无风险资产的特征范文

时间:2023-06-30 09:24:15

引言:寻求写作上的突破?我们特意为您精选了4篇无风险资产的特征范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

无风险资产的特征

篇1

一、期权理论

期权是一种选择权,是以合约或合同形式存在的权利,期权持有人,即合同买方,通过支付期权购买费向合同卖方取得一种权利,有权决定在未来某一时刻按约定价格向期权卖方买卖某种标的物。

1.期权的种类

根据不同的标准,期权可以分为以下几类:

(1)根据标的物不同,期权可以分为金融期权与商品期权。

金融期权的标的物为利率、货币、股票、指数等金融产品。商品期权的标的物包括农产品、能源等。

(2)根据标的物属性不同,期权可以分为现货期权与期货期权。

现货期权的标的物是现货资产,买方提出执行后,双方一般要进行实物资产的交割。期货期权的标的物则是期货合约,期权履约后,买卖双方的期权部位将转换为相应的期货部位。

(3)根据买方的权利性质不同,期权可分为买权和卖权。买权又称看涨期权,是指期权买方有权按照协议价格和规定时间向期权卖方买进一定数量的相关资产的权利。卖权又称看跌期权,是指期权买方有权按照协议价格和规定时间向期权卖方卖出一定数量的相关资产的权利。

(4)按执行时间不同,期权可以分为欧式期权和美式期权欧式期权是指期权合约买方在合约到期日才能决定其是否执行权利的一种期权。美式期权是指期权合约的买方,在期权合约的有效期内的任何一个交易日,均可决定是否执行权利的一种期权。

2.影响期权价格的因素

期权的价格是期权的内在价值和它的内在价值之上的其他附加金额的反映。期权的内在价值即期权被立即执行的经济价值。如果立即执行期权不能产生正的期权价值,则内在价值为零,此时持有人不会选择执行该期权。

(1)对于看涨期权 :

若标的资产价格>执行价格,则内在价值>0;若标的资产的价格≤执行价格 ,则内在价值=0。此时,期权不会执行。

(2)对于看跌期权 ,则正好相反。

期权的时间溢价是期权的价格超出它的内在价值的部分。期权购买者希望在到期日前的某个时间,标的资产的市场价格将会增加以期权形式存在的权利的价值。

作为一种衍生金融工具,期权的价值一般取决于以下五个因素:期权的执行价格、到期日、标的资产的市场价格、无风险利率、标的资产的变异性。它们对于看涨期权和看跌期权价值的影响可以用下表表示:

二、期权理财:风险控制思想

期权理财,是指利用期权的风险控制思想,保留谋利的权利,分离清偿的义务,通过风险转移实现财务风险控制。期权的财务功能在于实现风险的转移、套期谋利和价值定位。

1.等值理财恒等式:

期权思想中一个极为重要的观念就是等值理财。期权理论下的资本价值等值理财观念集合了规避风险和延迟投资的思路,用等值理财恒等式可以表示出两者最终实现了一致的结果。等值理财恒等式如下:

看涨期权价值+无风险资产价值= 看跌期权价值+风险资产价值

恒等式左边表示了延迟投资的思想,右边表示了规避风险的思想。这一恒等式在于说明持有现金和买权多头的组合与持有风险资产和卖权多头的组合,具有等同的理财价值。两者既具保险的功能,保持无风险状态;又具有投资的功能,把握获利机会。

2.期权的财务功能。

期权的财务功能包括:风险转移、套期谋利和价值定位。他们的理财思路实际上就是等值理财恒等式的变形。

(1)风险转移功能的含义是指通过期权的套期保值运行机制,将风险损失从期权的买方转移到卖方的身上。风险转移功能也就是套期保值功能,是通过“相等且相反”的原则建立对冲组合来实现套期保值的。它的资产保值思路是无风险状态可以通过资产权利与义务的分离来实现。即同时持有风险头寸相反的资产权利与义务,用一方资产的权利冲抵另一方资产的义务,从而避免风险损失的承担。即设立一个与现货数量相等、方向相反的期权头寸,现在买进现货时,持有卖权(看跌期权);现在卖出现货时,持有买权(看涨期权)。这样,对冲组合的总价值将保持不变。

理财思路:无风险资产价值 =股票价值+ ( 看跌期权价值-看涨期权价值) =股票价值-(看涨期权价值-看跌期权价值) ,即持有风险资产与一个卖权多头和一个买权空头的组合,是一份无风险资产的复制品。

(2)套期谋利功能是将期权机制与期货机制相结合,在锁定风险的基础上,利用标的物未来价格有利变动的机会,谋取可能的风险报酬。对于期权买方来说,买权多头与期货空头相组合、卖权多头与期货多头项组合;对于期权卖方来说,买权空头与期货多头组合、卖权空头与期货空头组合。

理财思路:看涨期权价值= ( 股票价值-无风险资产价值) +看跌期权价值,即负债投资与一个卖权多头的组合,是一份看涨期权的复制品。

(3)价值定位功能是期权理财中最为重要的一个功能。①期权执行价格是供求双方对标的物未来价格的预计,是双方达成的市场均衡价格,给现货市场的商品价值定位提供了一个方向。②权利金的确定,为判断资产所附属权利的价值提供了衡量方式;也为如何把不确定性转换为经济价值提供了可行思路。

理财思路:股票价值=无风险资产价值+( 看涨期权价值-看跌期权价值) ,即风险资产价值由既定的无风险资产价值和风险行动的价值所组成,持有无风险资产与一个在买权多头和卖权空头上的风险行动的组合,是一份风险资产的复制品。

三、期权定价模型

1. 无风险的对冲机制

将避险理财思路关系式中购买看跌期权的投资行为取消,用出售看涨期权收取权利金来替换看跌期权补偿风险损失的功能。这正是建立人工对冲机制的出发点:即出售多少份看涨期权才能收取足够的权利金以至少取得无风险报酬。

2.布莱克 - 舒尔茨期权定价模型

现在已经建立了一些确定期权理论价值的模型。最常用的一个是费雪•布莱克和舒尔茨 估价模型:

看涨期权价值V=S0×N(d1)-E0×N(d2)

看跌期权价值V= E0×N(-d2)- S0×N(-d1)

其中:d1=ln(S0/ E0)/σ+(根号下T)(σ(根号下T))/2,d2= d1-σ(根号下T)

式中:S0表示标的物目前市价,R是无风险报酬率,T是以年表示的期权有效期,N(d)是正态分布的累计概率,σ表示标的物价格变动幅度的标准差,E0表示执行价格E的连续折现值。

布莱克―舒尔茨期权定价模型有其假设条件:看涨期权是欧式期权;无税收和交易成本;资产可以无限细分;没有买卖限制;到期日前的无风险利率固定且可知;到期日前股票不分红; 股价的变化遵循对数正态分布的随机过程,价格方差在到期日前不变且可知。

3.二项式期权定价模型

由于布莱克―舒尔茨期权定价模型在使用时具有一系列的假设,因此它具有一定的局限性。为了克服该模型的局限性,发展出了二项式期权定价模型,该模型假设:1。基本假设:标的物股票目前市格为S0,其看涨期权的执行价格为E,股票价格一期后可能按u倍数上升,也可能按d倍数下降;股票价格上升到u的概率为q,下降到d的概率为1-q。另外,无风险报酬率为R。

由于期权本身就是衍生品,期权的价格是由标的资产的价格、预定价、距到期日的时间和当时的市场利率水平决定。因此标的资产和无风险证券就能够完全复制期权。事实上,通过对时间间隔的无限细分,在一定条件下确实能完全地描述标的资产价格变化过程中可能发生的各种状态。

期权的复制的基本思路:基本要求是投资等值,即期权投资方式应当能够取得直接投资与股票方式同样的报酬;目的是通过投资等值原理,以股票投资方式复制期权,确定其价值。得出的结论是一份股票投资与负无风险资产的组合是M份期权的“复制品”

期权计算过程如下表

令:S0×d-L×(1+R)= V d×M

S0×u-L×(1+R)= Vu×M

得:M= S0(u-d)/ Vu- Vd

所以看涨期权的现行价值V=标的物现行价格-无风险资产现值

=S0/M- (S0×u- Vu×M)/M×k

或=期权履约价值期望值的现值=[p×Vu+(1-p)×Vd/k

其中:p=(k-d)/(u-d),k为第T期的终值系数;看涨期权价值V=无风险资产现值-标的物现行价格= (S0×d- Vd×M)/M×k - S0/M

这一模型最早是由夏普 W.Sharpe,1990年诺贝尔经济学奖获得者 、柯克斯 John Cox 、罗斯Stephen Ross 和鲁宾斯坦 Mark Rubinstein 等人提出。

四、期权定价理论在财务管理中的应用

在公司融资活动和投资决策中,有许多都包含着期权的特征,因此,可以将期权定价理论应用到公司财务管理中。

1.期权定价理论在公司融资决策中的应用

可转换债券可以近似地认为是一个普通债券加上一个看涨认股权。这样,可转换债券的价值评估就可分为三个部分: 债券价值、转换价值和期权价值。只要能得到股票收益率年度标准差,就可以套用布莱克- 舒尔茨期权定价模型计算出可转换债券的融资成本。我们也可以将期权定价理论应用到可转换优先股的定价中。股票可以看作是发行公司的看涨期权,认股权证相当于股票的看涨期权。因此,股票、认股权证的估值和定价就可以应用期权定价理论。

2.期权定价理论在公司投资决策中的应用

净现值法是在投资决策中应用最广泛的方法之一。在这种方法下,对于一个投资项目,先要预测并计算出它的现金流量,选择适当的折现率对现金流量进行折现,计算净现值 NPV。如果 NPV≥0,则该项目可行;如果 NPV

由于净现值法存在上述缺陷,管理期权理论应运而生,该理论将或有要求权引入到投资决策中。这种管理期权实际上是管理者拥有的可以在项目的寿命周期内决定继续该项目或放弃该项目的权利。

参考文献:

篇2

在Sklar定理的基础上,测算金融资产组合风险的步骤如下:①首先计算资产组合中单个风险因子的分布;②找到风险因子之间的Copula函数;③运用单个风险因子分布和Copula函数刻画资产组合的集成风险因子分布;④使用VaR方法度量资产组合的集成风险。

(一)Copula函数的概念Copula函数可看成一个多维分布函数C:[0,1]n[0,1],其边缘分布F1,…,Fn为区间(0,1)上的均匀分布。Sklar(1956)提出了Sklar定理:令F为具有边缘分布F1(•),…,FN(•)的联合分布函数,那么,存在一个Copula函数C,满足:

(二)Copula函数的分类1.多元正态Copula函数(multivariategaus-sianCopula-MVN)Nelsen(1999)给出了多元正态Copula函数的定义,多元正态Copula分布函数的表达式为。其中ρ为对角线上的元素为1的对称正定矩阵,ρ表示与矩阵ρ相对应的行列式的值,Φρ(•)表示相关系数矩阵为ρ的标准多元正态分布,Φ-1(•)表示标准正态分布函数的逆函数。多元正态Copula函数适合刻画对称相依性、不具有厚尾特征的多维风险因子。2.多元t-Copula函数(multivariateStudent''''sCopula-MVT)Nelsen(1999)给出了多元t-Copula函数的定义,多元t-Copula分布函数的表达式为:其中ρ为对角线上的元素为1的对称正定矩阵,ρ表示与矩阵ρ相对应的行列式的值,Tρ,v(•)表示相关系数矩阵为ρ,自由度为v的标准多元t分布,tv-1(•)为自由度为v的一元t分布的逆函数。多元t-Copula函数适合刻画对称相依性、一定厚尾特征的多维风险因子。3.ArchimedeanCopula函数Clayton-Copula、Gumbel-Copula和Frank-Cop-ula函数,它们只能用于二维的变量的分析:ArchimedeanCopula函数中的Clayton-Copula函数和Gumbel-Copula函数适合刻画不对称相依性的多维风险因子,其中Clayton-Copula函数一般用来刻画具有较强下厚尾的特征,Gumbel-Copula函数则常用来刻画较强上厚尾的特征。而Frank-Copula函数适合刻画对称相依性、在中心和上下尾部分布均匀的多维风险因子。

(三)计算金融资产组合的VaR值以包含两种金融资产的金融资产组合为例,两种金融资产的权重分别为w1和w2,并且w1+w2=1满足。具体计算过程如下:①使用各类Copula函数,产生相依的二维随机样本;②通过各边缘分布函数经过逆概率变换为对数收益率X和Y;③把两者代入资产组合收益率公式中,得到资产组合收益率R的样本;④计算资产组合收益率样本的分位数,即为一定置信度下的VaR值。

二、测算中国居民家庭金融资产组合的集成风险

(一)数据的选取和说明通过对中国居民家庭金融资产中手持现金、储蓄存款、债券、股票和保险准备金这五种金融资产在资产组合中所占比重进行计算发现,中国居民家庭的储蓄存款所占的比重一直比较高,在家庭金融总资产中占了一半以上,并且有缓慢上升的趋势。居民的手持现金比例在持续快速下降,从1978年的40%多,下降到2008年的10%,期间有一些波动,从图1上看,周期性并不明显。居民持有的债券比例在20世纪90年代期间比较高,到2000年以后逐年下降。居民持有的股票比例虽然比较低,但是变动却比较明显,反映出明显的周期性。我国居民的保险准备金比例虽然有上升的趋势,但是比重仍然比较低(见图1)。由于居民家庭金融资产组合中现金并不能产生收益,保险准备金持有比例比较低,所以本文只测算家庭金融资产中储蓄存款、债券和股票。将储蓄存款和债券通过居民持有的比例合并为家庭无风险金融资产,股票代表家庭的风险资产。以1990年到2010年中国居民家庭的无风险资产和风险资产作为原始数据,按照测算金融资产组合风险的步骤,首先计算家庭无风险资产和风险资产的对数收益率;然后,通过构建Copula函数计算家庭金融资产组合的联合分布函数;最后,计算家庭金融资产组合的VaR值。

(二)构建Copula函数计算家庭金融资产组合的VaR值计算居民家庭无风险金融资产和风险资产的对数收益率,并对其对数收益率数列进行正态Jarque-Bera检验,它们都服从服从正态分布,其中无风险金融资产对数收益率是右偏的,而风险资产对数收益率是左偏的(见表1所示)。为了便于分析,我们选择多元正态Copula函数构建联合分布函数。然后根据VaR计算公式,在险价值VaR的上下限区间为:VaR=R+σZα,其中R在这里为正态Copula分布函数值,为正态Copula函数的标准差,如果取显著性水平为,查表得正态分布的分位数。得到正态Copula函数和VaR值如表2和图2所示。

(三)家庭金融资产风险分析家庭金融资产风险的特点是:第一,居民家庭金融资产VaR值在各年间呈现波状变动,其中1991~1993年、1998年、2002年、2007年均达到高点,尤其以2007年VaR值最大。我们知道,1997年爆发过东南亚金融危机,而2008年全球金融危机并最终导致了持续几年的经济危机。家庭金融资产组合风险在1997年东南亚金融危机后才达到高点,而在2008年全球金融危机之前则达到了最高点。由此的解释应该是,1997年的东南亚金融危机只是区域性的危机,而2008年之前全球经济与金融风险积聚,经济泡沫随时都会破灭。反映到微观的居民家庭金融资产投资上,风险已累积到了高点。第二,居民家庭金融资产组合的风险值VaR与无风险金融资产的波动幅度、波动时间是一致的。主要是因为无风险金融资产在居民家庭金融资产中占有比较大的比重。居民家庭金融资产中风险资产的波动与资产组合的风险值VaR的波动幅度、波动时间完全不一致。而且,风险资产的收益波动与资产组合的风险值呈反向关系。其中,1997年、2002年和2007年的风险资产收益均低于VaR的下限值,也就是说,居民在这些年份中的总投资是亏损的。有意思的是,1997年风险资产的收益达到低点,随后1998年家庭金融资产组合风险值达到了高点;2002年和2007年的风险资产收益达到低点,同年家庭金融资产组合风险风险值达到了高点。

三、家庭金融资产风险与宏观经济波动的协动性关系

本文将正态Copula分布函数作为居民家庭金融资产风险的测度指标,与宏观经济指标GDP增长率、利率和居民消费价格指数CPI的波动性相比较,分析居民家庭金融资产组合的风险变动与宏观经济指标之间的协动性关系。将Copula分布函数、GDP增长率、CPI和利率做标准化处理,然后作图观察它们的变动情况(如图3所示)。在图中,居民家庭金融资产组合风险的波动要比宏观经济指标更频繁,90年代初和2010年左右,家庭金融资产组合风险与宏观经济指标的波动基本是吻合的;而在1994年至2007年期间宏观经济经历了一次从峰顶到谷底再到峰顶的变化,即宏观经济经历了衰退、萧条、复苏的一个经济周期,并且萧条期持续了持续了5、6年之久,而在这一时期,家庭金融资产组合风险则经历了两次高位和低位。为了更好地说明家庭金融资产组合风险与宏观经济指标之间的协动性关系,本文试图对Copula分布函数、风险资产收益对数经验分布函数、无风险资产收益对数经验分布函数与gdp增长率、利率、CPI之间做格兰杰因果关系检验。在做格兰杰因果关系检验之前,先通过单位根检验考察各变量的平稳性(如表3所示)。单位根检验的结果表明,除了利率和CPI是一阶平稳的,其余变量都是0阶平稳的。由于格兰杰因果关系检验是以变量平稳为前提条件的,所以分别在Copula分布函数、风险资产收益对数经验分布函数和无风险资产收益对数经验分布函数与GDP增长率、利率变化量、CPI变化量之间进行格兰杰因果关系检验。检验结果整理如表4所示,居民家庭金融资产组合风险的变化会影响未来5年的利率变化量和CPI变化量;居民家庭的风险资产收益变动会影响未来2至3年的宏观利率的变化量。居民家庭金融资产的收益和风险与GDP增长率的变化都没有关系(见表4)。

篇3

[中图分类号]F832.332 [文献标识码]A [文章编号]1673-0461(2014)07-0071-05

一、引 言

居民家庭金融资产指居民拥有的能够带来一定收益的以价值形态存在的资产。根据《中国人民银行年报》统计口径,我国居民的金融资产主要由手持现金、储蓄存款、有价证券、保险准备金四大类组成。其中,现金主要满足居民家庭日常交易需求,这部分资产不但没有收益,相反还存在机会成本;储蓄存款作为居民对银行储蓄这种金融资产的投资额来考虑;有价证券可以分为债券和股票,这两者的风险差别很大,债券具有储蓄功能,风险小,而股票市场投机性强,风险较大;在居民家庭金融资产总量中保险准备金所占比重较小,而且由于保险存在的概率赔付问题使得整个保险市场的收益率不好确定。一般而言,在居民家庭金融资产中,储蓄存款和国债属于无风险金融资产,股票属于高风险金融资产。各类金融产品在居民家庭金融资产中的配置情况,称为居民家庭金融资产组合。在不同时期,居民的家庭金融资产组合中的资产类型持有比例是不同的,以应对外部经济环境变化的影响。本文试图测算居民家庭金融资产组合的风险,观察其在不同时期风险的变化情况,同时分析各自不同类型的金融资产对宏观经济变动的敏感程度,为政府制定宏观经济政策以引导居民进行合理的消费和投资提供研究依据。

金融资产风险测算一直是过去半个世纪来国内外学者关注的焦点和前沿研究领域之一。1997年,J. P. Morgen集团公布了其内部使用的全面估计金融风险的方法、数据和模型,其核心技术就是风险价值(Value at Risk,简称VaR)计算方法。VaR值就是在一定的持有期及一定的置信度内,某金融投资工具或投资组合所面临的潜在的最大损失金额(Jorion,1997)。它已被巴塞尔委员会推荐为一种允许金融机构使用、作为内部风险管理模型来决定资产监管要求的新方法,并明确建议其作为风险度量的标准。但是,度量单种风险因子的度量法,例如:市场风险因子度量法、信用风险度量法等,一般都不适用于集成风险的度量。因为单个资产所面临的这些风险形态多样且相互关联、交叉、渗透,并共同作用于资产组合,对资产组合所面临的集成风险具有叠加、放大的效应,一些学者开始探讨如何将各种不同风险、收益的资产组合起来,度量其集成风险。Sklar(1959)首先以“Copula”命名一类函数,此类函数能够把一维边缘分布函数连接在一起,形成联合分布函数。Embrechts et al.(1999, 2002)率先把Copula函数引入到资产组合的金融风险管理中。张明恒(2004)研究了多金融资产风险价值的Copula计量模型和计算方法,吴振翔等(2006)使用了Copula-Garch模型来分析投资组合风险。

综上所述,国内外有关金融风险的研究方法,从单个金融资产到金融资产组合风险的测算,已经比较成熟。但是这些方法大多只是用于宏观的金融风险的测量,尤其是股市风险的测量。对于家庭金融资产结构风险的测量方面尚缺乏相关的研究。本文试图通过构建Copula函数,将家庭金融资产中的风险资产和无风险资产结合起来,形成联合分布函数,并通过计算VaR来度量居民家庭金融资产在不同时期的结构风险。Copula函数运用于资产组合的集成风险度量有两个优势:①可以刻画单个资产收益率分布的非正态性质,即“尖峰厚尾”特征;②可以描述不同资产收益率之间复杂的相互关系。这样,Copula函数能够把具有非正态性质、相互关联的多个风险因子“连接”起来,构建由多个风险因子驱动的资产组合收益率的联合分布,并利用VaR方法度量资产组合的集成风险。

二、构建Copula函数测算金融资产组合风险VaR

在Sklar定理的基础上,测算金融资产组合风险的步骤如下:①首先计算资产组合中单个风险因子的分布;②找到风险因子之间的Copula函数;③运用单个风险因子分布和Copula函数刻画资产组合的集成风险因子分布;④使用VaR方法度量资产组合的集成风险。

(一)Copula函数的概念

Copula函数可看成一个多维分布函数C:[0,1]n[0,1],其边缘分布F1,…,Fn为区间(0,1)上的均匀分布。Sklar(1956)提出了Sklar定理:令F为具有边缘分布F1(・),…,FN(・)的联合分布函数,那么,存在一个Copula函数C,满足:

F(x1,…xn,…,xN)=

C(F1(x1),…,Fn(xn),…,FN(xN)) (1)

其中C就是一个Copula函数,若F1(・),…,FN(・)连续,则C唯一确定;反之,若F1(・),…,FN(・)为一元分布,那么由式(1)定义的函数F是边缘分布F1(・),…,FN(・)的联合分布函数。

(二)Copula函数的分类

1. 多元正态Copula函数(multivariate gaussian Copula-MVN)

Nelsen(1999)给出了多元正态Copula函数的定义,多元正态Copula分布函数的表达式为:

C(u1,…un,…,uN;ρ)=

Φρ(Φ-1(u1),…,Φ-1(un),…,Φ-1(uN)) (2)

其中ρ为对角线上的元素为1的对称正定矩阵,ρ表示与矩阵ρ相对应的行列式的值,Φρ(・)表示相关系数矩阵为ρ的标准多元正态分布,Φ-1(・)表示标准正态分布函数的逆函数。多元正态Copula函数适合刻画对称相依性、不具有厚尾特征的多维风险因子。

2. 多元t-Copula函数(multivariate Student's Copula-MVT)

Nelsen(1999)给出了多元t-Copula函数的定义,多元t-Copula分布函数的表达式为:

C(u1,…un,…,uN;ρ,v)=Tρ,v(tv-1(u1),…,

tv-1(un),…,tv-1(uN)) (3)

其中ρ为对角线上的元素为1的对称正定矩阵,ρ表示与矩阵ρ相对应的行列式的值,Tρ,v(・)表示相关系数矩阵为ρ,自由度为v的标准多元t分布,tv-1(・)为自由度为v的一元t分布的逆函数。多元t-Copula函数适合刻画对称相依性、一定厚尾特征的多维风险因子。

3. Archimedean Copula函数

Clayton-Copula、Gumbel-Copula和Frank-Copula函数,它们只能用于二维的变量的分析:

Clayton-Copula:C■■=max[(u-α+v-α-1)-1/α,0],其中,α?缀[-1,∞]\{0}

Gumbel-Copula:C■■=exp[-[(-lnu)α+

(-lnv)α]1/α],其中,α?缀[-∞,∞]

Frank-Copula:C■■=-■ln[1+■]其中,α?缀[1,∞]

Archimedean Copula函数中的Clayton-Copula函数和Gumbel-Copula函数适合刻画不对称相依性的多维风险因子,其中Clayton-Copula函数一般用来刻画具有较强下厚尾的特征,Gumbel-Copula函数则常用来刻画较强上厚尾的特征。而Frank-Copula函数适合刻画对称相依性、在中心和上下尾部分布均匀的多维风险因子。

(三)计算金融资产组合的VaR值

以包含两种金融资产的金融资产组合为例,两种金融资产的权重分别为w1和w2,并且w1+w2=1满足。使用X和Y分别代表资产1和资产2的对数收益率,P■■,P■■为t期价格,定义对数收益率为:X=ln(P■■/P■■),Y=ln(P■■/P■■),则资产组合的收益率定义为:R=ln(w1eX+w2eY)。对应的风险价值(VaR)值是:Pr(R

具体计算过程如下:①使用各类Copula函数,产生相依的二维随机样本;②通过各边缘分布函数经过逆概率变换为对数收益率X和Y;③把两者代入资产组合收益率公式中,得到资产组合收益率R的样本;④计算资产组合收益率样本的分位数,即为一定置信度下的VaR值。

三、测算中国居民家庭金融资产组合的集成风险

(一)数据的选取和说明

通过对中国居民家庭金融资产中手持现金、储蓄存款、债券、股票和保险准备金这五种金融资产在资产组合中所占比重进行计算发现,中国居民家庭的储蓄存款所占的比重一直比较高,在家庭金融总资产中占了一半以上,并且有缓慢上升的趋势。居民的手持现金比例在持续快速下降,从1978年的40%多,下降到2008年的10%,期间有一些波动,从图1上看,周期性并不明显。居民持有的债券比例在20世纪90年代期间比较高,到2000年以后逐年下降。居民持有的股票比例虽然比较低,但是变动却比较明显,反映出明显的周期性。我国居民的保险准备金比例虽然有上升的趋势,但是比重仍然比较低(见图1)。

由于居民家庭金融资产组合中现金并不能产生收益,保险准备金持有比例比较低,所以本文只测算家庭金融资产中储蓄存款、债券和股票。将储蓄存款和债券通过居民持有的比例合并为家庭无风险金融资产,股票代表家庭的风险资产。以1990年到2010年中国居民家庭的无风险资产和风险资产作为原始数据,按照测算金融资产组合风险的步骤,首先计算家庭无风险资产和风险资产的对数收益率;然后,通过构建Copula函数计算家庭金融资产组合的联合分布函数;最后,计算家庭金融资产组合的VaR值。

(二)构建Copula函数计算家庭金融资产组合的VaR值

计算居民家庭无风险金融资产和风险资产的对数收益率,并对其对数收益率数列进行正态Jarque-Bera检验,它们都服从服从正态分布,其中无风险金融资产对数收益率是右偏的,而风险资产对数收益率是左偏的(见表1所示)。

为了便于分析,我们选择多元正态Copula函数构建联合分布函数。然后根据VaR计算公式,在险价值VaR的上下限区间为:VaR=R+σZα,其中R在这里为正态Copula分布函数值,为正态Copula函数的标准差,如果取显著性水平为,查表得正态分布的分位数。得到正态Copula函数和VaR值如表2和图2所示。

(三)家庭金融资产风险分析

家庭金融资产风险的特点是: 第一,居民家庭金融资产VaR值在各年间呈现波状变动,其中1991~1993年、1998年、2002年、2007年均达到高点,尤其以2007年VaR值最大。我们知道,1997年爆发过东南亚金融危机,而2008年全球金融危机并最终导致了持续几年的经济危机。家庭金融资产组合风险在1997年东南亚金融危机后才达到高点,而在2008年全球金融危机之前则达到了最高点。由此的解释应该是,1997年的东南亚金融危机只是区域性的危机,而2008年之前全球经济与金融风险积聚,经济泡沫随时都会破灭。反映到微观的居民家庭金融资产投资上,风险已累积到了高点。第二,居民家庭金融资产组合的风险值VaR与无风险金融资产的波动幅度、波动时间是一致的。主要是因为无风险金融资产在居民家庭金融资产中占有比较大的比重。居民家庭金融资产中风险资产的波动与资产组合的风险值VaR的波动幅度、波动时间完全不一致。而且,风险资产的收益波动与资产组合的风险值呈反向关系。其中,1997年、2002年和2007年的风险资产收益均低于VaR的下限值,也就是说,居民在这些年份中的总投资是亏损的。有意思的是,1997年风险资产的收益达到低点,随后1998年家庭金融资产组合风险值达到了高点;2002年和2007年的风险资产收益达到低点,同年家庭金融资产组合风险风险值达到了高点。

四、家庭金融资产风险与宏观经济波动的协动性关系

本文将正态Copula分布函数作为居民家庭金融资产风险的测度指标,与宏观经济指标GDP增长率、利率和居民消费价格指数CPI的波动性相比较,分析居民家庭金融资产组合的风险变动与宏观经济指标之间的协动性关系。

将Copula分布函数、GDP增长率、CPI和利率做标准化处理,然后作图观察它们的变动情况(如图3所示)。在图中,居民家庭金融资产组合风险的波动要比宏观经济指标更频繁,90年代初和2010年左右,家庭金融资产组合风险与宏观经济指标的波动基本是吻合的;而在1994年至2007年期间宏观经济经历了一次从峰顶到谷底再到峰顶的变化,即宏观经济经历了衰退、萧条、复苏的一个经济周期,并且萧条期持续了持续了5、6年之久,而在这一时期,家庭金融资产组合风险则经历了两次高位和低位(见图3)。

为了更好地说明家庭金融资产组合风险与宏观经济指标之间的协动性关系,本文试图对Copula分布函数、风险资产收益对数经验分布函数、无风险资产收益对数经验分布函数与gdp增长率、利率、CPI之间做格兰杰因果关系检验。

在做格兰杰因果关系检验之前,先通过单位根检验考察各变量的平稳性(如表3所示)。单位根检验的结果表明,除了利率和CPI是一阶平稳的,其余变量都是0阶平稳的。

由于格兰杰因果关系检验是以变量平稳为前提条件的,所以分别在Copula分布函数、风险资产收益对数经验分布函数和无风险资产收益对数经验分布函数与GDP增长率、利率变化量、CPI变化量之间进行格兰杰因果关系检验。检验结果整理如表4所示,居民家庭金融资产组合风险的变化会影响未来5年的利率变化量和CPI变化量;居民家庭的风险资产收益变动会影响未来2至3年的宏观利率的变化量。居民家庭金融资产的收益和风险与GDP增长率的变化都没有关系(见表4)。

五、结 论

通过建立居民家庭金融资产组合的Copula函数,并计算资产组合的VaR值,我们得到如下结论:

篇4

一、引言

资本资产定价研究领域的显著特征是,无论理论还是实证不确定性都扮演着重要角色。任何金融模型,都从假定投资者面对不确定性出发,其本质内容都涉及投资者不确定的冲击,这些冲击最终会反映到市场价格上。资本资产定价研究如何处理这些问题呢?

近30多年的资本资产定价研究,都在一个构建“良好”的框架中进行。该框架假定市场无套利,强调资本资产回报的结构。可以证明,无套利假定满足时随机折现因子 (SDF) 必然存在,而SDF又能把各种资本资产获利同其市场价格联系起来,这些结果得益于 Arrow-Debreu一般均衡理论在金融研究的应用。这个框架认为,跨期模型中每一期相对于每个自然状态都存在一个状态价格,资本资产价格可表现为该资产未来各种可能收益在状态价格加权下的加权求和。这个框架之所以被认为“定义良好”,是因为它有开放性,如果追加一些假定则可获得其他很多有意义的结果。例如,如果追加市场完备性假定,可以证明SDF不但存在而且惟一;如果追加SDF和同公共冲击有线性关系的假定,则可以导出资本资产回报的线性模型 - CAPM;如果追加有“定义良好”的效用函数的加总经济人存在的假定,则可建立SDF同加总经济人边际效用之间的关系。 一些研究甚至认为,即便是最近新发展起来的行为金融学等成果,也能在这个框架中获得理解。这个框架如此“完美”以至于Duffie(1996)认为,“1969年~1979 年是动态资产定价研究的黄金年代…近十年来所有工作毫无例外都是扫尾性的”。

Campbell(2000)对此持不同观点,“不否认该领域早期研究成果之卓越,只希望表明1979年~1999年的研究也非常有价值”。尽管Campbell(2000)也认为,“随机折现因子存在的条件非常一般,以至于可以几乎毫无限制地使用到所有的金融数据中去”, 甚至认为今后资本资产定价研究的主要课题是“认识决定 SDF 的经济力量”。 但是并不否认其中存在的问题,指出用这个框架中进行定价研究会遇到很多困难。例如, Jegadeesh and Sheridan(1993)的“冲量效应”等难解之“谜”。

本文根据资本资产定价理论中最简单、最有代表性的部分- 2期模型(正如Duffie(1996)在跨期模型部分指出,“这里将扩展2期模型中无套利、最大化和均衡的思想到跨期模型。跨期模型定价理论的基本支柱仍是无套利、最大化和均衡“)的基础上,构造一个简单的例子,说明一旦放弃同质信念假定,市场上均衡可能不存在。借此说明,难解之谜的存在可能意味着资本资产定价理论的框架本身有问题。现实的资本资产市场,很难保证经济人有共同信念和共同知识 即同质信念假定不成立,这意味着,现实中市场的均衡价格可能不存在,因此将均衡的定价理论套用到非均衡市场上,很可能会遇到所谓的难解之谜。

二、基本假定分析

资本资产定价理论实际上是均衡理论,建立在下述基本假定之上:

同质假定:“共同知识和信念”表现为经济人对下面几个方面内容的认同:(1)客观世界所有可能出现的状态 - 样本空间;(2)证券在各种状态下的分红数额-证券分红随机向量;(3)经济人对不确定状态出现之可能性的认识(或信念)-主观概率测度。

无套利假定。在经济人的资产价格主观评价无套利, 否则经济人评价是不符合辑的。无套利和状态价格的存在等价,这保证了一般均衡模型基本思想能够应用到经济人对资产价格的主观评价上,这时资产价格为其未来分红在风险中立概率下期望的折现。

效用最大化假定。经济人皆追求其效用之最大化。市场无套利保证了效用最大化问题总有解。若经济人的效用为预期效用,则其风险中立概率取决于他们的主观效用和对未来不确定性的概率估计,于是经济人资产价格主观评价也随之确定。

均衡假定。市场均衡是指市场中存在某个价格体系,在其下经济人皆可以通过交易实现其效用的最大化,此时交易所要求的总供需也是平衡。若效用函数定义良好,经济人皆理性,则市场存在均衡价格和均衡配置。这时,资产价格的理论评价为加总经济人对资产的主观评价。

总之,资本资产定价理论本质上是均衡理论,其中的价格是经济人共同决定的市场均衡价格,它们的存在取决于该理论的基本假定。实际情况是,经济人间不但信息不对称而且对信息的看法也不同,这时市场均衡是否必然存在吗?下面的例子表明均衡可能不存在。

三、异质不均衡例子

假设市场上只有两种资产,一种是无风险资产共m枚,另一种是风险资产共n枚。设单位无风险资产的未来收益为R,单位风险资产的未来收益有高U和L两种可能的取值。假设市场上无风险资产的数量相对风险资产的数量多得多,我们技术性地要求m和n满足条件。

假设市场上只有两个风险中立的经济人A和B,他们每个人不但持有风险资产也持有相当多的无风险资产,这里技术性地要求他们持有的无风险资产数量大于。风险中立意味着, 经济人对待上述两种资产的态度,仅取决于其未来收益在无风险收益率下的折现。由于无风险资产中没有任何不确定因素,所以A和B对其评价也应该完全相同。故,假设无风险资产的价格为1,这意味着无风险折现为R-1。假设A和B对未来各种状态出现概率的估价方法不同(例如,他们对到手信号的信赖度不同等等)。这意味着他们对未来各种状态出现之概率的估计不同。若记A和B对风险资产取高低值的概率估计分别为和,则A和B对风险资产的评价PA和PB可分别表示如下:

假设A的估计比B更乐观,即,则可以证明,并且可证明市场上不存在所谓的均衡价格。

证明:因为并且。所以。

接下来证明均衡价格不存在。所谓均衡价格是指这样一种价格,在此价格下每个经济人都可以根据自己的初始禀赋做出最优选择,并且在这种选择下产生的交易能够保证供需平衡。假设为均衡价格。若则A和B的最优选择都是卖出自己持有的所有风险资产,这时的交易也不能保证供需平衡,矛盾;若

注:为了讨论方便,上例假定经济人风险中立,其数学表现是效用函数为线性函数。实际上,如果经济人的效用函数为凹函数,即风险规避,则经济人的效用还会对价格产生某种程度的影响,这时结论有可能会发生一些变化。然而,如果效用函数的凹性不是特别强,则上面“均衡价格不存在”的结论还是能够成立的。

四、结论

资本资产定价理论是均衡理论,据此决定出的价格是均衡价格,该价格存在与否取决于同质信念、无套利、效用最大化等假定能否成立。因为共同质假定现实中未必能够成立,所以市场上很可能不存在均衡价格,这时资本资产定价理论必然失效。因此有必要建立能够处理非均衡市场的资本资产定价理论。

参考文献:

[1]Duffie, D. (1996), Dynamic Asset Pricing Theory, Princeton University Press

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页