时间:2023-07-19 09:30:00
引言:寻求写作上的突破?我们特意为您精选了12篇高效焊接方法范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
目前我国大多数煤矿为三班连续运转的企业,为保证设备安全、正常的运转,每月厂部都对设备进行检修定保,对于已磨损、能够更换的配件在检修中都要进行更换,更换下来的具有修复价值的构件被送到检修车间进行焊接修复。但有些设备比较大,如四立铲的大臂,牙轮钻的立架,无法拆卸更换但已有开裂迹象,只能在现场紧急抢修。在焊接修复的过程中,焊件受到局部不均匀加热和冷却,容易产生应力和变形;受工作环境条件影响,易引发夹渣、裂纹等焊接缺陷;或是焊前准备、预热、焊后热处理等工作做得不到位等原因,易产生气孔、裂纹等焊接缺陷。这些具有焊接缺陷的焊件进入工作状态后,很快又会出现裂纹,有的裂纹会很快扩展,又要重新进行修复。如此循环不但会增加更多的焊修成本,延误更多的时间,甚至会影响生产任务的顺利完成。为保证焊修工件的修复质量,除了加强焊接技术的应用管理外,还要采取有针对性的措施。
2 产品分析
2.1产品焊接工作量分析
在煤机“三机一架”产品中以刮板输送机和液压支架的质量重,以一套200m左右的中型综采生产线为例,刮板输送机和液压支架的重约为3500t,结构件比重超过70%、液压件的比重达到20%,焊接工作量大(填充金属的重量占结构件比重达4%左右),其焊材的消耗量超过100t。以富氩气体保护焊为主导的焊接工艺情况下,提高焊材的熔化效率(或减少填充金属量)即可提高焊接效率。
2.2产品结构特点分析
(1)刮板输送机主要部件为中部槽,中部槽由两个槽帮、中板和底板焊接而成,共有6条对称的焊缝组成,且两两在同一平面内,易于实现工装定位和焊接自动化。
(2)液压件(立柱和千斤顶)要求高的密封性,焊接可靠性要求高。
以双伸缩立柱为例,外缸壁厚超过20mm,常规以“V”坡口与缸底焊接,填充金属量大、焊接时间长和焊缝晶粒粗大的特点。立柱中缸壁厚一般在40mm左右,由于无缝钢管的尺寸序列和壁厚限制,市面采购困难,以前采用圆柱型锻材或特厚壁钢管金切加工而成,材料成本高,生产效率低,刀具磨损快。
3 焊接方法选择
(1)针对中部槽结构简单、焊缝规则的特点,可采用焊接机器人或焊接专机,辅以焊接变位机,实现自动焊接。某煤矿机械厂采用TANDEM焊接系统,其原理是将两根焊丝按一定角度放在一个特制的焊枪内,由两根焊丝具有各自的电源,可以独立调整参数,最佳的控制电弧。其工艺特点如下:①可以大大提高熔敷速度和焊接效率,保持较低的热输入量,细化焊缝组织,减少焊接变形和焊接应力。
②中板和底板焊接机器人含两套TANDEM双丝焊机,两个机器臂同时施焊,提高焊接效率,减少焊接变形;自带焊接变位机,实现一次装卡,完成中板和底板的焊接,节省焊接辅助时间。
③双丝处于同一焊枪,节约焊接保护气体,降低焊接成本。
(2)采用窄间隙焊接方法,改“V”型坡口为“U”型坡口,可节约焊材30%左右,气体保护熔化极电弧焊的焊接形式应用于外缸与缸底的焊接,采用中低线能量,实现多层多道熔覆而不需清理,降低焊接电能的消耗,提高焊接效率,同时由于焊接热输入量的减少使焊缝晶粒细化,提高焊缝的机械性能和抗疲劳性能,减少缸体漏液现象的发生,提高了液压缸的使用寿命。
(3)对立柱中缸的加工工艺,采用高压无缝钢管堆焊工艺再精车表面的工艺方案代替切屑工艺,减少加工量。利用原有卧式车床的旋转系统实现工件的旋转和焊接速度的控制,车床拖板加持焊枪实现纵向进给,形成半自动焊接系统,提高加工效率,减少工时50%左右。
4 使用效果及效益分析
通过某煤矿机械厂的试验对比,对于中部槽的焊接,采用TANDEM焊接系统的焊接效率是手工半自动焊接的6倍,大大提高焊接效率,降低人工成本,保证焊接质量的稳定性。
通过某煤矿机械厂的立柱的实际数据分析,以年产70000t立柱计算,以φ360×2000m立柱计算(折合约为35000根),采用窄间隙焊焊接立柱外缸可节省焊材35t,按焊材2万元/t,节省费用合计为70万/年。
立柱中缸采用堆焊的方案与金切方案相比,设备及制造费用大致相当,仅考虑材料费用,假设无缝钢管与锻材价格均为2万元/t,单根可节省材料0.2t,则可节省材料费14000万元。同时,采用窄间隙焊和堆焊的方法可以提高效率,降低人工成本。
关键词: QC小组、铝镁合金、交流钨极氩弧焊
中图分类号:C93文献标识码: A
1 引言
QC小组活动在近年来已被各行业所接受并推广应用。QC活动小组即在生产和工作岗位上从事各种劳动的职工,围绕企业的经营战略 方针目标和现场存在的问题,以改进质量,降低消耗,提高人的素质和经济效益为目的组织起来,运用质量管理的理论和方法开展活动的小组。其作用包括:提高人的素质,发掘人的潜能;预防质量问题和改进质量;有利于实现全员参加管理;增强人与人的团结和协作精神;改善加强管理工作,提高水平;提高小组的科学思维、组织协调、分析和解决问题的能力;有利于提高顾客的满意程度等7个方面。本文将针对工程实例,讨论QC活动小组在工程施工中的应用。
2 活动实施步骤
2.1 成立活动小组
首先QC活动小组不是针对某个已出现的问题成立的,在工程初期即应分析工程所包含的难点,成立若干个小组。在公司注册成立活动小组,一般注册为现场型,活动时间应从施工开始直至工程结束。小组成员应包含现场技术负责人、技术员、焊接技师、有一定技能经验的技术工种等岗位人员,必要时聘请外部专家。
2.2 制定活动计划,典型活动计划如表1
表1 QC小组活动计划
活动内容 3月 4 6-8月 9月
课题研究
现状调查,确定活动目标
原因分析,要因确定
制定对策,确定责任人
对策实施
效果检查,总结成果
计划时间 实际时间
2.3 选择课题
课题选择应有充分的理由,可以是施工难点,或已发现的施工质量薄弱环节,亦可以是为开发某一新工艺或应用新设备而成立的创新型课题。本文借鉴的实例有如下理由:①铝镁合金管线是整套装置的施工重点。为此,业主及总承包商非常关注。高标准施工有利于提高公司声誉。②铝镁合金焊接技术不好掌握,质量不易保证。③如果焊接合格率低,返修率高将影响施工进度。
2.4 现状调查
本文借鉴的实例现状为:①参加铝镁合金管线焊接施工的焊工只有4名是有经验的老师傅,其余全部为公司新招聘的徒工,项目于1月至3月对他们进行了现场培训。QC小组于3月15日进行了第一次调查,对16名参加培训的焊工每人抽取一道焊缝进行射线检测,共6道焊缝出现返片。②铝镁合金管线于3月5日开始预制,按设计要求对铝镁合金管线焊缝进行进行100%射线检测。QC小组于3月25日进行了第二次调查,对开工以来所拍片情况进行了统计,共23道焊缝出现返修。③两次调查共29道焊口出现返片,一次合格率90.3%,其缺陷分布情况如下表2:
表2 缺陷统计表
序号 缺陷 频数 累计频数 所占比例 累计比例
1 气孔 20 20 69% 69%
2 未熔合 6 26 21% 90%
3 裂纹 3 29 10% 100%
④根据上表得出缺陷饼分图1:
2.5 目标值的确定及可行性分析
①明确目标,目标值的设定满足工程要求即可,不宜过高。本文实例的目标值为:铝镁合金管线焊接一次合格率97%。对比如图2
②可行性分析如图3:
2.6原因分析及要因确认
通过对现场实际情况的调查,针对采用交流钨极氩弧焊焊接铝镁合金焊缝时产生的气孔认真调查取证,我们总结出了所有的影响因素。
①原因分析如图4:
②要因确认:
QC小组针对以上影响因素经过多次讨论,结合实际情况,我们制定了相应对策,从而确定了主要因素见下表3:
表3 要因确认表
序号 因素 造成的后果 确认方法 确认过程 要因确认
1 年轻焊工责任心不强 1.焊丝清理不认真,残留氧化膜
2.焊丝保护不好 现场调查 加强教育,严肃执行工艺纪律,可以解决。 非
2 水冷系统失灵 1.钨极烧损,电弧分叉.
2.焊接过程中断,焊缝表面氧化. 现场调查,
研究取证 造成烧损钨极,使电弧分叉,热量不集中;造成焊把过热及管路烧损,使焊接过程中断,从而使中间层氧化,是产生气孔的主要原因。 主
3 气带中水分及空气 1.开始焊接时,保护气体无作用.
2.弧柱中水分. 研究取证 气带中的水分可以通过暴晒手段清除;空气可以事先排出。 非
4 厚壁管不易清理 有残留氧化膜 现场调查 严格要求,采取适当的清理方法,可以解决。 非
5 清理方法不得当 1.母材残留氧化膜.
2.焊丝残留氧化膜 现场调查,
研究取证 造成母材和焊丝表面有残留氧化膜,是气孔的主要来源。 主
6 空气湿度大 1.母材表面水分.
2.焊丝表面水分.
3.电弧中水分. 现场调查,
研究取证 空气中的水分在母材和焊丝表面凝结,并进入弧拄区分解产生氢气,是气孔的主要来源 主
通过以上分析,确定影响焊接合格率的主要因素有:Ⅰ水冷系统失灵;Ⅱ清理方法不得当;Ⅲ空气湿度大。
2.7制定对策见表4
表4 对策表
序号 要因 对策 目标 措施 责任人 检查人 实施日期
1 水冷系统失灵 把原有的循环水改为流动水流动水 彻底解决 连通自来水,加排水管。 XX XX 2005.4
2 清理方法不得当 改进清理方法 将氧化膜彻底清理 采用化学清理与机械清理相结合的方法。 XX XX 2005.4
3 空气湿度大质量差 去湿 将空气相对湿度控制在75%以下 采用去湿机,碘钨灯,预热等措施。 XX XX 2005.4
2.8对策实施
①实施一 采用流动水冷却。原循环水冷却系统示意如图5a,新循环水冷却系统示意
如图5b:
回水
水泵
焊把 水桶
③实施二 改进清理方法
原清理方法:1、母材先用砂轮机打磨,再用带金属磨头棒式砂轮机精磨。
2、焊丝用钢丝绒清理。
新清理方法:1、母材先用砂轮机打磨,再用丙酮清洗坡口表面,再用带金属磨头的棒式砂轮机精磨 。
2、焊丝先用丙酮清洗,再用钢丝绒清理。
④实施三 去湿
铝镁合金管线焊接要求空气相对湿度在80%以下。在施工过程中,我们采用了空气去湿机去湿,碘钨灯烘烤去湿,局部加热去湿等方法。其中空气去湿机去湿与碘钨灯去湿适合于作业空间小,环境湿度不大(相对湿度低于90%)的情况。局部加热去湿适用于作业空间大,环境湿度大(相对湿度大于90%)的情况,效果明显,见示意图6:
加热炉
2.9效果检查
中图分类号:U671 文献标识码:A 文章编号:1009-914X(2014)01-0000-01
1 前言
船舶制造是国家十大振兴规划的行业之一,船舶焊接技术是现代造船模式中的关键技术之一,其焊接工时约占船舶制造总工时的30%~40%,焊接成本约占船舶制造总成本的30%~50%,因此先进的船舶高效焊接技术在提高船舶制造效率、降低船舶制造成本以及提高船舶制造质量等方面具有十分重要的作用。
2 船舶高效焊接工艺的现状
我国是世界造船大国,也正朝着世界第一造船大国的目标迈进,其船舶制造能力也在不断扩大。2005年我国船舶完工吨位突破1000万t,达到了1200万t,约占世界造船总量17%。正是在这样的一个造船总量不断攀升的大背景下,采用高效焊接来提高生产效率是船舶制造的必由之路。目前我国造船工业中常见的高效焊接技术主要有:
2.1 焊条电弧焊
(1)向下立焊焊条:与向上立焊相比,效率提高1-2倍。
(2)铁粉焊条焊接工艺:工艺简单实用,通过提高熔敷效率达到高的生产效率,一般提高50%以上。
(3)重力焊条:采用高效铁粉焊条(一般直径为5~8 mm ,长度为 550 mm、 700 mm和900 mm),熔敷率在130%~180%之间,常见的焊条牌号有CJ501FeZ等。
2.2 C02气体保护焊
(1)实芯焊丝
我国气体保护实芯焊丝的品种太少,今后大力扩大品种的同时,也需进一步改进实芯焊丝的工艺性能,降低飞溅、成形美观等。焊丝表面应具有防锈、功能。国内常见的牌号是E49-1和E50-6焊丝。
(2)药芯焊丝
药芯焊丝是CO2气体保护焊的主要焊材,其配合各种类型的衬垫可以实现单面焊一次成形,其特点是焊道成形美观、电弧稳定、飞溅小、全位置焊接、工艺性能良好、焊接熔敷速度快、生产率高等特点。现在船厂普遍采用药芯焊丝来焊接船舶结构,以后CO2气保护药芯焊丝焊接将成为船厂的主要焊接材料和工艺。
2.3 埋弧焊工艺
主要应用于平板平直焊缝,主要有单丝、多丝埋弧焊和窄间隙埋弧焊,其中应用于平面分段流水线的FCB法焊接,FCB法是铜板上撒布厚度均匀的衬垫焊剂,并用压缩空气软管等顶升装置把上述填好焊剂的铜板压紧到焊缝背面,从正面进行焊接而形成背面焊道的一种单面埋弧焊接法,焊丝为Nittetsu Y―A(φ6.4 mm和φ4.8 mm),底层焊剂NSH一1R,主要是保证焊缝的背面成形,表面焊剂NSH一50,主要作用是保持电弧稳定燃烧。该工艺焊接速度快,最高可达1500 mm/min。因此,需要在高速和大热量输入的情况下保证焊缝具有良好的力学性能和背面成形。另一种应用较广的方法是焊剂石棉衬垫单面焊(FAB法),它是一种单面埋弧自动焊方法,利用柔性衬垫材料装在坡口背面,并用铝板和磁性压紧装置将其固定,其特点是简便、省力、材料成本低廉。它主要应用于曲面钢板的拼接以及船体建造中船台合拢阶段甲板大口的焊接。
2.4 不锈钢焊接
不锈钢焊接多见于不锈钢管及其附件之间的对接和角接,焊接方法多采用纯CO2气体或CO2+Ar混合气体的CO2半自动或自动焊接(MAG焊),也可采用钨极氩弧焊。根据母材的不同,对于C02半自动或自动焊焊丝,焊丝牌号常为1Crl8Ni9Ti焊丝、316L实芯或药芯焊丝,以及317L实芯或药芯焊丝,焊丝直径为细丝,即φ1.0 mm和φ1.2 mm焊丝;对于钨极氩弧焊,焊丝牌号一样,只是焊丝的规格为粗丝,一般为φ1.6 mm和φ2.4 mm焊丝。
2.5 活性气体保护焊焊接技术(MAG焊)
所谓的活性气体保护焊焊接技术就是采用CO2+Ar混合气体的CO2半自动或自动焊接,普遍应用于不锈钢的焊接。上海船舶工艺研究所开发适合船厂专用的双丝单面MAG焊接技术与装备,该项技术的主要特点是,可无间隙装配,坡口内定位焊、添加切断细焊丝,背面应用陶瓷衬垫,板厚在12~22 mm范围内可一次成形,焊接速度快,焊接效率高,焊接质量好。
3 中海工业(江苏)有限公司今后几年的高效焊的发展以及应用
中海工业(江苏)有限公司作为我国船舶的骨干企业,未来几年随着公司3#船坞的启用以及公司转型升级的发展必然,其造船规模与总量将有大幅度提高,预计2015年达到年造船总量150万t。要实现上述目标,除了扩大生产规模,提升造船管理水平外,加快高效焊接方法应用,提高焊接生产效率也势在必行。因此,中海工业(江苏)有限公司今后几年的高效焊发展趋势有以下几大特点:
3.1 焊接工艺、方法的多样化
为了适应船舶制造不同区域生产流程节奏,确保各生产节点有序按时完工,根据现代造船技术特点,焊接新工艺推广应用是解决焊接生产效率提高的唯一途径。如平面分段制造区域纵骨焊接采用多电极C02气保护自动焊,平直分段内底板、甲板对接采用双丝MAG焊。
3.2 C02气保护焊将完全替代焊条电弧焊
目前,手工焊条焊接仍是中海工业(江苏)有限公司不可或缺的主要生产工艺,而公司造船由于承接船舶向大型化、高附加值船舶转变,焊条电弧焊低生产效率不可能满足生产需要,自动角焊、半自动角焊、垂直自动角焊等各类C02气保护焊将替代焊条电弧焊,甚至在船坞、平台区域和曲面分段制造车间也将不再采用焊条电弧焊方法,其或许只在少量焊缝修补中可能会使用。
3.3 焊接设备向大型化、系统化、集成化、自动化转变
中海工业(江苏)有限公司由于造船模式、生产管理、工艺流程变化,对焊接生产提出了全新要求,焊接必将以机械化、自动化生产为主,这决定了选用的焊接设备具有大型化、集成化特点。以平面分段生产线为例,大拼板焊接需采用三丝的FCB单面焊接站,该焊接系统除了稳定可靠的大功率埋弧焊电源外,还应具有自动送板、准确定位、液压控制等装置。此外,需要配备高精度的跟踪器及适合于焊机精确行走的大型门架结构件。而纵骨焊接工位的多电极焊接系统可以满足多根T形纵骨同时焊接,不仅生产效率高,而且焊接变形小,该系统除焊接外,同时具备自动定位纵骨功能。另外,曲面分段、船坞、平台等生产区域需配备C02气保护自动焊、双丝埋弧焊、垂直气电焊等各类自动化焊接设备。
3.4 焊接材料的工艺、性能要求高
由于焊接方法的多样化和自动化程度提高,对焊材工艺要求进一步提高,自动化焊接势必提高焊接热输入量。为保证焊接接头综合力学性能,特别是焊缝强度、韧性等指标,船舶焊接生产中需要大量高性能焊材应用。另外,焊接自动化、机械化的高效率取决于焊接生产过程连续性,所以选用的焊材应具有稳定质量和良好的焊接工艺性。同时,为了进一步提高焊接生产效率,要求大尺寸焊缝或厚板焊接时采用高熔敷率焊材。对某些特殊船型,由于船板及部件的特殊性,焊接材料的性能同样需要具有特殊的技术特点。
4 结语
从目前来看,中海工业(江苏)有限公司在建的船舶以常规散货船为主,但随着公司的转型升级发展以及凭借目前积累的11万吨油轮、10000箱集装箱船的建造经验,公司将有能力建造LNG、LPG船以及海工船型等高附加值船舶。因此我们应该珍惜这样一个良好契机,充分利用现代化造船船用焊接设备,通过对造船焊接工艺不断研究、改进,开发出适于中海造船的焊接生产工艺,从而加快向现代化造船模式转化,把船舶焊接技术水平提高到一个新的高度。
参考文献:
锅炉、压力容器和管道均为全焊结构,焊接工作量相当大,质量要求十分高。焊接工作者总是在不断探索优质、高效、经济的焊接方法,并取得了引人注目的进步。以下重点介绍在国内外锅炉、压力容器与管道制造业中已得到成功应用的先进高效焊接方法。
1 双面脉冲MAG自动焊接生产线
为提高锅炉热效率,节省材料费用,大型电站锅炉式水冷壁管屏均采用光管+扁钢组焊而成。这种部件的外形尺寸与锅炉的容量成正比。一台600MW电站锅炉膜式水冷壁管屏的拼接缝总长已超过万米。因此必须采用高效的焊接方法。在上世纪90年代以前,国内外锅炉炉制造广大多数采用多头(6-8头)埋弧自动焊。在多年的实际生产中发现,这种埋弧焊方法存在一致命的缺点,即埋弧焊只能从单面焊接,管屏焊后不可避免会产生严重的挠曲变形。管屏长度愈长,变形愈大,必须经费工的校正工序。不仅提高了生产成本,而且延长了成产周期。因此必须寻求一种更合理的焊接方法。
上世纪80年代后期,日本三菱重工率先开发膜式水冷壁管屏双面脉冲MAG自动焊新焊接方法及焊接设备,并成功地应用于焊接生产,这种焊接方法在日本俗称MPM法,其特点是多个MAG焊焊头从管屏的正反两面同时进行焊接。焊接过程中,正反两面焊缝的焊接变形相互抵消。管屏焊接后基本上无挠曲变形。这是一项重大的技术突破。经济效益显著。数年后哈尔滨锅炉厂最先从日本三菱公司引进了这项先进技术和装备,并在锅炉膜式壁管屏拼焊生产中得到成功的应用。之后,逐步在我国各大锅炉制造厂推广应用,至今已有十多条MPM焊接生产线正常投运。管屏MPM焊接的主要技术关键是必须保证正反两面的焊缝质量,包括焊缝熔深,成形和外形尺寸基本相同。这就要求在仰焊位置的焊接采用特殊的焊接工艺,脉冲电弧MAG焊(富氩混合气体)。焊接电源和送丝系统应在管屏全长的焊接过程中产生稳定的脉冲喷射过渡。因此必须配用高性能和高质量的脉冲焊接电源和恒速送丝机。这些焊接设备的性能和质量愈高,管屏反面焊缝的质量愈稳定,合格率愈高。实际上,哈锅厂从日本三菱重工引进的原装机只配用了晶闸管控制的第二代脉冲MIG/MAG焊电源,送丝机也只是传统的等速送丝机,管屏反面焊缝的合格率达不到100%,总有一定的返修量,为进一步改进膜式壁管屏MPM焊机的性能,最近国产的管屏MPM焊机配用了第三代微要控制逆变脉冲焊接电源和测速反馈的恒速送丝机,明显提高了反面焊缝的合格率。
2 对接高效焊接法
锅炉受热面过热器和再热器部件管件接头的数量和壁厚,随着锅炉容量的提高而成倍增加,600MW电站锅炉热器的最大壁厚已达13mm,接头总数超过数千个。传统的填充冷丝7IG焊的效率以远远不能满足实际生产进展的要求,必须采用效率较高的且保接头质量的溶焊方法。为此,哈锅和上锅相继从日本引进了厚壁管细丝脉冲MIG自动焊管机,其效率比传统的7IG焊提高3--5倍。后因经常出现根部未焊透和弧坑下垂等缺陷而改用TIG焊封底MIG焊填充和盖面工艺,改进的焊接工艺虽然基本上解决了根部未焊透的问题,但降低了焊接效率,增加了设备的投资,同时也使操作程序复杂化。最近,上锅。哈锅又从国外引进了热丝丁IG自动焊管机。"热丝rig焊的原理是将填充丝在送人焊接熔池之前由独立的恒压交流电源供电。电阻加热至650~800"C高温,这就大大加速了焊丝的熔化速度,其熔敷率接近于相同直径的M7G焊熔敷率。另外,TIG方法良好的封底特性确保了封底焊道的熔质量,因此,热丝/IG焊不失为小直径壁厚管对接焊优先选择的一种焊接方法。然而不应当由此全面否定脉冲MIG焊在小直径壁厚管对接中应用的可行性。曾通过大量的试验查明,在厚壁管MIG焊对接接头中,根部末焊透90%以上位于超弧段,而弧坑下垂起因于连续多层焊时熔池金属热量积聚导致过热。如将焊接电源电弧的功率作精确的控制,则完全可以消除上述缺陷的形成。由于引进的M]G焊自动焊管机原配的焊接电源为晶闸管脉冲电源,无法实现电弧功率的程序控制如改用当代最先进的全数字控制逆变脉冲焊接电源或波形控制脉冲焊接电源(计算机软件控制小),则可容易地按焊接工艺要求,对焊接电弧的功率作精确的控制,确保接头的焊接质量, 我们建议对现有的管子对接自动焊MIG焊机组织二次开发,将原有的晶闸管焊接电源更换成全数字控制逆变脉冲焊接电源,并采用PLC和人机界面改造控制系统,充分发挥MIG焊的高效优势。
3 厚壁容器纵环缝的窄间隙埋弧焊
厚壁容器对接缝的窄间隙埋弧焊是一种优质、高效、低耗的焊接方法。自1985年哈锅从瑞典ESAB公司引进第一台窄间隙埋弧焊系统以来,窄间隙埋弧焊已在我国各大锅炉、化工机械和重型机械等制造厂推广使用,近20年的实际生产经验表明,窄间隙埋弧焊确实是厚壁容器对接焊的最佳选择。
为进一步提高窄间隙埋弧焊的效率,国内外推出串列电弧双丝窄隙埋弧焊工艺与设备,但至今未得到普遍推广应用。这不仅是因为增加了操作的难度,更主要的是交流电弧的焊道成曙坎佳,不利于睨渣,容易引起焊缝夹渣。
最近,美国林肯(Lincoln)公司向中国市场推出交流波形参数(脉冲宽度、正半波电流值、脉冲频率,脉冲波形斜率)可任意控制的AC/DCl000型埋弧焊电源。采用这种新一代的计算机控制埋弧焊电源,可使串列电弧双丝埋弧焊的工艺参数达到最佳的组合。不但可以获得窄间隙埋弧焊所要求的焊道形成,而且还可进一步提高交流电弧焊丝的熔敷率。可以预期,波形控制AC/DC埋弧焊电源的问世必将对串列电弧双丝窄间隙埋弧焊的推广应用作出积级的贡献。
中图分类号:TG457 文献标识码:A 文章编号:1674-098X(2013)02(b)-0035-01
伴随着现代科学技术的持续发展与经济社会现代化建设进程的日益完善,社会大众持续增长的物质与精神文化需求开始得到了极为蓬勃的发展与进步。我国国民经济体系在这一发展过程当中也取得了长足的进步。特别是对于钢铁工业而言,自1996年,我国全年度钢铁产量突破1亿t以来,我国的钢铁产量就始终占据着世界领先地位。特别是对于建筑行业用钢而言,迅速发展的城市化建设使得建筑钢结构的应用备受关注。该文以此为研究背景,现针对建筑钢结构焊接技术的应用及其发展趋势相关问题做详细分析与说明。
1.建筑钢结构焊接技术发展进程分析
20世纪40年代,钢结构行业引入焊条电弧焊接技术,钢结构焊接技术的应用开始引起部分工作人员的特别关注。50年代中期,引入埋弧焊接技术(该项技术自前苏联引进)。直至70年代后期,包括气体保护焊接技术、螺栓焊接技术以及熔嘴电焊焊接技术等焊接技术开始广泛应用于钢结构焊接过程当中。特别是在城市建设的规模化发展过程当中,大量的钢结构建筑物建设蓬勃兴趣,焊接技术的应用与发展备受各方特别关注与重视。
特别是在建筑钢结构箱型柱大量应用于建筑施工实践的背景作用之下,高效焊接技术支持下的栓钉焊接设备以及焊接材料得到了充分且深入的发展。与此同时,建立在CO2气体支持基础之上的气体保护焊接技术也成为了建筑钢结构焊接技术发展中的主流所在。大量的实践研究结果证实:在建筑钢结构大量应用CO2气体保护焊接技术的过程当中,焊接作业的生产效率得到了显著提升,同时也能够大量缩短建筑钢结构焊接施工的工作周期,有着极为显著的综合效益。在此基础之上,建筑钢结构焊接技术所对应的工作人员资质认证、培训有所完善,焊接设备有所发展,焊接材料更为多元。上述发展进程均在不同程度上推动着整个建筑钢结构焊接技术的稳妥前进。
2.建筑钢结构焊接技术发展趋势分析
传统意义上的建筑钢结构焊接企业处于对自身发展的保障需求,势必需要在剧烈的市场竞争环境下,通过恰当且合理的技术改造与技术升级方式,谋求稳定的生存与发展。而实现这一要求的关键,即在于对建筑钢结构焊接技术的发展与推广。在此过程当中,需要重点关注以下几个方面的问题。
(1)需要逐步加大对高效焊接方法及建筑钢结构焊接工程实践的应用:首先,需要相关工作人员不断针对焊接方法及焊接方式进行研究与完善,以提高焊接熔敷率为目的,加大对于15kg/h单位以上,高效焊接技术方法的研究。与此同时,还可以通过对国外成功焊接方法(包括旋转喷射电弧高效焊接技术以及多丝焊接技术等在内)的引入方式,为自主技术的研制与成功应用提供一定的借鉴与经验;其次,可以通过适当控制接头焊接填充量的方式,一方面提高建筑钢结构焊接的工作质量,另一方面可提高工程应用中的经济效益。从当前技术发展趋势的角度上来看,应当将研究重点集中在对激光焊接技术以及氩弧激光焊接技术的应用方面;最后,需要从技术装备的角度上入手,在合理提升建筑钢结构持续焊接时间的基础之上,降低辅助操作时间。同样从现阶段的技术发展趋势上来看,需要重点关注的发展方向是:一方面,是以连续送丝为中心的自动焊接技术装备;另一方面是以成套性为主的高效焊接技术装备。
(2)需要逐步加大对于高效且优质焊接材料的开发与应用:对于焊接材料的发展重点在于,研发与高效焊接技术相适应的,具备优越综合性能的自动焊丝、保护焊丝以及气电焊丝等。与此同时,结合我国现阶段建筑结构的用钢型号特点,需要将建筑钢结构用钢向着高强度、高耐火性、高纯净性以及高抗震性等多个方面发展。而高性能建筑钢结构焊接材料的规模性开发与应用也势必会在一定程度上推动建筑钢结构焊接技术的蓬勃发展。特别需要注意的一点是:伴随着建筑钢结构的进一步发展与完善,实芯CO2焊丝、药芯CO2焊丝、特种电渣焊材料以及气电焊焊接材料的使用总量势必会不断扩大的推升,由此也带动着上述建筑钢结构焊接材料的国产化发展与升级。
焊接涉及众多行业,包括船舶、汽车、工程机械和钢结构等行业,在各行业中的发展不平衡。由于焊接人才的培养周期长、工作寿命短等特点以及学生选择焊接专业的意愿较低、培养成本过高导致学校不愿开设该专业等原因,出现了用工缺口很大的现象。如何高效低耗地培养出大批符合社会需求的高水平、高素质的焊接技术人才已成为技工院校人才教育急需突破的瓶颈。
高效即在尽可能短的培养周期内培养出适合企业需求的高素质学生;低耗即通过各种合理手段降低培养成本。而传统的焊接教学一方面基本上是采取理实分开的教学模式;实习课主要以焊条电弧焊为主,不仅与企业的需求相脱节,而且实习环境差、劳动强度大,学生抵制情绪较高,招生数量下降。另一方面,由于焊条电弧焊耗材太多,培养成本过高,很多院校不愿意开设焊接专业。这显然是与高效低耗的要求相违背的。
结合多年教学的经验和走访本地多家企业,笔者认为可以从下几个方面进行改革。
一、改善实训项目顺序,节约使用焊接材料
传统的焊接实训项目顺序是平焊立焊横焊仰焊。笔者通过多年一线教学的深入观察,发现在经过初步的认识实习后,首先进行立焊的实训项目更有利于学生练习单面焊双面成型技术。这样的安排顺序还能进一步压缩其他项目的训练时间,提高学生技能水平。
循环使用焊接材料也可以降低实习成本,例如:上届学生用于焊接角焊缝的试件,可以继续用作下届学生练习平焊的材料;另外注意焊条头的保存,不得随意丢弃。每学期末再将没有使用价值的废铁、焊条头和焊渣变卖废品,可节省实训费用。
二、突破传统教学观念,改革焊接实训教学计划
焊条电弧焊是实训基本功,但不是其全部的内容。目前企业广泛需要CO2焊、氩弧焊、自动焊甚至新兴的激光焊、搅拌摩擦焊及操作焊接机器人等。如前文所述,焊条电弧焊具有多项缺点,严重降低焊接招生人数,直接造成未来焊接人才匮乏。改革焊接实训教学计划,一定要全面、准确、快速。本文分别从焊接方法、接头形式、焊接位置、焊接试件的顺序介绍。
1.焊接方法的顺序
在经过焊接认识实习(含安全教育)后,可以安排CO2(MAG)实心焊丝的实训练习;随后可以穿插CO2药芯焊丝的实训练习;在讲授过焊条电弧焊及焊条选择的相关理论后,再安排换条电弧焊实训练习;最后进行TIG 钨极氩弧焊的实训练习。不仅打破传统的实训顺序,并且大大压缩了焊条电弧焊的课时比例,降低成本的同时又增加了其他先进焊接技术的练习时间,与企业的要求相接轨。
2.焊接试件的顺序
遵从由简到繁,按部就班的练习顺序:即先练习板状试件,然后练习管板状试件,最后练习管状试件;难度也应循序渐进,先练直径管然后逐渐减小管的直径。
3.焊接位置的顺序
从最简单的船型焊开始过渡到立焊,然后是平焊和横焊的练习,再次由仰焊练习过渡到45°斜固定无障碍焊练习,最后进行固定加障碍焊练习。
4.焊接接头形式的顺序
在熟悉了T形接头后进行外角接头练习,然后练习搭接焊练习,最后重点练习对接焊:在熟悉双面焊后进行单面焊双面成型练习。
三、更新教学理念,采用“巡回指导”教学法
整合理论知识以够用为准。结合实践操作进行讲解,实现理论与实践融会贯通。鼓励建设校外实训基地,通过校企合作,在生产性实训车间为企业生产产品,将教学成本转移到生产成本中,既降低了能耗,又使学生有了实战经验,实现产教结合并培养了学生吃苦耐劳的精神,有利于提高其综合能力。
实训中的“巡回指导”教学法,有利于教师及时发现学生的问题并予以纠正,从而避免材料的浪费和做无用功。“授人以鱼,不如授人以渔”,实践中学生往往出现蛮干却忽视了开动脑筋的情况。教师多培养学生发现问题、分析问题并解决问题的能力,使学生增强自信,增加学习的热情和动力。
四、小结
本文通过分析,阐述了在焊接教学过程中应采用理实合一的教学理念,采取建立校外实训基地、更新教学观念,改变实训项目顺序等措施,尤其是不再坚持以焊条电弧焊为主的传统思路,坚持高效低耗的学生培养方针。总之,以企业的需求作为学生培养的标准,实现技工院校为社会、为行业和企业服务的办学宗旨。
中图分类号: TU74 文献标识码: A
一、前言
钢制储罐是储存各种液体(或气体)原料及成品的专用设备,对许多企业来讲储罐是工艺生产的重要组成部分,特别是国家战略物资储备均离不开各种容量和类型的储罐。储罐的种类分为很多种,在施工过程中我们要根据储罐的类型采取不同的施工工艺,保证储罐的施工质量,为储罐的安全运行提供保障。大型储罐主要在储存液体的过程中遇到大风、地震、雷电等外力冲击的情况下会产生一定的危险,因此,我们要严格控制施工步骤。在施工过程中要严格按照相关的标准及施工图纸要求进行施工,对储存易燃、爆的储存罐还要进行必要检测,保证使用过程的安全。
二、立式圆筒型储罐的设计及施工标准
立式圆筒型储罐的分类方法很多,按罐顶的结构形式可分为固定顶储罐和浮顶储罐。其中,浮顶储罐又可分为内浮顶和外浮顶两种。大型储罐设计标准的进步推动了其技术的发展,目前储罐设计的主要标准如下:
1、立式储罐设计标准参考如下:
(1)GB50341《立式圆筒形钢制焊接油罐设计规范》;
(2)SH3046《石油化工立式圆筒形钢制焊接储罐设计规范》;
(3)JB/T4735《钢制焊接常压容器》;
(4)SY/T0608《大型焊接低压储罐的设计与建造》。
在国内设计标准中,GB50341、SH3046等部分参考了美国石油协会的API650和英国、日本相关标准并且结合国内实际进行了部分修改;SY/T0608则几乎完全参考API620进行编制。
2、施工及验收标准如下:
(1)GB50128《立式圆筒形钢制焊接储罐施工及验收规范》;
(2)SH/T3530《石油化工立式圆筒形钢制储罐施工技术规程》;
(3)JB/T4709《钢制压力容器焊接规程》。
三、分析技术要点
立式钢制圆筒形储罐对于承受静液压力是非常有效的,能充分发挥金属的抗拉能力,并有很好的延性,因而节省材料,在工程中得到广泛应用。我公司曾在广西承建制造十台2000m3的常压立式圆筒形油储罐,直径13300mm,高度16050mm,根据其工作温度、介质特性、使用寿命等参数,主体板材选择GBT3274-2007。设计是按GB50341-2003《立式圆筒形钢制焊接油罐设计规范》,包括各圈壁板、底板、罐顶厚度及罐顶加强筋的设计计算。制造按GB50128-2005《立式圆筒形钢制焊接储罐施工及验收规范》,焊接规程遵循JBT4709《钢制压力容器焊接规程》。
1、施工准备
根据储罐的设计及相关标准的要求,准备好施工材料和施工机械,施工人员必须要有相关的施工资质和施工经验。材料进场后,组织相关人员进行检验。项目部建立岗位责任制和质量监督制度,明确分工职责,落实施工控制责任制。储罐开始安装之前,应按照土建基础结构设计图、施工验收规范及质量验收措施进行复验,复验合格后方可进行罐底板的铺设。
(1)罐底边缘板的预制
罐底预制前应根据采购的进厂钢板规格画出排板图,边缘板沿罐底径向最小尺寸不得小于700mm。罐底边缘板为对接连接,考虑罐底焊缝焊接收缩和基础坡度,罐底边缘板曲率半径较比设计尺寸应适当加大,得出修正后的外弧半径。
式中:R修― 修正后的边缘板外弧半径; N ― 边缘板数量;
R ― 设计标注的边缘板外弧半径;I ― 基础表面的坡度
边缘板外弧气割前,应根据计算得出的R修值按1∶1的尺寸制作切割轨道,然后对边缘板进行仿型切割。边缘板两侧边切割时,割嘴中心应按照事先划好的切割线的外侧行走,并保证切割角度,切割后,用砂轮机清除表面的氧化渣。加工好的边缘板按照质量标准要求进行检查验收,并做好记录,合格后在板上编上号码。
(2)罐壁板的预制
为保证罐壁板几何尺寸的各种偏差符合验收规范的要求,所有罐壁板在滚制前,必须进行齐边和坡口制备。齐边和坡口切割作业前,应按照罐壁板排板图准确划线并检查,然后采用半自动切割机切割,坡口一次切割成型。切割在切割平台上进行,切割时,要保证切割机行走速度均匀平稳。为保证坡口质量,切割后,需用砂轮机清除坡口表面的硬化层,然后进行检查、记录,合格后在板上编上号码。切割好的罐壁板在滚制前,壁板两端各200~300mm范围内需按照与罐壁圆周相同曲率的胎具进行压制成型后,方可进行滚制。罐壁板预制后不能立即进行组装时,需在坡口表面涂刷可焊性防锈剂,并置于专用胎具上存放。
(3)罐顶板的预制
储罐罐顶瓜皮板按照设计给出的单块尺寸进行1∶1放样,然后在拼接好的板幅上进行划线。罐顶瓜皮板的切割可采用半自动切割机或手工进行,使用半自动切割机切割外弧时,要按照1∶1的比例制作切割轨道进行仿型切割,切割时,割嘴中心应按照事先划好的切割线的外侧行走,并保证切割角度,切割后,用砂轮机清除表面的氧化渣。切割好的罐顶瓜皮板,要卡固于专用胎具上组装筋板,然后方可进行焊接。罐顶瓜皮板预制后不能立即进行组装时,需置于专用胎具上存放。
2、罐底焊接
选择收缩变形最小的焊接工艺及焊接顺序,宜按下列顺序进行:中幅板焊接时,先焊短焊缝,后焊长焊缝。初层焊道应采用分段跳焊或跳焊法。弓形边缘板的焊接:首先施焊靠外缘300mm部位的焊缝,在罐底与罐壁连接的角焊缝焊完后且在边缘板与中幅板的收缩缝焊接前,完成剩余边缘板对接焊缝的焊接和中幅板的对接焊缝。罐底与罐壁连接的角焊缝,在底圈壁板纵焊缝焊完后施焊,由数对焊工从罐内、外沿同一方向进行分段焊接。初层焊道应采用分段跳焊或跳焊法。
3、罐壁焊接
下料时要严格控制壁板的宽度偏差,坡口角度合适。罐壁一般选择不留钝边的坡口形式较好,坡口角度可根据板厚进行适当调整,保证单面焊透性好,并使用砂轮机打磨。先焊纵向焊缝,后焊环向焊缝,焊缝宽、高以较薄的板厚为宜,减小焊接量。当焊完相邻两圈壁板的纵向焊缝后,再焊其间的环缝;焊工均匀分布,并沿同一方向施焊。纵焊缝采用气体保护焊时,自下向上焊接。对接环缝采用埋弧自动焊时,焊机均匀分布,并沿同一方向施焊。
4、罐顶板焊接
罐顶瓜皮板全部安装完毕后,方可进行焊接,焊接时,相临两块顶板之间的搭接焊缝应由下向上分段焊接;顶板经向搭接焊缝全部焊接完成后,才能进行罐顶板与包边角钢之间环行焊缝的焊接。焊接时,应由多名焊工对称均匀分布,同时同向进行分段退焊。罐顶焊接时,为防止焊接变形,焊接操作必须按照规定的焊接顺序进行。
四、高效焊接技术的应用
立式储罐是现场安装焊接的大型容器,焊接工作量极大,焊接的效率对储罐的建造速度和质量都起着决定性作用。因此,储罐的高效焊接技术愈来愈受到重视,在储罐的安装施工过程中已得到推广应用。这种高效焊接技术与常规的电焊相比,不仅熔敷效率高、焊接速度快、而且操作简单,更具有生产效率高、焊接质量好、节约能源等优点。大型立式储罐的主要结构是拱顶型储罐和浮顶型储罐,对其主体安装方法主要采用正装法与倒装法。高效焊接方法的选择也与储罐材质、厚度以及安装方法有关。近年来,储罐施工过程中应用较多的高效焊接方法是埋弧自动焊,其中包括横焊、平焊和角焊、气电立焊和气体保护焊等。下面具体介绍一些在大型储罐现场焊接施工中应用的高效焊接技术。
1、储罐正装法的横焊装置
大型储罐因壁板厚、直径大,环焊缝的焊接量非常大,因而采用高效自动焊技术意义重大,目前,在施工安装过程中普遍采用高效埋弧自动横焊法。埋弧自动横焊的焊接速度就是其机架的行走速度。在焊接时,焊接行走机架吊挂在储罐壁板上,壁板的上端是焊接行走的轨道,其驱动机构安装在机架的上部,传送带则靠托轮与壁板紧贴被带动转动,其方向与焊接机架运行方向相反。焊接时,应先焊接焊缝的外侧,待外侧焊接结束后,对内侧进行焊前处理,然后再以同样的焊接方式焊接。为了减少焊接机架内外吊装的次数,提高焊接效率,目前已开发出了双面焊正装储罐环焊缝埋弧自动焊机,在实践施工工程中已经采用。
2、储罐倒装法的横焊装置
目前,国内外一些企业在借鉴储罐正装埋弧自动横焊技术的基础上,开发出了利用储罐倒装埋弧自动横焊设备与工艺,主要应用于拱顶储罐罐壁的环焊缝,其焊接效率非常高,是焊条电弧焊的四倍,但这种技术只适用于10mm以上的中厚板。当壁板较薄时,焊缝的收缩变形比较大,环焊缝会产生比较明显的掐腰现象,而且薄板焊接量较少,采用埋弧自动横焊不经济,效率没有明显的提高。因此,储罐倒装法施工埋弧自动横焊技术应用于2万立以上储罐的焊接较为经济。在操作时,储罐基础的四周需铺设一条与罐壁板环缝平行的圆形轨道,横缝自动焊装置位于轨道之上,并靠着罐壁板沿轨道行走进行焊接,机架的行走速度就是焊接速度。
五、TOFD检测技术在立式圆筒形储罐焊缝检测中的优势
一般采用非平行扫查进行初始的扫查方式,探头对称布置于焊缝中心线两侧沿焊缝长度方向运动。对于非平行扫查发现的接近最大允许尺寸的缺陷或需要了解缺陷更多信息时,进行偏置非平行扫查、平行扫查,若焊缝较宽,在焊缝两侧各增加一次偏置非平行扫查。
1、提高工效300%
以5万立式圆筒形储罐底层的立焊缝为例:X射线检测最底圈板厚32mm,高度2200mm,每道立焊缝射线检测拍片按300mm规格的胶片需拍9张,每张胶片曝光时间5分钟,加上现场布置及暗室处理时间,按照检测10道立缝计算,大概需要10小时左右,采用TOFD技术,现场实施线性扫查平均2.2米/10分钟,加上图谱判定分析时间平均大概需要3小时,共计提高工效300%以上;
2、人工成本、材料成本对比
正常情况下,一座5万立方原油储罐最底共18道立缝,射线检测需要两个检测机组在一个工作日完成,每组三人,TOFD检测只需每组三人一个工作日完成,可节省三个人的人工成本。除去设备的一次性投入,TOFD检测在材料上只需探头楔块和探头线的磨损,而射线检测则需投入胶片、药液、铅字、暗袋等其他辅助材料,相比较大量节省了检测成本,同时检测过程可与其他作业工序同步进行,节省工期3-5天。
3、环境保护
采用TOFD检测技术可削减X射线检测辐射伤害的风险因素,同时射线检测过程中废旧药液、铅字、尾气排放对环境也造成一定的污染,而TOFD检测技术现场只残留耦合剂对被检物的轻微锈蚀,不会造成环境污染。
六、结束语
在立式圆筒形储罐施工的过程中我们要根据储罐的结构、容积、用途等设计参数,结合设备、人工实际情况采取相应的措施,保证储罐的施工质量符合相关标准的要求。
参考文献
一、概述
根据我国石油企业的发展需求,储罐向大型化、国产化、自动化的方向发展,是非常重要的储运设备。立式储罐是现场组装焊接的大型容器,焊接工作量非常大,为了提高效率和质量,先进焊接技术逐渐推广应用,储罐的自动焊接设备和焊材国产化也有很大的进步。
大型立式储罐的主要结构形式包括浮顶型储罐和拱顶型储罐,其主体安装方法分为正装法和倒装法。大型立式浮顶储罐直径大、钢板厚,罐体施工普遍采用正装法组装、自动焊焊接的工艺方法;在拱顶储罐的施工中,主要采用倒装法组装,仍以焊条电弧焊为主,但自动焊也得到了推广。高效焊接方法的选择与储罐材质、厚度和安装方法密切相关,应用最多的方法有埋弧自动焊、气电立焊等。以下主要介绍埋弧自动焊在大型立式浮顶储罐正装法焊接中的应用。主要优点:
(1)生产效率高。其生产率可比手工焊提高5~10倍。因为埋弧自动焊时焊丝上无药皮,焊丝可伸出很长,一般在50mm左右,能连续送进而无需更换焊条。故可采用大电流焊接(比手工焊大6~8倍),电弧热量大,焊丝熔化快,焊接速度比手工焊快的多。板厚20毫米以下的自动焊可不开坡口,减少了填充金属的数量,而且焊接变形小。
(2)焊缝质量高。对焊接熔池保护较完善,焊缝金属中杂质较少,只要焊接工艺选择恰当,易获得稳定高质量、成形美观、高探伤合格率的焊缝。
(3)节约钢材和电能。钢板厚度一般在20毫米以下时,埋弧自动焊可不开坡口,节省了钢材,由于电弧被焊剂保护着,使电弧的热得到充分利用,节省了电能。
二、埋弧自动横焊在储罐罐壁焊接中的应用
埋弧自动横焊主要用于正装法施工的浮顶储罐的罐壁环焊缝。近年来在大庆油田地区施工的10×104m3和15×104m3储罐罐壁均采用该方法焊接。
埋弧自动横焊机由机头、送丝机、焊剂托送机构、焊剂回收装置、焊接电源、焊接行走机架、驱动机构和控制系统组成。焊接时,焊接行走机架吊挂在储罐壁板上,壁板上端作为焊接行走轨道,行走驱动机构安装在行走机架的上部,驱动焊接行走机架沿罐壁板上端行走,焊剂托送机构的传送带靠托轮与壁板紧贴被动转动。为适应不同的板宽需要,机架一般制作成伸缩式。
图1所示为储罐正装法施工用的埋弧自动横焊示意图。由于焊接部位在机架的下部,焊剂回收桶安装在机架顶部,所以采用大功率负压式焊剂桶就可以实现焊剂的回收/送给自动循环。
虽然埋弧自动横焊效率高,但由于是埋弧操作,看不到熔池和焊缝形成过程,因此必须严格控制各项焊接参数。以15万立储罐为例,不同厚度,不同材质的罐壁板的焊接参数是不同的,如表1所示。
具体参数值根据实际情况现场确定。在南三油库储罐建设工程(二)中对罐壁板横缝进行组焊时,现场有六台AOTO NA-3 600KW的自动横焊机沿同一方向对称施焊,效率极高。
三、碎丝埋弧自动平焊在储罐罐底板焊接中的应用
5×104m3以上大型储罐的罐底板为对接接头形式,焊接量很大,罐底板相对较薄,因此焊接时易产生焊接变形。工程中广泛应用了焊条电弧焊或CO2气体保护焊打底根焊+碎丝埋弧自动平焊填充高效焊接工艺。其中碎丝埋弧焊的工艺原理如图2所示。
焊接前,先在坡口内放置一定厚度的碎焊丝,这样既提高焊接熔敷速度,又可以同时有效地防止焊接变形,避免应力集中,提高施工质量。埋弧自动焊进行罐底板的焊接时,由于自动焊的热输入比较高,穿透力远远大于手工焊,虽然罐底板接头下都有垫板,但也很容易焊穿,所以焊接之前必须进行打底焊。
图1 埋弧自动横焊示意图
由于自动焊的线能量比较高,而罐底板相对较薄,所以选择合适的焊接参数对提高焊接质量是至关重要的。在15×104m3储罐的罐底板焊接中,埋弧自动焊的参数如表2所示。
(一) (二)
图2 底板碎丝埋弧自动焊
表中12mm的Q235-B钢板是罐底中幅板,其对接焊缝采用CO2气体保护焊打底,碎丝埋弧焊填充;23mm的SPV490Q钢板是罐底边缘板,其对接焊缝采用手工电弧焊打底,碎丝埋弧焊填充;中幅板与边缘板之间的对接焊缝也是采用手工电弧焊打底,碎丝埋弧焊填充。
四、结语
中图分类号:TB
文献标识码:A
doi:10.19311/ki.16723198.2017.10.094
船舶制造是一个非常复杂的系统工程,对于船舶制造过程中存在的焊接变形现象,我们要加以关注并深入地研究,由于船舶制造过程中的焊接质量与船舶整体结构的强度、工作性能等方面有直接的影响和关联,而对于船舶制造过程中出来的焊接变形无法通过某一项单一的措施,来加以防范和应对,需要综合分析船舶制造中焊接的影响因素,结合船舶焊接不同部位的特点,采用科学有效的焊接加工工艺和技术,更好地减少船舶制造中焊接变形的不良现象,更好地提升船舶制造的精度。
1船舶制造过程中焊接质量的问题表现分析
1.1焊接结构的稳定性不足
在船舶制造过程中,船舶的强度和硬度尤其关键,它是决定焊接结构稳定性的重要衡量指标,如果船舶的强度和硬度方面存在缺陷或不足,则会极大地影响焊接结构的稳定性。由于焊接材料以及传统焊接技术的不足,船舶焊接的结构稳定性还存在不足,对于船舶制造的整体质量有较大的影响。
1.2焊接材料性能存在不足
在我国船舶制造工艺加工之中,焊接材料及其设备的配置还存在明显的不足,这较大地影响了船舶制造的质量。随着船舶制造业的精度要求不断提高,对于焊接质量的要求也随之提升,而焊接材料缺乏优质性能,这就极大地降低了焊接部位的稳定性。如:大型轮船要求多丝埋弧单面焊的焊丝和焊剂;对船舶的骨角焊缝加工需要采用防锈蚀的焊接材料等。
1.3焊接技术人员的专业化水平不足
我国船舶制造业的发展进程中,焊接技术人员的专业焊接水平还偏低,相对于国外先进国家的焊接施工技术而言,还有一定的差距,由于焊接新工艺和新工艺不断涌现,如果焊接技术人员缺少足够的专业知识和技能,则无法胜任船舶制造过程中的焊接工作,难以实现对焊接质量的高效控制。
2船舶制造中焊接质量问题的影响因素及其解决措施
2.1气孔
在船舶制造的焊接过程中,焊接时所产生的气孔是一种常见而普遍存在的问题,这是由于在焊接施工的过程中,部分熔池内的气泡没有充分、及时溢出,在船体金属材料逐渐冷却凝固的过程中,这些留存在熔池内的气泡就成了空穴,成了焊接质量缺陷。造成这种焊接质量问题的影响因素,主要在于以下几点:(1)焊接的边缘部位残留有水分、金属锈蚀或油渍。(2)焊接施工操作没有依照规定的程序和流程,进行严格的焊接操作施工,导致焊接的焊条的烘焙度不足。(3)焊接施工操作时存在焊芯锈蚀的现象。(4)焊接施工中的电压控制不合理。对于焊接中产生的气孔缺陷性问题,要注重对焊接截面的合理控制,并根据焊接的施工情况,选取针对性的措施,以规避气泡的产生。
2.2夹渣
在船舶制造的焊接施工过程中,这种夹渣现象和问题会极大地降低焊接的致密性,同时也降低焊接部位的强度,不利于船舶制造的整体质量的提升。出现这个焊接质量问题的影响因素,主要包括有以下几种:(1)焊接的施工速度控制不当,出现焊接过快的现象。(2)焊接施工过程中的电流过小,也会导致夹渣现象的出现。(3)焊接施工过程中,如果焊缝的边缘有氧割,也会出现夹渣的问题。对于焊接中出现的夹渣缺陷性问题,首先要选择适宜的坡口尺寸,整理并清洁焊接的边缘部位;然后还要注重控制好焊接施工的速度,确保焊接施工中的融化状态与焊接的匹配性。
2.3咬边
在船舶制造的过程中,焊接材料存在凹陷的现象,就会使焊接出现接头,使焊接连续的强度无法达到规定的要求和标准,从而降低船舶制造的质量。产生这种焊接质量问题的因素,主要体现为以下几点:(1)焊接施工过程中的焊接速度控制不当所导致的,如果焊接的运动速度过快,则会使焊接出现“咬边”的现象。(2)焊接施工中的电流控制不当所导致的。对于焊接施工中存在的“咬边”缺陷性问题,要认真分析焊接施工中的荷载状态、应力状况等,合理控制焊接的速度,实现对焊接轨道的平整度控制。
2.4未熔合和焊透
在船舶制造中的焊接过程中,存在材料和焊件之间没有充分焊接的现象,这种焊接问题对于船舶制造的质量有较大的影响。产生这种焊接问题的因素主要表现为:(1)焊接施工中的速度控制不当,导致焊接速度过快而产生未完全熔合和焊透。(2)焊接施工过程中的电流控制不当,电流过小也会导致焊接未完全熔合和焊透。(3)材料的直径超过了一定的范围,导致焊接时的坡度过小,无法充分熔合和焊透。对于这种焊接缺陷性问题,要注意焊接施工的速度控制,使焊接的摆动与熔合状态相契合,同时也还要注意控制坡口的尺寸。
2.5焊接裂纹
在船舶制造过程中的焊接施工之中,船舶结构出现大小不同的裂纹,会极大地影响船舶整体的美观,也存在较大的安全隐患。其产生的影响因素主要在于焊接施工过程中的速度控制不当以及焊接深度控制不当。对于焊接裂纹的缺陷性问题,应当采用修补的方式,以减少焊接裂纹的扩散。
3船舶制造中焊接质量提升的具体措施
3.1注重焊接结构的优化设计,提升结构稳定性
在船舶制造的焊接过程中,要重视焊接结构的优化设计,这是一项重要的基础性工作内容,要依照船舶制造的技术标准和要求,选取最为适宜的船舶结构设计方式,注重焊接点位置的合理选择,并注重对船舶整体的结构设计,以最大程度上提高船舶结构的稳定性。
3.2优化焊接设备和焊接材料
在船舶制造的焊接施工技术运用中,要重视焊接设备的优化和焊接材料的合理选用。随着高效焊接方法的不断普及,高效的焊接设备也在不断地进行升级,原有的旋转式直流焊机已经被淘汰,替之以高效的整流交直流弧焊机、逆变弧焊机、CO2半自动焊机等。对于船舶制造中的焊接材料的选用,也不断向机械化和自动化的方向发展,普遍采用了药芯焊丝、实芯焊丝等焊接材料,品种相对齐全。然而,我国在高速焊、多丝埋弧焊等方面的专用焊丝还无法自主生产,还依赖于国外进口。
3.3优化焊接专业化操作水平
在船舶制造的焊接技术应用中,要提升焊接人员的专业化操作水平,要掌握新的焊接工和焊接方法,掌握焊接不同工艺的具体操作要领,并强化焊接检验,调整和改进焊接中存在的问题,确保焊接的有效性。
4结束语
综上所述,在我国的船舶制造业之中,焊接施工工艺和流程是不可缺少的系统化工程,在这个焊接施工操作之中,焊接材料、焊接设备、焊接人员都是不可缺少的关键要素,我们要分析焊接施工中存在的缺陷性问题,探索焊接质量问题的解决对策,并从各个方面,提升船舶制造中焊接的质量,推进我国的航运事业发展。
参考文献
[1]王平.影响船舶制造中焊接质量的因素及对策经验谈[J].民营科技,2014,(07).
船舶焊接技术是船舶工业的主要关键工艺技术之一。目前,世界各主要造船企业在20世纪90年代中期已普遍完成了一轮现代化改造。同时,在此基础上又陆续启动了新一轮现代化改造计划。投资目标很显然集中于高新技术投资力度进一步加大,大量采用全新的造船焊接工艺流程,高度柔性的自动化焊接生产系统和先进的焊接机器人技术,以保证这些造船强国在国际竞争中具有独特的技术优势。
进入21世纪,面对新的挑战和机遇,对我国船舶焊接技术进行综合分析研究是极有现实性和针对性的,并以此来激励我们去做好当前必须做的各项工作,大力推进高效焊接技术,加快焊接技术改造步伐,努力将相对资源优势转化为科技竞争优势,促进船舶产业进步和产业升级。否则,将不但难以实现船舶工业振兴的宏伟发展计划,甚至会出现我国现有的国际市场份额都难以维持的严峻局面。
一、船舶焊接技术现状
受20世纪70年代中期和20世纪80年代中期两次严重造船危机打击,世界造船业总局面发生了重要变化。日本、韩国、中国(包括台湾省)造船业迅速发展起来,使世界造船中心由欧洲转向东亚,东亚地区的造船量占世界造船总量的78%(以总吨计算),在东亚地区造船诸国中又形成了日本、韩国、中国大连和上海的世界造船“金三角”地区。
这个狭小的“金三角”地区聚集着众多的世界一流的造船企业、研究开发中心及其船舶配套设备厂,其造船量占世界造船量的70%以上,有“世界造船基地“之称。
中国的造船能力和市场份额有明显增长,并将成为世界造船格局演变的重要推动力量。我国造船业的规模据国家统计局统计,1999年年销售额超过500万元人民币的修造船企业有461家,职工达29.6万人销售总额达345.95亿元人民币,其中海船造修厂有72家,职工有12.4万人,销售额达到 201.51亿元。
目前,我国至少有30家船厂在建造出口钢质海船。其中中国船舶工业集团公司9家,中国船舶重工集团公司4家,其他17家。
自20世纪90年代后半期起,我国造船业发展的一个重要特点是;地方的和中外合资的与外方独资的造船企业发展迅猛,并形成了与中国船舶工业、中国船舶重工两大集团公司“三分天下”的格局。
自改革开放以来我国造船业在技术水平、船舶类型、建造质量以及建造周期等方面都取得了长足的进步,具备了一定的国际竞争力。其中船舶焊接技术的长足进步贡献突出,并取得了较好的经济效益。
1、造船生产中应用的高效焊接工艺方法。这些高效的焊接方法从20世纪70年代末期的3-5种发展到现在的35种,基本满足了建造出口船舶,海洋石油平台以及各类非船舶产品的需要。
2、焊接高效化率大幅度提高。焊接机械化自动化率自20世纪90年代以后有了较大幅度的提高。
3、船厂的焊接设备构成逐渐趋于合理旋转式直流弧焊机已从1983年的56.45%下降到2001年的65%,最终将全部被淘汰,取而代之的是整流弧焊机、CO2气保护焊机、交流焊机、埋弧焊机以及船用机械化自动化平角焊机、垂直气电焊机等。
4、船舶焊接新工艺、新技术、新材料的应用与推广。由于部分船厂的产品特点是多品种、小批量,产品结构和材料变化频繁。近年来,随着转换现代造船模式,大力推进区域造船法,使船舶焊接技术也发生了较大的变化,其中比较突出的是一些重点骨干船厂先后都引进了国外先进的平面分段装焊流水线,采用了拼板工位多丝埋弧自动焊,单面焊双面成形新工艺、新装备。其焊接范围可分别用于5-20mm和10-35mm的船用板材的对接拼板,同时在按区域造船的理论指导下,对船体的平面分段构架的装焊也采用了半自动或自动气保护角焊工艺使焊接效率大大提高。
对于船台大合拢时的垂直对接缝(长度达15-30m)的焊接,原采用手工电弧立焊工艺,其缺点是生产效率低,劳动强度大,对焊工操作技术要求高,焊接质量不稳定。我国造船行业从20世纪80年代中期开始应用CO2气电垂直自动焊工艺,焊接时,在焊缝背面安放梯形槽陶质衬垫,焊缝正面采用水冷铜滑块强制成形,以保持熔池稳定和焊缝成形良好,其焊接生产效率比常规手工焊提高5-7倍,焊接质量稳定,目前已在船厂得到应用。
5、焊接材料应用方面。近几年药芯焊丝的应用异军突起,由于药芯焊丝具有熔敷效率高,焊缝质量好、焊接飞溅少、容易实现机械化和自动化焊接。目前船厂已普遍采用药芯焊丝来焊接船舶结构。同时它又与CO2焊接工艺技术相结合,使船厂在生产中尝到了甜头,所以目前一些船厂认为CO2气保护药芯焊丝焊接将是作为船厂的主要焊接工艺与焊接材料。
由于大量推广应用CO2气保护药芯焊丝,从而也大大提高了我国船厂焊工人均日消耗的焊接材料量,这也进一步降低了我国的造船成本,缩短了船舶的建造周期。另外,在一些高附加值船的建造与非船产品(如大型钢结构高层建筑大型桥梁等)的焊接技术上也开创了许多创新的焊接技术,取得了较大的经济效益和社会效益。
二、高效焊接工艺设备的开发与应用在船舶方面的作用
为提高船舶焊接机械化、自动化水平,在引进消化的基础上开发研制了垂直自动焊机,目前已基本结束了依赖进口的局面,其焊接质量基本上能达到100%的合格,这也是我国船舶焊接技术中有显著特点的技术与装备。根据中国船舶行业发展规划,我国船舶工业将进入世界造船强国的行列。在船舶焊接技术方面我们虽然有10多年来的经验与基础,但同时也看清了与国际先进造船大国的差距。
近年来,我们又集中力量,紧跟国际先进造船焊接技术,跳跃式的自行开发研制适合船厂专用双丝单面MAG焊接技术与装备。该项技术目前已在沪东造船厂进行考核和应用阶段,其主要特点是可无间隙装配、坡口内定位焊、添加切断细焊丝,背面应用陶瓷衬垫,正面双丝单面活性气体保护焊,板厚在12-22 mm范围内可一次成形,焊接速度快、焊接效率高、焊接质量好、应用前景良好。该设备在日本也是1998年才刚推出的新颖单面焊双面成形船舶专用设备,目前已在船厂广泛应用。近年来又开发了船舶专用垂直自动立角焊机,该机带有液面自动跟踪功能,焊接工艺方法基本和原有的垂直自动焊机相同,即正面用铜滑块,反面用陶瓷衬垫。经试验分析,焊接效率为原来方法的 6倍,同时也大大地改善了焊工的劳动环境,目前该设备在进一步完善,不久即可在船舶建造中广泛使用。
三、展望21世纪的船舶焊接技术
进入21世纪以来,随着国际船舶市场的复苏,给我国船舶工业带来了新的发展机遇,尤其是我国加入了WTO以后给我国船舶制造业带来了更激烈的竞争和机遇,我们必须清醒地认识到我国船舶焊接技术还严重地制约着造船的产量、质量、成本、周期。我国的船舶焊接技术与国外同行业先进水平相比,差距不是缩小,而是在继续拉大,日本已在20世纪末初步完成了造船焊接的机械化与自动化改造计划,20世纪90年代后期焊接机器人已批量应用。结合我国国情,我们认为船舶焊接技术的发展方向应是努力提高造船焊接机械化、自动化水平,推广高效、节能型焊接设备,结合新产品的开发,研究应用焊接新工艺、新技术、新材料,进一步提高焊接生产效率。掌握先进技术应当遵循客观规律,应当循序渐进,但也不能排除跳跃式的发展。造船焊接要实现机器人焊接是我国造船界专业人士梦寐以求的,但要实现这一目的,必须要开展这方面的研究和探索,首先要解决好船用钢板的切割下料的技术更新,要形成火焰切割、等离子切割和激光切割三足鼎立的局面。其次在焊接电弧跟踪技术方面要有成熟的实用技术。
要实现船舶焊接技术更新、更快地发展船舶工业要处理好以下几个关系。
1、处理好重点与一般的关系要充分考虑实际与可能有所为有所不为以点带面逐步实现先进焊接技术在船厂的推广与应用。
2、处理好发展常规船舶与发展高技术、高附加值船舶的关系。在船舶市场中油船、散货船和杂货船属常规船型,约占整个市场的70%,集装箱船约占 15%-20%,而其余高新技术、高附加值船舶仅占少数。因此,焊接技术也要大力发展适合不同船型的便携、简易的机械化、自动化焊接设备,同时要大力开发国产的适合各种船用材料的系列化高效焊接材料。
关键词: 铝及铝合金;变极性;等离子焊接
Key words: aluminum and aluminum alloy;Variable Polarity;Plasma Arc Welding
中图分类号:P755.1 文献标识码:A 文章编号:1006-4311(2013)30-0289-02
0 引言
随着科学技术的发展,低密度、高强度金属材料得到越来越多地应用,铝及其合金以其质量轻,强度高以及优良的耐蚀、耐低温性能,正广泛应用于航空、航天、汽车和民用等工业产品中,成为一种重要的加工材料。
变极性等离子弧焊(Variable Polarity Plasma Arc Welding简称VPPAw)是一种新型、高效、经济的焊接方法,在铝合金的焊接方面得到广泛应用。
1 变极性等离子焊接简介
变极性等离子焊接(Variable Polarity Plasma Arc Welding简称VPPAW)使用特殊设计的焊接电源和控制系统,通过极性的可控变换,可以获得正接时间较长,反接时间较短且电流值分别可调的电流波形。在工件接电源正极的时段中,焊枪可以有效地加热工件,此时钨极不会发生过热;而在工件接电源负极的时段内,则可以利用“阴极雾化”作用清理焊接区的氧化物。通过控制正、反极性时的电流大小以及变换频率,还可以调节熔透情况和阴极雾化清理的强度。图1表示了一个变极性等离子焊接现场的情形。
在研究阴极清理作用的影响因素时,发现工件接负极时段内电流大小的影响远大于时段长短的影响,此时段内的电流越大,阴极清理的效果越好;而延长此时段的时间,阴极清理宽度的增加则很有限。图2表示了使用该法焊接铝合金时的电流波形,由图中可见,当工件为负时采用短时间、大电流;电极为负时则用长时间、较小电流。该方法很好地解决了焊接铝及铝合金时清除氧化膜和防止电极烧损之间的矛盾,实现了稳定的连续焊接。
2 变极性等离子焊接的特点
变极性等离子焊接具有以下几个方面的特点:
①温度高,能量集中,焊接熔深大,对中厚铝合金板,不开坡口单面焊双面成形,保证熔透。②焊前不需清理,变极性等离子弧的阴极清理作用可将污染物冲走,去除氧化膜效果好。③焊缝气孔率低,金属熔池内的气体能通过小孔全部排出,清除气孔比较彻底。④焊缝正反面受热比较均匀,焊接热影响区窄,工件变形小。⑤焊接层数少,焊缝宽度窄,焊材消耗量小,生产效率高、成本低。⑥钨极缩在喷嘴内不与工件接触,减少钨极损耗,并防止焊缝金属夹钨。⑦焊缝接头力学性能好,x射线探伤合格率高,焊接质量更有保证。
3 变极性等离子焊接设备
①等离子焊接电源;②等离子焊枪;③自动送丝系统;④控制系统;⑤智能温控水箱。
4 变极性等离子焊接的应用
美国国家航空和宇宙航行局(NASA)最早曾使用常规的直流TIG正接焊接方法制造火箭外部燃料储罐,这种铝合金储罐有多种不同的尺寸,其中一种的直径为8.717m、长46.939m,可装载530m3的液氧以及1438m3的液氢,曾用于土星号登月火箭。尽管焊前的接头准备十分充分,但是仍然经常出现焊缝气孔等缺陷。1978年,NASA决定采用由美国波音公司的B.P.VanCleave等在20世纪60年代末就已经开发出的变极性等离子焊接方法取代TIG焊,用于该储罐的焊接,使焊接质量得到了明显的提高。20世纪80年代波音公司也曾用变极性等离子焊接方法焊接了大量铝合金筒体结构的环缝,并对其焊接工艺、设备及质量控制等进行了一系列研究,推动了这种方法的完善。目前,变极性等离子焊接方法已在铝合金结构件的制造中获得了广泛的应用,成为一种很有发展前景的焊接方法。
该方法很适合于铝及铝合金的小孔法焊接。对于用TIG方法需要开坡口且多次焊接的焊缝,用变极性等离子焊接方法中可直接采用I形坡口,焊接一道焊缝既可,这可减少焊前坡口准备工作量,提高了工作效率。极性变换带来的熔池搅拌作用有利于气体的逸出和杂质的排除,焊缝缺陷少、焊道窄且变形小。该方法可以在平、横、立向上和立向下各种位置上焊接。
多年来,NASA对变极性等离子焊接方法进行了大量的实验研究和数值分析工作,包括对小孔焊接过程中能量的分布与损失、焊缝外形的成形规律、焊枪喷嘴结构设计以及各种焊接工艺参数对焊接质量和速度的影响等等,为这种方法在航天工程中的应用提供有价值的资料。目前,我国也已对变极性等离子焊接方法开展了一些研究。
参考文献:
中图分类号:P755文献标识码: A
一、影响长输管道焊接的因素
在长输管道焊接施工中,会有各种因素影响着管道焊接的质量,主要有以下几个因素:
气候环境。温度、湿度等环境条件会对焊接的质量产生一定的影响;流动性施工。在长输管道的焊接施工中,工作地点会随工程的进度不断的发生变化,使得焊接质量难以保证;地形、地貌。长输管道在铺设施工过程中会遇到各种的地形、地貌,导致焊缝位置变化多端,会对焊接质量产生直接的影响;施工场地如果比较狭窄,也会使机械化的焊接工艺的适用性差,不能应用先进的焊接技术。
二、焊接技术在长输管道施工中的应用
1、半自动向下焊方法
半自动向下焊方法发展速度很快,但是它在管道焊接建设应用上是相对晚一点起步和发展的。但是现在在国内长输管道焊接工作的应用中已经发展成熟。它主要包括药芯焊丝自保护半自动向下焊和活性气体半自动向下焊方法。药芯焊丝自保护半自动向下焊是通过药芯高温后分解释放出大量的保护气体对电弧和熔池进行保护,同时有熔渣对焊接金属的焊缝进行保护的一种高效焊接方法。在施工过程中,要合理选择合适的药芯,不同的药芯含有的元素不同产生的气体也就不同,这个方法很适合野外施工,在施工中一定注意参看方法施工工艺规定,保证施工的焊根充分熔合,达到满意结果;而活性气体半自动向下焊方法相对廉价、优质、高效。它利用活性气体,再通过逆变焊接机的高速可控运行,对电流电压波形的控制达到满意的焊接结果,整个施工要注意保证设备的正常运行和工作及活性气体的充分运用,很容易发挥出活性气体半自动向下焊方法优质的性能。
2、手工下向焊方法
手工下向焊接在很多管道现场焊接以及大直径、薄管壁的长输管道焊接中应用,它通过手工的方式克服了环境很差时使用设备过于复杂、操作出现不变的情况。它主要是是手工焊条下向焊方法。手工焊条下向焊主要包括全纤维素型、混合型和复合型向下焊三种。全纤维素型向下焊多应用于薄壁大口径管道的焊接中,其突出的优点就是焊接速度快、焊接质量好、探伤合格率高。在施工过程中,它可以应用在水网密集的环境中或者是自动化、半自动化焊接设备无法进入的区域。在施工过程中一定要注意打底焊时要注意单面焊双面成形,仰焊作业时防止熔滴在重力作用下出现铁水粘连焊条的情况;混合型向下焊主要应用于长输管道级别较高的管道中和气候条件恶劣、酸性气体介质的管道连接处进行应用。一般全纤维素型焊接方法很难达到管道接头质量要求,而此焊条的抗冷性能和韧性较好,只是熔化速度较慢。在整个施工过程中,要尽可能在选择好适合的管道类型规格进行焊接作业时提高焊接速度,保证焊接作业质量合格;复合型向下焊方法应用于长输管道管壁比较厚的情况下,下向焊比传统的向上焊的传热浅、劳动强度和技术要求高。只是采用淡出的向下焊无法达到高效率、高质量,这就是采用了复合向下焊接的方法,其中盖面焊向上和根焊层向下同时作业,可在厚壁管道应用中大大提升效率。
3、自动焊方法
长输管道自动焊方法是借助全位置自动焊机设备,同时在专业人员的操作下完成高效率的焊接任务。这种焊接方法成功率相当高,焊接一次合格率达到98%以上。这项技术应用于众多油建事业,成功应用了这项技术在西气东输主线路及支线路的工程的管道焊接1000余公里。长输管道自动焊的焊接方法在施工过程中,一定要保证机器设备的正常运行,保证自动焊机的高效率、高质量工作,是工作人员必须做到的。自动焊方法通过大范围的施工应用,逐步走上了研发出更多新技术的道路。首先,管道焊接智能化主不在应用中加强。目前管道的自动焊接方向就是逐步走向柔性化、智能化。通过工程技术研究专业人员在设备的开发和应用取得成功的基础之上,结合现场应用的实际情况及日益增加的施工要求,进行了不断研发。一方面对现有的技术进行了完善和提高,另一方面还增加了智能化功能。其次,APWllL型数字式智能型长输管道全方位自动焊机在施工中开始应用。这种焊机采用工业计算机系统通过硬件设计和软件编程,实现对整个焊接施工的自动化控制。同时采用及角度编码空间位置检测系统,能够精确焊接的角度位置。通过在施工中不断应用,为弥补一些不足,采用了人工干预功能,这是结合现场实际的实用化。再次,焊枪高度传感检测系统装置在长输管道自动化焊接施工中应用。这是在自动焊作业中添加了检测系统的应用,在施工作业中,系统自动控制焊丝干的伸长于算段,进一步减轻了焊工的工作强度。
三、长输管道焊接的质量控制
1、加强工艺规程的检验
减小管路焊接缺陷的方法可以参考一下的工艺规程:焊接过程所有阶段都要进行的工序间检验,应保证全部工序符合建设管道的技术条件并按照规定检查管子的状态质量、焊接材料、准备工作进行的情况、焊前对接口预热情况和在野外条件下坡口边缘的加工情况,管端火焰校直和切割规程执行情况以及组对情况等。在进行焊接的过程中要检查焊接规范和技术,焊缝各层施焊顺序,清除渣壳的完全程度,在焊缝的内部焊层有无可见缺陷。焊好的焊缝在外观检查:清除可见缺陷以前不提交下一步检验。在检验送去焊接的管子时,查对在管子表面有无超差缺陷,在管端有无严重凹陷、压痕,在制造厂焊的管子焊缝中有无可见的缺陷。
2、焊前和焊接检验检测
要确保管口表面质量、坡口的表面和角度、对口间隙、组对间隙、错边量、坡口尺寸的误差在允许的范围内,并确定是否符合工艺文件的规定。每次焊接完成后,焊工应先自行检测飞溅、熔渣等缺陷并将之清除,然后交给检验员检验。检验员应该根据相关的检测标准进行检测,监督并检查焊接工艺的施工情况,一旦发现问题应该及时处理,或者向上进行反馈。
3、焊接环境的控制
焊接工作时周围的气候环境是影响焊接质量的一个重要因素。下面的几种自然环境下是不宜进行焊接的:有风天气(气体保护焊:风速大于2m/s;低氢型焊条电弧焊:风速大于5m/s;酸性焊条电弧焊,风速大于8m/s;药芯自保护焊丝半自动焊,风速大于8m/s)情况下不能焊接;雨雪天气;大气湿度达到90%以上;环境温度过低(低于焊接工艺规定的最低焊接温度)。
结束语
通过对手工下向焊、半自动下向焊、自动焊焊接方法及在施工过程中的应用的介绍,了解了长输管道焊接的主要方法和应用。目前长输管道焊接方法相当广阔,国内除了西气东输的大工程,像中俄输油管道、西部成品油管道、西南成品油管道都在运行和发展,这些大工程对于管道焊接技术要求提出更高的要求,我们有理由对于长输管道的焊接方法的美好前景进行自豪的展望,也相信新的更好的焊接技术会应运而生,给管道施工提供强有力的技术支持,更好的加快长输管道焊接生产朝着高效率、高质量、高速度、低成本的方向发展。