三角函数变换规律范文

时间:2023-07-09 08:23:48

引言:寻求写作上的突破?我们特意为您精选了4篇三角函数变换规律范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

三角函数变换规律

篇1

三角变换是高中数学的重要内容,是历年高考的必考内容,但也是学生们比较头疼的地方,总结起来原因有二。第一,三角公式繁多,记忆时容易出错;第二,即使公式都记住了,用公式解题时不知道该用哪一个公式。本文就针对学生学习时容易出现的问题,探讨怎样巧记活用三角公式进行三角变换。

一、把握公式规律,巧记公式

对三角公式的准确、熟练记忆是进行三角变换的前提,但是三角公式繁多:同角三角函数的基本关系式(8个)、诱导公式(36个)、两角和与差的三角函数公式(6个)、二倍角公式(5个),再加上各组公式的变形,总共有60多个公式。如何才能保证记忆时不出现错误呢?这就要求学生在记忆时不要死记硬背,而是要把握其中的规律,巧记公式。下面,介绍各组公式的记忆方法。

1. 同角三角函数的基本关系式

这组公式常称“三类八式”,即这八个公式分为三大类:平方关系、商数关系和倒数关系。八个公式可画一个六边形来记忆。

记法:①在最长对角线上的两个三角函数的乘积为1。如:tanα・cotα=1;②在3个倒三角形中,上面两个顶点的三角函数值的平方和等于下面顶点上的三角函数值的平方(中心点为1)。如:tan2α+1=sec2α;③任意一顶点上的三角函数值等于与之相邻的两个顶点的三角函数值的乘积。如:sinα=tanα・cosα.

2. 诱导公式

诱导公式看似很多,其实可以概括为一句口诀:“奇变偶不变,符号看象限”。诱导公式左边的角可统一写成k・±α(k∈Z)的形式,当为奇数时,等号右边的三角函数名称与左边的三角函数名称正余互变,当k为偶数时,等号右边的三角函数名称与左边一样;而公式右边的三角函数之前的符号,则把α当做锐角,k・±α为第几象限,以及左边的三角函数之前的符号即为公式右边的符号。

3. 两角和与差的三角函数公式

这6个公式可分为三组,故可分为三组来记忆。每一组的特征都很明显:两角和(差)的余弦:余余、正正、符号异;两角和(差)的正弦:正余、余正、符号同;两角和(差)的正切:分子同,分母异。

4. 二倍角公式

其实,二倍角公式是两角和的三角函数公式当两角相等时的特殊情况。把握住这点,记住两角和的三角函数公式,二倍角公式自然就记住了。有规律有方法地巧记公式,有事半功倍的效果。

二、总结题型规律,活用公式

记 住了三角公式,如果不了解三角变换的提醒规律,也很难去用公式解题。三角变换题目虽然很多,但是也是有规律可循的,大致可以分为以下几类。

1. 角的变换

进行角的变换常用的公式有诱导公式、两角和(差)公式和二倍角公式。因此,题目当中需要化角时就要想到用这些公式,而不是往别的公式上去套。例1:已知α、β为锐角,且sinα=,cos(α+β)=-,求sinβ的值。解析:此题就需要用到角的变换β=(α+β)-α,然后两边取正弦,右边用两角差的正弦公式展开即可。

2. 函数名称的变换

一般是切割化弦或弦化切割,常用公式为同角三角关系式中的倒数关系式和商数关系式。例2:已知tanα=3,求的值。解析:已知正切的值,求关于正余弦的值,很显然只能采用公式tanα=。

3. 常数变换

在三角变换中,有时需要将常数化为三角函数值,比较常见的是“1的变换”,常见的变形有1=sin2α+cos2α=sec2α-tan2α=cot2α-

sos2α。例3: 若2k?仔-≤α≤2k?仔+(k∈Z),则+的化简结果为( )。解析:巧用常数1的变换:1=sin2α+cos2α,则1-2sinαcosα= sin2α+cos2α-2sinαcosα=(sinα-cosα)2,同理,1+2sinαcosα=(sinα+cosα)2,再结合角的范围开方即可。

4. 幂的变换

降幂是三角函数变换时常用的方法,对次数较高的三角函数公式一般采用降幂处理方法,常用的降幂公式有:二倍角公式的逆用和同角三角函数平方关系式,降幂并非绝对,有时需要升幂,如对无理式常用升幂处理变成有理式。例4:化简cos8x-sin8x+ sin2x・sin4x。解析:本题中三角函数的次数较高,需要从降幂入手进行化简,先后用到平方差公式,二倍角公式和sin2α+cos2α =1。

总之,三角变换题目比较灵活,其解法也千变万化,没有固定的、唯一的解法。所以,在解题时,应根据题目的特点确定解题方法和变换技巧,再选择有关公式,千万不能对公式生搬硬套。如果在学习过程中多归纳、多总结,注意分析题目的结构及发现其规律,则可以结合所学的知识迎刃而解了。

参考文献:

篇2

考题解析

考点1:同角三角函数间的基本关系式与诱导公式。

此类问题容易因忽视角所在象限而失分。此题考查同角三角函数的基本关系与二倍角公式难度中等。

考点2:三角函数的图象。

本考点在高考中,一个是考察利用图象求解析式或用待定系数法求函数的解析式,题目难度不大,但常与三角函数的性质结合起来,求解的关键是确定各参数的值,另一个是考察三角函数图象的平移、伸缩、相位变换,尤其是平移变换。

例2(2012年湖南卷)已知函数f(x)=Asin(ωx+φ)(x∈R, ω>0,0

考点3:利用恒等变换求值与化简。

利用恒等变换进行求值与化简,是每年高考必考内容,重点考察运用正、余弦函数的和、差角公式,正切函数的和、差角公式,以及倍角公式的正用、逆用、变形应用。从近几年高考趋势看,对于三角恒等变换求值与化简,高考命题以公式的基本运用、计算为主,在解题中一般有两个解题思路,一个是角的变化,即将多种形式的角尽量统一减少角的个数;二是"名"的变换,即三角函数名称的统一,要灵活利用公式,尽量实现切化弦,同时在实际解题时还要注意双管齐下,整体代换。

点评:在求三角函数值的问题中,要注意"三看",即:一看角,把角尽量向特殊角或已知角转化;二看名,把三角函数中的切函数向弦函数转化,把多个函数名向一个函数名转化;三看式,看式子是否满足公式,能否逆用公式,能否向公式的形式转化。

考点4:利用恒等变换研究函数性质。

在高考中,恒等变换常与三角函数综合起来,通过恒等变换,将三角函数式化为"单角单函数"的形式,来研究三角函数的性质。

点评:要注意到三角函数名或角的差异,合理运用公式,进行恒等变换,化为"三角单角函数"的形式,进而研究三角函数的性质。

篇3

(1)必修1后接着学习必修4有利于对基本初等函数有一个系统掌握。函数是初中阶段学生已经接触过的知识点,但初中是用变量与变量间关系来介绍函数概念的,其重点是研究函数解析式;而高中的函数概念则是在映射观点下的对应学,是建立在非空数集之间的一种对应关系。它的表现形式除解析式外,还可以运用图象或列表。它的核心是三要素――定义域,对应法则及值域,而且函数可由定义域和对应法则完全确定。在此基础上我们还研究了函数的单调性,奇偶性等性质,还学习了指数函数,对数函数及幂函数三种新的基本初等函数。回头我们还用它们进一步理解了函数的概念。但对于函数概念理解难以达到完美,这样需要我们学习另一类基本初等函数――三角函数。与其他函数相比它是具有很多重要的特征,它以角为自变量,是周期函数,同时也是解决其他函数问题的重要工具,与后续学习的很多内容有联系,是深化函数性质的极好教材。因此,接着必修1后学习必修4让我们对基本初等函数有一个整体掌握,形成一串牢固的知识链条。

(2)必修1后接着学习必修4有利于高一物理等学科的学习。新课程开始几年,我们按1-2-3-4-5顺序安排5个必修模块,结果发现学生在高一第一学期学习物理需要的三角函数和向量的知识,要在高一第二学期才能学习,从而造成物理老师上数学课的现象。然后我们成立课题组,通过对按1-2-3-4-5和1-4-2-5-3两种模式学科的不同年级进行全面跟踪研究后,发现后一种选课模式基本上解决了上物理课时数学知识滞后的问题,从而真正实现了新课程标准要求的“人人学会自己须用和会用的数学”的大众数学理念。

2. 第一章三角函数部分知识点教学设计与生成后的思考

(1)任意角的三角函数的概念。三角函数概念的发展前后经历了4000多年,就初、高中教材体系而言,首先初中是把正弦、余弦、正切定义为直角三角形的边长之比。因此,初中讨论“三角函数”仅限于三角形内的三角函数。它解决的问题限于平面图形相关的几何问题。由于我们不能把任意角的三角函数看成锐角三角函数的推广(或一般化),所以在高中学习的任意角三角函数内容应该是以函数的眼光对待,把对它的学习作为理解函数一些性质,如周期性。强调三角函数是用于刻画生产生活中周期性发生变化的一个经典模型。为了建立角度集合与实数集间的一个对应,教材引入了弧度制。接下来就用单位图给出了任意角的三角函数。教学中,大多数教师从给学生回顾初中锐角三角函数定义入手,然后让学生考虑如何将锐角三角函数推广到任意角三角函数,这样的方式会使学生觉得任意三角函数是锐角三角函数的一种推广。这样方法会有以下不足:①没有讲明高、初中学习的三角函数研究方法本质上不同,容易引起概念的混淆。②没有利用好单位图。其实单位图是函数周期性的一个很好体现,它是学生后续学习逐步认识三角函数周期性的重要模型。

理解三角函数概念我们要多视角,如几何的、代数的、解析的等。教师的教学也不能将三角函数概念理解局限于一节课,一个章节里,了解学生的学习更是一个循序渐进的过程,因而在整个单元教学中应做到反复重视学生对任意角的三角函数概念理解的情况,从而达到对函数概念理解的又一次升华。

(2)正弦函数,余弦函数的图象与性质。我们知道,实数集与角的集合之间可以运用度与弧度的互化建立一一对应关系。而一个确定的角又对应着唯一确定的正弦(或余弦)值,于是,给一个实数x,有唯一确定的值sinx (或cosx)与之对应,由这个对应法则所确定的函数y=sinx(或y=cosx)叫做正弦函数(或余弦函数),其定义域为R。

《必修4》在讲述三角函数后,将简谐运动作为正弦(型)函数图象的教学情景和应用。而普通高中物理课程标准在选修模块《选修3-4》才介绍简谐运动。显然,高一物理课程不讲授简谐运动,因此,高一第一学期教授学生三角函数时,将简谐运动作为正弦(型)函数图象的教学情景应用就不合适了。为此,我们采用圆周运动或教室里日光灯的电流强度随时间变化的规律作为教学的情景,因为它们的变化都呈现了周期性规律。

通过上述实验或例子,对正弦函数和余弦函数的图象形成一个较直观的印象后,我们运用单位图中的正弦线来画比较精确的正弦函数图象。在进行教学设计时,为了培养学生的学习能力和实践操作能力,首先我们课前设计了一个3~4分钟时间可播放完的“微视频”,将运用单位图中的正弦线画正弦函数图象分步展示给同学。在实验操作完备后展示给同学们课堂上集中观看“微视频”。当视频播放结束后,我们把预先设计好并打印的坐标纸发给每一个学生,给学生5分钟时间完成用单位图中的正弦线作y=sinx,x∈[0,2π], 的图象。当时学生表现出十分高的学习热情。制图完成后抽样展示时发现都完成得十分认真。当老师再此提出如何获得y=sinx,x ∈R的图象时,绝大多数同学能回答出将图象左、右平移(每次2π个单位长度)即可。这都是前面的实验呈现出重复次数的周期性规律的成果。至于由y=sinx,x∈R的图象获得y=cosx,x∈R的图象,学生们还回答出通过单位图中余弦线或由公式cosx=sin,将y=sinx向左平移即得。

当然,这堂课的最后成果不仅仅是获得正弦函数和余弦函数的图象,而是从图象上观察出5个关键点决定正弦函数和与弦函数在长度为一个周期内的图象,如y=sinx,x∈[0,2π] 的图象上起关键作用的点为(0,0),(π,0),(2π,0),在精确度要求不太高时,找出了这五个点,再用光滑曲线连接,就可以得到函数的简图。这就形成了今后我们研究正弦(型)和余弦(型)函数图象简图的通法“五点法”。本堂课产生知识环节的教学设计是:实验―尝试―探究―提炼。四步骤体系新课程标准课堂教学以学生为本,以学生主动学习为本的理念。贯穿于教学全过程就是教师主体引导下的学生主体活动由浅入深地连续开展,更符合运用数形结合的手段研究函数的一般规律。

(3)函数y=Asin(?Ax+?渍)的图象。在A>0,?A>0的条件下,如何由y=sinx 的图象经变换获得y=Asin(?Ax+?渍)的图象呢?教材上在探究每种变换时,并没有用具体例子通过人工画图象后提炼规律,而是运用电脑软件――几何画板的功能代替了,这样过程令学生眼花缭乱,其变换规律难以体验到位。因此,在我们的教学中,对于每种变换我们均设计例子并引导学生在课堂上动手用五点法操作,然后再结合电脑动画进一步体验规律。这样的教学设计表面上因让学生动手操作花了一些时间而“降低了”课堂效益,其实际上经学生动手的过程体验而形成了理解性的知识规律,最后引导学生探讨“图象变换”法的具体过程。如何由y=sinx的图象经历平移变换和伸缩变换得到y=Asin (?Ax+?渍)的图象,每经历一部变换,五个关键点须作相应的变换,每一步变换却抓住了这五个关键点,得到的简图就可据“五点法”画出。这样学生不但掌握了研究这类函数图象的两类方法,而且了解了两类方法各自作用和互相联系性。

3. 教学后的启示与反思

(1)数学教师应该具有独立处理教材,研究并合理运用好教材的能力,而不是照本宣科。随着新课程改革向纵深发展,从传统的“教教材”到现在的“用教材教”理念的转变已经深入人心。教材仅是课程标准下提供给教师教学、学生学习知识的一个重要载体,但不是唯一载体。

在教学中,我们既考虑如何充分利用好教材,但又不能被教材所困。这就是需要吃透课程标准的前提下深入研究并发现学科知识本质的东西,尤其是考虑到“因材施教”,对于教材一些“启”而未“发”的内容,我们可考虑重新按认知观设计教学,教师做到对教材上一些概念、定理、公式、法则充分理解的前提下传授给学生。比如:在研究三角函数的单调性时,学生总是吃不透函数单调性概念必须指明在特定的区间上,二者不可分割。因此出现有的同学提出y=sinx,x∈R在第一象限内是增函数问题时,教师必须强调象限角不是区间角,二者不能等同。我以y=在(-∞,0)和(0,+∞)内分别是减函数,而不能讲y=在其他定义域内是减函数为例,考虑它的定义域已经不是独立的区间了。文章第二部分提到几个问题,也正好是体现了“用教材教”的理念。

(2)教学设计与生成应熟悉基本课型,规范操作须始终把学生的发展摆在首位。教学工作的主阵地是课堂。因此,学科教学能力是任何一个数学教师必须具备的基本能力。通常说教学有法,教无定法。所谓“有法”就是指教学应遵循一定教学规律与原则,每位数学教师应对新课程标准下高中数学教学基本课型“概念课”“习题课”“复习课”等进行系统梳理与探究,形成个人课堂教学的风格,而“教无定法”则是将其运用在具体课时进行教学设计与生成时做到“因时制宜”灵活使用。

如何在教师的教学工作中,始终将学生的发展放在首位?我想必须从以下几点入手:①在教学设计时教师必须站在教学者的角色上,按知识产生发展及生成的认知规律去思考教学的基本环节;②教学生成做到问题引入尽量给出合适的情景,探究知识过程中通过预设好适合的问题串,引导学生充分思考后步步为营朝知识产生的路径推进,切忌用师生交流替代生生间交流,培养学生学习过程中同伴互助的团队精神,以达到既学习到学科知识,又提升了学科学习的文化素养,从而形成较完美的学习过程。尤其是课堂结束时的总结,更适合在学生间的交流与对话中形成,从而全面培养学生的自主学习能力;③作为课堂学习的延伸,教师在布置学生课外作业时,一方面要做到基础性与综合性比例适当,重视课本习题在巩固知识与方法的基础作用和引领作用,对于教辅上的习题,必须做到适当的取舍,考虑到学生层次差异可布置适合每层学生发展的习题;另一方面必须留出时间给学生对明天学习内容的预习,必要时可给学生提供学习新知的自学提纲或突破知识学习重难点的“微视频”,以充分调动学生预习的灵动性,服务于明天的课堂。

篇4

中图分类号:G633.6?摇 文献标志码:A 文章编号:1674-9324(2014)07-0229-03

三角函数是高中数学新课程中的重要内容,在这些内容中强调了三角函数作为函数的作用,强调了三角函数是刻画周期现象的基本模型等,这是数学课程发展中的一个变化.虽然高中数学新课程已对一些内容降低了要求,但很多学生同样不适应,不能很好地理解与掌握。高考试题中的三角函数题相对比较传统,位置靠前,通常以简单题形式出现。因此,在学习、复习过程中要特别注重三角知识的基础性,突出三角函数的图象及其变换、周期性、单调性、奇偶性、对称性等性质,以及化简、求值和最值等重点内容的学习,要求学生熟练记忆和应用三角公式及其恒等变形,同时要注重三角知识的工具性.对此本人从几个方面加以阐述,希望能够帮助学生认识“三角函数”在数学中的地位,能较为全面地把握“三角函数”知识脉络,学好三角函数知识,提高综合能力.

一、解决角的问题是学好三角函数的前提

(一)解决好特殊角的三角函数值的求法

在初中,学生对0°~90°之间的特殊角(30°、45°、60°)的三角函数值已了如指掌,但到了高中,随着角度的扩展,求与特殊角有关的角的三角函数值也随之增多,如对120°、135°、330°、―30°等角的三角函数值的求法开始出现了混乱。如何解决这一问题呢?通过学习诱导公式,学生明白了求这一类角的三角函数值,看似众多,其实都与0°、30°、45°、60°、90°的三角函数值有关,且只有符号的异同。因此帮助学生弄清诱导公式所概括的“奇变偶不变,符号看象限”这一规律,计算这一类角的三角函数值的问题也就迎刃而解。

(二)解决好角与角之间的关系

在三角函数中,如例1:已知,cos(α+β)=-■,sinα=■,求cosβ.

相当多的学生直观地把cos(α+β)化为cosα+cosβ-sinαsinβ用于计算,造成运算烦琐或无功而返。究其原因是缺乏整体思想,没有注意到对角的关系进行观察、分析。事实上若清楚β=(α+β)-α,则问题迎刃而解。又如:

例2.已知cos(■-α)=■,■-α是第一象限角,求■的值.

本例的解法很多,学生若能发现(■-α)与(■+α)的关系及(■-α)与(■-2α)的关系,本例就好解了。因此在教学中,帮助学生树立整体思想,引导学生注意观察、分析、比较。(如:角与角之间的和差倍半关系,互补、互余关系等)总结基本的方法、规律,提高解决问题的能力。

(三)解决好隐含条件的问题

解题是数学学习中的一个主要环节,它的一般过程是:问题条件知识方法结果,可见寻找问题条件是解题的第一步.可是在一些数学题中,它的某些条件较为隐蔽,需要经过反复推敲,剖析题意.挖掘题设隐含条件,所谓隐含条件,是指题中若明若暗、含蓄不露的条件,它们常常巧妙地隐蔽在题设的背后,不易被人们所觉察,或者极易被人忽视,而直接制约整个解题过程,三角函数在许多方面如定义、公式、三角函数值,条件等式中都存在着隐含条件。在解三角函数题时,常因未能发掘其隐含条件造成一开始解题就无法进行,或者解到某一个阶段而陷入困境,或者造成解题失误。

例3.设ABC的内角A、B、C的对边长分别为a、b、c,cos(A-C)+cosB=■,b2=ac,求B.

学生通过公式的变换及运算得sin2B=■,sinB=■或sinB=-■(舍去),于是B=■或B=■.这样的解法存在错误,其实在条件中cos(A-C)+cosB=■隐含着cosB>0的条件,即B为锐角。或由b2=ac知b≤a或b≤c得B为锐角。所以引导学生多观察条件,从中找出隐含条件,以免造成解题失误。

二、熟记,灵活运用公式是学好三角函数的基础

(一)熟练掌握三角变换的公式

很多学生刚开始学习三角函数时,因为三角函数的公式太多,而造成混乱。其实公式之间也有一定的内在联系,比如诱导公式sin(■±α)(k∈z)中,只需把“α”看成锐角,画出■的终边表示在X轴正半轴、X轴负半轴、Y轴正半轴、Y轴负半轴中的哪一个,终边在X轴上则函数名不变,终边在Y轴函数名改变;终边再按顺时针还是逆时针转一个锐角定象限,确定函数符号。掌握了诱导公式以后,就可以把任意角的三角函数化为0°~90°间角的三角函数。又如:以两角和的余弦公式为基础推导得出两角和与差的正弦、余弦、正切公式,以及二倍角的正弦、余弦、正切公式,掌握这些公式的内在联系及推导的线索,能够帮助我们理解和记忆这些公式;同角三角函数的基本关系式是进行三角变换的重要基础之一,它们在化简三角函数式和证明三角恒等式等问题中要经常用到,必须熟记,并能熟练运用. 这也是学好本单元知识的关键.

(二)灵活运用三角公式

熟练掌握三角变换的所有公式理解每个公式的意义,特征;熟悉三角变换常用的方法――化弦法、降幂法、角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形中的有关公式解决一些实际问题.

1.运用化弦(切)法:

例5:已知tanα=■,求:f(α)=-2cos2α-■sin2α+2的值。

把-2cos2α-■sin2α+2除以1得■,化为■,再弦化切。本题就好解了。

2.运用增减倍与升降幂法:在运用公式化简三角函数时,引导学生根据具体问题分析采用增倍还是减倍,升幂还是降幂。

例6:设函数f(x)=2sinxcos2■+cosxsinφ-sinx(0

解:f(x)=2sinx・■+cosxsinφ-sinx=sinx+sinxcos φ+cosxsinφ-sinx=sinxcosφ+cosxsinφ=sin(x+φ)

因为函数f(x)在x=π处取最小值,所以sin(x+φ)=-1,由诱导公式知sinφ=1,因为0

例7:已知函数f(x)=sin2x+■sinxcosx+2cos2x,x∈R.求函数f(x)的最小正周期和单调增区间;其中sinxcosx可转化为sin2x,所以将sin2x、cos2x降幂同时把角转化二倍角。

3.运用辅助角及常用模式的转换法。在三角函数中除了运用课本内的公式外,还利用类似辅助角公式asinθ+bcosθ=■sin(θ+φ)进行解题。(这里辅助角φ所在象限由a、b的符号确定,φ角的值由tanφ=■确定。)而且在实际解题中,这一类问题大部分集中在sinα±cosα=■sin(α±■)和■sinα±cosα=2sin(α±■)和等常用模式的转化。

如上例7函数化简为:

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页