能力。二者的结合构成模糊神经网络,可以有效地发挥模糊逻辑与神经网络的各自优势,弥补各自的不足[14]。

2.1 T-S模糊神经网络的结构

基于标准型的T -S模糊神经网络结构如图1所示。图1中第1层为输入层;第2层每个结点表示一个语言变量值;第3层用来匹配模糊规则前件,计算出每条规则的隶属度;第4层用于归一化计算,输出第 条规则的平均激活度[14];第5层是输出层,它所实现的是清晰化计算。T -S模糊神经网络由前件网络和后件网络两部分组成。前件网络用来匹配模糊规则的前件,其结构与图1的前4层结构完全相同;后件网络用来产生模糊规则的后件,由N个结构相同的并列子网络组成[15]。

2.2 T-S模糊神经网络的学习算法

T -S模糊神经网络需要学习的参数主要有后件网络的连接权pkki以及前件网络第二层各结点隶属函数的中心值ckj及宽度σkj。设取误差代价函数为:

3 应用研究

以下通过实例介绍T -S模糊神经网络在地下水水质评价中的应用。

3.1 研究区概况

吉林省西部地区位于松嫩平原的西南部,地理坐标为东经123°09′~124°22′,北纬44°57′~45°46′。研究区东接吉林省长春市,南接四平市及辽宁省,西邻,北接黑龙江省,东北以嫩江、松花江和拉林河与黑龙江省为界。吉林省西部属半干旱半湿润的大陆性季风气候区,四季变化明显。该区多年平均气温3~6℃,多年平均降雨量为400~500mm。研究区大部分属于松嫩盆地,该盆地为一个巨大的含水层系统,埋藏有多层含水层,包括孔隙潜水含水层和承压水含水层(分别为浅层、中深层)、上第三系大安组、泰康组孔隙-裂隙含水层(深层)和白垩系下统及上统裂隙孔隙含水层(深层)。研究区的地下水补给来源主要为降水入渗,排泄以潜水蒸发和人工开采为主。

3.2 原始数据

原始数据取自于吉林西部2005年50个地下水水化学监测点的水质监测数据,结合研究区地下水水质状况,有针对性地选择了铁、氨氮、硝酸盐、亚硝酸盐、硫酸盐、氯化物、溶解性总固体、氟化物和总硬度共9项指标作为评价因子。地下水水质评价标准参照GB/T 14848-93《地下水质量标准》,评价标准见表1。

3.3 神经网络的准备工作

(1)训练样本、检验样本及其期望目标的生成。采用Mat-lab7.0的linspace函数在各级评价标准之间按随机均匀分布方式内插生 成 训 练 样 本。各 级 评 价 标 准 之 间 生 成500个,共2 000个训练样本,以解决仅利用各级评价标准作为训练样本,导致训练样本数过少的问题[16]。检验样本用生成训练样本同理的方法生成400个样本。小于一级标准的训练样本和检验样本的期望目标为按照生成训练样本和检验样本的内例产生对应的0~1.5之间的数值;一、二级标准之间的训练样本和检验样本的期望目标为按照生成训练样本和检验样本的内例产生对应的1.5~2.5之间的数值;同理,二、三级和三、四级标准之间的训练样本和检验样本的期望目标为2.5~3.5、3.5~4.5之间的数值。(2)水质评价等级的划分界限。据上述生成训练样本与检验样本目标输出的思路可以确定一、二、三、四、五各级水的网络输出范围分别为:<1.5、1.5~2.5、2.5~3.5、3.5~4.5、>4.5。(3)原始数据的预处理。利用Matlab7.0中的mapminmax函数将原始数据归一化到0与1之间。

3.4 T-S模糊神经网络的建立、训练、检验及水质评价

3.4.1 T-S模糊神经网络的建立

模糊神经网络的构建根据训练样本维数确定模糊神经网络输入/输出结点数、模糊隶属度函数个数。由于输入数据为9维,输出数据为1维,通过试错法确定模糊神经网络结构为9-18-1,即有18个隶属度函数。选择10组系数p0-p9,模糊隶属度函数中心和宽度c和σ随机得到,通过动态BP算法对网络的权值在线调整。隶属度函数采用高斯函数,模糊推理采用sum-product[14],解模糊采用加权平均法。网络模型的概化如图1所示。T -S模糊神经网络的第3层输出为输入数据的隶属度函数;第4层输出为第 条规则的平均激活度;后件网络实现了T -S模型模糊规则空间到输出空间的映射,输出为yj=pjk0+pjk1x1+…+pjkmxm和y=∑αk×yj。

3.4.2 网络的训练、检验及水质评价

采用归一化的训练样本和检验样本数据,对网络进行训练和检验。以10个水质待评点的基础数据(表2)为例,利用已训练好的模糊神经网络对其进行水质评价。网络输出结果见表3。

3.4.3 不同水质评价方法的对比分析

篇8

中图分类号: TP391.4文献标识码:A文章编号:2095-2163(2011)03-0043-04

Analysis of Training Results based on the Selection of

Parameters Influencing BP Neural Network

HAN Xue

Abstract: Pattern recognition includes two aspects : sample training and sample recognition. And sample training is the premise of sample recognition.Of course, there are lots of training samples and the samples are representative, whichis good, but not the more the better. In the process of training the neural network, it is very important how to determine various parameters that is beneficial to the training efficiency such as the weights and threshold values. This paper is aimed at the use of a simple sample for neural network training, changes parameter values for observing the training effect, thus obtains the different output results and the diagrams. Further study and comparison are carried outto find out the optimal parameter settings. And the experiment method and the conclusion are helpful for application in other identification system development.

Key words:

0引言

在对BP神经网络进行训练的过程中,很多时候,一些基本参数和训练函数参数是随机生成的,但是训练效率并不高。对于BP神经网络所应用的不同领域,这些参数的设置也有所区别。怎样才能使得训练网络的效率更高,就需要了解参数的变化对于训练结果的影响。本文要解决的问题就是变化其中的各项参数值,对得到的不同训练结果进行对比分析,并找出相关规律。

1研究现状

“神经网络”的研究内容主要包括人工神经网络、生物神经网络、认知科学和混沌。

在研究方法上,对于神经网络的研究已经收获了很多不同的研究方法,比较重要且已有一定成果的研究有多层网络 BP算法、Hopfield网络模型、自适应共振理论和自组织特征映射理论等。

在研究领域上也可以分为理论研究和应用研究两大方面。理论研究包括两个方面:其一是理论上的深入研究,通过对已有算法的性能分析来探索功能更完善、效率更高的神经网络模型,包括对稳定性、收敛性、容错性、鲁棒性等各个性能的最优化研究;其二是朝着智能的方向发展,利用神经生理与认知科学对人类思维和智能机理进行研究。应用研究也包含了两个方面,分别是神经网络的软硬件研究和神经网络在各个领域中应用的研究,其中包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等[1]。

BP神经网络是当前最流行、应用最广泛的神经网络模型之一。但是仍存在一些缺陷,如训练速度较慢,所以很多学者正在寻找快速有效的BP学习算法,而且也取得了一些成效,最重要的几种快速变体有QuickProp[Fah88]、 SuperSAB [Tol90]和共轭梯度法[Bat92][1]。

除了收敛速度较慢之外,BP神经网络还存在一些缺点:容易在优化的过程中产生局部最优解而不是全局最优解;在对新样本训练的同时容易遗忘旧的样本。基于对以上缺陷的改进,目前已有了一些行之有效的解决方法。

为了提高网络训练速度,在调整权值时增加了动量项,从而对某时刻前后的梯度方向都进行了必要的考虑;为了加快算法收敛速度,采用了自适应学习率调节的方法,如VLBP神经网络,后面的实验中还会进一步比较介绍。

目前,BP神经网络作为很重要的神经网络模型之一,在很多应用领域中发挥着重要的作用,包括图像压缩编码、人脸识别、分类、故障诊断、最优预测等。

2算法原理

BP神经网络的基本思想是通过不断地训练权值,并设有一个标准的输出,每次训练以后得到的实际输出与标准的输出比较,设置一个最小误差,达到这个误差就表示网络训练好了,否则继续训练;经过一定的训练次数后,若还没有达到这个误差标准,就表示网络的设置有问题。本实验通过对参数的改变,寻找出最优参数设置的规律。

3算法实现

使用matlab开发平台,程序编写分为定义输入向量和目标向量、创建 BP网络设置训练函数、初始化权值阈值、设置训练函数参数、训练神经网络五个部分。进行对比实验时,只需将相关参数进行修改即可。对基本的BP神经网络进行训练时,设置基本参数:权值、阈值;训练函数参数:学习率、最后达到的均方误差、最大步长。分别对学习率、均方误差、初始权值、初始阈值进行修改,对比实验结果;基本的BP神经网络中无法对学习率实现事先最优,所以用VLBP神经网络进行改进。

程序如下:

netbp.trainParam.goal=0.0001//设置最后达到的均方误差为 0.0001

netbp.trainParam.epochs=5000 //设置最大训练步长

[netbp,tr]=train(netbp,p,t)

4实验结果

初始训练样本的输入设为[1;3],期望输出设为[0.95;0.05],第一层的权值设为[1 2;-2 0],第二层的权值设为[1 1;0 -2],第一层的阈值设为[-3;1],第二层的阈值设为[2;3],学习率设为1,均方差设为0.0001。其实验仿真图如图1所示。

4.1改变学习率

只改变学习率的训练函数参数时,运行程序后的对比结果如表1所示。

从表1中的实验结果可见:在其他条件不变、学习率增大的情况下,所需的训练步长变短,即误差收敛速度快。但是学习率不可以无限制地增大,增大到一定程度后,误差收敛速度将减慢,甚至有可能达不到误差范围内,进入局部稳定状态。

表1中的各组实验仿真图如图2-图7所示。

4.2改变均方差

将均方差由原来的0.0001变为0.001后与原初始样本参数对比结果如表2所示。

均方差变为0.001后的仿真图如图8所示。

可见,在其他条件一样的前提下,将最后要达到的均方误差值设置较大时,网络训练步长变短,误差收敛速度慢些,最后的输出结果较为精确些。

4.3改变初始权值

将初始权值改变后的对比结果如表3所示。

改变初始权值后的仿真图如图9所示。

可见,后者的初始权值比较合适些,因此训练的时间变短,误差收敛速度明显快些。

4.4改变初始阈值

将初始阈值改变后的对比结果如表4所示。

改变初始阈值后的仿真图如图10所示。

可见,后者的初始阈值比较合适些,因此训练的时间变短,误差收敛速度明显快些。

4.5学习率可变的VLBP神经网络

用最基本的 BP 算法来训练 BP神经网络时,学习率、均方误差、权值、阈值的设置都对网络的训练均有影响。选取合理的参数值会有利于网络的训练。在最基本的 BP算法中,学习率在整个训练过程是保持不变的。学习率过大,算法可能振荡而不稳定;学习率过小,则收敛速度慢,训练时间长。而在对网络进行训练之前是无法选择最佳学习率的。

虽说学习率在训练前无法选最优,但是在训练的过程中能否可变呢?因此BP神经网络的一种改进算法VLBP可派上用场。也就是说,另外设置学习增量因子和学习减量因子,当误差以减少的方式趋于目标时,说明修正方向正确,可以使步长增加,因此学习率乘以增量因子k,使学习率增加;而修正过头时,应减少步长,可以乘以减量因子k,使学习率减小。

程序设计中加入下列语句:

netbp=newff([-1 1;-1 1],[2 2],‘logsig’ ‘logsig’,‘traingdx’)

netbp.trainParam.lr_inc=1.1//增量因子设为1.1

netbp.trainParam.lr_dec=0.65 //减量因子设为0.65

经过训练后最后的输出结果为[0.963 8;0.050 0],训练步长为50,训练后第一层的权值为[1.004 5 2.013 5;-1.408 4 1.774 8],训练后第二层的权值为[0.766 9 0.768 3;-1.544 7 -2.865 0]。

VLBP神经网络训练仿真图如图11所示。

观察网络的收敛速度,采用学习率可变的VLBP算法要比学习率不变BP算法收敛速度提高很多。以上两种算法都是沿着梯度最陡的下降方向修正权值,误差减小的速度最快。

5结束语

通过上述验证性实验,可以看出参数的选取对网络的训练结果有着很大的影响,当然BP算法还很多,但没有一个算法适合所有 BP 网络。在实际运用时,需根据网络自身的特点、误差要求、收敛速度要求、存储空间等来做具体选择。

参考文献:

[ 1 ] http://blog.csdn.net/zrjdds/archive/2008/01/02/2010730.aspx.

[ 2 ] 陈兆乾,周志华,陈世福. 神经计算研究现状及发展趋势. 南京

大学计算机软件新技术国家重点实验室,2008:3-7.

篇9

一、前言

人工神经网络是一个多科学、综合性的研究领域,它是根据仿生学模拟人体大脑结构和运行机制构造的非线性动力学系统[1]。神经网络可以看作是一种具有自组织、自学习能力的智能机器,它能模仿人的学习过程,通过给网络各种范例,把网络的实际输出与希望输出比较,根据偏差修改节点间的连接权,直到获得满意的输出。现已广泛应用于经济学、军事学、材料学、医学、生物学等领域。

化工过程一般比较复杂, 对象特性多变、间歇或半连续生产过程多,具有严重非线性特性。因此,其模型化问题一直是研究的热点。化工生产过程的数据或实验室实验数据的拟台、分析,是优化过程或优化反应条件的基础一般被处理的数据可以分为二类:静态数据(static data)和动态数据(Dynamic data),对于静态数据的关联,神经网络是一种很有希望的“经验模型”拟合工具。动态过程数据具有系统随时间而变化的特征,操作参数和产物的产量和质量之间的关系更为复杂。处理和分析动态过程数据的方法除了常用的在物料衡算、能量衡算、反应动力学方程、相平衡等基础上建立数学模型(Mathematical Models)、数理统计(Statistical Analysis)等方法外,用神经网络拟合动态过程数据, 建立动态过程模型, 往往能从动态数据提供的模式中提取较为有用的信息,对过程进行预测、故障诊断,从而使过程得到优化。因此,神经网络以其强大的函数映射能力, 已经广泛用于化工过程非线性系统建模领域。 它能够通过输入输出数据对过程进行有效地学习,为化工过程的综合发展提供了一种先进的技术手段。

二、人工神经网络简介

人工神经网络(英文缩写为ANN)简称神经网络,是在生物学和现代神经科学研究的基础上,对人类大脑的结构和功能进行简化模仿而形成的新型信息处理系统[2,3]。由“神经元”(neurons)或节点组成。至少含有输入层、一个隐含层以及一个输出层。输入层—从外部接受信息并将此信息传入人工神经网络,以便进行处理;隐含层—接收输入层的信息,对所有信息进行处理;输出层—接收人工神经网络处理后的信息,将结果送到外部接受器。当输入层从外部收到信息时,它将被激活,并将信号传递到它的近邻这些近邻从输入层接收到激活信号后,依次将其输出到它们的近邻,所得到的结果在输出层以激活模式表现。

神经网络可以看作是一种具有自组织、自学习能力的智能机器,它能模仿人的学习过程。比如,一个复杂化工装置的操作工人,开始学习操作时,由于没有经验,难以保证控制质量。但经过一段时间学习后,他就能逐步提高技能。神经网络正是模拟人类学习过程,通过给网络各种范例,把网络的实际输出与希望输出比较,根据偏差修改节点间的连接权,直到获得满意的输出。人工神经网络研究工作可分成 3个大方向:(1)探求人脑神经网络的生物结构和机制,这实际上是研究神经网络理论的初衷;(2)用微电子或光学器件形成有一定功能的网络,这主要是新一代计算机制造领域所关注的问题;(3)将人工神经网络作为一种解决问题的手段和方法,而这类问题用传统方法无法解决或在具体处理技术上尚存在困难。

三、神经网络在化工中的应用

1.故障诊断

当系统的某个环节发生故障时,若不及时处理,就可能引起故障扩大并导致重大事故的发生。因此建立高效的、准确的实时故障检测和诊断系统,消除故障隐患,及时排除故障,确保安全、平稳、优质的生产,已成为整个生产过程的关键所在。神经网络是模仿和延伸人脑智能、思维、意识等功能的非显形自适应动力学系统,其所具有的学习算法能使其对事物和环境具有很强的自学习、自适应和自组织能力。神经网络用于故障诊断和校正不必建立严格的系统公式或其它数学模型,经数据样本训练后可准确、有效地侦破和识别过失误差,同时校正测量数据中的随机误差。与直接应用非线性规划的校正方法相比,神经网络的计算速度快,在化工过程的实时数据校正方面具有明显的优势。目前应用于故障诊断的网络类型主要有:BP网络、RBF网络、自适应网络等。

Rengaswamy[4]等人把神经网络用在化工过程的初始故障预测和诊断( FDD)中,提出一种神经网络构架,利用速度训练在分类设计中明确引入时间和过程模型映像的在线更新三个要素,来解决化工过程中的初始故障诊断问题。国内也有关于神经网络用于故障诊断的报道,黄道[5]等人以TE (Tenneaaee Eastman,Eastman化学公司开发的过程模拟器,提供了一个实际工业过程的仿真平台,是一种国际上通用的标准仿真模型)模型为背景,根据模型的特点进行了故障诊断。当输入变量接近训练过的样本时,诊断的成功率可达100%。另外,模糊神经元网络作为一种更接近人脑思维的网格,也是解决此类问题的一个发展方向。李宏光[6]等人就针对化工非线性过程建模问题, 提出了由函数逼近和规则推理网络构成的模糊神经网络,其规则网络基于过程先验知识用于对操作区间的划分,而函数网络采用改进型模糊神经网络结构完成非线性函数逼近,并将该技术应用于工业尿素 CO2汽提塔液位建模。

2.化工过程控制

随着神经网络研究的不断深入,其越来越多地应用于控制领域的各个方面,从过程控制、机器人控制、生产制造、模式识别直到决策支持神经网络都有应用。神经网络可以成功地建立流程和控制参数问的非线性关系及构造相关的数学模型,并可跟踪瞬息过程及具有稳健功能等,因此可有效地用于化工过程最优化和控制。

1986年,Rumelhart第一次将ANN用于控制界。神经元网络用于控制有两种方法,一种用来构造模型,主要利用对象的先验信息,经过误差校正反馈,修正网络权值,最终得到具有因果关系的函数,实现状态估计,进而推断控制;另一种直接充当控制器,就像PID控制器那样进行实时控制。神经元网络用于控制,不仅能处理精确知识,也能处理模糊信息。Tsen[7]等利用混合神经网络实现对乙酸乙烯酯(VA)的乳液聚合过程的预测控制。原有的该间歇过程的复杂的机理模型可对单体转化率做出较准确的预测,然而对产品性质(如数均相对分子质量及其分布)的预测不太可靠。所建的混合型神经网络模型用于实现过程的反馈预测控制。国内对神经网络的实质性研究相对较晚,谭民[8]在1990年提出了一种基于神经网络双向联想机制的控制系统故障诊断方法,并且作了仿真验证。清华大学自动化系则开发了一种基于时序神经网络的故障预报方法,利用工艺现场数据对大型氯碱厂的氯气中含氢气的问题进行了模拟预报实验。

3.药物释放预测

建立精确的缓释微胶囊模型是找出最优的工艺条件及掌握芯材释放规律的重要一步。缓释微胶囊的性能与影响因素之间足一种多输入、多输出、复杂的非线性关系。机理分析法和传统的系统辨识法对输入、多输出问题适应性差,过分依赖研究领域的知识与经验,难以得到实用的缓释微胶囊模型。人工神经网络能够很好地解决传统方法不能解决的具有高度非线性、耦合性、多变量性系统的建模问题并具有独特的优势。

赵武奇[9]等人建立了红景天苷缓释微囊的人工神经网络模型及其遗传算法优化技术,用神经网络模型描述了微囊制作参数与性能之间的关系,并用遗传算法优化微囊制作工艺参数,设计出性能最佳的微囊制作工艺参数。范彩霞[10]等人以难溶性药物氟比洛芬为模型药物,制备了17个处方并进行释放度检查。氟比洛芬和转速作为自变量,取其中l4个处方为训练处方,其余3个处方为验证处方,将自变量作为人工神经网络的输入,药物在各个取样时间点的释放为输出,采用剔除一点交叉验证法建立了人工神经网络模型。并通过线性回归和相似因子法比较人工神经网络和基于二元二项式的响应面法的预测能力,显示了人工神经网络的预测值与实测值的接近程度。

4.物性估算

用神经网络来解决估算物质的性质必须解决三个基本问题,第一个是对物质的表征问题;第二个是采用何种神经网络及其算法问题;第三个是神经网络输入与输出数据的归一化问题。无论采用哪种方法对数据进行处理,当用经过训练的神经网络进行物性估计时,不能将网络直接的输出值作为物性预估值,而是要将输出值再乘上一个系数,这个系数就是前面进行归一化处理时对数据的除数,相乘后得到的值作为物性估算值。神经网络用于物性估算,目前采用的就是BP网络或在此基础上的各种改进形式。常压沸点进行估算和研究。Prasad[11]等人利用神经网络对有机化合物的物理性质进行了预测,并与传统的基团贡献法比较,可以得到更为准确的物性参数。而后,董新法、方利国[12]等人将神经网络在物性估算中的应用作了一个全面而又简要的讲解,并提出神经网络在物性估算中潜在的应用前景,为其发展及其以后的应用研究提供了很好的工作平台。

目前,人工神经网络在各个领域中的应用都在向人工智能方向发展。不断丰富基础理论和开展应用研究、完善其技术的可靠性、开发智能性化工优化专家系统软件,对于我国的化工发展具有重要意义。此外,模糊理论、小波变换、统计学方法和分形技术等信息处理方法和理论与神经网络的结合解决化工类问题,被认为是一种发展趋势。

参考文献

[1]高大文,王鹏,蔡臻超.人工神经网络中隐含层节点与训练次数的优化[J].哈尔滨工业大学学报, 2003, 35(2): 207-209.

[2]苏碧瑶.人工神经网络的优化方法[J]. 科技资讯, 2011(30): 239-240.

[3]黄忠明, 吴志红, 刘全喜. 几种用于非线性函数逼近的神经网络方法研究[J]. 兵工自动化,2009, 28(10): 88-92.

[4]Rengaswamy R, Venkatasubramanian V. A fast training neural network and its updation for incipient fault detection and diagnosis[J].Computers and Chemical Engineering, 2000,(24): 431-437.

[5]黄道, 宋欣.神经网络在化工过程故障诊断中的应用[J].控制工程,2006,(13): 6-9.

[6]李宏光,何谦.化工过程建模中的一类复合型模糊神经网络[J]. 计算机与应用化学,2000,17(5): 399-402.

[7]Tsen A D, Shi S J, Wong D SH, etal. Predictive Control of Quality in Batch Polymerization Using a Hybrid Artificial Neural Network Model[J]. AIChE Journal,1996, 42(2): 455-465.

[8]谭民, 疏松桂. 基于神经元网络的控制系统故障诊断[J]. 控制与决策, 1990(1): 60-62.

[9]赵武奇, 殷涌光, 仇农学. 基于神经网络和遗传算法的红景天苷缓释微囊制备过程建模与优化[J]. 西北农林科技大学学报(自然科学版), 2006,34(11): 106-110.

[10] 范彩霞, 梁文权, 陈志喜. 人工神经网络预测氟比洛芬HPMC缓释片的药物释放[J]. 中国医药工业杂志, 2006, 37(10): 685-688.

篇10

1.引言

交流电动机伺服驱动系统由于其结构简单、易于维护的优点逐渐成为现代产业的基础。其中交流伺服系统在机器人与操作机械手的关节驱动以及精密数控机床等方面得到越来越广泛的应用。交流伺服系统由交流电动机组成,交流电动机的数字模型不是简单的线性模型,而具有非线性、时变、耦合等特点,用传统的基于对象模型的控制方法难以进行有效的控制。对于交流伺服系统的性能,一方面要求快速跟踪性能好,即要求系统对输入信号的响应快,跟踪误差小,过渡时间短,且无超调或超调小,振荡次数少。另一方面,要求稳态精度高,即系统稳态误差小,定位精度高。在交流伺服控制中,常规控制方法普遍是以PID控制为基础,然而单纯的PID控制存在超调量大,调节时间长,控制效率低等缺点,而且其参数的选取比较困难。近年来,随着计算机技术的发展,人们利用人工智能的方法将操作人员的调整经验作为知识存入计算机中,根据现场的实际情况,计算机能自动调整PID参数,这样就出现了智能PID控制器,并在实际工业控制中获得了许多成功的应用。大多数基于神经网络的自适应控制方案均采用多层前馈神经网络[1],前馈神经网络是一个静态网络,然而,在处理交流电动机伺服系统中需要通过引入时滞环节来描述系统的动态特性[2],但这就需要大量的神经元来表示动态响应。动态递归网络利用网络的内部状态反馈来描述系统的非线性动力学特性,能更直接地反映系统的动态特性,因此,比前向神经网络更适合应用于动态系统的控制问题[3]。对角递归神经网络[4,5]既具有一般动态网络易于处理动态非线性问题的特点,又具有结构简单、容易构造训练算法等优点。因此,本文采用对角递归神经网络整定PID控制控制的参数,仿真结果证明了该控制方案的有效性。

2.系统结构设计

神经网络PID交流伺服系统结构如图1所示,系统中有两个神经网络。其中,NNC为自整定PID控制器,DRNNI为系统在线辨识器。图中为给定角位移,为电机转轴的实际角位移,e为和进行比较而得到的偏差,ec为偏差的变化率。则有:

(1)

(2)

图1 神经网络PID控制的交流伺服系统

图1中,u为神经网络PID控制的转速期望值;为期望电机转速;为实际电机转速;与的偏差经过转速调节器产生期望的电机电磁转矩Ted。由于内环的不足可由外环控制来弥补,所以转速调节器采用一般的PI调节器即可,而电机的电磁转矩控制则采用直接转矩控制方法。

3.神经网络PID控制器设计

3.1 神经网络PID控制器

PID控制是一种技术成熟、应用广泛的控制方法,其结构简单,而且对大多数过程均有较好的控制效果。其离散PID控制规律为:

(3)

式中,u(k)为k时刻控制器的输出量;KP,KI,KD分别为比例系数,积分系数和微分系数;e(k)为当前时刻的交流伺服系统的位置与期望值之差;e(k-1)为上次采样时刻的交流伺服系统的位置与期望值之差。由式(3)可得到控制器输出第k个周期时刻的控制量u(k)和第k-1个周期时刻的控制量u(k-1)之间的增量为:

(4)

传统的PID控制最主要的问题是参数整定问题,一旦整定计算好后,在整个控制过程中都是固定不变的,而在实际系统中,由于系统状态和参数等发生变化时,过程中会出现状态和参数的不确定性,系统很难达到最佳的控制效果。本文利用两层线性神经网络对PID控制器的三个参数进行在线调整。神经网络的输入为:

(5)

定义NNC的性能指标为:

(6)

则:

(7)

(8)

(9)

其中,为学习率,为对象的Jaco-bian信息,该信息可以由DRNN网络进行辨识。

3.2 对角递归神经网络辨识器

对角递归神经网络(DRNN)是一种特殊的递归神经网络,其网络结构有三层,隐层为递归层。考虑一个多输入单输出的对角递归神经网络,其结构如图2所示。

图2 对角递归神经网络结构图

各层的输入输出关系函数如下:

第一层为输入层,有n个输入节点,其输入:

(10)

式中,Ii(k)为第i个神经元的输入。

第二层为隐层,有m个节点,其输入为:

(11)

式中,wI和wD为网络输入层和递归层的权值。

输出为:

(12)

第三层为输出层,其输出为:

(13)

式中,wO为网络输出层的权值。

在采用如图2所示的DRNN来对交流伺服系统进行辨识时,网络的输入为:

(14)

网络的输出为:

(15)

训练DRNNI的性能指标函数定义为:

(16)

学习算法采用梯度下降法:

(17)

(18)

(19)

权值的更新算法:

(20)

(21)

(22)

其中,递归层神经元取S函数:

(23)

(24)

(25)

式中,、、分别为输入层、递归层和输出层权值的学习率,为惯性系数。

交流伺服系统的Jacobian信息为:

(26)

4.实验研究

用于实验的交流电机参数为Pn=2.2kW, Un=220V,In=5A,nn=1440r/min,r1=2.91Ω,r2=3.04Ω,Is=0.45694H,Ir=0.45694H,Im= 0.44427H, Ten=14N・m,np=2,J=0.002276kg・m2,ψn=0.96Wb。数字控制采样频率为10kHz。

采用基于DRNN神经网络整定的PID控制,控制器的网络结构为3-7-1,辨识器的结构为2-6-1,学习率都设置为,惯性系数。权值的初始值取[-1,+1]之间的随机值。

通过实验表明,神经网络PID控制有效地结合了神经网络和PID控制方法,充分发挥了PID控制调节精度高的优点,利用神经网络对PID控制器的参数进行实时整定,进一步提高了系统的控制精度,增加了系统的在线自适应能力。

5.结论

本文提出了一种基于动态递归神经网络PID控制的交流伺服系统,采用动态递归神经网络作为交流伺服系统的辨识器,两层线性神经网络作为控制器,这种控制方法提高了系统的精度。

仿真实验结果表明,该控制器具有良好的控制性能和很强的鲁棒性,是一种行之有效的控制器。

参考文献

[1]许大中.交流电机调速理论[M].杭州:浙江大学出版社,1994.

[2]Sun F C,Sun Z Q.Stable neural network-based adaptive control for sampled2data nonlinear systems[J].IEEE Transactions on Neural Networks,1998,9(5):956-968.

[3]李明忠.基于递归神经网络的一类非线性无模型系统的自适应控制[J].控制与决策,1997,12(1):64-67.

[4]Ku C C,Lee K Y.Diagonal recurrent neural networks for dynamic system control [J].IEEE Transactions on Neural Network,1993,6(1):144-156.

篇11

1.引言

神经网络技术属于人工智能领域,最早在上世纪五十年代开始出现一些相关理论性的研究,由于受到当时软、硬件环境的约束,因此该技术的发展一直处于停滞状态,直到九十年代才得到足够的重视,并由于其在控制过程中独特的优势而受到广泛的关注和青睐,成为最热门的研究领域之一。人工神经网络的特点主要有大规模并行计算能力突出、数据存储的分布性好、超强的自学习和自适应能力等,甚至基于神经网络衍伸出的一些优化算法还可以具备相当程度的联想、识别和记忆功能,这大大强化了神经网络的适用范围。目前该技术已广泛的应用在生产控制、模式识别、网络控制、信号处理、医学工程以及其他需要智能优化处理服务的自动化控制场合。

2.人工神经网络概述

人工神经网络技术模拟人脑中由大量的神经元连接组成的复杂网络,在求解过程中充分的调动神经元之间的相互作用,从而实现对数据的感知、记忆和处理功能。虽然神经元个体相对简单且功能有限,但通过大量不同神经元的组合,便可使生成的网络系统具有多样化的功能。在人工神经网络中,神经元由三部分构成,分别是包含网络中每条连接权值的权集;用以存储某条组合连接中各个单位连接权值之和的求和单元;对加权和进行非线性映射并约束其强度的非线性激励函数。由这三部分组成的单个神经元可与其他多个神经元相连接,组成各种类型的神经网络。

神经网络的另一个优势在于其独特的分布式数据存储方式上,由于将采集到的大量数据分布存储在各个神经元之间的连接强度上,可大大增强数据的生存性和安全性,即使出现了局部数据的损毁,也不会对最终的计算结果造成太大的影响。从计算机技术方面分析,神经网络中的神经元实质上是一个非线性运算器,可同时接受多路输入数据参与运算,而计算结果则是唯一的单个输出。从数学建模的角度来看,通常使用三个函数来描述神经网络,分别是阶跃函数、分段线性函数和Sigmoid函数,如下所示:

在塑性加工领域,应用最多的是前馈型神经网络,在该类神经网络中,包括输入层、隐层和输出层三层结构。在这三层之间,内部节点相互独立,减少干扰,其实现的输入和输出之间的关联受到多种因素的影响,如节点数、层数、连接权值等等,若要实现该网络输出尽可能的逼近预设值,就必须采用误差函数来对各个连接强度进行动态调整,最常使用的是二乘误差,如下所示:

3.人工神经网络在塑性加工中的应用分析

3.1 工艺设计专家系统

工艺设计是塑性加工工序的开始,通过科学的工艺设计,可以将整个加工流程进行合理的安排,预设合适的参数组合,以使得生产出的产品合乎标准,在这一阶段,首先要完成的就是大量资料的收集,随后是数据提炼,计算量相当庞大。而利用人工神经网络来建立专家系统时可以实现大规模的数据并行处理,且不需要循序渐进的推理,直接通过大量的训练来得到最优的解集,这是其他智能算法所不具备的突出优势。而且在神经网络中,推理过程和计算过程是同步完成的,且相关信息分布存储在网络节点间的连接强度上,通过对样本不断的学习和更新来完成对存储知识的不断优化。

3.2 无损探伤及缺陷预测

在超声探伤、磁粉探伤等无损探伤中,由于得到的信息较为有限,因此传统的监测系统很难准确判断构件内部缺陷的具体情况,更谈不上精确定位了,且这种困难随着北侧物件体积的增大而直线上升。而神经网络所具有的非线性识别及映射能力则能很好的解决这一问题,通过反复的训练优化,最终定位出最有可能的缺陷位置和缺陷尺寸。若某平板内具有圆形缺陷,可先用有限元法模拟在一定载荷下圆孔的位置、尺寸变化对某些点的位移、应变的影响,将所得到的数据用来训练神经网络。一旦训练成功,就可以利用它确定同类试件内部的缺陷及其尺寸位置。

3.3 预测材料性能及参数识别

在塑性加工理论研究中,材料塑性变形行为的表述能否准确反映材料在外载作用下的响应,直接影响到理论结果的准确性。在利用传统方法建立本构模型时要引入许多假定的前提条件,还要通过大量的实践经验和实验验证来选择合适的参数组合,通过在不同环境下的仿真实验,并对结果进行对比分析,不断修正乃至最终确定本构模型,这一过程显然占用了过多的时间和资源。而利用神经网络却可以实现应力―应变的直接映射,直接从实验数据“学习”应力―应变关系,从而避免了大量的数学推导过程和验证―修改的不断反复过程。网络实现对应力―应变关系模拟就是在“训练”过程中不断改变自身各神经元间的连接强度,训练完成后,网络将应力―应变关系(某种材料)“记忆”在其连接强度上即可。

4.结束语

虽然神经网络已经被广泛的应用到各种工业控制场合并表现出强大的学习和自适应能力,但其算法的收敛性和鲁棒性仍有待加强,相信人工智能领域的不断突破,人工神经网络比价发挥出更大的作用。

参考文献

[1]时慧焯.基于人工神经网络的注塑成型翘曲优化方法[D].大连:大连理工大学,2012

篇12

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2014)20-4813-02

Application of Fuzzy Neural Network in Water Environmental Quality Assessment

ZHAO Xu1 ,CHEN Li-li2

(1.Geological and Mineral Resources of Liaoning Province Survey Institute, Shenyang 110031,China; 2.Heilongjiang Institute of Geological Survey, Harbin 150036,China)

Abstract: In order to ensure the safety of drinking water for urban residents, the fuzziness of classification of water quality standard, introduce the fuzzy neural network theory, establish the model of water environment quality evaluation. Selects the Jilin province Baishan City baiyunfeng reservoir as a study area, by sampling selected 6 monitoring points, the evaluation of the model evaluation results and the Nemero index analysis and comparison of results. The results showed that, fuzzy neural network evaluation of water environment quality is feasible, water quality evaluation result more accurate, to break the limitations of traditional methods. The model of fuzzy neural network has strong learning ability, can improve the accuracy of groundwater quality evaluation, provided the scientific basis for the protection and management of water environment.

Key words: fuzzy neural network; water quality evaluation; monitoring point

我国当前经济社会的发展正处在城市化、工业化、现代化进程中,有效地保护和合理利用水资源,防止项目建设和生产造成的人为水资源破坏,最大限度地减少和降低对水环境的影响,保证工程项目的顺利建设和安全运行,促进水资源的循环利用和生态环境的可持续维护,水环境质量科学准确的评价必不可少[1]。该文综合考虑神经网络的特点,把模糊理论引入评价模型中,以水质评价指标作为模型的输入变量建立模糊神经网络,以白山市白云峰水库为研究区,评价其水环境质量。

1 模糊神经网络

1974年,S.C.Lee以和E.T.Lee首次把模糊集和神经网络联系在一起; 1985年,J.M Keller和D.Huut提出把模糊隶属函数和感知器算法相结合。自1992年开始,J.J.Backley发表了多篇关于混合模糊神经网络的文章,它们也反映了人们近年来的兴趣点。

模糊神经网络是一种新型的神经网络,它是在网络中引入模糊算法或模糊权系数的神经网络。模糊神经网络的特点在于把模糊逻辑方法和神经网络方法结合在一起[2]。目前应用最广泛的是模糊BP网络[3],对于一个神经元,考虑其输入信号是以隶属函数表示,而不是以绝对值表示,基本处理单元为非线性输入-输出关系,输入层神经元阈值为0,且[f(x)=x];而隐含层和输出层作用函数为[f(x)=11+e-x]。

鉴于水质评价中水质分级存在模糊性,水质评价结果易受人为因素影响[4-5],因此本研究将将模糊理论中隶属度引入水质评价中,试图克服传统水质评价过程中存在的问题。按下式构造隶属度函数[6-7]

式中:a、b为评价水质样本相邻的上下两级标准水质级别;[f(x)]为标准的梯形隶属度函数。

2 实例

2.1 评价因子选取

研究区地处低山丘陵,远离居民点,附近无大的河流或流量较大的裂隙泉。当地自然环境良好。研究区气候属温带大陆性季风气候区。年平均气温在2.5℃左右。年最高气温38℃,多集中在七、八月份,昼夜温差较大。最低气温可达-40℃,集中在十二月下旬至翌年二月份。年平均降雨量为800mm左右,最大冻结深度1.60m。

根据水文局提供的水环境质量监测资料,本次研究选取总硬度、硝酸盐氮、挥发酚、六价铬、砷、铁等指标作为评价因子。

2.2 模糊神经网络的应用

经过标准化处理后建立6-3-1结构的模糊神经网络。由于活化函数值域范围在[0,1]间,故设定水环境质量级别的目标输出量是0.1、0.3、0.5、0.7、0.9(如表1) 。模型本次训练选取学习效率[η]=0.9,动量系数[σ]=0.5,经过7600次迭代,网络收敛,达到指定精度10-5。然后对输出结果进行隶属度计算,最终确定出水质级别,评价结果见表2。

2.3 结果分析

根据现有调查资料水库目前的水化学类型为:H―Ca型水、总硬度(以CaCo3计算)124.31mg/L、PH值8.01、为弱碱性水,水质良好,适合饮用。通过计算发现,采用尼梅罗综合污染指数法评价的水环境质量并无明显变化,而应用模糊神经网络计算后得出的结果水环境质量变化明显,与现有实际调查情况一致。因此应用模糊神经网络评价出的水环境质量结果是可靠的。

3 结论

本文将模糊神经网络应用到水环境质量评价中,它将模糊算法或模糊权系数引入到神经网络中,把模糊逻辑方法和神经网络方法结合在一起,是一种新型的神经网络。克服了传统水环境系统中变量间模糊性问题,该网络具有很强的自适应、自学习的能力。通过实例应用,验证了模糊神经网络在水质评价方面的应用是可行的,结果是准确可靠的,该方法具有良好的应用前景。为保证城镇居民饮水安全,及日后保护和管理水环境提供了科学依据。

参考文献:

[1] 夏军.区域水环境及生态环境质量评价――多级关联评估理论与应用[M].武汉:武汉水利电大学出版社,1999.

[2] 陈守煜,赵瑛琪.模糊模式识别理论模型与水质评价[J ].水利学报,1991 ,6 :35 ― 401.

[3] 尼探海,白玉慧.BP神经网络模型在地下水水质评价中的应用[J].系统工程理论与实践,2000,(8):124-127.

[4] 王士同,神经模糊系统及其应用[M],北京,北京航空航天大学出版社.

友情链接