初中物理模型法范文

时间:2023-07-05 15:59:19

引言:寻求写作上的突破?我们特意为您精选了12篇初中物理模型法范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

初中物理模型法

篇1

在物理教学过程中,物理模型是教学内容的有机构成部分,也是有效的教学方法。在初中物理教学中,教师可巧妙引入模型,简化物理问题,帮助学生更好地发掘原型本质或规律,提高学生思维能力。其次,在教学过程中,教师还需要坚持“教师为导,学生为主”的教学理念,综合运用多种教学方法,提高课堂教学效率。对此,笔者结合教学实践,谈谈物理模型法与启发式综合教学法的具体运用。

一、运用模型法,简化物理教学

1.利用物理模型,简化物理教学

在物理学习中,有些知识较为抽象而复杂,难以直接观察与研究,这就需要借助一定的方法来简化。其中,构建物理模型是有效方法,包括理想模型、过程模型、物质模型等,即借助那些和原型相似的物质模型来间接揭示原型的本身性质或规律,从而简化物理问题。如光线,它是一束的并看不见的,而借助一条看的见的实线来表示则可简化问题;光是沿直线传播的,也是取了简单模型,一条光线在均匀的介质中传播,从而将问题简化,这些都是理想模型的运用。其次,通过构建物理模型,将物理知识或过程变得更直观化、形象化、普遍化,从而帮助学生加深理解。如分析平静水面出现的反射现象时,可把水面视为平面镜。再如电路图就是根据实物模型而画出,将导线、开关、用电器、电源这些实物巧妙抽象成一个个符号,灵活连接后则变为能够说明电荷流动的示意图,以便研究各物体间的联系。在物理研究过程中,不少问题均可先画有关示意图,而后实践与检验。因此,在初中物理教学过程中,教师灵活运用物理模型,简化物理问题,让学生更好的理解知识。

2.借助物理模型,培养学生能力

在初中物理教学中,除了利用物理模型简化问题之外,教师还需要在各教学环节中渗透模型方法指导,逐步培养学生建模意识与能力,让学生能够更能轻松的学习物理知识。首先,在物理概念或规律教学中,培养学生建模意识。在物理学习中,若要有效建立物理模型,离不开平时的观察与知识积累。因此,教师需要引导学生注重观察,包括观察与物理相关的生活现象;观察实验等,然后比较分析,抽象概括,发掘规律,构建模型。其次,在实验教学中,训练学生建模能力。比如电学实验中,我们一般将导线的电阻近似为零;将电压表视为开路,将电流表看作为一根导线等等,从而简化物理实验。另外,在物理习题中也需构建有关模型,运用熟悉的模型来解决物理问题,梳理解题思路,提高解题效率。如杠杆平衡模型。图1是熟悉的杠杆平衡的实验图,每一个钩码有相等的重力,杠杆上每格长度也一样,可看出它们是平衡的。即3G×4L=2G×6L。

思考:如图2所示,A,B两物体在轻质杠杆两端所示位置时,杠杆水平位置保持平衡,如下情况下杠杆是否平衡或往哪个方向倾斜。①同时向外移动同一距离 ;②同时向支点移动同一距离 ;③去掉A、B上质量相等的一小块 ;④在A、B上分别加一块质量相等的物体 ;倘若根据计算来求出结果,过程复杂,耗时也容易出错。而倘若将其变为熟悉的杠杆平衡模型来解决,问题就简单化了,答案也更准确。

二、启发式综合教学法

物理是以实验为基础的课程。在初中物理教学中,教师需要抓住实验这一基础,巧用实验来增强学生实践体验,培养学生学习热情。同时,教师也需要遵循以学生为中心的教育理念,以学生实际为出发点,灵活运用多种教学方法,巧妙启发,诱导同学们自主学习,实验探究,把握知识与方法。而启发式综合教学法则符合上述要求,以学习者自主学习、自主实验为主,综合运用了几种教学方法,关注学生学习过程,使其动手实验,“做”中学,学中“做”。

如教学《气体的压强》时,教师可运用学生实验、探究与交流结合的综合启发式教学方法。在本课教学中,主要让学生了解气体是不是存在压强,这一压强又有怎样的特征,该怎样测量大气压值。为使其更好地感知知识形成与发展过程,可引导同学们以力学知识为基础,借助实验法与探究法,诱导学生观察分析,感受大气压的存在;讨论交流大气压的特征以及测大气压的方法,然后自主设计实验、实验探究、总结归纳。比如要求同学们课前分组合作,猜测是否存在大气压,并借助身边物品合作设计物理小实验,验证猜想。课堂上,教师可引入“瓶吞蛋”、“覆杯实验”等演示实验,学生分析实验现象,思考分析,并结合所学知识与经验,明白大气压的存在。而后指导学生结合生活现象,设计有关实验,自主体验大气压的存在。对学生的想法,教师需要予以肯定,有效评价。而后提出问题,诱导学生讨论探究,如何估测大气压的值,是否可想出一个有效的实验来测量。在学生思考过程中,教师可提示与启发:回顾所学的压强知识,知道P=,那么我们能否将测量大气压值转换成我们熟悉的测量F与S的值呢。而后诱导学生思考测量F与S的方法,自然渗透等效与转化等方法。而学生以小组为单位,自由讨论,探究实验方案,并选取适合的实验仪器,首先以实验图与文字形式来展现。然后汇总各组的实验方案,集体交流与评价,指出每个实验方案的优缺点,并说说实验设计过程中的问题,通过讨论交流,相互补充与完善。而后利用修改后的实验方案进行实践操作,观察现象,记录数据,分析总结,得出结论。

【参考文献】

[1]徐文君.物理教学中应用启发式综合教学法[J].中学生数理化(教与学).2010(07)

[2]赵会川.综合教学法[J].中国教育学刊.1989(05)

篇2

中图分类号:G633.7 文献标识码: C 文章编号:1672-1578(2013)10-0143-01

近些年,随着经济和社会的快速发展,模型在人们的日程生活和学习中的地位越来越突出,尤其是在工程技术和科学研究方面。与学生们息息相关的当属物理模型的应用。众所周知,物理研究略带复杂性,要想将极为复杂的客观现象转变成为较为简单的物理学规律,就需要我们很好的运用物理模型,来实现物理研究的简化和形象化。考虑到构建物理模型在初中物理教学中扮演的重要角色,教学工作者在开展教学活动的过程中就需要注重对物理模型的构建,进而有效的提升物理教学效率。

1 在初中物理教学中构建物理模型的重要性

从某种程度上说在初中物理教学中注重物理模型的构建能够有效的增强学生的理解和接受新知识的能力[1]。比如,教学工作者在向学生们传授有关运动学中质点的知识点时,就可以建立其关于质点的结构模型,从而使学生们通过对质点模型的较为细致的认识和了解来打下后续有关质点运动、万有引力定律、物体的平动和转动、电学中的“点电荷”模型以及光学中的“点光源”模型等较为坚实的基础,还可以让学生们较为容易和顺畅的接受其传授的关于运动的新知识。在初中物理教学中构建物理模型还可以使得较为复杂的物理问题简单明了化,使抽象的问题变得形象生动,有效的突出问题的主要矛盾。此外,在初中物理教学中注重构建物理模型,还可以帮助学生提升思维能力和解题能力,进而有效的提升初中物理教学的教学效率。

2 较为常见的物理模型

通常情况下,物理模型可以说是物理思想的产物,是科学地进行物理思维并从事物理研究的一种方法。在初中物理教学中,学生们经常接触的物理模型主要包括以下几个方面:

2.1物理对象模型化

初中物理课本中所涉及到的一些客观实体,例如,质点-在某些问题中的研究中需要舍弃物体的形状、大小、转动等性能,来强度它所处的位置以及质量的特性,仅通过一个有质量的点来描绘,实现对实际物体的简化。在物理问题的研究中,若是物体本身的大小可以不计的话就可以把其当做质点来看待。此外,与质点较相似的客观实体还包括刚体、点电荷、薄透镜、弹簧振子、单摆、理想气体、理想电流表、理想电压表等。

2.2物体所处的条件模型化

在进行有关带电粒子在电场中的运动的相关问题的研究时,由于粒子的重力比电场力小得多,因此可以忽略物理粒子的重力,这样就可以有效的简化问题。此外,力学中的光滑面;热学中的绝热容器、电学中的匀强电场、匀强磁场等,都可以将所涉及到的物体所处的条件理想化。

2.3物理状态以及物理过程的模型化

举例来说,力学所涉及到的自由落体运动、匀速直线运动、简谐运动、弹性碰撞;电学所涉及到的稳恒电流、等幅振荡;热学所涉及到的等温变化、等容变化、等压变化等均可以看做是物理过程以及物理状态的模型化。

2.4理想化实验

在进行相关实验的前提下,把握其主要矛盾,不计次要矛盾,按照逻辑推理法则,对相关物理过程进一步分析、推理,进而找到相关规律。

2.5物理中的数学模型

原则上,客观世界的一切规律均能够在数学中找到与之对应的表现形式。所以,在进行初中物理教学的过程中,构建物理模型时还需要不断的建造表现物理状态和物理过程规律的数学模型。考虑到物理模型作为客观实体的近似,将物理模型当做描述对象的数学模型,只可以作为客观实体的近似的定量描述。

3 物理模型在初中物理教学中的应用

3.1建立模型概念

教学工作者要帮助学生充分认识和了解建立模型概念的实质。概念主要是说客观事物的本质在人脑中的反映,客观事物的本质属性是抽象的、理性的。要想使客观事物在人脑中有深刻的反映,就需要把它和人脑中已有的事物联系起来,使之形象化、具体化。通常情况下,绝大多数的物理模型都是把理想化模型当做对象而发展起来的。实际上,建立概念模型主要是为了撇开和问题所涉及无关的因素和影响较小的次要因素。这种做法在很大程度上体现了抓主要因素,认清事物的本质,通过理想化的概念模型解决实际问题。

3.2认清条件模型,突出主要矛盾

条件模型主要是说把已知的物理条件模型化,放弃条件中的次要因素,抓住条件中的主要因素,为问题的讨论以及求解起到搭桥铺路、化难为易的作用。条件模型的建立,能使我们研究的问题得到很大简化。

4 构建物理模型的注意事项

在开展初中物理教学的过程中,要想通过构建物理模型来有效的提升初中物理教学的形象化,就必须注重对象引导和鼓励学生对物理模型的概念、使用物理模型的意识以及与其他解题方法的影响有所了解和掌握,此外,还需要配合以其他的教学方式来开展物理教学活动,进而使得物理课堂教学效率得到显著的改善。

5 结语

综上所述,鉴于构建物理模型在初中物理教学中所扮演的较为重要的角色,教学工作者在开展初中物理教学的过程中要高度重视物理有关物理模型概念以具体模型的教学[2]。此外,还需要注重向学生们传授有关建立物理模型的方法,进而有效的增强学生们建立和使用物理模型解决物理问题的意识,培养学生解决问题的能力,提升初中物理教学效率。

篇3

模型在我们日常生活、工程技术和科学研究中经常见到,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。

既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。【1】下面我们逐个加以说明。

(一)物理对象模型——直接将具体研究对象的某些次要因素忽略掉而建立的物理模型。这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。

(二)物理条件模型——忽略研究对象所处条件的某些次要因素而形成的物理模型。在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。

(三)物理过程模型——忽略物理过程中的某些次要因素建立的物理模型。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。

(四)理想化实验——在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法【2】。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。

(五)数学模型——由数字、字母或其它数学符号组成的、描述现实对象数量规律的数学公式、图形或算法。【3】初中物理中的数学模型主要有磁感线和电场线。磁感线(电场线)是形象的描述磁感应强度(电场强度)空间分布的几何线,是一种数学符号。而磁场和电场本身的性质对这些几何线做了一些规定,例如空间各点的电场强度是唯一的规定了电场线不相交。这样就使它们成为形象、简练而准确的描述磁场和电场的数学符号。

物理模型在初中物理教育与教学中起到举足轻重的作用,因此,在教学中我们就要重视对物理模型概念和具体模型(例如上文分析的模型)的讲述,重视对建立物理模型方法的讲授,重视对学生建立和应用物理模型意识的增强,重视对学生建立和应用物理模型能力的培养,让学生体验到成功建立和应用物理模型解决实际问题的快乐。

参考文献

篇4

随着课程改革不断深人,传统的物理课堂教学模式面临着新的挑战与机遇.教师应从初中物理教学中物理模型教学方法出发,深入探究新课改背景下物理模型教学的有效策略,通过模型来使原本抽象的物理知识更加具体、形象、简单,从而促进初中学生掌握物理基础知识,并培养学生的探究性学习能力.本文主要是对我国初中物理模型教学的现状进行探讨分析,从中找出问题所在,并提出相应的解决措施.

一、初中物理中常见的物理模型

分析

1.条件模型化

在初中物理教学过程中,由于解决物理问题所涉及的知识面比较广,对于某一具体问题的解决必须根据一定的条件来进行,才能使所解决的问题更加简单、易懂.例如,在讲述带电粒子在电场中的运动相关知识时,由于带电质量非常小,其所受的重力远小于电场力.此时,可以不考虑重力的影响,使问题得到简化,并将有效地提高课堂教学效率.

2.对象模型化

当我们表达某些客观实体,如质点等的物理状态时,我们可以舍去物体的大小、形状、转动等物理因素,主要是突出其所处的位置和质量的特性,从而使复杂的实际物体简单化.同时,对于那些本身体积大小可以忽略但是重量不能忽略的物体,本身的大小在所研究的问题中可以忽略.例如,薄透镜、点电荷、弹簧振子以及单摆等,也能当做质点来处理.

3.数学模型

在初中物理模型教学过程中,应该根据相关物理数据不断地建造能够反映特定物理状态及物理过程规律的数学模型.再借助于所建立的物理模型来分解物理过程.这样不仅能够达到使用理论知识来分析实际物理问题的目的,还能够使学生对那些原本乏味、抽象的物理知识更加明白,进而提高初中物理教学的效率.例如,在讲述单摆作简谐运动的内容时,通过建立数学模型来分析,在单摆摆动过程中为什么要求摆角小于10°等问题,从而有效地激发学生对物理的学习热情.

二、初中物理模型在教学中的运

用策略

1.构造过程模型,通过图形来解决物理问题

在初中物理教学过程中,许多章节的内容都涉及物理过程的知识.这就要求教师必须结合课本的内容并构造过程模型,将物理过程进行模型化,从而建立相应的图形,使一系列复杂、抽象的物理过程经过简化、分解,使学生更加容易地理解物理过程.例如,在讲述物体的平抛运动规律时,教师应该通过建立过程模型,使该质点的运动过程分为两部分:(1)质点在竖直方向仅受重力作用下运动,也就是只考虑质点做自由落体运动;(2)不考虑竖直方向,只考虑水平方向的运动.由于水平方向不受力,因此,质点在水平方向上可看成做匀速直线运动.由此可见,通过建立相应的物理过程模型,不但可以使问题得到简化,还可以加深学生对有关物理知识的理解,有利于培养学生解决实际问题和综合性问题的能力.

2.建立模型概念,加深物理概念的理解

所谓物理概念,指的是客观物理现象在人脑中的反映,也就是将原本抽象的、空洞的物理知识高度概括出来.因此,在初中物理教学中,要想加深学生对物理知识的理解,提高学生的学习热情,就必须将具体的物理概念与学生已有的物理知识有机联系起来,使之更加形象化、具体化,加深学生对物理概念的理解.例如,在讲述牛顿第一定律时,如果仅仅讲解课堂上的内容将难以让学生明白它的真正意义,并且显得相当空洞.因此,必须建立模型,并且要通过实验来证实该模型的正确性.只有这样,才能切实地提高初中物理教学的效率.

篇5

【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2015)13-0130-01

模型在我们的日常生活中、工程技术和科学研究中经常见到,它对我们的生产生活具有很大的帮助。而物理模型就是将复杂问题转换为简单问题,通过画图形式直观表达知识的过程。学生可以通过物理模型的学习对疑难问题进行解答,突出物理问题的重要部分,为学生清晰地建立物理图像,更直观地解决问题,让复杂的物理问题简单化。这样不仅降低了难度,同时也帮助学生建立了信心,培养了学生的逻辑思维能力。

一 初中物理简述

初中物理是义务教育的基础学科,也是中考的必考科目。物理模型在初中物理教学中占据着主导地位,随着课程的改革,物理问题研究的不断加深,学生学习物理变得困难。因此,部分学生因为物理的难度渐渐失去了兴趣,导致总体成绩不高,物理教育得不到完善,教育教学不能满足现在的教学需求。物理作为一门自然科学课程,比较难学,不能单凭死记硬背,要有自己的一套学习方法和学习技巧,不能因为物理的难度而放弃这门学科的学习。从目前初中物理的教学模式来看,教师对物理概念比较重视,还是局限于传统的教学理念。部分教师在物理教学过程中,把物理概念当成教学重点,让学生死记硬背物理概念,导致学生很难理解物理概念的真正意义,从而对物理学习失去兴趣。针对物理学科,我们要制订合适学生自己的学习计划,首先应独立做题,了解物理过程;其次应认真听讲并做好相关记录;最后应主动向别人学习。当然,仅凭课堂上老师的讲解是远远不够的,课后要针对老师讲解的内容加以复习,尤其是疑点难点,必须加深理解,这样才能学好物理,产生对物理学习的欲望。

二 物理模型的基本内涵

物理模型,就是利用图像进行疑难问题的解析,让学生很快地解决物理问题。物理模型具有一定的作用,主要表现在以下几个方面:(1)把复杂的问题变得简单化。(2)依据教学内容制作相关模型。(3)利用物理模型做出科学预言。物理模型主要由两个部分组成:直接模型与间接模型。直接模型是指通过对物理情景的描述,很快地在脑海中浮现出清晰的图像。例如习题中的点、小球以及木块等作为研究对象。间接模型是指对描述的物理情景不能直观地在大脑中得以呈现,通过自身的想象力与逻辑思维形成的抽象图形。显而易见,间接模型和直接模型相比较,要比直接模型难得多。然而在物理教学中,大多都是以间接模型为核心,通过物理情景的描述以及学生的想象力,找出正确的研究对象、物理过程等因素,针对这些抽象的事物,进行抽象的研究。因此,我们要培养学生的物理模型化能力,必须正确选择研究对象,根据题中的情景描述,清晰地建立正确的物理模型,这样在物理学习中,一些疑点难点能快捷地解决,同时也降低了物理学习的难度,让学生更轻松地学习物理,产生对物理学习的求知欲,实现物理教学目标。

三 物理模型在初中物理教学中的作用

物理模型在初中物理教学中有着举足轻重的作用。在物理学习中,不要把物理概念当成重点,要实际结合物理模型来学习。通过物理模型的学习,不仅降低了物理学习的难度,让复杂的问题转化为简单的问题,让疑点难点得以解决。针对一些抽象事物,我们以画图形式清晰地在学生的脑海中浮现。不仅拓展了学生丰富的想象力,同时也培养了学生学习物理的逻辑思维。比如:教师在讲解八年级下册第六章第三节物质的密度一课时,教师可以创设相关教学情境,让学生的头脑中出现直接模型的观念,以这样的形式开展情境教学,通过观察和学生亲自体验,让学生觉得亲切自然,从而激发学生的求知欲望。或者利用简单、有趣的模型口诀吸引学生的注意力,这节有关密度的口诀可以是:实验测密度,质量比体积,等量替换法,密度就可知。通过将物理模型运用到初中物理课堂的方法,不仅培养了学生的观察能力和创造能力,还能培养学生的逻辑思维能力。让学生有效地学习物理,对物理学习产生热情,提高物理成绩的同时达到物理教学目的。

篇6

对于刚跨入高中大门的同学来说,由于高中物理教材与初中物理教材的差异较大,原有的学习方法已不适应。因此,在以后的学习中应培养更好的学习方法和养成良好的学习习惯。我从实际教学工作中总结了一些学好高中物理的方法,同大家探讨,以求共同进步。

一、理清高中与初中物理教学的梯度

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。

由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及到四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题常常感到无所适从;开始用图象表达物理规律,描述物理过程;矢量进入物理规律的表达式。

二、做好初中与高中物理教学的衔接

(一)重视教材与教法研究

高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低"阶差",保护学生物理学习的积极性,使学生树立起学好物理的信心。

(二)坚持循序渐进原则

高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

(三)透析物理概念和规律

使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。

(四)物理模型的建立

高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。

物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。

(五)学习习惯培养

篇7

高一学生普遍认为物理难学,主要原因是学生能力与高中物理教学的要求差距大。由于高一物理是高中物理学习的基础,因此,高中物理教师必须认真研究教材和学生,掌握初、高中物理教学的梯度,把握住初、高中物理教学的衔接,这样才能提高高中物理教学质量,才能让学生完成由初中到高中的顺利过渡,从而真正进入高中物理的学习状态。

一、高中与初中物理教学的梯度

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。

由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显的加多加深了。

二、如何搞好初、高中物理教学的有效衔接

1.重视教材与教法研究

高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次,实施适当的教学方法,降低"阶差",保护学生物理学习的积极性,使学生树立起学好物理的信心。

2.坚持循序渐进原则

新课标指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

3.透析物理概念和规律

使学生掌握完整的基础知识,培养学生物理思维能力。能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生在掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,以及规律的适用条件及注意事项。

4.物理模型的建立

高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化,建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。

物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。

5.学习习惯的培养

篇8

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,而高中较多的是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。

初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理各部分知识相互联系,对学生运用数学分析解决物理问题的能力提出了较高要求。

二、如何搞好初、高中物理教学的衔接

1.重视教材与教法研究。高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低“阶差”,保护学生物理学习的积极性,使学生树立起学好物理的信心。

2.坚持循序渐进原则。高中物理教学大纲指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

篇9

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。

由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题时常常感到无所适从;开始用图象表达物理规律,描述物理过程;矢量进入物理规律的表达式。

二、如何搞好初、高中物理教学的衔接

1.重视教材与教法研究

高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低“阶差”,保护学生物理学习的积极性,使学生树立起学好物理的信心。

2.坚持循序渐进原则

高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

3.透析物理概念和规律

使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。

4.物理模型的建立

高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。

物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。

5.学习习惯的培养

教育家叶圣陶先生指出:“教育的本旨原来如此,养成能力,养成习惯。”培养学生良好的学习习惯是教育的一个重要目的,也是培养学生能力、实现教学目标的重要保证。如何培养良好的学习习惯,首先是要培养学生独立思考的习惯,独立思考是学好知识的前提,学生经过独立思考,就能很好地消化所学知识,才能真正想清其中的道理,从而更好地掌握它。其次培养学生自学能力,使其具有终身学习的能力,阅读是提高自学能力的重要途径,阅读是对学生进行智育的重要手段,阅读物理教材不能一扫而过,而应潜心研读,边读边思考,挖掘提炼、对重要内容反复推敲,对重要概念和规律要在理解的基础上熟练记忆,养成遇到问题能够独立思考以及通过阅读教材、查阅有关书籍和资料的习惯。

篇10

初中物理教材编写形式主要是探究、演示、想想做做、想想议议、STS(科学•技术•社会)、科学世界、动手动脑学物理、我还想知道等。探究是让学生自己动手动脑模拟科学家的工作过程,感受获得知识的途径,体会科学研究的方法,不触及现象的本质。演示是教师向学展示一些物理现象。想想做做、想想议议是课堂中一些学习活动,主要是学生描述物理现象的特征或口头表达自己的观点。动手动脑学物理,学生动手实验的器材在生活中容易找到,制作没有难度;小资料的内容学生容易阅读,没有太多抽象的内容。教材内容的难易度决定了初中物理是以介绍物理现象和规律为主,利于培养初中学生学习物理的兴趣,为学习高中物理打基础。学生学习后很有成就感,初中学生对物理学科的喜爱程度高。高中物理教材编写形式主要是实验、思考与讨论、说一说、做一做、演示、科学漫步、问题与练习等。与初中的难度不同,如探究实验是在未知某一物理现象的本质规律之前,主动探究物理现象的本质规律。高中物理描述的物理现象复杂,解决这些问题的方法已被抽象为相应的模型,比较抽象,这是高中学生遇到的难点之一。物理教材的内容通过模型化抽象和数学化描述,通过抽象概括、假说、逻辑推理来揭示物理现象的本质和变化规律,研究的问题涉及的物理量多,变化比较复杂,学生接受难度大。另外,高中物理教材对物理概念和规律的表述严密,对物理问题的分析推理科学、严谨,逻辑性强。科学漫步的内容都有较强的知识性,学生阅读难度大,不易读懂。学生学习就有困难,因此喜爱物理学科的人越来越少。

2.初、高中物理实现教学目标的方法不同,思维能力要求不同

初中阶段物理教学目标是以了解物理现象和规律为主,向学生简单介绍探究物理现象的方法和步骤,且多以直观教学为主,知识的获得是建立在形象思维的基础之上的;高中物理是进一步提高科学素养,注重过程与方法,知识的获得是建立在抽象思维基础之上的,高中物理教学要使学生的思维逐步从形象思维过渡到抽象思维。初中阶段教学通常是直观介绍物理现象和规律,不触及物理现象的本质;高中物理教学,要求学生了解知识的来源,是对物理现象本质的认识,这就要求学生具备一定的抽象思维能力。

3.学生的学习方法与学习习惯不适应高中物理教学要求

初中阶段物理教学一般不涉及物理现象的本质,概念和规律性的知识常用文字描述,只需简单记忆就成了。课堂上教师讲解例题计算题居多,由于不要求了解知识的来源,学生几乎不了解计算公式的适用条件,学生练习时只需在课堂上模仿教师的做法,记下解题的步骤,套用公式,这就养成了机械记忆的学习习惯。高中物理教学要实现“知识与技能、过程与方法、情感态度与价值观”三维目标,教材内容,就决定了学习高中物理要了解知识的来源,要通过抽象、概括、推理才能揭示现象的本质,才能找到现象的变化规律。因而高中物理,现象多,关系复杂多变,解决问题的过程就是实现“知识与技能、过程与方法、情感态度与价值观”三维目标的过程,很注重细节。有的学生仍采用初中的那套方法对待高中物理学习,解题时就现出“读不懂题目的意思或找不出题目的隐含条件,对物理公式的意义和适用条件搞不清楚”的现象,学生往往不知从何下手,这样就使学生感到物理难学、难懂。

4.数学应用能力达不到高中物理教学要求

物理学科的原理、定律需要用数学关系表达。(1)物理规律的数学表达式增多,物理量间的变化规律复杂,初中阶段描述运动规律的只有一个公式,涉及三个物理量和一个常量;高中阶段描述匀变速直线运动常用的物理量有近10个之多,每个公式涉及四个物理量。有矢量,也有标量,有常量,也有变量,并且各公式有不同的适用范围,这是高中学生学习物理难点之一。(2)用图像表达物理量之间的关系,描述物理过程。(3)矢量运算广泛。矢量运算是学生进入高中遇到的难点之一。小学到初中,标量运算规则很熟练,高中阶段的矢量运算,接受平行四边形法则,是对运算规律不同的认同,也是对运算规律认识从感性到理性的飞跃。这是数学应用能力跟不上高中物理教学要求的问题。(4)应用数学图像描述物理量间的关系,不懂斜率的含义。高一新生掌握的数学知识及数学知识的应用能力都达不到高中物理的要求,这是学科间存在的衔接问题。

二、有效做好初、高中物理教学衔接的几点思考

1.调查初、高中学生解决问题的方法

(1)初中物理从观察、实验入手,内容形象直观。目的是培养学生初步的观察、实验能力,初步的分析、概括能力和应用物理知识解决简单问题的能力。(2)高中物理内容科学、严谨,知识结构逻辑性强,循序渐进,内容表述言简意赅、条理分明、深入浅出。三维目标中更重视“过程与方法”目标的实现。

2.注重构建“质点”模型,化有形为无形

初中物理教材所描述的物理现象形象具体,就“物体”这一概念而言是一个看得见、摸得着的具体物体。高中物理教学中,有效构建“质点”模型,是教学的难点。“质点模型”的核心是“突出主要因素,忽略次要因素”,是一种替代方法,构建“质点模型”的过程是让学生逐渐淡化物体的具体形状,认识到忽略物体的形状,把物体当作一个有质量的点,这样能更好地解决问题,学生怎么才能认同“质点”?为此,教师应做好物理实验,如不妨做做牛顿管自由落体实验,羽毛、小石块、纸片、铁块同时落下,研究这些物体的下落就跟物体的形状无关了,就可用一个点替代物体了。什么条件下点能替代物体?概括起来就是定理、定律的适用条件。能有效构建“质点模型”,学生对重心的概念,共点力的概念就容易理解了。

3.重视物理量的矢量运算

初中物理的计算往往是标量计算,数学问题简单,学生容易解决。进入高中,矢量运算贯穿于高中物理的全程,涉及力、速度、加速度的合成与分解,还有动量、冲量等,是高中物理教学中必须解决的问题。初中阶段“同一直线上力的合成”是高中阶段物理量的矢量运算的衔接点。

篇11

随着苏教版新课程改革的进行,教学方法的多样化和创新化越来越受到人们的重视。众所周知,物理是一门集科学性、计算性、变化性于一身的综合性学科,同时还有着很强的抽象性与逻辑性,但它又不是没有规律可循。俗话说“万变不离其宗”,这句话用到物理这门学科上是再恰当不过了。而物理模型的存在能以其形象性与具体性等特征而强化学生对于所学物理知识的认知与理解。因此,在教学过程中必须强化物理模型的应用。本文,就关于初中物理教学中物理模型与作用问题,进行了深入分析。

一、初识物理模型

既然物理模型对我们的教学以及学习有这么大的帮助,那么什么才是物理模型呢?物理模型分为很多种。我们接触一道题,首先是读题目,在此过程中我们就可以建立一个关于题目的模型,比如说计算题实验题还是简答题,例题的目的就是解答。解答不能够盲目地进行,我们必须对问题也进行分类,比如说是验证型还是猜想型或者探究型。了解问题的题意及目的,接下来就是解题,在解题过程中建立解题模型对解题的准确性和快速性会有很大的帮助。因为有了模型我们就有了针对性,就可以省去很多的无用功,这无疑是磨刀不误砍柴工。那么具体的物理模型有哪些呢?下面,笔者来做简单的阐述。

二、物理模型的作用

我们明白了物理模型的建立过程,学会了如何应用物理模型,那么物理模型究竟有哪些惊人的作用呢?

(1)物理模型可以帮助学生们增强自信心。与其他科目相比,物理算是一门比较抽象的学科,许多知识都不易理解,甚至有时候会不知所云。物理模型可以帮助我们解决这个难题。面对陌生的题目,只要我们按照模型进行,答案都能够很快浮出水面。这样从短期看帮助了同学们解题,从长远看更增强了他们的自信心。

(2)物理模型可以提高学生们的创新能力。我们要遵从事物的根本,但是更应该在遵从事物规律的基础上谋求创新,因为落后就要挨打。在初中物理课堂上,我们可以借助建立物理模型的过程,鼓励学生们进行创新。模型不是固定的,作为教师,我们要引导学生们向科学空白的领域发展。这样不仅提高了他们的学习积极性,同时也培养了他们的创新能力。

(3)物理模型可以加强学生们团结合作能力。科学的发展时间是漫长的,过程是艰难的。在这过程中我们就要求同学们进行合作,因为物理模型的建立就像是科学的发展,布满了荆棘。只有同学们进行协作,成功的几率才会更高。这样不仅能够建立物理模型,同时能够增进师生之间的友谊。

三、物理模型分类

初中物理中,我们学习了电学、力学、光学和热学。这些题目的解题方法都是不一样的,但是每一类却又是一样的,这就要求我们学会总结,在总结中建立模型,提升自己。

(1)计算题中的物理模型。①某个电阻接在4V的电路上,通过它的电流是200mA,若通过它的电流为300mA时,该导体的电阻是多少?它两端的电压是多少?②把电阻R1接入电压保持不变的电路中,通过R1的电流为2A,R1消耗的功率为P1,把R1和R2并联接入该电路中,电路消耗的总功率为P2,且P2=2.5P1。若把R1与R2串联后仍接入该电路中,电路中,电阻R2消耗的功率为7.2瓦,则电阻R1的阻值是多少?

上面两道例题的特点分别是:一个电阻,电路是变化的;两个电阻,电路是变化的。这类型的题目有个共同点,那就是由不变到变化。像这种问题,我们就可以建立一种新的解题模型:先解原电路,将原电路中所给信息全部挖掘出来后,进行新电路的计算,从而将问题中所需要的信息全部列出来。通过这样模型的建立,我们可以有一个很清晰的思路,即碰到这种题目时候应该先算什么,后算什么,不致乱了阵脚。有的同学的空间想象能力很差,他们对于电路的构造不清楚。有了模型之后,就可以帮助同学们一步一步地将题解出来,达到豁然开朗的效果。

(2)实验题中的物理模型。初中物理的另一个重点和难点就是实验题。大家都知道,物理这门学科最早是从实验发展起来的,所以说实验才是物理之本。例如:小明家买的某品牌的牛奶喝着感觉比较稀,因此他想试着用学过的知识测量一下这种牛奶的密度,请你说说他应该怎么做?①首先明白实验原理:漂浮条件,阿基米德原理。②然后选择实验器材:刻度尺,粗细均匀的直细木棒,一段金属丝,烧杯,水,牛奶。③然后构思实验步骤:在木棒的表面均匀地涂上一层蜡,并在木棒的一端绕上一段金属丝做成密度计,用刻度尺测出其长度,再找来一个足够深的容器盛水。将密度计放入盛水的容器中,使其竖直漂浮在水中,并测量出露出水面的高度h,然后利用浮力公式就可以将牛奶的密度计算出来了。

篇12

物理学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,把多因素的问题变成多个单因素的问题。每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,分别加以研究,最后再综合解决,这种方法叫控制变量法。它是科学探究中的重要思想方法,广泛地运用在各种科学探索和科学实验研究之中。

在初中常见实例如:探究琴弦发声的音调与弦粗细、松紧、长短的关系等;探究影响力的作用效果的因素;探究滑动摩擦力与哪些因素有关;探究二力平衡的条件;探究压力的作用效果与哪些因素有关;探究液体内部的压强与哪些因素有关;探究浮力的大小与哪些因素有关;探究动能(或重力势能)与哪些因素有关等;探究影响液体蒸发快慢的因素;探究物体吸热与物质种类、质量、温度变化的关系等;探究影响电阻大小的因素;探究电流与电压、电阻的关系;探究影响电流做功多少的因素;探究影响电流的热效应的因素;探究电磁铁的磁性与哪些因素有关;探究影响感应电流方向的因素;探究通电导体在磁场中受力的方向与电流的方向、磁感线的方向的关系等。

二、转换法

物理学中对于一些看不见摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识或用易测量的物理量间接测量,这种研究问题的方法叫转换法。所谓“转换法”,主要是指在保证效果相同的前提下,将不可见、不易见的现象转换成可见、易见的现象;将陌生、复杂的问题转换成熟悉、简单的问题;将难以测量或测准的物理量转换为能够测量或测准的物理量的方法。初中物理在研究概念规律和实验中多处应用了这种方法。

在初中常见实例如:可以通过敲动音叉所引起的乒乓球的弹开来说明发声体在振动;影子的形成可以证明光沿直线传播;月食现象可证明月亮不是光源;物体发生形变或运动状态改变可证明此物体受到力的作用;在测量滑动摩擦力时转换成测拉力的大小;通过小桌陷入沙坑的深浅来比较压力的作用效果;马德堡半球实验可证明大气压的存在;运动的物体能对外做功可证明它具有能;研究影响动能大小的因素时,物体动能的大小无法直接测量和比较,通过比较物体滚到斜面底端对其它物体做的功的多少,间接比较动能的大小;扩散现象可证明分子做无规则运动;铅块实验可证明分子间存在着引力;雾的出现可以证明空气中含有水蒸气;用加热时间长短来显示吸收热量的多少;研究电流时通过电流的热效应和磁效应去研究;研究磁场时用放在磁场中的磁体会受到力的作用去研究;指南针能指南北可证明地磁场的存在;可以通过电磁铁吸引铁钉的多少来显示电磁铁的磁性强弱等。

测量仪器:秒表、电流表、电压表、电阻表、弹簧测力计、气压计、微小压强计、温度计、托盘天平、电能表、测电笔等都是转换法的体现。

三、等效替代法

等效替代法是在保证某种效果(特性和关系)相同的前提下,将实际的、复杂的物理问题和物理过程转化为等效的、简单的、易于研究的物理问题和物理过程来研究和处理的方法。

在初中常见实例如:把不易分析的复杂电路简化为简单的等效电路;研究串、并联电路电阻的关系时引入总电阻(等效电阻)的概念;研究同一直线上二力的关系时引入合力;在研究平面镜成像实验中,用两根完全相同的蜡烛,用未点燃的蜡烛等效替代另一根点燃的蜡烛的像,用玻璃板等效替代平面镜等。

四、建立模型法

即将抽象的物理现象用简单易懂的具体模型表示。在初中常见实例如:研究运动时建立匀速直线运动的模型;研究液体压强时用液柱模型;研究连通器原理时用液片模型;用简单的线条代表杠杆;研究光现象时用到光线模型;研究磁现象时用到磁感线模型;电路图是实物电路的模型;研究肉眼观察不到的原子结构时建立原子核式结构模型等。

五、类比法

在认识一些物理概念时,我们常将它与生活中熟悉且有共同特点的现象进行类比,以帮助我们理解它。在初中常见实例如:内能与机械能类比;用弹簧连接的小球类比存在着相互作用力的分子;在研究电流时,用水流进行类比;认识电压时,用水压进行类比;用抽水机类比电源;原子结构与太阳系;水波和电磁波等。

六、理想实验法

理想实验法是在实验基础上经过概括、抽象、推理得出规律的一种研究问题的方法。

在初中常见实例如:伽利略斜面实验;推导出声音不能在真空中传播;推导出牛顿第一定律;推导出电荷的种类等。

七、比值定义法:

比值定义法就是用两个基本的物理量的“比”来定义一个新的物理量的方法。

在初中常见实例如:速度、密度、压强、功率、比热容、热值、电流等概念公式采取的都是这样的方法。

八、积累法

在测量微小量的时候,我们常常将微小的量积累成一个比较大的量。

在初中常见实例如:测量一枚大头针的质量;测量出一张邮票的质量;测量出心跳一下的时间;测量出导线的直径等。

九、比较法

比较法是通过对不同的物理概念、定义或事物进行比较,发现它们之间的内在联系和根本区别,找出研究对象的相同点和不同点,从而进一步揭示事物的本质属性,它是认识事物的一种基本方法。

在初中常见实例如:比较惯性和惯性定律的区别;比较蒸发和沸腾的特征;比较汽油机和柴油机的结构和工作原理;比较发电机和电动机的结构、原理、能量转化;比较电压表和电流表的使用规则等。

十、归纳法

归纳法是从个别性知识,引出一般性知识的推理,是由已知真的前提,引出可能真的结论。

在初中常见实例如:在日常生活中了解到各种声音都是由于物体振动产生的,从而归纳出:一切发声体都在振动的结论;通过铜、铁、铝、银等金属能导电归纳出金属都能导电等。

友情链接