基因工程载体的种类范文

时间:2023-06-29 09:33:13

引言:寻求写作上的突破?我们特意为您精选了4篇基因工程载体的种类范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

基因工程载体的种类

篇1

[中图分类号]Q789-01 [文献标识码]A [文章编号]1009-5349(2014)11-0081-01

自Edward Jenne医生发明天花疫苗开始,已有几千种疫苗被开发出来,疫苗逐渐成为人类与疾病做斗争的重要武器之一。传统疫苗具有生产的成本高、疫苗中含强毒性致病物质、减毒株突变及部分疾病用传统的疫苗防治收效甚微等缺点。所以,研制更安全、更高效的疫苗十分必要。

DNA重组技术为新一代疫苗――基因工程疫苗的研制提供了全新的方法。基因工程疫苗是指应用DNA重组技术,通过基因组改造,降低病原微生物的致病性,提高免疫原性,进而达到防治传染病的目的。迄今为止,基因工程疫苗是最先进的疫苗,相比传统疫苗而言它有巨大的优势。

一、基因工程疫苗种类

应用基因工程技术开发的已经使用和正在研制的新型疫苗种类主要有基因工程亚单位疫苗、基因工程活载体疫苗、核酸疫苗、合成肽疫苗、转基因植物可食疫苗等。

(一)基因工程亚单位疫苗

该类疫苗仅包含病原体的抗原,不包含病原体的其他遗传信息。基因工程亚单位疫苗通过表达病毒的主要保护性抗原蛋白获得免疫原性,具有安全、便于规模化生产等优点。该类疫苗的制备步骤如下:①了解编码具有免疫原活性的抗原蛋白对应的基因信息。②从大肠埃希氏菌、酵母、转基因动植物等表达系统中选择最适表达载体。如:酵母表达系统已经大规模生产人用重组肝炎疫苗。基因工程亚单位疫苗可细分为:细菌性疾病、病毒性疾病和激素亚单位疫苗。

1.细菌性疾病亚单位疫苗

分离和鉴定致病菌主要免疫原和毒力因子是研究细菌性亚单位疫苗的基础,目前已研制出与炭疽、大肠杆菌病、牛布鲁氏菌病等对应的亚单位疫苗,均能对相应的疾病产生有效的保护作用。史百芬等发现RSVF蛋白亚单位疫苗(PFP-1)注射接种后接种者无呼吸道疾病加剧作用。

2.病毒性疾病亚单位疫苗

大多数病毒基因组已经被克隆和完全测序,因此病毒性亚单位疫苗的研制相对简单。现在病毒性疾病亚单位疫苗主要有口蹄疫、狂犬病、乙肝疫苗等。中国台湾省科学家研制的禽流感亚单位疫苗效力远比灭活疫苗高。祁贤等应用酵母系统表达生产鸡传染性腔上囊病病毒VP2亚单位疫苗,发现其可完全取代传统灭活疫苗。

3.激素亚单位疫苗

该疫苗是以生长抑制素为免疫原的一类疫苗。杜念兴等将大肠埃希氏菌中表达的生长抑制素基因与HbsAg基因融合,通过Vero细胞表达,结果发现表达产物具有良好的免疫原性。杜念兴等用SS基因疫苗免疫小鼠,发现口服型SS基因疫苗免疫小鼠后可在小肠表达HBsAg/SS融合蛋白,推测该基因疫苗刺激机体表达蛋白后能产生SS抗体。

(二)基因工程活载体疫苗

此类疫苗生产主要有两种方法,一是使非致病性微生物表达某种特定病原物的抗原决定簇基因,进而产生免疫原性,另一种是致病性微生物被修饰或去掉毒性基因,但仍保持免疫原性。活载体疫苗结合了活疫苗和死疫苗的共同优点,在免疫力上具有很大的优势,分复制性和基因突变活载体疫苗。

(三)核酸疫苗

核酸疫苗接种后,抗原合成、增加与病原自然感染十分相似;还具有免疫原性单一;易构建和制备,稳定性好,成本低廉,适于规模化生产等优点。

二、展望

疫苗开发具有安全性、有效性、价廉性、易推广性等特点。基因工程疫苗具有传统疫苗无可比拟的优点,是疫苗产品开发的主要方向。研制多联或多价疫苗是基因工程疫苗的主要发展方向。

【参考文献】

[1]李媛,金红,于康震,程浩.基因工程疫苗的研究进展[J].中国预防兽医学报,2000(S1).

[2]姜健,杨宝灵,李春斌.植物基因工程疫苗研究进展[J].大连民族学院学报,2004(1).

[3]王恩秀,陈伟华,杜念兴.生长抑素基因工程疫苗对大鼠生长及免疫的影响[J].中国兽医学报,2002(5).

[4]李轶女,胡英考,沈桂芳.转基因植物基因工程疫苗[J].生物技术通报,2002(2).

[5]史百芬.对RSV F蛋白亚单位疫苗(PFP-1)接种者的第二年监测:评价抗体持久性和可能的疾病加剧作用[J].国外医学・预防・诊断・治疗用生物制品分册,1995(1).

[6]刘学东,包振民,王志亮.禽流感病毒H5N1亚型基因工程疫苗设计、表达制备及动物实验研究[J].同济大学学报(医学版),2011(6).

[7]祁贤,汤奋扬,李亮等.新甲型H1N1(2009)流感病毒的早期分子特征[J].微生物学报,2010(4).

篇2

一、 基因工程的基础知识

基因工程的理论铺垫――分子生物学发展:

① 艾弗里证明了DNA是遗传物质。

② 沃森和克里克证明了DNA双螺旋结构。

③ 尼仑贝格破译了遗传密码。

二、 酶切

基因工程选择限制性内切酶作为工具,主要是因为它具有比一般酶更高的专一性。由于其具有较高的专一性,因此在基因工程的具体操作中如何选择限制性内切酶是高考的重点考察内容。

1. 限制酶的特异性

例1 判断用限制性核酸内切酶切割烟草花叶病毒的核酸是否可行?_____。

答案 不可行

解析 限制酶的专一性非常强,其特异性表现在三个方面:识别DNA、识别特定序列(回文)、切割特定位点磷酸二酯键。由于烟草花叶病毒是RNA病毒,所以限制酶不能识别RNA。

另外要特别注意限制酶切割以后的结果,磷酸二酯键断裂,暴露出新的磷酸基团。

2. 限制酶的选择

正确选择限制酶是基因工程中一件非常重要的任务。限制酶的选择应当遵循以下一些原则:不破坏目的基因;不破坏标记基因;目的基因和运载体上都有限制酶的切割位点。当然也要注意用一种限制酶和两种限制酶切割的区别。

例2 与只使用EcoR I相比较,使用BamH Ⅰ和Hind Ⅲ两种限制酶同时处理质粒、外源DNA的优点在于可以防止_________

______________________。

答案 质粒和含目的基因的外源DN段自身环化

解析 基因工程中目的基因和质粒可以用同一种酶切,也可以用两种酶切,若用一种酶切,质粒只要切一个切口,目的基因需要切两个切口;若用两种酶切,质粒要切两个切口,目的基因也需要切两个切口。一种酶切出的4个切口都相同,所以有多种连法,两种酶切出的质粒和目的基因上的4个切口两两相同,因此可以防止自身环化。

3. 同尾酶

限制酶种类多样,一些酶之间关系特殊,如例3中的酶I和酶Ⅱ识别不同的序列,但能切出相同的黏性末端,它们切出的末端可以连接,被称为同尾酶。

例3 已知限制酶I的识别序列和切点是―GGATCC―,限制酶Ⅱ的识别序列和切点是―GATC―。根据下图示判断下列操作正确的是( )

A. 质粒用限制酶Ⅰ切割,目的基因用限制酶Ⅱ切割

B. 质粒用限制酶Ⅱ切割,目的基因用限制酶Ⅰ切割

C. 目的基因和质粒均用限制酶Ⅰ切割

D. 目的基因和质粒均用限制酶Ⅱ切割

答案 A

三、 连接

1. 连接物类型

经过限制酶切割过以后,暴露出的相同的黏性末端可以自动连接,考生同时需要考虑:酶切以后暴露的所有的黏性末端;目的基因两端的两个黏性末端;目的基因所在DNA上其他片段所含的黏性末端;质粒上的两个黏性末端。综合以上结论,连接产物的类型可能就比较多,如目的基因-目的基因连接物、目的基因-运载体连接物、运载体-运载体连接物、其他DN段-运载体连接物、目的基因自连、运载体自连,若用同一种酶切时后两种连接物不存在。

2. 连接酶

下表简要总结了基因工程中常见酶的特性差异。

例 PCR反应体系中含有热稳定DNA聚合酶,下面的表达式不能正确反映DNA聚合酶的功能,这是因为_____________

___________________。

答案 DNA聚合酶只能将单核苷酸连接到双链DN段的引物链上

解析 如上表所示,DNA聚合酶的合成需要引物,那么连接酶能否催化以上反应呢?也不能,因为连接酶必须将两段DNA相连。RNA聚合酶能否催化以上反应呢?也不能,因为RNA聚合酶虽然不要引物,但其不能催化T参与反应,只能利用U。虽然这些酶都是催化磷酸二酯键,但它们作用的底物差异较大,所以一定要注意辨析。

以上主要介绍了基因工程的三种操作工具,这些内容当然是高考的重点和热点。除此之外有些内容也应当给予一定关注,如:目的基因的获取;目的基因的扩增(PCR);土壤农杆菌介导的目的基因的导入;重组质粒的筛选;目的基因的检测;转基因生物的安全性;转基因生物的利用等问题。

巩固训练

1. 目前人类利用基因工程的方法成功培育出转基因抗虫棉,以下说法正确的是

( )

A. 标记基因的作用是鉴别受体细胞中是否含有目的基因

B. 抗虫基因导入棉花叶肉细胞后,可通过传粉、受精的方法,使抗虫性状遗传下去

C. 苏云金芽孢杆菌的毒蛋白基因与质粒结合后直接进入棉花的叶肉细胞表达

D. 转基因抗虫棉经过种植,棉铃虫不会产生抗性,这样可以有效消灭棉铃虫

2. 下图四种质粒含有E1和E2两种限制酶的识别,Apr表示抗青霉素的抗性基因,Tcr表示抗四环素的抗性基因。

(1) 将两端用E1切开的Tcr基因与用E1切开的质粒X-1混合连接,连接后获得的质粒类型有______。(可多选)

A. X-1 B. X-2

C. X-3 D. X-4

(2) 若将上图所示X-1、X-2、X-3、X-4四种质粒导入大肠杆菌,然后分别涂布在含有青霉素或四环素的两种培养基上。在这两种培养上均不能生长的大肠杆菌细胞类型有____________、____________。

(3) 如果X-1用E1酶切,产生850对碱基和3 550对碱基两种片段:那么质粒X-2(Tcr基因的长度为1 200对碱基)用E2酶切后的片段长度为______对碱基。

(4) 若将外源的Tcr基因两端用E2切开,再与用E2切开的X-1混合连接,并导入大肠杆菌细胞,结果显示,含X-4的细胞数与含X-1的细胞数之比为13,增大DNA连接酶用量能否提高上述比值?______。原因是________

________________________。

3. 下表中列出了几种限制酶识别序列及其切割位点,图1、图2中箭头表示相关限制酶的酶切位点,图l中Cmlr表示氯霉素抗性基因,Ner表示新霉素抗性基因。请回答下列问题:

(1) 将提取的质粒与外源DNA分别加入缓冲液中,选用相应的限制酶处理时,影响处理效果的外界因素主要是______等(写出两点)。

(2) 用图中的质粒和外源DNA构建重组质粒时,能否使用MspⅠ与BamHⅠ同时切割质粒与外源DNA?答:______,原因是______

___________________________。

(3) 可选用______(两种)限制酶同时酶切质粒与外源DNA,酶切并连接后可获得______种含目的基因的重组质粒,筛选含有该重组质粒的大肠杆菌时,需要在含______的培养基上培养。

(4) 为了从基因文库中分离获取T2噬菌体抗性基因,将重组质粒导入对T2噬菌体敏感的大肠杆菌,然后将含有该大肠杆菌的菌液分别接种在预先涂有______的培养基上培养,从而初步检测目的基因的表达。

答案

1. A 2. (1) ABC

(2) 无质粒细胞 含X-3的细胞

(3) 4 750

(4) 不能 DNA连接酶对DN段没有选择性或者DNA末端相同

3. (1) 温度、pH

篇3

现代生物技术的迅猛发展,成就非凡,推动着科学的进步,促进着经济的发展,改变着人类的生活与思维,影响着人类社会的发展进程。现代生物技术的成果越来越广泛地应用于医药、食品、能源、化工、轻工和环境保护等诸多领域。生物技术是21世纪高新技术革命的核心内容,具有巨大的经济效益及潜在的生产力。专家预测,到2010~2020年,生物技术产业将逐步成为世界经济体系的支柱产业之一。生物技术是以生命科学为基础,利用生物机体、生物系统创造新物种,并与工程原理相结合加工生产生物制品的综合性科学技术。现代生物技术则包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程等领域。在我国的食品工业中,生物技术工业化产品占有相当大的比重;近年,酒类和新型发酵产品以及酿造产品的产值占食品工业总产值的17%。现代生物技术在食品发酵领域中有广阔市场和发展前景,本文主要阐述现代生物技术在食品发酵生产中的应用。

一、基因工程技术在食品发酵生产中的应用

基因工程技术是现代生物技术的核心内容,采用类似工程设计的方法,按照人类的特殊需要将具有遗传性的目的基因在离体条件下进行剪切、组合、拼接,再将人工重组的基因通过载体导入受体细胞,进行无性繁殖,并使目的基因在受体细胞中高速表达,产生出人类所需要的产品或组建成新的生物类型。

发酵工业的关键是优良菌株的获取,除选用常用的诱变、杂交和原生质体融合等传统方法外,还可与基因工程结合,进行改造生产菌种。

(一)改良面包酵母菌的性能

面包酵母是最早采用基因工程改造的食品微生物。将优良酶基因转入面包酵母菌中后,其含有的麦芽糖透性酶及麦芽糖的含量比普通面包酵母显著提高,面包加工中产生二氧化碳气体量提高,应用改良后的酵母菌种可生产出膨润松软的面包。

(二)改良酿酒酵母菌的性能

利用基因工程技术培育出新的酿酒酵母菌株,用以改进传统的酿酒工艺,并使之多样化。采用基因工程技术将大麦中的淀粉酶基因转入啤酒酵母中后,即可直接利用淀粉发酵,使生产流程缩短,工序简化,革新啤酒生产工艺。目前,已成功地选育出分解β-葡聚糖和分解糊精的啤酒酵母菌株、嗜杀啤酒酵母菌株,提高生香物质含量的啤酒酵母菌株。

(三)改良乳酸菌发酵剂的性能

乳酸菌是一类能代谢产生乳酸,降低发酵产品pH值的一类微生物。乳酸菌基因表达系统分为组成型表达和受控表达两种类型,其中受控表达系统包括糖诱导系统、Nisin诱导系统、pH诱导系统和噬菌体衍生系统。相对于乳酸乳球菌和嗜热链球菌而言,德氏乳杆菌的基因研究比较缺乏,但是已经发现质粒pN42和PJBL2用于构建德氏乳杆菌的克隆载体。有研究发现乳酸菌基因突变有2种方法:第一种方法涉及(同源或异源的)可独立复制的转座子,第二种方法是依赖于克隆的基因组DN断和染色体上的同源部位的重组整合而获得。通过基因工程得到的乳酸菌发酵剂具有优良的发酵性能,产双乙酰能力、蛋白水解能力、胞外多糖的稳定形成能力、抗杂菌和病原菌的能力较强。

二、细胞工程技术在食品发酵生产中的应用

细胞工程是生物工程主要组成之一,出现于20世纪70年代末至80年代初,是在细胞水平上改变细胞的遗传特性或通过大规模细胞培养以获得人们所需物质的技术过程。细胞工程主要有细胞培养、细胞融合及细胞代谢物的生产等。细胞融合是在外力(诱导剂或促融剂)作用下,使两个或两个以上的异源(种、属间)细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合并形成杂种细胞的现象。细胞融合技术是一种改良微生物发酵菌种的有效方法,主要用于改良微生物菌种特性、提高目的产物的产量、使菌种获得新的性状、合成新产物等。与基因工程技术结合,使对遗传物质进一步修饰提供了多样的可能性。例如日本味之素公司应用细胞融合技术使产生氨基酸的短杆菌杂交,获得比原产量高3倍的赖氨酸产生菌和苏氨酸高产新菌株。酿酒酵母和糖化酵母的种间杂交,分离子后代中个别菌株具有糖化和发酵的双重能力。日本国税厅酿造试验所用该技术获得了优良的高性能谢利酵母来酿制西班牙谢利白葡萄酒获得了成功。目前,微生物细胞融合的对象已扩展到酵母、霉菌、细菌、放线菌等多种微生物的种间以至属间,不断培育出用于各种领域的新菌种。

三、酶工程技术在食品发酵生产中的应用

酶是活细胞产生的具有高效催化功能、高度专一性和高度受控性的一类特殊生物催化剂。酶工程是现代生物技术的一个重要组成部分,酶工程又称酶反应技术,是在一定的生物反应器内,利用生物酶作为催化剂,使某些物质定向转化的工艺技术,包括酶的研制与生产,酶和细胞或细胞器的固定化技术,酶分子的修饰改造,以及生物传感器等。酶工程技术在发酵生产中主要用于两个方面,一是用酶技术处理发酵原料,有利于发酵过程的进行。如啤酒酿制过程,主要原料麦芽的质量欠佳或大麦、大米等辅助原料使用量较大时,会造成淀粉酶、俘一葡聚糖酶、纤维素酶的活力不足,使糖化不充分、蛋白质降解不足,从而减慢发酵速度,影响啤酒的风味和收率。使用微生物淀粉酶、蛋白酶、一葡聚糖酶等制剂,可补充麦芽中酶活力不足的缺陷,提高麦汁的可发酵度和麦汁糖化的组分,缩短糖化时间,减少麦皮中色素、单宁等不良杂质在糖化过程中浸出,从而降低麦汁色泽。二是用酶来处理发酵菌种的代谢产物,缩短发酵过程,促进发酵风味的形成。啤酒中的双乙酰是影响啤酒风味的主要因素,是判断啤酒成熟的主要指标。当啤酒中双乙酰的浓度超过阈值时,就会产生一种不愉快的馊酸味。双乙酰是由酵母繁殖时生成的α-乙酰乳酸和α-乙酰羟基丁酸氧化脱羧而成的,一般在啤酒发酵后期还原双乙酰需要约5~10d的时间。崔进梅等报道,发酵罐中加入α-乙酰乳酸脱羧酶能催化α-乙酰乳酸直接形成羧基丁酮,可缩短发酵周期,减少双乙酰含量。

四、小结

在食品发酵生产中应用生物技术可以提高发酵剂的性能,缩短发酵周期,丰富发酵制品的种类。不仅提高了产品档次和附加值,生产出符合不同消费者需要的保健制品,而且在有利于加速食品加工业的发展。随着生化技术的日益发展,相信会开发出更多物美价廉的发酵制品,使生物加工技术在食品发酵工业中的应用更加广泛。

参考文献

[1]赵志华,岳田利等.现代生物技术在乳品工业中的应用研究[J].生物技术通报.2006,04:78-80.

[2]王春荣,王兴国等.现代生物技术与食品工业[J].山东食品科技.2004,07:31.

篇4

1引言

植物基因工程(plantgeneticengineering)是基因工程原理和技术在植物领域的研究与运用。《植物基因工程》是生命学科相关专业的研究生阶段的重要课程,涉及遗传学、现代分子生物学、生物化学、微生物学及生物信息学等多学科理论知识与实验方法[1]。它利用基因工程理论技术,从供体分离克隆外源基因,在体外与载体DNA重组后,经遗传转化导入受体植物基因组中,并获得有效表达和稳定遗传的转基因植物[2]。《植物基因工程》的教学具有理论性和实践性都很强的特点[3],一般分为基础知识及实验操作两个部分教学。同时,该课程教学的内容信息量大,部分内容深奥,学生难以理解。近年来,生命科学研究和发展日新月异,即使是经典的《植物基因工程》教材,其中的理论和实验技术方法很容易滞后于当前最新的研究发展状况。而作为一门植物研究领域的专业课,必须在有限的教学时间内尽量提高教学效率。为了让学生在有限的时间内更好地掌握植物基因工程的原理及基本实验操作方法,激发学生研究型思维、提高科研素质。我们近年来对该课程的教学进行了改革探索,并取得一定效果。

2教学内容更新

2.1合理选择教材

我校《植物基因工程》基础理论知识部分选用的教材为王关林等编著的《植物基因工程》(科学出版社,2009),同时参考S.B.Primrose和R.M.Twyman编著的《PrinciplesofGeneManipula-tionandGenomics》(基因操作原理-英文第7版),以及P.C.特纳等编著,刘进元等译的《分子生物学》。所选用的教材系统性和层次性强,涵盖分子生物学、植物基因工程的目的基因的转化、转基因植物的检测、转基因植物的遗传特性及安全性、植物基因工程所涉及的各种现代生物技术等部分。选用的上述辅助教材中,有更为详尽的实验原理、实验操作步骤等介绍,便于我校植物学方向的硕士生根据自己的研究方向和兴趣,更全面地查找阅读实验操作原理,有助于熟悉相关专业的研究前沿,同时逐步习惯阅读英文文献,更为自身选择的研究打下坚实的基础。

2.2教学内容的优化

《植物基因工程》这门课中有很多知识点涉及生命科学的前沿。近年来,生命科学成为发展最快的科学之一[4],该学科实验方法日新月异,新的载体、酶、菌种不断涌现,实验仪器也愈来愈智能化,经典教材其中所涉及的很多实验方法与目前最新的实验手段常常不吻合。因此,《植物基因工程》的教学过程中必须与时俱进,立足于所选择的教材,及时更新教学内容,才能让学生接触到生命科学前沿研究动态,及时掌握全新实验手段和方法,对这门课产生学习兴趣。由于《植物基因工程》的内容非常宽泛、深奥,许多内容涉及生命科学的前沿,对于缺乏实验基础的研究生而言,过多的宣讲基础知识和原理,不仅乏味,也学生难以理解。而学校安排的课时有限(仅为16课时),上述内容很难在有限的时间内系统介绍,因此,必须对《植物基因工程》教学内容进行大胆的改革探索,才能取得良好的教学效果。首先精简基础知识教学内容:上述选用的教材中,仅仅保留基因工程简介、转基因基本操作原理及植物转基因操作方法及实例这几个部分,其余基础理论知识均结合实验课讲授。由于《植物基因工程》的教学离不开植物组织培养这个环节,因此,对教学内容增加了植物组织培养的基本原理和方法。根据植物基因工程技术日新月异的特点,增加了最前沿的基因工程技术,选用《nature》《plantcell》等世界一流期刊的最新研究论文,介绍如靶向基因修饰新技术——TALEN和CRISPR/Cas9等基因工程最前沿技术原理方法,激发学生的科研的热情。

2.3教学中创设问题

根据《植物基因工程》课程理论与实践紧密联系的特点[5],在教学的每个环节穿插具有趣味性、启发性及新颖性的知识;根据当前转基因食品成为全社会讨论和关心的热点问题,教学中创设问题,如:“我们身边有哪些转基因植物或食品”,“转基因植物(食品)安全吗”等,要求学生对转基因的每个环节可能引发的生物安全问题展开讨论,激发学生好奇心和求知欲。

3实验教学方法的改革

3.1将部分基础知识和实验操作要领融合教学

《植物基因工程》是一门理论知识和实践紧密结合的课程,培养学生对该课程的兴趣及动手操作能力,是该课程的重要目的之一。而实验课程中所涉及的仪器、试剂、载体、工程菌种类繁多,植物转基因操作要求动手能力强、实验周期长,初次操作容易失败,获得的转基因产物存在假阳性,需要步步检测验证等问题。如何在较短的时间内完成所有实验教学内容,提高教学效果,是实验教学中必须面对的重要问题。《植物基因工程》的实验过程是一个层次化渐进的过程。以实验项目——木本植物桑树的转基因为例,整个实验从植物组织培养开始,涵盖工程菌的选择、培养及鉴定;表达载体的选择、转化、扩增,目的基因克隆、片段回收,转入载体;目的基因与载体的连接、验证及转化农杆菌;含转基因载体的农杆菌侵染事先准备的组织培养的器官或植株,转基因植株的培养和鉴定等多个环节和步骤,实验周期长。由于高等植物自身特点,每操作完一个步骤,往往需要等待较长时间,才能进行下一个实验步骤的操作教学。根据上述特点,我们以实验进展引领理论教学,将植物学的基础知识融入到实验过程中,使多个实验项目层层递进,又有机衔接成为一个整体。这样有利于学生更加高效、直观地掌握基本理论。

3.2鼓励学生动手实践

教师在讲授基础知识结束后,一般随即动手演示,并且讲解每个操作细节的要领。实验室一般尽可能准备实验仪器、器材及试剂,让学生亲自动手实验,使其获得感性认识,增强实验主观能动性,增强对基础知识和基本概念的了解,增强科研热情。

3.3实验教学中充分利用微信工具辅助教学

微信等通信工具已融入现代社会生活中,成为大部分学生日常生活的一部分。利用微信工具辅助实验教学,会带来出其不意的良好效果。每一部分实验均以老师演示,将实验操作细节拍摄成为视频,传到微信群,供学生反复播放揣摩,这样可以提高教学效率,避免大批学生围观教师实验操作,看不清楚其中关键细节;实验中相邻两个步骤之间等待的时间,教师可以将该部分实验所涉及的基础知识总结后上传微信群,并利用微信布置作业,提出问题;可以让少量学生轮流查看如无菌苗生长状态、农杆菌扩增的浓度、目的基因扩增的条带等操作结果,及时拍摄成照片传到微信群,以便于其他学生第一时间知晓实验结果,及时准备下一部分实验;实验中遇到的问题,可以在课外利用微信组织讨论,大大活跃了学习气氛,提高学生学习兴趣,增强了团队协作解决问题的能力。实践证明,利用微信辅助教学的方法,可以彻底改变“灌输式”教学中学生被动接受知识的状况,使每一位学生真正融入实验教学,成为这门课学习的主体。

4结束语

《植物基因工程》的教学方法和思路必须围绕该门课程的特点进行。该门课程涉及生命科学的前沿、同时兼具实验性很强的特点。教师不仅要合理选择教材,同时在教学中,必须合理调整基础知识讲授与实验课的时间比例,以实验教学带动课本教学,将书本基础知识贯穿于整个实验环节。教师自身应该注意以科研促教学,不断提高自身的科研能力和素质,拓宽自身的知识面,及时掌握基因工程最新研究动态,自动掌握和更新实验方法,才能真正掌握这门课的授课艺术,让学生有热情参与到这门课的教学中。和其他任何学科的教学一样,学生始终是《植物基因工程》的学习主体。根据当前学生生活已经离不开手机等特点,利用微信工具辅助实验教学,获得了出其不意的良好效果,激发了学生研究型思维、提高了动手能力及处理解决问题能力,有效培养学生的科研素质。经过两年多的尝试,《植物基因工程》这门课的教学效果获得了极大提高,学生反映这门课再也不枯燥了,在短短16学时的教学中,掌握了基因工程的原理及基本实验操作方法,对转基因的植物有了全新的认识,并且了解到许多生命科学前沿知识,可谓是受益匪浅。许多学生由此对该学科的科研产生了浓厚的兴趣,增强了学习和研究中解决问题的能力。当然,《植物基因工程》这门课的教学是一项系统工程,需要教师在今后教学中继续探索更合理、更科学的教学改革思路,需要教师和学生更多的互动,才能获得更好的教学效果,为社会培养更多具有一定科研素质的人才。

参考文献

[1]王丽,姜寒玉,司怀军.植物基因工程教学的实践体会[J].科教文汇,2012(2):36-37.

[2]王关林,方宏筠.植物基因工程.2版[M].北京:科学出版社,2002.

[3]李晓薇,董园园,李海燕.《植物基因工程》教学实践的几点体会[J].高教学刊,2016(3):116.

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页