时间:2023-06-29 09:33:09
引言:寻求写作上的突破?我们特意为您精选了12篇量子化学基础范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
量子化学是高等师范院校化学专业为硕士研究生开设的一门专业基础课程,其任务是使学生利用量子力学的基本原理和方法掌握微观物质运动的基本规律,探索物质的结构及结构与性能关系[1,2]。目前,量子化学理论已愈来愈广泛地应用到化学各个分支学科领域中,并渗透到其他自然学科中,从而使量子化学的教学在整个化学专业教学计划中的重要性日益增加。但它涉及面广,内容比较抽象,且具有极强的理论性,同时要求学生具有较强的空间思维能力,因而量子化学教学不仅对教师提出较高的素质要求,而且对教学方法提出新的课题。下面我结合多年来在量子化学教学改革中的探索和尝试,谈谈教学感受和体会。
三、开展第二课堂,培养学生计算技能
为了让学生把学到的量子化学理论运用到研究中,掌握一些专业软件的计算技巧,教师可利用课余时间开展第二课堂,为学生提供一个学习和实践的平台,给他们创造更多的锻炼机会。例如,搞有机合成的研究生,根据专业需要可以让这些学生学会过渡态的寻找和优化,通过理论计算探索反应机理,能预测最佳反应通道,为他们的研究方向提供理论支持;研究方向是无机配位化学,可以让这些学生学习一些金属配合物的计算方法,学习配合物电子吸收光谱、荧光光谱及磁性的计算,这些计算结果对合成具有特殊性能的配合物都是很有帮助的。在第二课堂中,也可以让基础较好的学生参与到自己的科研活动中,承担一部分力所能及的科研课题,使学生科研能力得到锻炼,激发他们的科研热情,拓宽他们的视野,同时自己通过学生的实践活动,找到自己课堂教学中的不足。第二课堂的开展,不仅把学生所学的理论知识转化成学生认识和解决实际问题的能力,更重要的是教师身上这些品质能够言传身教地影响学生,从而使学生具备创造的兴趣和素质。
四、结语
量子化学的教学改革取得了一定的效果,首先学生克服了量子化学难学的畏难心理,激发了学生学习量子化学的激情,可以在有限的教学时间内达到较好的教学效果;其次,通过开展第二课堂,将量子化学理论与科研实例有机地结合起来,培养了学生分析问题、解决问题及科研创新的能力。
量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。
一、在材料科学中的应用
(一)在建筑材料方面的应用
水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。
钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。
将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。
(二)在金属及合金材料方面的应用
过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。
量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。
二、在能源研究中的应用
(一)在煤裂解的反应机理和动力学性质方面的应用
煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。
量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。(二)在锂离子电池研究中的应用
锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。
锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。
随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。
三、在生物大分子体系研究中的应用
生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。
综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。
参考文献:
[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994
[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12
[3]李北星,程新.建筑材料学报,1999,2(2):147
[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973
[5]程新,陈亚明.山东建材学院学报,1994,8(2):1
[6]闵新民.化学学报,1992,50(5):449
[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1
[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717
【中图分类号】G633.8 【文献标识码】A 【文章编号】2095-3089(2013)10-0154-01
(小叙):课篇第一章节细读、研读、探透性知识点。
1.寻找研究方法 2.课题的研究内容
3.课题研究的一些成果 4.巩固建筑语录
【序言】
化学是在分子、原子层次上研究物质性质、组成、结构与变化规律的科学。化学不断地发展着,目前,人们发现和合成的物质已有几千万种,其中很多是自然界中原本不存在的;这极大地改善了人类的生存和发展条件,丰富了人们的生活。
例如:
1.纳米铜(1nm=10?9m )具有超塑延展性,在室温下可拉长50多倍而不出现裂纹。
2.用隔水透气的高分子薄膜做的鸟笼。
3.单晶硅为信息技术和新能源开发提供了基础材料。
4.用玻璃钢制成的船体。
总之,作为实用的、富于创造性的中心学科,化学在能源、材料、医药、信息、环境和生命科学等研究领域以及工农业生产中发挥着其他学科所不能替代的重要潜质作用。近年来,“绿色化学”的提出,使更多的化学生产工艺和产品向着环境友好的方向发展,化学必将使世界变得更加绚丽光彩。
【寻找研究方法】
第一单元 走进化学世界;
1.物质的变化和性质
2.化学是一门以实验为基础的科学
3.走进化学实验室
第二、三单元 我们周围的空气与自然界的水;空气、氧气(氧气的制取)、水的组成、分子和原子、水的净化。“爱护水资源”。
第四、五单元 物质构成的奥妙、简单统计应用;原子的构成、元素、离子、化学式与化合价 :
如何正确书写化学方程式”?利用化学方程式的简单计算?
第六、七单元 C与C的氧化物燃料及其利用;
分析:金刚石、石墨和C60 (1.CO2 的制取? 2.CO2 与CO的区别、联系?)
应用:燃烧和灭火?燃料和热量?
环保问题:“燃料对环境的影响”
自留田地:“石油和煤的综合利用?”
第八、九单元 金属与溶液的问题;
熟记、认识:金属、金属材料、金属的化学性质;
金属资源的利用和保护、溶液的形成;
溶解度、溶质的质量分数。
第十、十一、十二单元 酸与碱 、盐与化肥 、“化学与生活”。
生活中常见的:1.酸与碱
2.酸与碱之间会发生什么反应
3.盐
4.化学肥料
人体:1.人类重要的营养物质
2.化学元素与人体健康
3.有机合成材料
学生自认化学常用仪器。学习“附录”相关记录 。
【课题的研究内容】
无机化学中量子(分子、原子)力学论
量子化学(Quantum chemistry)是理论化学的一个分支学科,是应用量子力学的基础原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互碰撞和相互反应等问题。
量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法,研究化学问题的一门基础科学。
1927年海特勒和伦敦用量子力学基础原理讨论氢分子结构问题,说明了两个氢原子能够结合成一个稳定的氢分子的原因,并且利用相当近似的计算方法,算出其结合能。由此,使人们认识到可以用量子力学原理讨论分子结构问题,从而逐渐形成了量子化学这一分支学科。
【课题研究的一些成果】
生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构,设计并合成人工酶;可以揭示遗传与变异的奥妙,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。
【巩固建筑语录】
化学中常见“离子反应”包括:“酸、碱、盐在水溶液中的电离”和“离子反应及其发生的条件”两部分。
无机化学中最关键的是要有实观性:基础高层次的“化学方程式”们。
其次,稀土元素中的各种化学量变、质变及各种物理、化学性反应。
再次,金属的利用、及高等积存用途。
还有,就是气体的大力层存在行式。如同:水、陆、空,人类的生活方式。
参考文献:
本书共分18章:1.主族元素之间的化学键,包括杂化缺陷、外d轨道、二次周期等内容;2.重主族原子之间的多重键,介绍了E2(E=N-Bi)分子的键分析、E2H2(E=C-Pb)分子的键分析、E2H2(E=C-Pb)分子不同结构的解释及能量分解分析;3.超价分子中的结合对成键,介绍了SFX(X=1-6)、OF2物质的低能态三重态等内容;4.主族元素中的电子给受结合体,主要介绍了主族元素之间单到二中心复合物的共价键;5.硼烷、多面体硼原子与富硼固体等团簇键的电子计数规则,介绍了Wade规则、轨道兼容性、In-碱金属团簇等内容;6.单价金属团簇高自旋状态下的紧密结合在一起的三联体对;7.过渡金属化合物的化学键;8.开壳层过渡金属复合物的化学键,包括密度矩阵、第一性原理、局域自转、键级等方面的内容;9.用多尺度量子化学方法建模金属-金属多重键;10.过渡金属表面胶合与表面活性的量子化学研究;11.镧系元素与锕系元素的化学键,包括f区化合物、铀酰复合物等内容;12.用能量分解分析方法直接估计配合、超共轭与芳香族化合物结构,包括EDA方法、1,3丁二烯、丁二炔,多烯,实验数据的相关性等内容;13.芳香族化合物与芳香过渡状态的磁性能,包括芳香族化合物、分子的磁性能,磁化率的各向异性,苯与富勒烯等内容;14.无机芳香化合物的化学键;15.固体中的化学键,包括布洛赫轨道、费米能级、电子局域化等内容;16.色散相互作用与化学键,包括分散能、WFT、DFT、SAPT及相关例子等内容;17.氢键;18.定向静电键,包括分子周围静电势分布的各向异性,纯静电模型,定向非共价作用力等内容。
中图分类号O64 文献标识码A 文章编号 1674—6708(2012)76—0109—02
“燃烧热测定”是物理化学中一个经典的实验,在实验室中一般测定固体物质萘或蔗糖等有机物固体的燃烧热[1—2]。本文通过热力学综合测定仪中的燃烧热测定装置,可以测量出液体苯、环己烷、环己烯的燃烧热,进行计算可得到苯的共振能。应用量子化学理论算方法亦可计算苯的共振能,通过计算方法的选择,并与文献值比较[3],可找到计算适合苯、环己烷、环己烯系列物质的最佳方法。
1 实验部分
1.1 实验仪器及药品
物理化学热力学综合实验装置RLXZH— ?(配计算机及相关软件),氧弹量热计,压片机,电子天平,氧气钢瓶;苯甲酸,苯(A.R),环己烯(A.R),环己烷(A.R),药用胶囊(本实验用的是重庆申高生化制药有限公司生产的氨咖黄敏胶囊,把药粉倒出,只用外包装的胶囊)。
1.2 空心胶囊燃烧热的测定
取6个空心胶囊,将其叠压在一起,量取约15cm的铁丝,在分析天平上准确称取铁丝的质量,然后把铁丝绑在胶囊上面,准确称量总质量。利用量热计测出空心胶囊的燃烧热。
1.3 测定试剂的燃烧热
选取一个密封完好的药用胶囊,在分析天平上准确称取它的质量,取适量铁丝,准确称取它的质量,放入胶囊中,用滴管小心加入苯,使其装满,再把胶囊套好,在分析天平上准确称取质量,算出苯的质量。再把装好的胶囊置于氧弹中,冲入氧气,利用氧弹量热计测出燃烧热,扣除胶囊的燃烧热,即得到苯的燃烧热,用同样的方法测出环己烷和环己烯的燃烧热。
1.4 实验记录及其数据处理
根据所测的数据作图,并对各测定做温度雷诺校正图,直接通过南大万和综合热测定仪随即软件作图,求出每次实验时温度差T。之后再作雷诺校正图得到温差,图l是四个实验的雷诺校正图,温差T已标出;计算量热计的热容,计算结果可由南大万和物理化学热力学综合实验装置随机软件记录并处理数据。从量热计的热容、各液体样品燃烧时的水温升高值以及胶囊的燃烧热值,计算苯、环己烷和环己烯的恒容燃烧热,并由H=QP=QV+ nRT计算恒压反应热,结果见表1。
2 理论计算部分
2.1 计算方法
在ChemDraw程序中构建苯、环己烷和环己烯的分子结构模型,先用AM1半经验算法对分子模型进行初步的几何优化。之后分别用半经验法(AM1)、从头算方法HF(6—311+g*和6—311++g*基组水平)和密度泛函(B3lyp/6—31)进行优化构型的量子化学计算,整个计算过程使用Gaussian 03程序包完成。
2.2 计算结果
分别使用半经验AM1法,从头算方法HF(6—311+g*)、HF(6—311++g*)、B3lyp/6—31进行结构全优化计算。苯是一个完全对等的正六边形,6个C—C单键完全。由于苯环的共轭作用,使得苯环中C—C单键长度介于环己烷的C—C和环己烯的C=C双键之间。环己烷是较为稳定的椅式结构,6个C原子不在一个平面上。
3 结果与讨论
3.1 实验结果与计算结果对比
按照下列公式求得苯的共振能E[4],计算结果如表2所示。
3.2 误差分析
文献值是123.58kJ·mol—1[5],从实验测量与计算结果上分析,实验方法与文献值相差较大,测量了多次仍存在较大误差,主要原因:1)由于苯、环己烷和环己烯都具有强挥发性,在装入氧弹并排出氧弹中空气的过程中已有部分挥发所导致;2)用胶囊盛装液体,在高温时胶囊变软,从而导致液体挥发,使液体燃烧不完全引入误差。用量子化学理论计算方法,经过半经验法(AM1)、从头算方法HF(6—311+g*和6—311++g*基组水平)和密度泛函(B3lyp/6—31)4 种方法计算,密度泛函方法计算得到的结论与文献3值吻合较好,而且在用HF方法计算时,我们用了不同的基组,发现基组的改变对计算数值影响不大,所以用密度泛函方法使用较小的基组也能得到与文献值相符的结果。
4 结论
通过实验和量子化学理论计算均能得到苯的共振能,通过方法和误差分析也可比较两种方法的优点。从误差分析,实验方法得到的结果误差较大,经过多次改进仍不理想。量子化学理论计算方法中的密度泛函(DFT)方法得到的结果与文献值接近,是计算该类物质能量的较好的方法。
参考文献
[1]复旦大学.物理化学实验[M].北京:高等教育出版社,2002,6:24—26.
[2]孙尔康.物理化学实验[M].南京:南京大学出版社,2010,1:8—10.
众所周知,DNA分子呈现为螺旋形,所有氨基酸分子也都具有某种特定形状进行生命活动,如具有α螺旋,β层或者PPII等左旋和右旋结构等。然而,氨基酸分子正是由于具有特定的结构形式而对生命活动有特定的影响,因此研究氨基酸分子的构型构象是非常重要的。同时,分子结构也会受到不同溶剂或者分子内氢键的影响,进而稳定整个结构[1]。我们也知道,氨基酸中最小的分子是甘氨酸,其具有一个羧基和氨基,以及与亚甲基相连。然而,当每一个甘氨酸首尾相连缩水后,就会产生肽键,而肽键会直接影响和作用于生命活动。同时,不同的肽键数目也会不同程度的影响着生命体[2]。前人借助于量子化学计算研究了脯氨酸多聚体的自聚集体,并且发现其β结构形式可以作为蛋白质结构重构的阻聚剂[3]。本文采用密度泛函B3LYP方法研究了甘氨酸三聚体的构象重叠,进一步探究其可能的存在形式,为以后研究其各方面的性质提供前期基础。
1 理论方法
密度泛函DFT-B3LYP理论[4]是目前量子化学研究中常用的方法。本研究中,对甘氨酸三聚体采用6-31++G**全电子基组。为了考虑结构中的弱相互作用,所有计算都采纳了D3色散校正[5]。整个计算任务都采用GAUSSIAN 09程序包[6],在单机上完成。
2 结果和讨论
2.1 势能面搜索及几何结构
根据结构设计,甘氨酸三聚体主链有十个原子,九个成键,两个肽键(重叠区域)。基于我们的经验,对每一个肽键,采用了三个不同的扭转二面角(分别为-60°, 60°, 180°)来搜索其势能面的最稳定结构。因此,产生了3x3=9个构象。从图1中也可以看出,由于结构链的扭转,原子之间会存在弱相互作用,因此我们采用了B3LYP-D3校正的泛函形式[5],这种泛函较可靠、并精确预测计算的电子能。
采用可靠的B3LYP-D3泛函,并结合6-31++G**全电子基组对甘氨酸三聚体进行了结构全优化,优化结构见图1。研究结果发现:主链上C-C平均键长为1.528?,靠近左侧羧基的C-C键长较短,而靠近胺基部分的C-C键长则较长,N-C键也有类似的特征。在侧链上的C=O键长分别为1.211、1.227和1.227?。同时,两个胺基的二面角分别为176.4°和174.9°,近似于平面。此外,我们也通过比较发现,甘氨酸单体主链上O-C-C-N的二面角为-161.4°,说明在氨基酸大分子中,甘氨酸存在形式明显不同于单体的结构特征,也为以后生物大分子的实验研究提供理论参考。
2.2 相对稳定性
为了探究甘氨酸三聚体的电子特性,即从化学活性上探究化合物的稳定性,我们对甘氨酸单体、二聚体以及三聚体的HOMO和LUMO做了分析研究,并计算了它们的HOMO-LUMO能隙(H-L)。研究结果发现:三聚体的能隙为6.12 eV,其比二聚体和单体的能隙少约0.16和0.20 eV,表明甘氨酸三聚体的化学稳定性较弱,致使HOMO电子容易跃迁到LUMO轨道上。
3 结论
本文采用量子化学计算对甘氨酸三聚体的构象进行全局搜索,并讨论了它们的相对稳定性。结果发现:与甘氨酸单体相比较,三聚体主链及侧链上的键长都发生了变化,尤其是甘氨酸重叠的肽键部位。同时,通过能隙计算,我们也看到随着甘氨酸聚合度增多,则能隙变小,表明其稳定性更弱。这些研究结果将对理解氨基酸生物分子的生命活动提供一定的理论参考。
【参考文献】
[1]Docampo, Z. R.; Pascu, S. I.; Kubik, S.; Otto, S. Noncovalent Interactions within a Synthetic Receptor Can Reinforce Guest Binding [J]. J. Am. Chem. Soc. 2006, 128, 11206-11210.
[2]Profant V.; Baumruk V.; Li X.; et al. Tracking of the Polyproline Folding by Density Functional Computations and Raman Optical Activity Spectra [J]. J. Phys. Chem. B 2011, 115, 15079-15089.
[3]Sandvoss, L.M.;Carlson, H. A. Conformational Behavior of β-Proline Oligomers [J]. J. Am.Chem. Soc. 2003, 125, 15855-15862.
提到化学模型,我们可能首先会联想到中学化学课上老师用塑料球和小棍搭起来的模型。现在,建模则由计算机完成。当计算机遇到化学,便形成了计算化学这一新的交叉学科。
化学研究的核心在于“化”字,即分子之间的相互转化,旧化学键断裂、新化学键生成。只有这样,才能创造出新材料,设计出新药物。可是,分子之间的转化经常发生得很快,在毫秒瞬间,电子便从一个原子核跃迁到另一个,传统的化学方式已很难捕捉这个过程,必须借助计算机这一工具。时至今日,计算机对化学家的作用已经和化学实验手段一样重要。因为计算机对化学反应的模拟能够非常逼真,化学家们已经能够通过计算机预测传统实验的结果了。
在20世纪70年代计算机还未被普及的时候,马丁·卡普拉斯、迈克尔·莱维特及亚利耶·瓦谢尔就打造了坚实的计算机程序基础,为后人用于了解和预测化学反应进程作了强大铺垫。近年来,因为计算方法和计算机软硬件的飞速发展,在他们的基础上取得了很多的后续成果,并得到推广应用。
得益于他们的工作,我们将解开许多关于自然界的疑问。比如世界上最重要的化学反应——光合作用是怎么进行的?如果能模拟出来,那么我们就将能制造出更加高效的太阳能电池板;催化剂如何加快化学反应?如果深入了解其中的机理,我们可以尝试通过催化让水分子分解,从而开发出清洁的能源;药物如何在人体中发生作用?通过计算的方法,寻找出药物的靶点以及可能的药物干扰,我们就能设计出满足我们特定需求的理想药物。
诺贝尔“理综”奖?
如果化学反应在气相中发生,由于参与反应的分子受环境影响小,因此是理想的模型体
系(1986年,李远哲等三人因为用实验方法揭示气相化学反应微观细节而获得诺贝尔化学奖);然而,化学反应更多是在液相,在生物体系中发生,体系自由度多,非常复杂,不容易弄清楚细节。而反映真实情况的多尺度模型可以用来研究复杂体系的分子行为,包括液相化学反应或者是生化反应。
为什么生物体系中的分子反应如此复杂呢?举例来说,“人体的一个细胞内就可有上百亿个蛋白质分子。一个大的蛋白质分子可包含上百万个原子。蛋白质内每两个原子间都有相互作用,这些原子处于不停的运动中,其情形就像北京城内同一时刻有两百万辆机动车行驶一样。计算和跟踪一个蛋白质的原子运动就像记录和监控北京的车辆一样。如此巨大的分析计算量必须借助计算机技术来存储和分析。”这番话出自中科院计算数学与科学工程计算研究所的卢本卓研究员,他的研究方向就与此次诺贝尔化学奖相关,而他原本是学物理出身。这是不是有点儿“乱套”了?当然没有,而且还恰恰反映了本届诺贝尔化学奖的交叉学科属性,即计算机、物理、数学、生物学和化学等多学科相互渗透和融合。难怪本届诺贝尔化学奖被戏称为诺贝尔“理综”奖。
这是化学的荣誉
虽然被戏称为“理综”奖,但这的的确确是属于化学的荣誉。理论化学发展到今天,其最大的组成部分就是计算化学。计算化学的基础理论大多来源于两部分:量子力学和牛顿经典力学,这两个学科在化学上的应用则分别诞生了量子化学和分子模拟两个学科。涉及电子的化学反应需要用量子化学来解决,一旦涉及到分子间的相互作用,其量子效应往往可以忽略不计,使用经典力学就足以描述,从而大大地简化了计算,这就是分子模拟。
2构象的演示
构象是有机化学中的一个基本概念,一般是在讲述烷烃的时候引入。这里以正丁烷中C2-C3单键内旋转为例来说明如何通过量子化学计算直观解释构象以及构象间的相互转换这些概念。图3是正丁烷在6-31G(d)基组下绕中心C2-C3旋转不同角度并限制性优化得到的不同构象的能量曲线。图中同时给出了各典型构象的相对能量及其立体分子结构。从图中所标示的分子结构的球棍模型可以明显看出,在二面角为180°(反交叉式)时,丁烷的两个甲基相聚最远,整个分子能量最低;而在二面角为60°(顺交叉式)时两个甲基的相互排斥使能量升高大约4.2kJ/mol,两者都处于势能曲线上的极小值点,都是较稳定的构象。从反交叉式转换到顺交叉式需要越过15.3kJ/mol的势垒。而另外的全重叠式和部分重叠式构象由于甲基相距太近,排斥能较大使得它们处于能量曲线上的极大值点,因此是不稳定构象。我们还可以利用频率计算得到的各构象相对自由能根据玻尔兹曼公式近似计算室温下各构象所占的比例。
3反应机理的演示
Abstract
This is a preliminary investigation of alloy design for multi-element alloys at electronic and atomic
scale. The research shows that this idea of alloy design was feasible that first calculating the properties
of matrix with different compositions by interatomic potential, secondly selecting the attempt total composition of the alloy, then calculating the carbide volume fraction by empirical formulae, until obtaining the appropriate total composition of the alloy corresponding to the desired phase structure, finally testing the design by experiment.
Keywords: first principles, Interatomic potentials, Multi-element alloy, alloy design
1.引言
目前从电子、原子层次上进行材料设计是材料科学领域的学者们广泛关注的热点问题, 主要研究方法有第一性原理方法,第一性原理赝势方法,原子间相互作用势方法,分子力学 方法,分子动力学方法及蒙特卡罗方法等。其中前两种方法是在电子层次上进行材料设计的 方法,其方法的物理基础可靠,但由于计算工作量很大,因而所计算的体系受到一定的限制。 后几种方法是在原子及分子层次上的设计方法,这几种方法不考虑电子结构的影响,虽然会 损失一些精度,但大体上反映出由相互作用势所决定的晶体结构,以及由晶体结构所决定的 材料性质,且计算速度明显提高[1]。本文在多元合金的电子、原子层次的理论计算上联合使 用了第一性原理方法和原子间相互作用势方法,根据 3 种系列合金的关键问题进行理论计算 并结合其他理论计算和经验计算进行了合金设计探讨。
2.Fe-Cr-Mn-C 系亚稳奥氏体基铸造合金
Fe-Cr-Mn-C 系亚稳奥氏体基铸造合金有优异的耐磨性和高的抗冲刷腐蚀能力。其合金 设计的关键理论问题是 B 对该多元合金奥氏体体系的影响,以及对含 B 多元合金奥氏体电 子、原子层次的计算研究。通过对奥氏体合金大体系的能量计算,既可以解释 B 元素在奥 氏体中占位、分布、固溶度、与 C 的替代作用、与其他合金元素的配合对奥氏体的影响, 又可进而解释 B 对摩擦诱发马氏体相变的作用[2]。Fe-Cr-Mn-C-B 系铸造合金一般为基体(奥 氏体或马氏体)和碳硼化物组成的双相系统,其中 C 元素和 B 元素在奥氏体基体中的作用 对合金材料的性能有重要影响。C 在奥氏体中的固溶度和占位已很清楚,而 B 的固溶度和 占位还不很清楚,采用量子化学从头计算方法,通过对含 C、B 的奥氏体小团簇电子结构计 算,来研究 B 在奥氏体中的固溶度和占位情况。
团簇的选取以从奥氏体的实测晶格结构出发,从中选取奥氏体中的八面体和四面体小团 簇。并在团簇中心分别加入一个 B 或 C 原子,计算团簇的结合能,见表 1。由表 1 可见奥 氏体中 Fe4 四面体团簇的原子平均结合能略大于 Fe6 八面体的,因为八面体中存在距离较远 的三对原子,使结合能降低。B 和 C 均使四面体体积增大很多(棱长增加 34.2%),使结合 能降低,表明它们在四面体间隙存在的可能性很小,尤其是 B 更小。B 使八面体的体积增 大(棱长增加 16.2%),结合能略有升高;在体积不变时,C 使八面体的结合能略有降低, 表明 C 在奥氏体八面体间隙中的溶解度要远大于 B。
表 1 量子化学从头算合金小团簇的电子结构计算结果
采用量子化学从头计算精确处理含 B 小团簇,以半经验原子间相互作用对势处理大团
簇,研究含微量 B 元素的合金奥氏体大体系。对含微量元素小团簇进行局部精确计算,对 大团簇采用低精度的计算方法,既能反映微量元素的作用,也使电子、原子层次的计算处理 多元合金大体系成为现实。
应用量子化学从头计算方法对含 B、C 奥氏体大体系进行局部精确计算,计算结果:B 在八面体间隙中的原子平均结合能为 1.6978eV,最近键距为 0.29967nm;C 在八面体间隙中 的原子平均结合能为 1.3520eV,最近键距为 0.25780nm;每个八面体间隙 B 原子使奥氏体
Fe 团簇总结合能降低 116.91443eV,每个 C 原子使小团簇总结合能降低 0.459142eV,B 原
子对奥氏体能量的影响是 C 原子的 254.6 倍。利用量子化学从头计算方法计算了
Fe-Cr-Mn-C-B 系双原子团簇的势能,提出按势能曲线最低点与从头计算所得的势能最低值 相重合的拟合原则,得出半经验原子间相互作用对势的参数,并计算了奥氏体团簇的平均结 合能、平衡原子间距,结果与实验符合。将量子化学从头计算方法精确计算小团簇和半经验 原子间相互作用对势处理大团簇相结合,计算分析 B、C 元素在奥氏体中的间隙固溶度,得 出了 B 原子处于奥氏体的八面体间隙中时的固溶度为 0.097wt%,此时对奥氏体大体系能量 的影响贡献最大,B 在晶界和缺陷中存在对体系能量影响很小。表 2 是随含量增加合金奥 氏体的原子平均结合能的变化。
表 2奥氏体中其他元素近似不变时 B 含量变化引起的团簇原子平均能的变化
根据半经验原子间相互作用对势计算结果,B 在晶界上与 Fe 较易结合,B 在固溶体中
晶界上的存在几率很大,而且 B 在硼碳化物中的含量比率也很高,由此,可估算出奥氏体 基铁合金中 B 的加入量范围约为 0.05~1.00wt%。计算了奥氏体大团簇中 Cr、Mn、C 元素含 量固定时,B 的加入对团簇原子平均结合能的影响。随奥氏体中 B 量的增加,原子平均结 合能降低,当 B 含量增至 0.0427wt%时,原子平均结合能与纯铁奥氏体相比降低 10%,将此 时的 B 含量定义为 B 在该团簇中的极限含量,当其他元素含量改变时,B 在奥氏体中极限 含量将有所变化。随着结合能的降低,奥氏体更易摩擦诱发马氏体相变。图 1 分别是无 B 和含 B 合金磨损表面的 XRD 衍射谱。所研究开发的 Fe-Cr-Mn-C-B 系亚稳奥氏体基耐磨铸 造合金为新型耐磨材料(图 2)。
(a)合金 1
(b)合金 4
图 1 Fe-Cr-Mn-C-B 系合金摩擦表面 XRD 图
图 2 Fe-Cr-Mn-C-B 奥氏体基合金的组织(1000×),
(a)合金 2,
(b)合金 3,
(c)合金 4
3.Fe-Cr-V-Ni-Si-C 系马氏体基铸造合金
高铬铸铁是高性能的耐磨材料。以高钒作为合金强化元素加入到高铬铸铁中,有利于大 幅度提高高铬铸铁耐磨性,并提高冲击韧性。高铬铸铁一般经高温淬火得到马氏体,但高钒 高铬铸铁在高温时因强烈的氧化而不适合热处理。为此,研究高钒高铬铸铁在铸态下得到稳 定的马氏体基体而省略淬火过程具有重要的实际意义。铸态下直接得到马氏体的关键是选择 合适的化学成分。
将 Finnis-Sinclair 多体势扩展到多元合金,建立适合于 Fe-Cr-V-Ni-Si-C 系的多元合金的
原子间 相互 作用势 函数 ;利用 第一 性原理 从头 算所得 的平 衡距离 及结 合能, 拟合
Fe-Cr-V-Ni-Si-C 系多元合金中与 Si 和 C 有关的对势函数;利用第一性原理赝势平面波方法 计算 Fe-Cr、Fe-V、Fe-Ni、Cr-V、Cr-Ni、Ni-V 二元合金的晶格常数、结合能及体弹性模量, 并根据计算得到的这些数据,构造 Fe-Cr-V-Ni-Si-C 系多元合金中与 Fe、Cr、V、Ni 有关的 二元合金的 F-S 多体势函数;这样便得到了应用于 Fe-Cr-V-Ni-Si-C 系多元合金的原子间相 互作用势函数[3]。利用所得 Fe-Cr-V-Ni-Si-C 系多元合金的原子间相互作用势函数,研究该 多元合金奥氏体基体的稳定性;并且通过金相显微镜、X-Ray 衍射仪、扫描电镜及电子探针
等分析测试设备对多元合金样品进行测试,对测试结果进行分析,与计算结果进行比较。 采用了独立于实验数据的基于第一性原理计算的晶格常数、结合能及体弹性模量构建了 原子间相互作用势函数,该方法对于目前还没有足够实验数据的合金特别是多元合金的研究 是一个很有效的方法。将 F-S 多体势扩展到多元合金,拓宽了理论的应用范围。研究结果表 明:当基体中 含 C 量大于 0.6wt%,含 Ni 量在 1.02~1.50wt%范围内时,合金奥氏体基体 较稳定。当合金中 Ni 含量从 0.8wt%至 1.6wt%逐渐增加时,合金的奥氏体基体越来越稳定;
但是,当合金中 Ni 含量达到 2.4wt%时,奥氏体基体能量却上升,稳定性反而下降(表 4),
Ni 含量 2.4wt%铸造合金的残余奥氏体量明显低于马氏体量。计算结果与 X 射线衍射结果一 致(参见图 3)。
表 4 合金奥氏体基体(Fe-7.5Cr-2.2V-Ni-1.8Si-0.9C)的晶体特性
图 3 合金 N5-N8 的铸态下 X 射线衍射图
图 4 合金(1.2Ni)的铸态组织
图 5 合金 (1.2 及 2.4 Ni)的回火硬度
实验表明,含 Ni 高 V 高 Cr 铸铁浇注后即形成马氏体加奥氏体组织(图 4),通过高温
回火残余奥氏体分解,并获得二次硬化(图 5),避免了高温淬火时的严重氧化现象,成为 具有实际应用价值的耐磨合金。
4.Fe-Cr-W-Mo-V-Si-Mn-Ni-C 系合金钢
多元合金高碳钢成分设计合适时,钢中存在多类型碳化物(M3C、M23C6、M7C3、 M6C 和 MC),在常规的锻轧加工和退火工艺条件下,碳化物具有超细化特征。为了开发适 应不同生产条件的多类型超细碳化物高碳合金钢,其固溶强化的 Si 元素部分以 Ni 元素替代。
因此,合理的成分设计是常规热处理工艺下获得超细碳化物高碳合金钢的关键。 利用扩充的量子化学从头计算程序计算 Fe、Cr、Mn、Mo、V、Si、Ni、C 组成的双原 子团簇的电子结构数据,由于该程序只能计算包括 Mo 在内的元素周期表中前 54 号元素, 而不能计算与 W 相关的双原子团簇电子结构数据,利用第一性原理赝势平面波方法计算 W 与其它原子组成的二元合金的电子结构数据,拟合半经验原子间相互作用对势。利用半经验 原子间相互作用对势,选择八面体为中心的奥氏体晶胞模型、马氏体晶胞模型,计算奥氏体、 马氏体中各类晶胞室温、常压下的结合能信息。相对 γ-Fe 基体、α-Fe 基体而言,含有碳原 子和合金元素原子的晶胞均具有较大的结合能,起到固溶强化作用。
采用直接将第一性原理赝势平面波方法计算 W 的结果与从头计算程序计算其它原子的 结果联合使用,或考虑 CASTEP 软件计算结果与从头计算程序计算结果存在整体差异,联 合使用存在 “未校准零点”误差,将第一性原理赝势平面波方法计算 W 的结果除以修正系 数后与从头计算程序计算其它原子的结果联合使用,或考虑不含 W 元素的情况下利用从头 计算程序计算的结果,研究 Si、Ni、C 的变化对 Fe-Cr-W-Mo-V-Si-Mn-Ni-C 多元合金基体原 子间的结合能的影响,通过三种方法计算结果比较,采用修正系数处理的方法比较合理。得 出:合金奥氏体基体、马氏体基体原子间的结合能随着含 C 量、含 Si 量、含 Ni 量的增加呈 逐渐增加的趋势,随 Si 含量的增加原子间的结合能急剧上升,随 Ni 含量的增加原子间的结 合能缓慢上升,即 Si 含量的变化比 Ni 含量的变化对马氏体基体强度影响大。当 Si 或 Ni 以 外的元素含量都不变时, Si 或 Ni 的含量在 0.2%~0.6%时, Ni 含量对原子间的结合能影响 高于 Si。Si 或 Ni 的含量在 0.6%~0.8%时,转换为 Si 含量对原子间的结合能影响高于 Ni(图
6)。上述结果为合金设计时根据性能要求确定 Si、Ni 含量提供理论依据。
图 6 DM8A 合金马氏体基体原子间的结合能随含 C 量、含 Si 量、含 Ni 量的变化
表 5 是 3 种钢在淬火温度下的基体成分。DM8, DM8A 和 DM8B 钢的基体的 C 和合金元
素含量是用相平衡热力学和在电子、原子层次上马氏体的原子间结合能计算的。实验结果表 明原子间结合能与力学性能有对应关系,其比值是 2.3 10-4-2.5 10-4(表.6).
表 5 三种钢基体成分(wt%)
表 6 三种钢马氏体结合能和机械性能
实验研究表明,三种中合金钢退火后剩余碳化物均达到了超细化的程度(图 7)。根据
三种钢实验结果,分析碳化物超细化的原因主要是由碳化物溶解、形核的转变过程所引起的。 加热至 相变附近的温度再退火或淬火的碳化物的细化程度依赖于碳化物类型及其比 例,因此,合理的成分设计是常规热处理工艺下获得超细碳化物高碳低、中合金钢的关键。 与同类型钢比较,其抗弯强度、屈服强度、挠度和冲击韧性均明显提高。
图 7 三种钢的淬火组织
根据碳化物随温度变化的规律,并结合热力学相平衡计算,设计的多类型碳化物 DM7S
钢,成分(wt%)为:C 0.85-0.95,Mn 0.3-0.5,Si 0.3-0.50,Cr 6.0-7.0, W 2.5-3.5,V 1.0-1.5,
Mo 0.85-1.5,Ni 0.25-0.42。在常规的热处理工艺条件下,碳化物具有超细化特性(图 8)。
1080℃以上淬火,500-560℃回火时出现二次硬化效应,最高硬度接近 64HRC。
图 8 DM7S 钢 1100℃淬火显微组织(a)及其碳化物颗粒尺寸分布(b)
5. 结语
本文以第一原理计算(量子化学从头计算方法和第一性原理赝势方法)按势能曲线最低
点的拟合原则,对小团簇进行局部精确计算和对大团簇采用低精度的计算方法进行能量叠 加,以及用偏聚结构晶胞的计算用于多元合金的理论计算上。虽然其理论依据和计算精度有
待于进一步探讨,但却实现了多元合金的电子、原子层次的理论计算。针对三种多元合金材
料的不同问题采用了不同的计算方法,计算结果与某些实验结果相对应。近年来,我们采用 相平衡热力学计算、电子、原子层次上的计算以及经验公式相结合的合金设计计算,所开发 的合金已经作为高性能材料用于实际生产中[5-7]。
参考文献
[1] 刘艳侠, 王逊, 马永庆等,Fe-Cr-V-Ni-Si-C 系多元合金的原子间互作用势的构建及应用[J],物理学报,
2008.1,57(1):358-363
[2] 王 逊 马永庆 马凤才,含 B 铁基奥氏体的电子结构和原子间相互作用对势计算, 大连海事大学学报,
2003,29(3):18-21.
[3] Yanxia Liu , Xun Wang, Yongqing Ma, Runze Song, YumeiDai, Study on Alloy Design at the Electronic and Atomic Scale for the Austenite of High Vanadium Wear-Resisting Iron-Based Alloy,Second International Conference On Asvanced Structural Steels,2004, Apr. 710-715.
[4] 戴玉梅,马永庆,张 洋,王 逊,刘艳侠,电子、原子理论计算在高碳合金钢合金设计中的应用, 金属热处理,2006,31(增刊):109-111.
[5] MA Yong-qing, GAO Hong-tao, QI Yu-hong, ZHANG Zhan-ping, DAI Yu-mei, Alloy design and applications
of medium-alloy high carbon steels with multiple types of ultra-fine carbides,Second International Conference
On Asvanced Structural Steels,2004, Apr. 408-412.
[6] 马永庆 王逊 刘艳侠 张洋, Fe-Cr-Mn-C-B 系亚稳奥氏体基铸造合金的相成分及体积分数的经验计算,中
国材料科技与设备 2005.2(3):69-71.
[7] 马永庆,张 洋,高洪涛,朱蓓蓓,Cr-W-Mo-V 中合金钢的淬火硬度和回火硬度的计算,物理测试,2007,
25(3)15-18
注重对量子化学发展史和研究结构
化学的科学方法的介绍任何一门学科都有其发生和发展的过程,学习知识时若不从历史中寻找借鉴,就易把知识当成是“终极真理”而死记硬背,不求甚解。因此,在传授知识的同时,应该介绍量子化学发展史,学习科学家勇于探索的精神,由师生共同创造一种崭新的价值理念。例如普朗克(M.Planck)的“离经叛道”的假设;德布罗意(deBroglie)波的提出是类比法的成功典范,戴维逊(C.Davisson)-革末(L.H.Germer)的因祸得福;狄拉克(Dirac)、薛定谔(E.Schrdinger)的异曲同工———薛定谔用数学形式开辟出量子力学的新体系;另外,还有一个德国物理学家海森堡提出一个矩阵力学体系,薛定谔用的是微积分形式,海森堡用的是代数形式;汤姆逊(Thomson)父子的珠联壁合———父亲发现了电子,儿子又证实了电子是波,父子二人在物理学方面进行接力研究,在科学史上传为美谈。还有徐光宪的巧妙规则,唐敖庆的独辟蹊径等[2]。科学的先驱是勇敢的探索者,他们常常在黑暗中摸索前进,他们的精神值得我们敬佩。学生听到和看到这些史实,无不浮想联翩,对优化思维结构,激发科学壮志都有潜移默化的作用。在传授理论知识的同时,指导学生学会抽象思维和用数学工具处理问题,并运用类比、模拟的科学方法[3],寓科学方法于教学内容中。类比方法是提出和建立科学假说的重要方法。例如德布罗意假设是在光的波粒二象性思想启发下,提出电子等实物微粒也具有波动性,他当时推导固然复杂些,从科学方法论的角度讲,由光的波粒二象性到实物微粒的波粒二象性是一种类比推理。类比是利用两个或两类对象之间在某些方面的相似或相同,推出它们在其他方面也可能相似或相同的思维方法,是一种由特殊到特殊、由此及彼的过程。类比可以提供重要线索,启迪思想,是发展科学知识的一种有效的试探方法。还有薛定谔受物质波假说的启发,引出了电子运动的波函数方程,他走的也是依赖类比的“近路”。许多化学问题的解决有赖于类比方法的使用,而类比方法的使用有可能形成简捷的思维路径。使学生在学习科学知识的同时,得到方法论的启迪。在教学中应引导学生追踪量子化学发展的足迹,不失时机地揭示其中的科学方法,更清楚地了解各种知识理论的相对合理性及有待完善的地方。这样使学生在学习过程中不仅可以获得化学知识,而且能学习科学家严谨求实的治学态度、高度的敬业精神和大胆创新的进取精神。
通过改进课程教学方法培养学生创新能力
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2016)27-0162-02
Gaussian程序起源于上世纪七八十年代,当时计算机硬件条件很差,只能计算比较简单的分子,且计算级别较低,所以几乎不能应用于解决化学问题。随着计算机硬件技术的发展和计算方法的不断优化改良,到上世纪八九十年代,人们已经逐渐可以借助量子化学计算程序去对实验中的化学体系进行模拟和研究。值得一提的是,1998年诺贝尔化学奖授予科恩和波普尔,以表彰他们在理论化学领域做出的重大贡献。他们的工作使实验和理论能够共同协力探讨分子体系的性质,引起整个化学领域经历一场革命的变化,使化学不再是一门纯粹的实验科学。其中,波普尔正是Gaussian程序的原创者之一,此次得奖也是为Gaussian程序在世界范围内被接受和认可奠定了基础。Gaussian的版本从上世纪开始有Gaussian 70、Gaussian 80、Gaussian 90、Gaussian 98等一系列程序。进入21世纪,随着Gaussian 98、Gaussian 03、Gaussian 09[1]等版本的持续更新和改进,Gaussian程序的功能也越来越强大,应用范围也越来越广。目前,Gaussian的主要功能包括:过渡态能量和结构、反应路径、热力学性质、分子轨道、键和反应能量、原子电荷和电势、核磁性质、红外和拉曼光谱、振动频率、极化率和超极化率等,计算不仅可以对具体体系的基态进行计算,还可以对其激发态的结构和性质进行研究。另外,它还可以用来预测周期体系的能量、结构和分子轨道。因此,Gaussian可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响,化学反应机理,势能曲面和激发能等。该程序近年来的高速发展和广泛应用使其成为化学学科的科研教学人员必须掌握的工具之一。目前国内很多知名高校和科研院所都已经开展了Gaussian程序应用这门课程,并且作为相关专业本科生和研究生的必修课程。鉴于此,我院于2014年也开展了Gaussian程序应用作为研究生选修课程,这对于提高我院研究生专业素养和科研水平具有重要的意义。
一、Gaussian程序应用的参考教材选取
有很多关于Gaussian程序应用方面的书籍,包括中文的和英文的。针对这门课来说,我选择的参考教材主要是Foresman和Frisch编著的《Exploring chemistry with electronic structure methods》[2]以及可在Gaussian官网下载的与其配套的例子。该书分为三个部分,分别是基本概念和技术(包括第一章计算模型、第二章单点能计算、第三章几何优化、第四章 频率分析)、计算化学方法(包括第五章基族的影响、第六章理论方法的选择、第七章高精度计算)和应用部分(包括第八章研究反应和反应性、第九章激发态、第十章溶液中的反应)。我选择此书的出发点是:它的内容从基础到应用、从浅至深地介绍了Gaussian程序的主要功能和应用。书中的例子涉及分子能量和结构研究、过渡态的能量和结构研究、化学键以及反应的能量、振动频率、分子轨道、偶极矩和多极矩、原子电荷和电势、红外和拉曼光谱、核磁、极化率和超极化率、热力学性质、IRC反应途径等计算,另外还举例模拟了在气相和溶液中的体系、模拟基态和激发态分子的结构及性质。这些具体例子能够帮助从事化学及其相关领域的科研工作人员、教师和研究生等从不同的视角把握分子模型设计和计算模拟的策略、原则和方法,从而能够让研究人员全面了解Gaussian程序计算的模拟方法和应用实例。
二、Gaussian教学内容的选取
Gaussian程序主要是以分子力学和量子力学等为理论依据,借助计算机模拟进行化学问题研究的一门交叉学科。该课程教学涉及内容多、范围广,这就要求学生具有良好的数学、计算化学、结构化学、物理化学、有机化学、无机化学和计算机科学等众多专业知识的积累。学习这门课有助于拓宽学生的知识面,培养学生综合多种学科知识,解决实际复杂的化学问题的能力。然而这门课理论概念抽象,学生理解起来非常困难,教学难度也较大。选修这门课的学生主要来自物理化学专业和有机化学专业。对于物理化学专业的学生来说,他们的结构化学、计算化学和物理化学知识基础较好,这门课的学习不是非常困难。然而对于有机化学专业的学生来说,这门课学起来就比较困难了,因为他们的计算化学、结构化学和计算机科学知识比较薄弱。如何将抽象的化学知识简单化,形象化,帮助学生理解复杂的有机反应机理,提高学习积极性,这对老师的教学方法和方式有很高的要求。
针对不同化学专业学生的特点和他们将来要从事的职业,我更加注重实践教学而不是抽象概念的讲解和公式的推导。对于量子化学计算中涉及的一些算法学生只需了解,如果有学生对于基础知识非常感兴趣,我建议他们去听量子力学和结构化学课程。在课堂上,我重点讲解Gaussian程序的常用计算方法、思路和一些典型案例,以及如何运用这些方法解决科研中碰到的实际问题。比如讲解什么是半经验计算、什么是Hartree-Fock近似、什么是密度泛函理论、什么是分子力学算法等,讲解他们的区别以及在不同情况下如何选择不同的算法。此外,我还重点讲解基于量化计算的分子结构(包括稳定态和过渡态)的优化,分子光谱的计算和反应机理研究。这些内容对于化学专业的学生来说都是非常有意义的,可以帮助他们后续的科研工作。为了激发学生的学习兴趣,调动学生的自主性,让学生积极参与到课堂的专题实验交流活动,提高课堂教学的效果,我会教学生使用一些软件图形界面如Gaussview等,直接生动地展示和分析一些分子的三维结构,将抽象的化学分子通过色彩鲜艳的三维立体形象界面予以展示,并教会他们如何使用Gaussview建立分子模型和分析计算结果。在用Gaussview软件建立模型的过程中,我首先对主工具栏里边的元素工具和环工具等建模工具做了讲解,然后再对编辑工具即键长、键角和二面角工具做了使用演示,另外还讲了加H工具和原子消除工具的使用。事实上,上述的这几个工具如果能掌握好,学生们基本上就能根据所学化学知识来建立相应的分子的三维结构模型。随后,在课堂上我再演示如何用鼠标操作来旋转、移动、缩放和叠加结构,如何用鼠标操作来改变分子的显示形式和颜色,如何查看结果如能量数据,以及如何显示分子的原子电荷和分子轨道性质等。等学生基本掌握了Gaussview的模型建立和结果分析工具,我会给他们讲解如何将分子模型通过设置不同的关键词来提交相应任务给Gaussian程序去执行,如结构优化的关键词是OPT,频率计算的关键词是FREQ等。由于Gaussian的功能强大,授课时间有限,我们只介绍一些基本操作和简单例子给学生。例如让学生对邻位、间位和对位的二取代苯进行在不同计算级别(如HF/6-31G(d,p)水平下)进行结构优化模拟,然后对其能量比较分析哪个异构体在气相和液相下最稳定。对于反应机理,我会让学生通过寻找一些简单的常见化学反应如Diels-Alder反应、SN2亲核取代反应的过渡态的构型来加深对反应通道的理解,通过IRC计算直观的看出化学反应中分子结构的变化。此外,我还会讲一些实例介绍光谱的预测,比如首先我们会在基态下用DFT方法优化发光分子的结构,然后对其进行TDDFT计算来预测其紫外吸收光谱和荧光光谱等发光性质,从而为功能分子的设计提供便利。最后,根据本院实际科研需要,我们会适当进行一些应用教学来满足不同专业学生的需求。
三、开展Gaussian程序应用课程的前景展望
自然科学发展的历史和规律表明,多学科的优势交叉促进了最基本的微观过程和最复杂的宏观过程的统一认识。在这个信息大爆炸的时代,Gaussian这一量子化学计算程序应运而生并被广泛认可和应用。它既要求使用者有一定的量子力学等数理基础来理解计算流程,而且要求他们对于化学问题有深刻认识和独特见解,属于一门高度交叉的新兴方法和工具,涉及应用化学、理论化学和计算机科学等众多领域。目前,Gaussian程序已经成为理论化学计算中的常规方法之一,开展此门课程可以使科学研究人将其用于未来的反应机理研究、反应的立体和化学选择性的解释、化合物结构及其光谱等性质预测,并可指导设计小分子催化剂甚至新型催化反应,减少实验上的盲目性和偶然性,从而达到节省人力、物力和财力的最终目的。
理论计算化学在近几十年来取得了实质性进展,已从根本上改变了人们对于化学只是一门实验科学的认知,它已经成为化学学科的一个重要组成部分。我国的理论计算研究发展迅速,化学学科正处于从单纯实验到以实验和理论计算相辅相成转变的关键时期,从专业发展的角度而言,开展理论计算化学相关课程如Gaussian程序应用具有非常广阔的应用前景和发展空间。
19世纪末,正当人们为经典物理取得的重大成就而惊叹不已的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出一个大胆的假设:在热辐射的产生与吸收过程中能量是以hv为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且与辐射能量和频率无关由振幅确定的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。
著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年,美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。
1913年,丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定(按经典理论,原子中电子绕原子核做圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核,与正电荷中和),提出定态假设:原子中的电子并不像行星一样可以在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nk,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差AE=hy确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铅的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史上是空前的。
由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理、量子力学的概率解释等都作出了贡献。
1923年4月,美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。
光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年,美籍奥地利物理学家泡利发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中子、夸克等)都适用,构成了量子统计力学——费米统计的基点。为解释光谱线的精细结构与反常塞曼效应,泡利建议对于原子中的电子轨道态,除了已有的与经典力学量(能量、角动量及其分量)对应的三个量子数之外应引进第四个量子数。这个量子数后来称为“自旋”,是表述基本粒子一种内在性质的物理量。