高中数学导数的概念及意义范文

时间:2023-07-04 09:25:08

引言:寻求写作上的突破?我们特意为您精选了4篇高中数学导数的概念及意义范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

高中数学导数的概念及意义

篇1

高中学生对数学概念的理解情况将会直接影响高中学生的数学解题能力,然而在实际的数学教学活动中,很多学生存在着数学概念理解能力较差,掌握能力不足等方面的问题,不利于学生数学知识的深入学习.基于以问导课,设计驱动理念下的高中数学课堂教学活动,能够结合学生的实际学习质量、性格特点开展教学指导活动.文章将结合高中数学概念课教学实际活动进行分析,希望能够促进高中学生数学学习质量的快速提升.

一、结合课程教学特点,明确问题驱动目标

新课程背景下,高中数学概念课教学活动需要摒弃满堂“灌输”的课堂教学模式,教师需要结合《普通高中数学课程标准》中的相关教学内容,明确课堂教学指导目标,基于高中学生认知能力的数学概念课教学设计,能够在充分激发学生数学学习兴趣的基础上,使学生更好的理解数学概念,为学生数学知识的深入学习奠定良好的基础.

以问导课,设计驱动教学中,教师需要可以将三维教学目标融入于其中,关注学生学习的过程,关注学生情感的体验.例如在指导学生学习“曲线与方程”这一项内容中,教师可以将课堂教学内容划分为四个层次,其一为指导学生学习并理解曲线方程,明确曲线方程的概念,掌握特殊曲线和方程之间的互为表示关系.其二为指导学生明确求曲线方程的基础步骤,学会自主解答问题.其三为通过不同的平面直角坐标系,对同一曲线方程的影响进行分析,能够合理建立平面直角坐标系.其四为能够自主分析一些简单的曲线方程,学会利用坐标法解答数学问题.

二、灵活设计数学问题,组织学生合作探究

正所谓“兴趣是最好的老师”,学生对所学习的数学概念产生兴趣,便能够积极、主动的参与到课堂探究活动中,使高中数学概念课教学产生“事半功倍”的教学效果.“以问导课,设计驱动”问题驱动理念下的高中数学概念课教学设计,可以结合学生的性格特点,灵活设计数学问题,教师可以将学生划分为若干个小组并为学生布置探究任务,使学生能够通过小组合作探究的方式进行学习,在营造良好课堂教学氛围的基础上,也能够有效提升高中数学概念课教学的质量.

教师可以将前后座的4名学生分为一个小组,为学生布置各式各样的问题,引导学生进行合作探究.例如教师可以结合学生的实际生活提出问题,如“你想邀请朋友到××餐厅吃饭,餐厅位置在兴华街北二路左侧20米,你该怎样叙述呢?”等问题,学生可以通过建立直角坐标系的方式进行解答,用点与坐标的对应关系来研究曲线与方程的关系.

再如教师也可以为学生布置“画出两坐标轴所成角在第一、三象限中的平分线m,并写出方程;画出函数y=2x2(-1≤x≤2)的图像c”.教师可以借助多媒体等信息技术软件,为学生进行图像展示,并组织学生借助信息技术进行操作或者在组内借助纸笔进行绘制(详见图).在学生画完图像之后,教师可以提出“对照抛物线的一部分C和方程,如果符合某种条件的集合M与C分别和其他方程之间存在着怎样的联系?”学生可以与小组成员之间可以相互讨论和分析,得出“如果M(x0,y0)是m上的任意一点,那么它到两个坐标轴的距离是相等的,即为x0=y0,它的坐标(x0,y0)即为方程x-y=0的解.但是如果(x0,y0)是方程x-y=0的解,即为(x0,y0),以此为解的坐标点到两坐标轴的距离相同,它则在平分线m上,则可以将直线m和方程x-y=0相互联系.”

三、注重教学语言应用,培养学生数学思维能力

数学概念教学过程中,教师需要在指导学生关注概念形成的同时,指导学生重视知识之间的普遍联系,培养学生形成一定的数学逻辑思维能力.

多种多样的数学问题有助于学生思维的启发,在充分调动学生数学概念探究欲望的基础上,教师可以通过适当的引申,使学生能够感受到数学概念与数学概念之间的联系,并能够逐渐形成较为完整的数学知识框架结构.

与此同时,教师需要特别注重课堂教学中自身教学语言的应用.相关心理学研究证明,教师课堂教学中的语言将会直接影响学生的听课质量.所以在高中数学概念教学活动中,教师需要密切关注学生的表情变化,给与学生更多的支持和鼓励,教师需要多采用“请”、“谢谢”等话语,尊重学生、关心学生.

结束语

新课程背景下,高中数学概念课教学活动可以通过结合课程教学特点,明确问题驱动目标;灵活设计数学问题,组织学生合作探究以及注重教学语言应用,培养学生数学思维能力等方式,不断提升高中数学课堂教学的质量,促进学生多元智能的发展.

【参考文献】

篇2

一、高中数学新课标与旧课标内容对比

《标准》将《导数及其应用》这部分内容安排在选修系列1-1的第三章和选修系列2-2的第一章中。虽然是选修内容,但对绝大部分高中学生来说,它依然是必需掌握的知识。选修系列2-2增加了微积分基本定理与定积分的内容,对运算的要求也略有提高。

《标准》对《导数及其应用》的处理与原《大纲》相比,有以下几点变化:1、突出导数概念的本质,原《大纲》把导数作为一种特殊的极限来讲,过于形式化及抽象的概念使学生学习起来比较困难。而《标准》则非常强调对其本质的认识,提高了对导数几何意义以及用导数处理实际问题的要求。教材让学生从随处可见的平均变化率开始,巧妙地通过瞬时变化率引入导数的概念。这样引入能让学生更深刻地理解变量数学的本质,有助于学生对函数这一核心概念的深入理解。2、突出了导数在实际问题中的应用,从导数概念的引入到导数的应用,教材都列举了大量的实例。这些实例恰好是体现导数价值的最好素材,这主要体现在以下几方面:1、用导数求匀变速运动的瞬时速度;2、用导数处理切线问题;3、用导数研究函数,包括用导数研究函数的单调性、极值和最值,方法较以前的简便且具有一般性;4、用导数处理生活中的优化问题等。

二、高职数学教材的现状

现行的高职数学教材从内容展开的层次看,还是按照以前《大纲》的安排:第一章 函数、极限与连续;第二章 导数与微分;第三章 导数的应用;第四章 不定积分;第五章 定积分及其应用;第六章 常微分方程;第七章 向量代数与空间解析几何;第八章 多元函数微分学;第九章 多元函数积分学;第十章 无穷级数。现行高职数学教材中函数、导数的概念和导数的应用、定积分、数理统计等内容在高中《标准》选修系列2-2,选修系列2-3中占有很大的比重,并规定一学期来学习这部分知识,也是高考的必考内容。

高职院校在数学教学课时安排方面,无论是文科学的《经济数学》和理科学的《高等数学》都是把“一元函数微积分”作为所有专业的必修模块,高职院校在第一学期大部分专业开设高职数学,课时定为60学时。第一册内容包括:函数、极限与连续;导数概念及导数的应用;积分学及其应用。教学计划安排16课时讲解函数、极限与连续,24课时讲解积分学及其应用,20课时讲解积分学及其应用。这就重复学习了高中《标准》选修系列2-2,选修系列2-3中的数学知识。第二册的内容包括:多元函数微积分;无穷级数;微分方程;矩阵及其应用。第二学期只有少数专业开设数学课,因此现行高职数学教材内容导致学生浪费大量的时间重复学习高中已经掌握的知识。

三、高职数学教材体系重构的必要性

现行高职数学教材除了导数和定积分概念按惯例简单介绍了产生背景外,基本是沿用传统“定义、定理及证明例题”的固定模式,微积分只在部分章节后介绍一点数学概念的经济意义,片面强调数学技巧,学生无法创造性运用已有的数学知识去解决实际问题。而学生真正需要的与专业知识相联系的数学知识却涉及很少。两者没有达到有机整合,使学生觉得学习数学课程和专业课程无关联,无法激发学生学习数学的激情和兴趣。

高职教育改革的目的是要缓和学校人才培养模式与社会需求之间的差异和矛盾,更确切地讲,是要让高职院校学生能够掌握必需的理论知识与实践技能。就高职数学教育来看,重构数学教材体系的必要性与重要性在于:现行的教材内容的分布不合理,函数、导数概念及导数的应用在高中《标准》中作了详细的介绍也是高考的考点,不定积分的概念在《标准》中也作了介绍,所以学生对这部分知识掌握得比较好。现在高职数学教材中的微分部分又重复的讲解着部分知识。每个学校也安排了大量的课时来学习这部分知识。

四、高职数学教材体系重构的设想

基于上述保持数学的系统性理念及高职数学应该与专业相联系的基本原则,通过大量调研与实际经验的基础上,笔者认为高职数学教材体系重构可以从以下几个方面着手。

(一)“随风而动”保持数学的系统性为突出和体现数学的应用性,将新的高职教育数学课程体系确定为“应用数学”课程体系。整合后的课程内容包含:微积分、线性代数、概率论等。

1、微积分部分:由于高中《标准》对学生掌握微分和定积分知识的要求有所提高,高职数学教材应适当减少这部分内容,不要让学生浪费一学期的时间重复高中学习过的内容。因为,学生在高中的学习过程中都已经掌握微积分的基础理论和常用的计算方法。教材在这部分内容上应从数学方法解决几何、经济等实际问题的能力训练出发,通过微积分部分的学习,逐步培养学生的抽象概括能力、运算能力和综合分析问题、解决问题的能力,从而提高学生学习数学的兴趣。

2、线性代数部分:行列式、矩阵、方程组是线性规划、企业管理等学科的重要基础和工具。此部分的重点是计算方法、计算方法的应用。突出实际案例的选择和编排,达到使线性运算直接用于企业管理之中的目的,让数学和专业知识密切相关。

3、概率论与数理统计部分:概率论从数量上研究随机现象的统计规律性,它是本课程的理论基础。数理统计研究处理随机性数据,它以概率论为基础,建立有效的计算方法,进行统计推断。目前,概率论与数理统计的理论与方法在经济、金融与管理各个领域也有广泛应用。同时,概率论与数理统计的理论与方法又向各个基础学科,产生了一些边缘性的应用学科,是经管类各专业的一门重要的基础课和工具课。此部分重点是介绍数据统计方法,建立有效的统计方法,进行统计推断及假设检验,突出概率计算在统计方法中的应用,使学生掌握概率论和数理统计的基本方法,并具备应用概率统计方法分析和解决实际问题的能力。

(二)改变模块顺序,增强数学的应用性与传统的经济数学相比,整合后的内容在知识结构顺序上发生变化。由于学生在高中的学习中已经熟练掌握了微积分和定积分的部分知识,所以在高职数学的教材中就应该减少计算性的例题,增加与专业有关的例题。介绍积分的计算既可以传授知识又可以满足学生的求知欲,达到节省学时提高效率之目的。最后介绍积分的应用,让学生把学到的知识用于实际问题之中。

(三)在各模块内容中做好教学重难点的转化教学内容和教学顺序的改变使得教学重难点也应随之改变。重新整合后的教学内容在以下几个方面实现了突破:一是极限理论处理办法是用复习方式一带而过。二是中值定理的处理,中值定理是导数应用的理论依据,但中值定理的结论抽象,其定理证明更是难点。教学时可以用简单的几何解释,使学生直观地理解定理及其意义。三是定积分的运算及定积分的应用采取复习的方式,教材例题增加与专业相关的题型,从而提高学生应用数学知识解决与专业相关问题的能力。四是矩阵的乘法,矩阵的乘法历来是学生学习的重点和难点,复杂的运算,让学生感到困难、无用。在此选取了有代表性的某公司年度预算报表中的实际案例,不仅使复杂的矩阵乘法运算得以轻松的解决,也使学生享受到数学概念在实际工作中应用的乐趣。

五、小结

高职数学作为一门公共基础课,在数学教学中突出应用不但是高职教育的目标要求,而且符合数学教学改革的趋势,因此,在高中数学教学不断改革的今天,高职教师必须对高职数学内容做全面的审视和反思,从高职数学课程设置、教材内容的改革等方面来寻求一种既能满足高职教育的需求,又能有效提高学生学习质量的有效途径。以最大化地体现“实用为主,够用为度”的原则。

参考文献:

[1] 人教版高中数学教材选修2-1[M] 人民教育出版社.2011.

[2] 人教版高中数学教材选修2-2[M] 人民教育出版社.2011.

篇3

函数是高中数学的主要板块,也是数学教学的主线,贯穿于整个高中数学的始终,函数思想在高中数学中起到了横向联系和纽带的作用,但由于高中函数内容的抽象性、分散性以及函数应用的广泛性、隐蔽性,再加上多半老师缺乏系统性和正统性思维,在进行函数教学时以章按节,照本宣科,往往只注重局部函数知识的教学,缺乏对教学内容的整合与联系,不是以学习过的函数基础做铺垫与后继的基本初等函数内容的学习联系起来“螺旋上升”,而是急切地期望学生对函数的概念理解能一步到位,于是对抽象的函数符号深抠深挖,并设置一些抽象的函数概念题进行训练,结果事与愿违,师生俱惫,部分学生甚至对函数学习形成了一种恐惧心理,影响了后继学习的信心。

整体教学法又称为结构教学法,即学科的概念、原理、思想、方法及其相互联系形成整体。20世纪50年代初布鲁纳就推崇结构主义教学论,他提出了学科的基本结构,他认为教师的教学要重视学科的基本结构,要对教材的结构进行梳理,要帮助学生获取和掌握学科的基本结构,掌握学科的基本结构有助于更好地设定教学目标,培养学生的学习兴趣,增进学生学习的迁移,提高学习能力和学习效果。

高中数学教材中函数的结构脉络为函数的概念、具体的函数模型、函数的应用和研究函数的思想工具。下面笔者就高中各阶段的函数教学分析及笔者作法进行阐述:

一、高一阶段

高一阶段学习函数是在初中初步学习了函数的概念、表示方法以及函数的作图并具体地学习了正比例函数、反比例函数、一次函数、二次函数的基础上,对函数概念再认识,即用集合、映射的观点理解函数的一般定义,加深对函数概念的理解,并在此基础上研究指数函数、对数函数、幂函数等基本初等函数的概念、图像和性质,从而使学生在第一阶段函数的学习中获得较为系统的函数知识,并初步培养学生函数应用意识,为今后学习打下良好的基础。这一阶段教学应建立在衔接过度、发展学生的思维层面上,主要是建立学生识别图像、利用图像和画出图像的能力,初步形成数形结合的思想方法。此阶段教学重点应该放在概念的形成与建立上。高一数学必修一的教材第一章内容主题就是函数概念及函数性质的相关概念,教材这样安排使学生未见树木先看见森林的功效,对后面深入研究每一类具体函数有着指导意义。实践证明,最初得到“森林概貌”(对函数包括定义、图像、定义域、单调性、奇偶性、最值等的认识),能使学生在对具体函数研究上始终联系着“一般”(森林),用“一般”作指导,待具体函数都弄清以后,再总结概括为一般,而这时的一般是以具体问题为背景的。这时的具体问题又是以一般为指导的。从教材编排来看,这样做可使学生知识结构更加科学系统,更加符合学生的认知规律,更富启发性。此阶段教学应注重数形结合思想的培养与渗透。

二、高二阶段

高二阶段要进行不等式、线性规划、数列、圆锥曲线等知识的教学,教学过程中应使学生了解意识到这些知识都可以从函数角度加以认识,都是函数的不同展示形式,引导学生能够从函数的角度把问题转化。这一阶段教学重点应放在函数的应用上,通过函数这个载体,提升学生对相关知识的理解、应用及解决问题的能力,这一阶段的学习学生容易淡化函数在高中数学中的重要性。在这些知识的教学过程中,要将函数思想及其简单应用穿插其中,需要不断引导、强化,不断形成用函数观点看待问题,逐渐理解函数思想、数形结合等思想方法,并加以简单应用。再加上该阶段学习导数之后,使得函数研究如虎添翼。导数是高中数学与高等数学的一个衔接点,导数在研究函数中的应用为我们解决基本初等函数及简单的复合函数问题提供了一种一般性方法,是解决实际问题强有力的工具,如在研究函数单调性、讨论函数图像的变化趋势、求极值和最值、不等式恒成立等问题,运用导数解决这类问题能化繁为简,具有事半功倍的作用。

三、高三阶段

高三阶段一般要进行高考全面复习,函数复习仍然是复习的重点,首先应整体把握高考对函数内容的考法。我们知道函数不仅是高中数学的核心内容,还是学习高等数学的基础,所以在高考中函数知识占有极其重要的地位。其试题不但考察函数基础知识,而且注重考查学生数形结合、分类讨论等重要的数学思想方法。 从历年高考真题来看,考察内容主要为初等数学所学的函数内容,也不乏以高等数学函数相关的重要定理换成初等数学的叙述方式出题(如拉格朗日中值定理,有界性定理、函数的凹凸性、不动点原理等)。考察形式为填空题、选择题与解答题,选择、填空题履盖了函数的大部分内容,如函数的定义域、值域,函数的图像与性质(单调性、奇偶性、周期性等),而解答题除了三角函数属于基础题外其余的多以知识交汇题为主,不仅在内容上涉及函数与方程、不等式、数列、方程的曲线等多方面内容甚至以抽象函数或高等数学知识为背景,更注重对知识的综合应用能力以及数学思想方法的考查。因此,在函数复习过程中,首先应把握高考命题题型与趋势,其次复习策略的选择也很重要。此阶段,首先应夯实基础。笔者在复习过程中反复结合上述的函数整体结构图,进一步强化“总-分-总”的学习策略,同时要求学生进一步细化拓展这份结构图,使得每一部分内容都丰富起来,将所学知识系统化、结构化、网络化。 通过这种继续构建的知识结构图,最后组成了一张庞大的函数知识结构网,几乎呈现了高中数学的全部基础知识及其相互联系,这样在整个复习过程中相关基础知识得到了夯实。其次,带领学生熟悉考纲,明确考纲规定的基础知识、基本技能以及基本的数学思想方法,研究和把握高考命题趋势和题型,抓住重点知识,设置好例题和习题的类型、梯度和难度,注重解题方法及数学思想方法的提炼与概括,循序渐进地提高学生分析问题、解决问题的能力,同时注意锻炼学生的心理素质。

总之,数学教学应当“教 结构良好的知识”、应当“既讲逻辑又讲思想”,在高中函数教学过程中,我们要注重函数知识体系的整体把握,注重函数知识间的联系,注重函数数学思想方法的渗透,这样才能不断完善和优化学生的认知结构,不断提高学生的数学素养。

参考文献:

[1]普通高中课程标准试验教科书[M]。北京:人民教育出版社.

篇4

高中数学复习知识1考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

考点五:立体几何与空间向量

一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

考点六:解析几何

一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

考点七:算法复数推理与证明

高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.

高中数学复习知识2第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:

第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

第二类我们所讲的动点问题;

第三类是弦长问题;

第四类是对称问题

第五类重点问题,这类题时往往觉得有思路,但是没有答案,

当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七、押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高中数学复习知识3一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

-直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高中数学复习知识41.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.

2.在应用条件时,易A忽略是空集的情况

3.你会用补集的思想解决有关问题吗?

4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

5.你知道“否命题”与“命题的否定形式”的区别.

6.求解与函数有关的问题易忽略定义域优先的原则.

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法

11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

14.解对数函数问题时,你注意到真数与底数的限制条件了吗?

(真数大于零,底数大于零且不等于1)字母底数还需讨论

15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.

19.绝对值不等式的解法及其几何意义是什么?

20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.

23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a

24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。

)

28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)

33.反正弦、反余弦、反正切函数的取值范围分别是

34.你还记得某些特殊角的三角函数值吗?

35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

36.函数的图象的平移,方程的平移以及点的平移公式易混:

(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.

(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.

(3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k.

37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

38.形如的周期都是,但的周期为。

39.正弦定理时易忘比值还等于2R。

高中数学复习知识5(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作pq

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作AB。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

友情链接