时间:2023-07-06 09:30:53
引言:寻求写作上的突破?我们特意为您精选了4篇化学品风险评估范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
1.1化学品综合信息数据库
1.1.1欧洲化学物质信息系统ESIS化学物质信息系统ESIS是欧洲化学品管理局ECB开发的通过化学式、CAS编号或化学名称进行搜索的一个软件系统。ESIS包括欧洲现存商业物质的清单EINECS、高产量化学品HPCV以及低产量化学品LPCV,国际通用化学物质信息数据库IUCLID。其中,IUCLID提供2604种化学品的数据信息。技术报告中包括:一般性信息、物化数据、环境归趋、生态毒性、毒性、参考文献等方面信息。其中生态毒性主要包括对水生生物,包括水生植物、鱼类、无脊椎动物的急慢性毒性、以及对微生物的毒性、对陆生生物的毒性、生物转化等。
1.1.2高产量化学品信息系统HPVIS高产量化学品信息系统HPVIS通过高产量HPV化学品“挑战”项目为提供美国合成的HPV化学品的健康和环境效应信息的数据库。HPVIS数据库包括基于健康和环境效应数据的HPV物质的危险表征资料,HPVIS还包括基于风险的优先HPV化学物质资料,以便于随后的资料收集或者基于潜在风险的管理行为。HPVIS收集的资料包含以下四个方面的50个指标:物化特性、环境归趋和迁移、生态毒性、哺乳动物健康效应。
1.1.3TOXNET数据库TOXNET毒理学数据库由美国国家医学图书馆NLM主办,涵盖毒理学、有害化学品、环境卫生、有毒物质释放等相关领域的信息。其中,TOXLINE、DART为文献型数据库,HSDB、IRIS、CCRIS、CCRIS、ChemIDplus、GENE-TOX等数据库为事实型数据库,所有内容均免费获得。TOXNET数据库检索途径多,收录的毒理学数据和资料广泛、交互性好。TOXNET中的综合风险信息系统I-RIS包含人体健康风险评估中用到的资料,包括500多个化学物质的数据记录。IRIS数据库内容集中在危害鉴定和剂量-效应评价上。IRIS提供的数据包括USEPA的致癌分类表、个体风险、斜率因子、口服参考剂量和吸入参考浓度等。卓仁杰和万晓霞对TOXNET毒理学数据库进行了较为详细的介绍,这里就不进行赘述了。
1.1.4潜在有毒化学品国家登记中心NRPTC我国在以通讯员的身份加入了国际潜在有毒化学品登记中心IRPTC后,于1986年开始建设我国的潜在有毒化学品国家登记中心NRPTC,即我国的有毒化学品信息系统。NRPTC数据库于1990年7月在中国环境科学研究院建成并正式投入运行,为国家“七五”重点科技攻关课题。该系统包括国内和国外两部分。其中,国内部分包括55种有毒化学品的优先登记名单;国外部分包括联合国环境规划署提供的IRPTC的全部数据以及美国NIOSH提供的RTECS数据库的8.7万种化学品毒性资料。NRPTC与风险评估相关的子库包括:物化性质、环境效应、人体健康、对陆生/水生物毒性等资料[13-14]。
1.1.5化学品安全数据表数据库为履行联合国《全球化学品统一分类和标签制度》GHS和应对欧盟并实施的《关于化学品注册、评估、许可和限制制度》REACH法规的仲裁,我国还建设了化学品安全数据表数据库。化学品安全数据表数据库为我国国内最大数据表数据库,由国家质检总局进出口化学品安全研究中心和中国检验检疫科学研究院开发并进行管理。该数据库包含化学品的理化特性、健康毒性和生态毒理学信息等,现有英文数据信息5545条,中文数据信息1833条。该数据库包括材料安全数据表MS-DS的全部16项信息。
1.2化学品毒理学数据库
1.2.1美国化学物质毒性作用登记RTECS数据库美国化学物质毒性作用登记RTECS数据库是由美国国家职业安全和健康研究所NIOSH管理并的,数据库资料主要围绕评估工人暴露的化学品。这个数据库中包括了超过160000种化学物质,该数据库每年新增2000种新兴化学物质。RTECS数据库中主要包括以下六类毒性数据:直接刺激性、致突变性、对生殖系统的影响、致肿瘤性、急性毒性和多剂量毒性等,每条数据均有文献来源。RTECS为收费数据库,其开放性和共享性不如以上三个数据库。在2001年之前RTECS数据库由美国NIOSH免费提供,目前,RTECS由加拿大职业健康安全中心CCOHS提供,只能通过收费订阅方式获得。
1.2.2欧洲水生毒性EAT数据库欧洲化学品生态毒理学和毒理学中心ECETOC成立于1978年,是一个科学的,非盈利性质的非商业协会。作为一个独立的机构,ECETOC通过评估和公布有关化学品的生态毒理学和毒理学方面的信息来帮助业界降低化学品生产和使用过程中的对环境和健康产生的不良效应。ECETOC的水生毒性EAT数据库包括化学物质对淡水和海水环境中水生生物的毒性。收集的数据原则为测试方法中必须描述是否测定了毒物的浓度,主要收集了1992到2000年的公开发表数据资料。EAT数据库软件可以免费获取,包括600种物种的5460个条目,每种物质的每个条目包括50条信息,涵盖受试物种、测试条件、毒性指标、测试结果以及参考文献等。
1.2.3美国ECOTOX数据库ECOTOX数据库提供水生生物、陆生植物以及野生动物的化学物质毒性信息。ECOTOX数据库主要由美国环保局USEPA、研究与发展办公室ORD、国家卫生和环境效应研究室NHEER的中部大陆生态部MED创办。ECOTOX综合以下三个方面的数据库:AQUIRE、PHYTOTOX和TERRETOX,分别包含水生生物、陆生植物和陆生野生生物的来自于经过同行评议的文献中的毒性数据。其中,AQUIRE数据库于1981年开始创建,起初仅包括实验室的急性毒性数据,但是在20世纪90年代有较大变化,增加了野外和慢性暴露数据。1987年通过电话的形式向政府部分的相关使用人员提供数据信息,1999年开始以互联网的形式公开向公众提供数据信息。
1.2.4我国的化学物质毒性数据库化学物质毒性数据库由中科院计算机网络信息中心承担建设的综合科技信息数据库的重要组成部分。其中,“化学品安全特性数据库”主要包括常见化学物质的物化特性数据,目前含有7300多条记录,包括易燃性,易爆性,毒性,环境标准等。“化学物质毒性数据库中文文献”针对国内公开发行的约120多种的科学期刊论文,并按照一定的数据规格,由专家审核、校正数据。数据工作于2003年启动,目前含有3300余条记录。“化学物质毒性效应数据库”内容有:刺激性数据、致变、致癌与生殖效应数据、毒性数据,还有环境与职业标准、美国环保局评论和文件等,含150000多个记录。
1.3国外主要数据库的优缺点比较表1给出了上述国外数据库的优缺点比较情况。其中,欧盟的ESIS数据库信息资料相对丰富,且可以从官方网站下载到较为完备和权威的风险评估资料,可用于以风险评估为目的的数据库构建;美国的ECOTOX数据库提供较为详细、完备的水生毒理学数据信息,为化学品的生态风险评估的效应评价提供了基础性资料;而TOXNET数据库中的IRIS数据库内容集中在健康风险评估中的剂量-效应评估;美国的RTECS数据库提供的数据资料相对详细,但缺乏开放性和共享性;欧洲的EAT数据库提供较为直观的水生毒理学数据信息,但缺乏近十年的毒理学资料。
1.4海洋环境POPs数据库构建的必要性分析我国的化学品风险评估用数据库建设起步较晚,目前已有的相关的数据库主要包括:有毒化学品信息系统、化学品安全数据表数据库及化学物质毒性数据库。主要存在以下几个方面的问题:目标化学物针对性不强、数据库中用于风险评估的数据信息不全面,缺乏我国生物物种的毒理学信息资料等。如果直接采用国外数据库中的资料,可能会因为地域间物种差异性而对研究结果产生影响。因此,可充分借鉴并利用现有的国外数据库,尽早建立适合我国国情,且系统、完善、使用方便的风险评估用海洋环境POPs数据库。近几年来,我国相继启动了POPs风险评估相关的研究项目,如973课题“持久性有机污染物生态风险评估模式和预警方法体系”、“区域复合污染的生态风险评估、预警与调控策略”。本研究依托于国家海洋局海洋公益性项目“新型持久性有机污染物监测与风险评估体系示范研究”,拟构建基于化学品风险评估的海洋环境POPs数据库MPOP-TOX。
2基于风险评估的MPOP-TOX数据库的构建
2.1POPs名单的确定构建的MPOP-TOX数据库收录的化合物拟遵循以下两个原则:1收录的化合物源自POPs公约名单或为新型/潜在的POPs2004年11月11日,《关于持久性有机污染物POPs的斯德哥尔摩公约》POPs公约对我国正式生效,POPs规定了需淘汰和削减的12种类POPs,即:滴滴涕、六氯苯、氯丹、灭蚁灵、艾氏剂、狄氏剂、异狄氏剂、毒杀芬、七氯、多氯联苯、二噁英和呋喃。2009年5月,POPs名单中又新增了十氯酮、α-六氯环己烷、β-六氯环己烷、林丹、五氯苯、六溴代联苯、六溴联苯醚和七溴联苯醚、全氟辛烷磺酸PFOS和其盐类以及全氟辛烷磺酰氟、四溴联苯醚和五溴联苯醚等9种POPs。2011年4月,公约第五次缔约方大会上硫丹又被增列至《公约》名单中,使公约受控POPs增加到22种类。最新研究表明,多环芳烃PAHs,四溴双酚ATBBPA、六溴环十二烷HBCD、全氟辛酸PFOA、三丁基锡TBTs、烷基酚等新型或潜在POPs也日益引起科学界和环境管理部门的重视。因此,上述化合物也收录于MPOP-TOX数据库。2收录的化合物为我国海洋环境优先控制污染物我国的环境优控污染物筛选工作起步较晚,仅于20世纪90年代提出了水环境优控污染物名单,本研究通过借鉴欧盟等国家和OSPAR组织等研究方法,将各种潜在污染物的排放情况、暴露情况、持久性、生物富集能力、一般毒性、“三致”毒性等作为筛选排序因子,采用基于监测和模型相结合的优先指数法COMMPS对各筛选因子权重赋值以筛选我国海洋环境优控污染物。优先指数法如式1所示式中:F1为检出频率因子,指多个污染源监测数据中污染物的检出次数占所有监测样品数量总和的比例;F2为超标程度因子,指目标污染物最大等标排放浓度与全部被评价污染物的最大等标排放浓度之比值。式中:Ci为化合物i的监测浓度第75百分位数;Cmin为用于计算暴露指数的化学物i的最小浓度值;Cmax为用于计算暴露指数的化学物i的最高浓度值;WF为权重系数,缺省值为10。EFFi=0.5×EFSd+0.3×EFSi+0.2×EFSh4式中:EFSd为直接效应指数;EFSi为间接效应指数;EFSh为人体健康效应指数。根据上述方法,利用国家海洋局多年的监测数据及部分文献数据,求算了我国近岸海域150余种化合物的综合风险指数值,并进行了排序。根据综合风险指数值的排序结果分析,并综合考虑我国当前海洋环境监测评价现状及管理需求等因素,确定11类20种化合物作为优控污染物,其中有机物包括:有机汞、三丁基锡、3种多环芳烃、3种有机卤代烃、狄氏剂、4种有机磷农药、2种PCBs、壬基酚和五氯酚。因此,除上文提及到的收录的POPs名单的化合物之外,MPOP-TOX数据库收录的化合物还包括有机汞、硝基苯、毒死蜱、甲基对硫磷、马拉硫磷、久效磷和五氯酚等筛选的我国海洋环境优先控制污染物。
2.2MPOP-TOX数据库构建的基本框架通过对有毒有害化学品的国内外风险评估相关的数据进行质量评估、收集和筛选,拟构建的MPOP-TOX数据库资料包括POPs的物化性质、环境迁移、转化和归趋等环境行为参数、环境暴露浓度、水生生物毒性、人体健康毒性五个方面。我国MPOP-TOX数据库构建的基本框架如图1所示。
2.3拟构建的MPOP-TOX数据库中的要素信息
2.3.1物化性质编辑并整理POPs的基本信息和物化特性参数,内容包括中英文名称、其他名称、CAS编号,EIENCS编号、RTECS编号、类别、分子量、分子式、结构式、SMILES编码、熔点、沸点、水溶解度、蒸汽压等。以上信息主要参考的数据库包括:美国TOXNET数据库中的ChemIDplus子数据库和HSDB子数据库、ESIS数据库的IUCLID文件等。若以上数据库中无相关参数,则查阅国内外公开发表的文献,仍无相关报道则基于定量结构-活性相关QSAR模型USEPAEPISUITETMv4.10软件预测。对于新兴化学物质而言,EPISUITE软件提供了一种方便、快捷的获取其物化性质、生物毒性等指标的方法,可以估计化学物质的物化特性、环境行为、生物毒性等。估计程序包括预测辛醇/水分配系数、土壤/沉积物吸附系数、亨利定律常数、水溶解度、生物富集因子、生物降解性、水解速率、水生生物毒性等子程序。
2.3.2环境行为编辑并整理POPs的环境迁移、转化和归趋等环境行为参数,内容包括辛醇/水分配系数KOW、辛醇/空气配系数KOA、亨利定律常数KH、酸解离常数pKa、有机碳吸附系数KOC和降解信息如:水解、光解、生物降解以及KOW、KOA、KH、pKa、KOC等环境行为参数,主要参考TOXNET数据库中得HSDB子数据库、ESIS的IUCLID文件。若以上数据库无相关参数,则查阅国内外公开发表的文献,仍无相关报道则使用EPISUITE软件预测。3.3.3环境暴露浓度编辑并整理POPs在海洋环境各介质中水体、沉积物和生物体的浓度,数据收集主要基于近年来的国家海洋局海洋环境污染监测/调查数据和本项目的监测/调查结果,同时补充国内外公开发表的文献研究结果。
2.3.4水生生物毒性编辑并整理POPs对海水以及淡水生物的生物富集、急/慢性毒性数据,并注明物种在环境中的分布情况,对广泛分布于我国海域环境中的受试生物毒性数据进行重点收集和筛选。据调查,我国海域有记录1922~2006年的海洋生物种类多达22560种,主要包括:腔肠动物、扁形动物、环节动物、软体动物、节肢动物、棘皮动物、脊索动物、硅藻、甲藻以及绿藻等十余个门类,占所有物种总数的70%左右。本数据库拟收集的受试生物门类包括以上我国海域十余个门类的受试生物。拟收集常见的物种类别包括:鱼类、甲壳类、藻类、软体类、昆虫类、两栖类、蠕虫类等。收集的信息、条目主要包括:生物物种编号、物种学名、物种俗名、物种类别、门、纲、目、科、属、种、物种的分布海域、生物龄、生物的生命阶段、毒理学指标、效应、暴露时间、化学分析、测试导则、暴露的介质类型、测试地点、pH、温度、盐度、参考文献信息等。表2给出了拟收集的毒性效应类型以及相应的含义。数据主要来源为USEPA的ECOTOX数据库、国内外公开发表的文献、本项目毒理学研究结果及QSAR方法预测补充的新型POPs水生毒理学数据。
关键词 :化工仓储企业 ;定量风险评 ;化学有害因素
随着中国化工行业的大力发展,危险化学品等各种原材料需求也相应增加,为危化品仓储业的发展提供了契机。危险化学品,特别是液体化工产品种类繁多,具有易燃易爆、腐蚀性、高毒性等特点 [1],对作业工人的身心健康造成影响。本研究运用定量风险评估法对某化工仓储企业工作场所化学有害因素进行了风险评估,为企业职业健康安全管理提供参考。
1对象与方法
1.1对象 江苏某化工仓储企业
经劳动卫生学调查,包括车间、岗位、工人数、工人工龄,工人接触的化学有害因素和接触时间、频率 ;并对工作场所化学有害因素进行检测。
1.2化学有害因素检测
按《工作场所空气中有害物质监测的采样规范》(GBZ159—2004)采集样品 ;按照《工作场所空气有毒物质测定》(GBZ/T 160)规定进行检测。
1.3定量风险评估
企业化学有害因素按《工作场所化学有害因素职业健康风险评估技术导则》(GBZ/T 289—2017)定量风险评估法进行风险等级分级。分为非致癌风险评估和致癌风险评估 :非致癌风险评估根据工作场所化学有害因素浓度,工人日接触时间、频率、工龄,平均接触时间等,计算接触浓度,再通过化学有害因素的参考接触浓度,计算危害商数(HQ),对多种化学有害因素的 HQ 进行求和,得到多种化学有害因素危害指数(HI)。当 HI 大于1 时,对人体健康产生危害的风险不可接受 ;相反,则可接受。致癌风险评估,根据化学有害因素的吸入单位风险、工人接触工龄以及人的终身期望寿命,计算致癌的吸入超额个人风险(IR),将 IR 的计算结果与 EPA规定的超额风险可接受水平1×10-4 进行比较,当致癌个人风险低于1×10-4 时,风险可接受 ;当风险大于等于1×10-4 时, 风险不可接受。
1.4统计分析
采用 Excel 2013 软件建立数据库,并进行统计分析。
2结果
2.1基本概况及化学有害因素识别
该企业的生产工艺为危险化学品槽船运输交换站化工罐机泵站定量罐装站或汽车装卸台桶装外运。工人在罐区的交换站、化工罐和机泵站巡检,以及在罐装站和汽车装卸台进行桶装作业时,接触化学有害因素,主要为苯、甲苯、二甲苯、环己烷、溶剂汽油、苯酚、丁醇,接触时间2.33~2.83h/d,接触人数为20 人,平均工龄为2a。
2.2化学有害因素检测结果
经检测该企业工作场所存在的化学有害因素苯、甲苯、二甲苯、环己烷、溶剂汽油、苯酚、丁醇等化学有害因素检测浓度均符合国家职业接触限值的要求。结果见表1。
2.3某化工仓储企业职业健康风险评估
2.3.1风险因子筛选
经检索美国 EPA 的综合风险信息系统(Integrated Risk Information System)中,该化工仓储企业化学有害因素仅苯、甲苯、二甲苯、环己烷可查阅到以吸入方式进入人体所致部分健康危害的毒性参考值(RfC 或 IUR),其他化学有害因素溶剂汽油、苯酚、丁醇由于缺少相应的 RfC 值,无法进行定量风险评估。
2.3.2非致癌性风险评估结果
评估结果显示外操岗工作人员接触的苯、甲苯、二甲苯和环己烷的联合危害商数 HI<1,为风险可接受,见表2。
2.3.3致癌性风险评估结果
评估结果显示,外操岗苯的致癌吸入超额个人风险 IR 为0.42×10-4,小于 EPA 规定的超额风险可接受水平1×10-4,判定为低风险水平,可接受。见表3。
3 结 论
化工仓储企业存储的危险化学品种类繁多,各种化学品的毒性不同,可作用人体不同的靶器官,起到联合的毒副作用,如何采用一种有效的风险评估模型,对各种危险化学品产生的危害进行综合、客观的评估,为企业职业健康管理工作提出科学的、积极的建议,是本研究的初衷。参照《工作场所化学有害因素职业健康风险评估技术导则》(GBZ/T 289— 2017),采用定量风险评估法对该企业存在的化学有害因素进行风险评估。评估结果显示,苯、甲苯、二甲苯和环己烷联合危害商数 HI 为0.96,小于1,属于风险可接受,其中苯系物联合作用产生的危害商数 HI 起了主导作用,产生的 HI 已经接近限值1。虽然工作场所的苯系物浓度均小于检出限,但研究表明低剂量的苯系物同样会对工人健康产生不良影响 [2-3],本次评估结果表明,苯系物产生的风险比环己烷高,因此企业在职业健康管理过程中,应将苯系物作为关键因子,加以管控。
定量风险评估结果表明,该企业目前的职业健康管理是有效的,但职业健康是一个长期的、动态管理的过程,企业的管理应从以下几个方面不断持续改进 :①化工仓储企业在生产过程中,运输的物料存在腐蚀性,管道、阀门等在长期高负荷运转中会受到腐蚀而导致物料泄漏,因此应完善设备的日常巡检与维护制度,尤其是在管道的连接部分、阀门区、泵区,发现问题及时解决,杜绝跑、冒、滴、漏及意外事故的发生 ;②构建职业健康安全管理体系,稳步推进工程防护、个人防护用品发放和佩戴、职业健康监护、职业健康教育和告知、职业健康管理制度的完善和落实等各方面的工作。
参考文献
[1]杨桂云,马玉鹏,田鹤,等 . 液体化工品仓储库风险分析及安全措施研究 [J]. 现代化工,2015,35(10):5-7.
[2]杜娟,陈长喜,张燕鸣,等 . 低剂量苯及苯系物接触对肝功能指标的相关性研究 [J]. 现代实用医学,2016,28(1):53-54.
[3]黄丽静,于碧鲲,郭志伟,等 . 低浓度苯职业接触健康危害研究 [J].实用预防医学,2015,22(8):978-980.
世界各国开展化学物质筛查与风险评估工作情况各不相同,其中发达国家起步较早,相关基础研究较为全面,成果也较为显著。
1.1加拿大国内物质清单
加拿大环境部(EnvironmentCanada,EC)于1975年出台了第一部联邦环境保护法———《环境污染法》(TheEnvironmentalContaminantsAct,ECA),提出“新物质”在引入前应进行“通报”,但在政府部门通过已有信息或者其他来源获悉该物质进入环境的量会对健康和环境造成危险时,会要求企业提交相关资料和进行测试。1988年,ECA被《环境保护法》(CEPA-1988)替代,CEPA-1988提出了对“新物质”在进口和生产前进行通报和评估的要求,同时隐含了系统测试需优先考虑到物质毒性的规定,要求卫生部长和环境部长建立一个优先考虑物质的清单,简称PSL(PrioritySubstancesList),清单中的物质得到最高关注并对这些物质的风险进行评估。PSL-1在1989年2月,包含44种物质;PSL-2在1995年12月,包含25种物质。1999年修订出台《环境保护法》(CEPA-1999)明确要求加拿大政府开展对“国内物质清单(DomesticSubstancesList,DSL)”中化学物质的分类工作,以识别出具有最大暴露潜能的物质以及具有持久性/蓄积性和毒性(PBT、PT、BT)的物质。目前,加拿大已对大约23000种物质DSL中的4000多种完成了分类及风险评估,筛选出包含137种(类)的第一期有毒物质名录(ToxicSubstancesList-Schedule1)。
1.2欧盟高关注物质(SVHC)筛查
欧盟在2007年6月实施《化学品的注册、评估、授权和限制》(RegulationconcerningtheRegistration,Evaluation,AuthorizationandRestrictionofChemicals,REACH),使欧盟在化学品管理中整体引入了风险评估的概念。REACH的主要内容包括:注册、评估、许可和限制四个层次。即要求年产量或进口量超过1吨的所有化学物质需要注册,年产量或进口量10吨以上的化学物质还应提交化学安全报告进行档案评估和物质评估。对具有一定危险特性并引起人们高度重视的化学物质的生产和进口进行授权许可,包括CMR(致癌性、致畸变性和生殖毒性物质),PBT(持久性、生物累集性和毒性化学物质),vPvB(高持久性、高生物累集性化学物质)等。如果认为某种物质或其配置品、制品的制造、投放市场或使用导致对人类健康和环境的风险不能被充分控制,将限制其在欧盟境内生产或进口。REACH已经对市场上在1971年到1981年9月18日间上市流通的大约10万种化学物质实施了安全性评价。REACH明确规定,高关注物质(SubstanceofVeryHighConcern,SVHC)将逐步列入法规附件XIV的需授权物质清单中。一旦某物质列入附件XIV,则其进口、生产、使用等行为都需要得到授权方可进行。SVHC物质是指具有下列特性之一的物质:①致癌,致畸变性和生殖毒性(CMR);②具有持久性,生物累积性和毒性;③非常持久和生物累积(vPvBs);④严重或对环境或人体健康造成不可挽回的损害,破坏荷尔蒙系统的物质。目前,REACH法规SVHC名单已经增加至169种,合计13批;附件XVII限制物质清单物质有64种;附件XIV授权物质清单物质有31种。
1.3日本化审法对有毒有害物质的筛查
日本已经建立了一系列化学物质监管法律体系,其核心是化学物质审查和生产控制法(ChemicalSubstanceControlLaw,CSCL),简称为化审法。目前,化审法控制的化学物质分为4类。①第一类特定化学物质(ClassI):具有持久性、高生物累积性(BCF>5,000),且对人类具有持久的毒性风险的化学品。该类化学物质管理严格,在生产或进口这些化学物质前必须获得许可。②第二类特定化学物质(ClassII):对人类或环境具有持久的毒性风险的化学品,生产、进口被政府严格控制,使用时必须采取防控措施。③监视化学物质(MonitoringChemicalSubstances):被证实具有持久性、高生物累积性,但长期毒性特征未知的化学物质。生产和进口商要向政府每年报告这些物质的实际生产和进口数量,以及预期用途,必要时由政府指导生产商和进口商调查这些物质的危害特性。④优先评价化学物质(PriorityAssessmentChemicalSubstances):具有潜在对人类或环境有持久的毒性风险的化学品。目前,ClassI包含31种(类)、ClassII有23种(类)、监视化学物质包括39种(类)、优先评价化学物质有196种(类)。
1.4国际通行化学物质风险评估框架
通过比较上述发达国家化学物质风险评估工作,可以发现当前国际公认的化学物质风险评估主要包括危害性评价和暴露评价两部分,即化学物质风险评估不仅要考虑化学物质具有的固有危害性(剂量-效应评价),还要评价环境、人类和这些化学物质接触可能性(暴露)。化学物质风险评估流程主要有化学物质危害识别、剂量-效应评价、暴露评价、风险综合表征。
2我国化学物质危害筛查与风险评估方法
我国化学物质风险评估起步较晚,在借鉴基础上,初步形成了化学物质危害筛查与风险评估的技术方法。
2.1化学物质危害筛查方法
我国化学物质危害筛查一般采用“标准比对法”。主要任务是确定筛查指标、制定筛查标准以及综合判别标准。2.1.1筛查指标。主要考虑化学物质对人体健康和生态环境系统产生的慢性毒性危害,结合国际通行的关注重点确定了我国筛查指标,主要包括持久性、生物蓄积性和毒性三个方面。持久性判断指标包括半衰期、生物降解性、水解和光解等。生物蓄积性从生物富集系数BAF、生物浓缩系数BCF、正辛醇-水分配系数Kow等予以评价。毒性包括以水生生物毒性为主的生态毒性、致癌性、致突变性、生殖发育毒性和内分泌干扰性等项目。2.1.2筛查标准。我国化学物质危害筛查首先采用单项指标筛查,对每种关注的危害特性分别制定筛查指标。①持久性(P)、生物蓄积性和毒性的筛查采用《持久性、生物累积性和毒性物质及高持久性和高生物累积性物质的判定方法》(GB/T24782-2009);②内分泌干扰性由于当前国际、国内研究尚不深入,缺乏统一判定方法,故我国暂未建立特定的筛查指标,而是使用各个国家或者国际机构推荐的相关物质名单进行判别。2.1.3综合判别标准。综合判别指标是在化学物质单项危害指标筛查基础上,进一步对化学物质进行筛查,应用该指标优选筛查出高关注有毒有害化学物质,主要从生产使用情况和危害性等两方面进行考虑。2.1.4筛查流程。我国化学物质危害筛查一般的流程分为筛选准备、数据收集、筛选对比和确定高关注化学物质目录等四个步骤。1)筛选准备阶段:制定筛查方案,目标对象的分析、确定等。2)数据收集阶段:危害性数据收集,QSAR模型分析,质量评估。3)筛选对比阶段:筛查标准应用和Filter筛查。4)确定高关注化学物质目录:通过应用综合判别标准确定需要进行进一步风险评价的高关注化学物质。
2.2化学物质风险评估
对具有高危害性的高关注化学品,开展全面生态风险和健康风险评估,识别出在不同生产工艺、使用领域、使用方式等方面存在的风险,为科学实施针对化学品生产使用的限制、淘汰等管理措施提供科学依据。我国化学物质风险评估按以下顺序进行:风险评估准备、危害效应评估及暴露评估、风险表征(包括人体健康和生态环境两方面风险),最后得出风险评估结论。就风险表征而言,主要包括生态风险和健康风险评估两部分。
3结论与展望
尽管化学工业是我国重要基础工业和支柱产业,对推动经济发展、方便人民生活做出了重要贡献。但是化学品也是一把双刃剑,在其生产、使用、排放和废弃处置过程中会产生环境污染,对人体健康和生态安全产生危害。对化学品进行风险评价筛选的目的是对化学品实行无害化管理战略,做到预防为主、源头控制、全程监管、风险防患,将化学品的生产安全、健康和生态环境危险降至最低限度。
作者:胡玉琢 石运刚 单位:重庆市固体废物管理中心
【参考文献】
[1]马天杰,张淼.潜在风险优先行动,关于《中国现有化学物质名录2009》的分析,绿色和平,2010.6.
(一)化学品风险评估标准化学品风险评估是化学品风险管理的核心技术手段,我国已逐步引入了风险评估的管理概念。2010年环保部颁布实施的《新化学物质管理办法》强调了新化学物质管理要实现由危害评估向风险评估的转变,新化学物质常规申报所需材料中也包括风险评估报告。2011年国务院修订的《危险化学品安全管理条例》中也要求对危险化学品进行环境危害监督和环境风险评估。基于化学品管理工作对风险评估提出的日益严格的要求,亟需制定统一有效的化学品风险评估标准,为相应法规的实施提供技术支撑。
(二)化学品测试条件标准化我国已转化吸收了大量国际通用测试方法标准并研制了基于我国特有物种的自主创新测试方法标准,而受试动物和测试环境等条件因素对这些标准的执行具有重大影响。目前国内对于用于毒性检测方面的实验动物使用缺乏相关标准,这对于实验数据的国际互认具有一定的影响。我国测试条件的标准化工作目前处于起步阶段,相对薄弱,今后会加强对测试条件标准化的研究工作,进一步规范测试条件,推动实验数据的国际互认。
(三)化学品事故应急处理标准近年来化学品安全事故屡有发生,如物流领域的圆通毒邮件事件和环境保护领域的“山西特大苯酚泄露”等,对人民生命财产造成巨大损失。化学品事故与其它事故相比,其后果更严重,因此怎样将化学品事故所造成的影响和损失减少到最小(即应急处理),已成为全社会所关注的问题。我国对化学品事故应急处理已有一定的研究基础和实际经验,但尚未相关标准,化学品事故应急处理亟待规范。(四)化学品风险分析技术标准国际上对化学品管理的研究持续进行,联合国还专门设立了相关论坛。人类对化学品及其影响的认知仍处于初级阶段,目前化学品的人类试验数据不足1/3,同时动物福利越来越被关注,化学品风险分析技术的研究从未间断。化学品风险分析技术标准研究将越来越侧重于动物替代方法标准。
二、化学品管理标准化工作存在的问题
虽然我国化学品管理标准化工作已经取得较大成绩,但仍存在一些问题,工作形势依然严峻。
(一)法律法规较为薄弱,标准执行力度有待加强我国化学品管理方面的法律较为薄弱,日常化学品管理工作主要依靠标准支撑。目前尚未建立对化学品实施统一、专门的化学品管理国家法律,也没有设立统一的国家级化学品安全管理部门,管理工作主要以各个主管部门颁发的条例和强制性国家标准为依据,这是政策法规和机构机制层面的重要缺失,是导致重复管理或者管理缺失的重要根源。应健全法规体系,协调各层级标准,严格执行,使之发挥应有作用。
(二)化学品环境安全标准建设不足化学品环境安全是指保证公众赖以生存的水、空气和土壤等生产和生活环境的舒适,不被化学物质污染和保证环境质量,保护生态环境中生存的动植物和其他生物,维持生态平衡,避免由于环境污染对当代和后代的生命和健康带来危害。目前中国的水污染、土壤污染和大气污染事件频发,此外生态环境受到化学品的潜在危害,化学物质还在大量进入环境,对野生动物的生长、发育和繁殖造成不可逆转的严重影响,对人类与自然的和谐生态文明建设构成严重威胁。我国环境安全标准建设处于起步阶段,以环保行业标准(HJ)为主,国家标准相对薄弱且较为零散,对化学品环境安全管理工作的支撑作用较为薄弱。
(三)化学品健康安全标准建设不足化学品健康安全指保护在工作场所接触化学品的职业人群健康,保护社会公众的身体健康,防止化学品中毒以及保障食品等消费产品的安全,避免有毒有害化学物质可能对人体健康造成的损害。在我国由化工生产引发的职业病中毒及发病率高,一些高危险化学品和强致癌物的使用没有得到严格的管理和限制,使重大恶性职业中毒时有发生。我国化学品健康安全标准建设基础较为薄弱,应加强针对不同人群的健康安全标准建设,保护一线工作者和消费者等的健康安全。
(四)化学品特性数据缺失和实验室管理标准作用发挥不完全化学品特性数据是化学品风险评估和化学品管理的重要基础和依据,目前国际国内化学品特性数据缺失均较为严重。我国尚未加入数据的国际互认体系,我国的化学品试验数据也未被国际认可,由此造成的数据壁垒也对化学品管理工作造成一定障碍。我国虽已制定了基于OECD的良好实验室规范系列标准,但标准的作用发挥不完全,加入国际互认体系仍需大量工作。
(五)化学品全生命周期管理不足无论是传统的“从摇篮到坟墓”的生产到废弃处置的过程,还是现阶段提出的“从摇篮到摇篮”的化学品循环经济概念,都涉及到化学品全生命周期的管理,而我国现有的标准主要集中在生产和运输等环节,在消费和循环再生等方面管理力度不足,对化学品全生命周期的管理过程有所欠缺。这为化学品的潜在危害暴露埋下了重要隐患。
(六)化学品管理标准更新不及时我国化学品管理工作主要依托于标准和法规政策,但这些法规和标准的更新不够及时。如现行《危险化学品名录》为2003年有国家安全生产监督管理总局颁布实施,在2012年启动了修订工作,但至今未正式实施。国家标准也同样存在相对滞后问题,一是大多数标准标龄较长,标龄5年以上(即2009年及以前)的标准有277项,占比74.3%;二是标准制修订程序和周期较长,从立项到平均耗时3年多,但国际规章修订周期一般为2年(中文版比英文版滞后1年),导致国家标准相对滞后。
三、化学品管理标准化工作发展建议
(一)健全标准体系,强化主管部门协调联动,加强监管力度现阶段化学品管理标准化工作当务之急是加快完善相关法律法规和标准体系,同时要协调各主管部门管理职能,加强各部门间的联动,解决管理职能交叉和空白问题,加强监管力度,消除安全隐患。此外要充分调动行业协会和企业的积极性,配合化学品管理工作。
(二)加强信息化标准建设,促进信息共享中国尚未建成完整统一的化学品信息采集和共享的平台或数据库,各主管部门之间的信息沟通不畅,权威性不够,同时查阅国际数据较为不便,这些都对国内化学品管理工作造成了一定制约。因此加强化学品管理信息化标准建设,促进信息共享和传递,整合和过滤信息资源,统一的化学品管理信息化标准能提高化学品管理的工作效率,优化工作效果。
(三)建立反馈机制我国化学品管理工作是由各主管部门自上而下进行的,在执行过程中遇到的问题和自下而上的诉求暂时没有通畅和统一规范的反馈途径,导致主管部门不能及时了解标准执行效果和基层反馈意见,久而久之会使标准不适应化学品管理工作的发展。因此应建立规范有效的反馈机制,充分收集各相关方对化学品管理标准的意见和建议,及时对相关工作做出相应调整,促使化学品管理工作进入良性循环,促进化学品管理工作的长足发展。