超高层建筑消防设计范文

时间:2023-07-21 09:13:25

引言:寻求写作上的突破?我们特意为您精选了12篇超高层建筑消防设计范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

超高层建筑消防设计

篇1

1 工程概况

大连润德公馆项目位于大连市新开路东,长江路以北,常寿街以南,日新街以西,为沿街地块,项目总用地面积为2450m2,规划用地性质为公建、公寓。本建筑物建筑高度185.45m,地下四层为设备用房及停车场,1~4层酒店大堂及宴会厅,5~7层为立体停车场,8层为避难层,9~21层为酒店公寓,22层为避难层,24~33层为住宅式公寓,34层为公建。

2 消防系统

本工程属建筑高度超过100m的超高层建筑,防火按一类一级建筑设计,依规范设有消火栓系统、自动喷水灭火系统、建筑灭火器配置、水喷雾灭火系统、气体灭火系统。

2.1 水 源

消防用水由城市自来水单路供水,在用地红线内管网上接出一根DN100的管道引至地下四层消防水池。②因城市自来水为单路供水,为保证供水安全性,室外消防系统由地下四层消防泵房内的室外消火栓泵供水,在室外设置环状管网。③室内消防用水由消防水池供给。在地下四层设有效容积480m3消防水池两座,内存室内、外消火栓及自动喷洒水量;贴临的消防泵房内设室外消火栓系统两台水泵,室内低区消火栓系统两台水泵,一用一备;低区自动喷水灭火系统两台水泵,一用一备;消防转输供水系统三台水泵,两用一备。④消防转输水箱供水系统:八层设置消防转输水箱,由设于地下四层消防泵房内的消防转输泵组(三台,两用一备)供水。中间水箱设回流管,超过高水位的水回流至地下四层消防水池。⑤在八层及屋顶水箱间内各设置一套高位消防水箱,水箱有效容积为18m3。

2.2 消防水量

本工程属建筑高度超过100m的超高层建筑,流量和水压均不能满足系统要求,因此消防系统为临时高压消防给水系统,防火按一类一级建筑设计。①消防水池有效容积:本工程室外消火栓用水量30L/s,火灾延续时间3h;室内消火栓用水量40L/s,火灾延续时间3h;湿式自动喷水灭火系统火灾危险等级为中危险级Ⅱ级,喷水强度为8L/s・m2,作用面积160m2,持续喷水时间1h。消防水池的有效容积应是火灾延续时间内,同时使用的各种灭火系统消防用水量之和,因此在地下四层设有效容积总计为954m3。②8层消防转输水箱有效容积:消防转输水箱内储存30min室内消火栓用水量及1小时自动喷洒用水量,因此消防转输水箱有效容积为180m3。③高位消防水箱有效容积:参照《高层民用建筑设计防火规范》GB50045-95(2005年版),一类公共建筑不应小于18m3。

3 消火栓灭火系统

(1)室外消火栓系统:本项目室外消防系统由地下四层消防泵房内的室外消火栓泵供水,在室外设置环状管网,环管管径DN200。从市政供水管上接稳压管至环状管网上,接入前设倒流防止器。室外消防供水系统,最不利点消火栓压力不小于10m。室外消火栓将沿首层的消防车道设置,各消火栓间距不超过120m,消火栓距路边不应大于2.0m,距建筑外墙不宜小于5m。采用地下式消火栓。

(2)室内消火栓系统:①消火栓系统分区:消火栓系统的分区原则为消火栓栓口的静水压力不应大于1.0MPa,因此将室内消火栓系统分成高、低两个供水区域,每个区域又用减压阀分为Ⅰ、Ⅱ两个压力区。地下四层-7层为低区,八层至顶层为高区。高区由屋顶水箱和稳压装置稳压,低区由中间水箱和稳压装置稳压。②减压稳压消火栓设置:消火栓栓口动压大于0.5MPa时采用减压稳压消火栓,本项目地下四层至一层、管道夹层、五层、六层、八层至十六层、二十四层至二十八层均采用减压稳压消火栓,栓口压力调至0.3MPa。③水泵接合器:消火栓系统高、低区各设三套地下室消防水泵接合器。高区在8层消防转输水箱间内设置三套消火栓水泵接合器接力泵。④按规范要求将消火栓安装于各楼层及其消防电梯前室,地下室和明显且易于操作的部位。栓口离地面或操作基面高度为1.1m。消火栓的布置应保证每一个防火分区同层有两个消火栓的水枪充实水柱同时到达任何部位。消防充实水柱长度不小于13m,每根消火栓立管的最小流量为15L/s。

4 自动喷水灭火系统

(1)设计基本参数:①A.地下及5-7层立体停车场:天花板下火灾危险等级为中危险级Ⅱ级,喷水强度为8L/s・m2,作用面积160m2,设计流量为27L/s,持续喷水时间1h;货架内置喷头:每个喷头流量1.92L/s,同时作用喷头14个,设计流量为27L/s,持续喷水时间1h。总流量为55L/s。②一、三、四层净空高度为8~12m,喷洒应按非仓库类高大净空场所设计,喷洒强度6L/min・m2,作用面积260m2,设计流量为35L/s。③一层公寓大堂挑空高度15.2m,设置自动扫描射水高空水炮灭火装置,单个喷头流量5L/s,设置两个喷头,设计流量为10L/s。④地上公寓及住宅:火灾危险等级为中危险级Ⅰ级,喷水强度为6L/s・m2,作用面积160m2,设计流量为30L/s,持续喷水时间1h。⑤地下一层柴油发电机房及贮油间设水喷雾自动灭火系统,设计喷雾强度20L/min・m2,持续喷雾时间0.4h。

(2)系统分区:《自动喷水灭火系统设计规范》GB50084-2001(2005年版)中规定为保证配水管道的工作压力不大于1.2MPa,因此将自动喷水灭火系统分为高、低两个供水区域,地下四层-7层为低区,其中地下四层至四层为低区Ⅰ区,管道夹层至7层为低区Ⅱ区;八层至顶层为高区,其中八层至二十二层为高区Ⅰ区,二十三层至顶层为高区Ⅱ区。配水管道的布置已使配水管入口的压力均衡,且各配水管入口的压力均不大于0.4MPa,如有超压,设置减压孔板。

(3)自动喷水灭火系统:①各区自动喷洒系统均由各区的自动喷洒加压泵供水,每区设加压泵二台(一备一用),分别设于地下四层消防水泵房及8层消防转输水箱间内。高区由屋顶水箱和稳压装置稳压,低区由中间水箱和稳压装置稳压。消防水箱出水管与喷洒水泵出水管并联接至报警阀组前。②低区共设6组湿式报警阀,分别设在地下四层消防泵房及4层5层之间管道夹层内。高区共设6组湿式报警阀,分别设在8层消防转输泵房及23层报警阀室内。喷淋系统每个报警阀组控制的喷头数:湿式系统不超过800个。每层各防火分区分别设有信号阀、水流指示器。每个报警阀控制的最不利喷头处设末端试水装置,其他部位可设置试水阀。③水泵接合器:低区设四套地下式自动喷洒水泵接合器,高区设两套地下式自动喷洒水泵接合器。高区在8层消防转输水箱间内设置两套自动喷洒水泵接合器接力泵。

参考文献

[1]《高层民用建筑设计防火规范》GB50045-95(2005年版).

篇2

随着我国经济的发展,超高层建筑近年来逐渐增多。而消防系统的设计,由于与人的生命和财产息息相关,显得尤为重要,下面以一工程实例进行讨论。

1 工程概况

沈阳某建筑占地面积约为92000,地上建筑面积约为80000,地下总建筑面积约为330000。项目包括一68层办公楼,约为350m,四层大型商场及四层地下车库。地下第三层、第四层部分为平战结合六级人防二等人员掩蔽所,包括车库,设备间等。

2 消防系统

本建筑为一类超高层民用建筑,耐火等级为一级。消防设计内容包括室内、室外消火栓给水系统,自动喷淋给水系统,灭火器配置系统,防火幕冷却保护喷淋系统,七氟丙烷气体灭火系统。

本项目消防水源由市政给水环网上分别引入两条进水管,在小市政成DN600环管。办公楼、商场及室外消火栓水缸各自从环管引出2根DN150水管进入各自消防水缸内。

2.1 消防系统用水计算

办公楼消防系统用水量

室内消火栓系统选用40L/S,运行时间为3小时,所需储水池容积为432m3,自动喷淋灭火系统选用30L/S,运行时间1小时,所需储水池容积为108m3,大净空自动喷淋系统选用60L/S,运行时间1小时,所需储水池容积为216m3,(自动喷淋灭火系统与大净空自动喷淋系统储水池容积只取较大者,所以按216m3计算)消防系统总计用水量为100L/S,储水池容积为648m3。与空调冷却塔补水(400m3)合用,储水池总容积为1048m3。

办公楼首层入口大堂净空高8―12m,喷淋系统选用流量为60 L/S,净空小于8m ,流量按30 L/S计算。

商场及地库消防系统用水量

室内消火栓系统选用40L/S,运行时间3小时,所需储水池容积为432m3,防火幕冷却保护喷淋系统选用200L/S,运行时间3小时,所需储水池容积为2160m3,自动喷淋灭火系统选用30L/S,运行时间1小时,所需储水池容积为108m3,大空间自动扫瞄定位喷水灭火系统选用42L/S,运行时间1小时,所需储水池容积为151.2m3,(自动喷淋灭火系统与大空间自动扫瞄定位喷水灭火系统储水池容积只取较大者,所以按151.2m3计算)消防系统总计用水量为282L/S,储水池容积为2743.2m3。与空调冷却塔补水(244.8m3)合用,储水池总容积为2988m3。

室外消火栓系统选用30L/S,运行时间为3小时,所需储水池容积为324m3。

2.2 消火栓系统

室外消火栓系统用水从设于地库四层的消火栓水池经专用消防水泵吸取加压后经过埋地的环网管提供。室外消火栓采用地下式。系统设两台室外消火栓水泵(一用一备), 扬程为0.6MPa,流量30L/S。

在首层设置三个室外消火栓系统消防水泵接合器。

室外消火栓消火栓充实水栓不少于13m,栓口静止压力不大于100m水柱和动压不大于50m水柱。另在每个消火栓处设消防软管卷盘。办公楼T1座及商场的室内消防系统均为独立系统及水缸。

2.2.1办公楼消火栓系统

办公楼消火栓系统用水从设于地库四层的办公楼消防及空调补水合用水缸经专用室内消火栓水泵(一用一备) 扬程为0.96MPa,加压后通过管网送至地库四层至十层的消火栓。另有消防转运泵扬程为1.4MPa,流量为40L/s(两用一备),把消防用水供给在23层的消防中间转运水箱(90立方米),该水箱将用作为转运及稳压之用。相同的消防中间转运水箱设于41层,59层用于运转和稳压,分区供给。在68层放置一个18立方米的高位水箱及稳压设施。

在首层设置三个办公楼消火栓系统消防水泵接合器。

2.2.2商场及地下停车库消火栓系统

消火栓系统用水从设于地库四层的消防及空调补水合用水缸经专用消火栓水泵(一用一备) 扬程为0.75MPa, 加压后通过管网送至各消火栓。系统用水流量为40L/s。在地库四层及三层设水平环网。在四层设一个18立方米的高位水箱和稳压设施。

在首层设置三个商场及地下停车库消火栓系统消防水泵接合器。

2.3自动喷水灭火系统

2.3.1自动喷淋系统

2.3.1.1办公楼自动喷淋系统

办公楼自动喷淋系统设计为中危险II级。办公楼自动喷淋系统用水从地库四层的办公楼消防及空调补水合用水缸经专用自动喷淋水泵(一用一备), 扬程为1.06MPa,送至地库四层至十层的自动喷淋系统。系统用水流量为30L/s。

办公楼自动喷淋系统用水从设于地库四层的办公楼消防及空调补水合用水缸经专用自动喷淋水泵(一用一备) 扬程为1.06MPa,加压后通过管网送至地库四层至十层的喷头。消防中间转运水箱(与消火栓系统用同一水箱)(90立方米)设于41层,59层用于运转和稳压,分区供给。在68层放置一个18立方米的高位水箱及稳压设施。在首层设三个喷淋水泵接合器。

2.3.1.2商场及地下停车库自动喷淋系统

商场自动喷淋系统用水从地库四层的商场消防及空调补水合用水缸经专用的喷淋水泵(一用一备), 系统用水流量为30L/s, 扬程为0.85MPa,吸取加压后再通过报警阀组输送至每一个的喷头。在四层设18 m3的高位水箱及稳压设施。

于首层设置二个消防水泵接合器。

2.3.2大空间自动扫瞄定位喷水灭火系统

办公楼L67层观光台装设大空间自动扫瞄定位喷水灭火系统。该系统设水泵两台(一用一备)于59层,系统流量为60 L/s,(4支9 L/s自动扫描水炮),扬程为0.9MPa。在首层设四个喷淋水泵接合器。

各商场中庭将会设置大空间自动扫瞄定位喷水灭火系统对该等场所进行灭火保护。该系统设水泵两台(一用一备), 系统用水流量为42L/s (6支7升/秒自动扫瞄水炮), 扬程为1.1MPa。在首层设三个水泵接合器。

2.3.3防火幕冷却保护喷淋系统

防火幕冷却保护喷淋系统设水泵六台(五用一备),系统用水流量为200 L/s,扬程为0.9MPa。首层设十四个水泵接合器。

2. 4灭火器具

灭火器系统按规范要求设置。 所有强电房、弱电房、资讯机房均只设火灾自动报警系统(感烟探测器)及手推车式灭火器。每个设置点放置四公斤三具。

2. 5七氟丙烷气体灭火系统

篇3

中图分类号:TU972文献标识码: A

引言

随着我国国民经济的不断发展,超高层建筑越来越多的出现在人们的视线当中。对于超高层建筑的给排水及消防设计,也不断的在工程实践当中进一步完善。针对目前超高层建筑越来越多,给排水专业规范对于超高层建筑的相关规定滞后,就目前在超高层建筑的给排水设计中遇到的问题,提出解决的方法以及需要进一步探讨和研究的措施。

一、供水方式的选择

重力供水和变频供水的节能性在学术界存在较大的分歧,目前为止没有国家性的法规及权威资料表明哪种供水方式更有利于节能。就笔者所参与的几个项目,笔者认为办公楼采用变频供水更为合理。首先超高层建筑大概每隔15层会设置一个避难层兼设备层,可利用第一个避难层以及每隔一个避难层设置中间转输水箱,每两个避难层中间楼层分为一个大区采用一组变频泵加压供水,每个大区再采用减压阀分为两个小区,而转输水泵采用液位控制启停的工频泵,这样基本上只用在第一个避难层及第二个避难层设置中间转输水箱,有效减少机房占用面积。此外,采用上述系统给水设备及管材最大承压为一、二避难层中间的高度,系统承压不会超过2MPa,目前的技术及设备承受此压力还是比较安全的。另外一方面由于办公楼的用水量较小,时变化系数为1.5,在变频加压水泵的选型上采用一个大泵配一个小泵及一个气压水罐并备用一台大泵,流量分配采用100%一50%一100 %,其中最后一个100%为备用,其水泵的出水量基本可以和系统的用水量相吻合,同时转输水泵采用工频泵,可以保证各水泵在高效区运行,达到变频节能的日的,并相应减少了机房的面积以及二次污染的机率。

对于酒店,由于其对压力的稳定性要求较高,为避免变频加压供水出现的用水忽冷忽热,酒店采用屋顶水箱重力供水更加合理。对于屋顶水箱一次污染问题,酒店一般有比较完善的物业管理,同时屋顶水箱设置为2个,可定时冲洗,并A酒店为24小时用水,水箱单的储水可得到及时更新,有效避免出现一次污染。此外,酒店建筑的用水特点是用水变化比较大,时变化系数为2―2. 5,如采用变频给水其水泵配置很难与用水曲线吻合,因此水泵不能保证在高效区运行,从而造成效率下降,能源浪费。因此酒店建筑的超高层建筑建议采用屋顶水箱重力供水。

二、中间转输水箱的计算

超高层建筑中间转输水箱包括消防转输水箱和生活转输水箱两部分。消防的中间转输水箱在《全国民用建筑工程设计技术措施 给水排水 》(2003年)中规定:“采用水泵转输串联时,中间转输水箱同时起着上区输水泵的吸水池和本区消防给水屋顶水箱的作用,其储水容积按15~30 m in的消防设计水量经计算确定,并不宜小于60 m3。”假如超高层建筑消火栓用水量为40 L / s,自动喷水用水量为30 L / s,则中间转输水箱的容积= ( 40 + 30)×10×60 + ( 40+ 30)×5×60 = 63 000 (L ) ,其中10 m in水量为本区屋顶消防水箱的水量, 5 m in为上区水泵吸水池的水量,如还有其他水消防系统则把有可能在火灾时同时启动的消防系统的水量叠加计算,作为中间转输水箱容积。而对于生活给水系统,《建筑给水排水设计规范 》(GB 50015―2003) 31718条规定:生活给水用中途转输水箱转输调节容积宜取5~10 m in转输水泵的流量。作为生活给水系统的转输水箱,其作用有两个:一为上区加压水泵的吸水井,此部分水量为上区水泵3~5 m in的出水量;二为下区转输泵的调节容积,即为保证初级水泵每小时启动次数不大于6次的调节水量,此部分水量为转输水泵5~10 m in的出水量,如上区水泵的流量为8 L / s,转输水泵的流量也为8 L / s,则转输水箱容积= 8×5×60 + 8×10×60 = 7 200 (L )。此为采用变频供水系统时的计算方法。如系统为重力供水系统,则中间转输水箱除作为上区水泵的吸水井外,还需有储存本区用水的调节容积,一般此部分调节容积按水箱重力供水服务区域最大时用水的50%计,两部分叠加计算为重力供水系统中间转输水箱的容积。

三、水泵接合器的设置

《高层民用建筑设计防火规范 》(GB 50045―95, 2005年版,以下简称“高规 ”)7141512条规定,消防给水为竖向分区供水时,在消防车供水压力范围内的分区,应分别设置水泵接合器。其条文说明明确提出:只有采用串联给水方式时,上区用水由下区水箱抽水供给,可仅在下区设水泵接合器,供全楼使用。《自动喷水灭火系统设计规范 》(GB 50084―2001, 2005年版,以下简称“喷规 ”)101412条规定,

当水泵接合器的供水能力不能满足最不利点处作用面积的流量和压力要求时,应采取增压措施。其条文说明提出:根据某些省市消防局的经验,规定在当地消防车供水能力接近极限的部位,设置接力设施。可以看出,根据“高规 ”,在消防车供水范围之外的消防分区,无论是消火栓系统还是自动喷水灭火系统,均可不再设置水泵接合器;但是根据“喷规 ”,在超出消防车供水范围之外的自动喷水灭火系统的消防分区需要设置接力设施。根据上述规定首先可以得到一个结论,自动喷水灭火系统在消防车供水范围之外的分区也需要设置水泵接合器。那消火栓系统在消防车供水范围之外的消防分区是否有必要设置水泵接合器呢?“高规 ”11015条规定,当高层建筑的建筑高度超过250m时,建筑设计采取的特殊的防火措施,应提交国家消防主管部门组织专题研究、论证。从中可以看出,当建筑高度超过250 m ,目前的“高规 ”仅作为设计参考,所有的消防系统均需通过消防局组织的专题消防论证会论证。而“高规 ”11012条规定,高层建筑的防火设计,必须遵循“预防为主,防消结合 ”的消防工作方针,针对高层建筑发生火灾的特点,立足自防自救,采用可靠的防火措施,做到安全使用、技术先进、经济合理。从消防的原则可以看出,对于超高层建筑更应立足于自救,从超高层建筑火灾的危害和影响以及火灾的扑救难度考虑,更应加强消防设施的设计。虽然没有规范明确规定消火栓系统在超出消防车供水范围之外的分区也需要设置水泵接合器,但是笔者建议此种情况也设置水泵接合器,以保证消防系统的安全可靠。

因此在消防车供水范围之外的消防分区无论消火栓系统还是自动喷水灭火系统均需设置水泵接合器。如何设置?首先要了解水泵接合器的作用。“高规”7.4.5条文说明提到:水泵接合器的卞要用途,是当室内消防水泵发生故障或遇大火室内消防用水不足时,供消防车从室外消火栓取水,通过水泵结合器将水送到室内消防给水管网,供灭火使用。一般消防水泵采用1用1备或2用1备,备用泵为电力泵,一般2台水泵同时发生机械故障的概率较小,只有电力故障情况下2台水泵均不会投入工作,因此建议设置柴油泵作为消防系统的备用泵,以避免在电力故障时消防加压泵不能工作。采用柴油泵作为备用泵时,一般设计人员都会考虑柴油泵所使用燃料的储存和日常维护。柴油泵的国家制造标准规定柴油泵本身的油箱储存燃料为柴油泵运行3小时的燃料,因此不必要考虑另外再储存燃料。柴油泵的日常维护很简单,可定期由物业检查柴油泵的燃料是否充足,电瓶电量是否足够,定期启动柴油泵检查其运行情况。对于超高层建筑的消防系统,为节省投资,在消防车供水范围内的消防分区的消防加压泵采用电力泵作为备用,在消防车供水范围之外的消防加压泵设置柴油泵作为备用泵。

四、结束语

我国超高层建筑中对于火灾防范措施还不健全,和发达国家比还有一定的差距,问题也比较多,我们应该积极向发达国家学习,结合我国具体国情将超高层建筑的消防给排水设计到最佳,保障人民生命财产安全。

篇4

引言

随着城市化进程的加快和人民生活水平的提高,人们对建筑的质量提出了更细的要求,比如象建筑的给排水与消防设计方面,就对设计人员提出了更为具体的要求,设计人员即要使设计出来的工程符合国家及地方的法规、规范及规程,使工程设计更加合理、更加实际,更加安全,又要尽量地减少设计费用,这就要求设计人员要很好地掌握建筑给排水设计的各项法规、规范及规程,并严格遵守,做到灵活运用。尤其是高层建筑,给排水消防设计的质量关系着人民的生命和财产安全,同时也是高层建筑质量审核中的重中之重。本文通过对高层建筑给排水消防进行系统论述,同时也希望再依次引起设计单位和设计人员更大的重视,真正把消防隐患完全消除。

1、工程给排水设计的特点

篇5

引言

随着我国经济的不断增长,综合型建筑、超高层建筑等大型建筑项目在城市里越来越多,这样也对其的施工质量要求随之提高。但是,由于在施工前的设计不够严谨完善等原因,大型建筑的一些基础设施和系统例如排水、消防系统经常出现问题,这就对整个建筑的安全使用造成了障碍。下面我们就如何对这些系统设计进行讨论分析。

1 工程概况

某建筑地下3层,与同一地块的B楼(30层办公楼)地下室连为一体,主要功能为停车库、设备机房和酒店辅助用房。地上42层,其中1~4层为裙房,为酒店服务区(包括接待、餐饮、休闲、商业等);6~19层为酒店客房区;21~42层为办公区。不计入屋顶设备机房高度,建筑总高度为153.5m,地上总建筑面积约为7.2万m2。

2 给排水系统设计

2.1 给水系统

2.1.1 冷水系统设计

大楼为超高层综合楼,针对不同用户具有不用性质的用水特点,采用了分区、分质供水的方式。

分质供水方面,在地下3层生活泵房内设置一套水质净化、软化处理设备,并分别设置原水池、净水池、软水池。软水供给酒店洗衣房,净水供给除洗衣房外的酒店其他区域,而办公部分则采用自来水。

分区供水方面,裙房部分采用生活水池水泵用水点的变频供水方式,裙房及其屋顶冷却塔分开独立设置变频泵;酒店客房区和办公区各独立采用生活水池水泵高位水箱用水点的高层建筑传统供水方式,其中酒店客房高位生活水箱位于20层避难层内;办公采用两级串联供水,在35层避难层内设置中间生活水箱,此水箱既作为21~34层办公生活水箱,又兼作为向屋顶36~42层办公生活水箱供水的水池。

2.1.2 热水系统设计

大楼集中热水供应的区域主要包括酒店的客房、厨房、包房、SPA、游泳池等,根据业主的建议,办公部分根据用户实际需要就地制备热水。

考虑到不同功能区热水使用上的差异,热水系统也做了适当的分区。酒店厨房、包房、SPA共用一套热水系统,在地下3层换热间内设置3台导流型半容积式热水器。为保证冷热水系统分区相同且冷热水压差不大于0.02MPa,酒店的客房又分为6~10层、11~15层、16~19层三个热水次级分区,在5层避难层换热间内分别为6~10层、11~15层独立设置2台导流型半容积式热水器;由于16~19层冷水采用20层中间水箱加压供水,为减少多余管程,就近在20层换热间内为16~19层设置2台导流型半容积式热水器。为进一步改善冷热水压力平衡,除传统的同程回水措施外,本设计热水立管和回水干管的连接采用了导流三通(见图1),它具有进、出两个回水干管接口和一个垂直于干管的回水支管接口,回水支管内端插入导流三通内且开口方向朝向三通的出水端;通过导流三通,回水支管内的热水能够顺利进入回水干管,并与干管内水流方向保持一致,从而消除远、近热水环路内循环流量的不平衡现象。

另外,在裙房4层设置一个小型恒温室内游泳池,池水采用了太阳能与80℃高温热媒水联合加热的方式。太阳能热水作为热媒通过板换与游泳池循环水间接换热,当热量不足时可由80℃高温热媒水作为辅助热源。

2.1.3 节水、节能与降噪

(1)给水系统除了传统的采用阻力小的管材、管件和节水型器具外,合理安装计量表则是利用经济杠杆进行节水。大楼每层和具有独立产权的小单元,以及厨房、游泳池、冷却塔、各类水箱进水、洗衣房等具有特别功能的用水点均设置了远传数字式水表,并将用水信息传递至控制中心,实时监控用水使用情况。

(2)在上述标准中要求各用水点压力不应大于0.2MPa,因此当引入管入口压力大于0.2MPa时,为避免高压下龙头出流量较大,在支管上设置专用的小型减压阀减压供水。

(3)对于用水特点差异较大的功能分区分开独立设置变频泵组,如洗衣房、厨房和冷却塔都分设变频泵组;同种功能分区用水波动较大的采用多台变频泵,如厨房及其包房则设置了3台变频泵。在设计流量变化范围内,各台泵保持在高效区运行;在额定转速时,水泵最不利工况点在高效区段的右端点。为避免小流量时水泵频繁启动,每套变频泵组均设置了隔膜式气压水罐。

(4)热水系统采用强制机械循环,热水设备、供回水管和热媒管均做了保温处理,在热交换器的热媒进出水管上均设置了流量计。换热器按分区就近设置,避免了管路过长造成的热损失。

2.2 排水系统

2.2.1 污废水设计

室内采用污废水合流,卫生间污水立管均设置专用通气立管,不同的功能分区分设排水系统,避免互相干扰。21~35层办公污水立管在20层避难层内汇合后通过主水管井接至室外;裙房3、4层内包房、SPA管井与6~19层客房管井对应,因此两者污水立管在2层汇合后通过主水管井接至室外。为了分散立管排水压力、减少坡降和抗事故冲击性,每种功能区的汇合立管均不少于2根,并与其他功能区的汇合立管分开设置。厨房独立设置废水立管,并与其他废水分开排放,降低了隔油设备的负荷。

2.2.2 雨水设计

大楼的雨水主要来自主楼屋面、裙房屋面和不容忽视的侧墙,经测算毗邻裙房以上1/2主楼侧墙正投影面积约为3300m2,几乎等于主楼和裙房屋面面积之和。主楼屋面较小,采用87型雨水斗按重力流布置立管;裙房屋面承接了主楼侧墙雨水,考虑雨水量较大,传统悬吊管泄流量小等原因,裙房则取10年重现期,采用虹吸雨水排放系统,对屋面雨水分块集中设立管排放。由于屋面面层厚度较小,为安装虹吸雨水斗,结合结构梁的布置,采用了局部梁间降板的措施。另外,根据规范在屋面适当位置设置若干溢流口,减少雨水对建筑结构本体的危害。

超高层建筑雨水在立管中下泄时,压力和速度都增长较快,减速降噪实属必要。除采用金属管材外,大楼雨水立管在5、20、35层避难层,采用简单的Π型管件进行雨水消能,缓解了管道的压力。

3 消防系统设计

3.1 消火栓系统

大楼整体按照一类高层综合楼设计消火栓系统,室内消火栓用水量取为40L/s,室外消火栓用水量取为30L/s。采用消防泵直接串联的分区系统,高区消火栓泵和低区消防水箱设置在20层避难层。为解决低区水泵切换等短时间内的特殊供水,应设管道从低区水箱内抽水,因此条文将低区水箱容积从18m3增加至30m3。为保证最不利消火栓栓口处的静水压力不小于0.15MPa,高低区在消防水箱出水管上均设置了增压泵。值得注意的是当计算消火栓栓口处的静水压力时,很容易忽略增压泵的出水压力;因设置增压泵的目的就是为了维持最不利栓口处的静水压力,所以在分区时应考虑增压泵的出水压力。

3.2 自动喷水灭火系统

大楼地下部分危险等级为中危险Ⅱ级,地上部分为中危险Ⅰ级,作用面积均为160m2;由于入口门厅处高度大于8m且小于12m,可按非仓库类高大净空场所中的中庭考虑,上述规范中将此类场合的喷水强度定为6L/(m2・min),作用面积定为260m2,并将系统最小设计用水量定为40L/s,大楼依此选取低区喷淋泵流量为40L/s,而高区则按中危险Ⅰ级选取水泵。大楼采用喷淋泵直接串联的分区系统,与消火栓系统共用消防水箱,高区喷淋泵吸水管布置原则与消火栓系统相似。

3.3 特殊消防系统

大楼内部设有变配电站、柴油发电机房、燃气锅炉房等场合,因其火灾的特殊性,工程设计中常用气体灭火系统或水喷雾灭火系统进行控火灭火。但传统的气体灭火系统对大气臭氧层有破坏作用或对人体健康有影响,而水喷雾灭火系统存在喷头必须直接喷向着火或被保护部位的限制。因此,设计对上述场合采用了近几年发展起来的高压细水雾灭火系统。细水雾灭火机理是利用水从喷头喷出时,形成粒径在40~200μm的水雾遇火后迅速气化,体积可膨胀1700~5800倍,将火灾区域整体包围或覆盖,使燃烧因缺氧而窒息灭火。具有均衡的表面冷却、高效吸热、窒息灭火、冲击乳化和稀释、阻隔热辐射、电绝缘性好、洗涤烟雾和废气等特点。针对大楼内需要防护的区域较多,距离供水装置远近高低不同,系统设计流量比较大(防护面积最大的燃气锅炉房系统流量为417L/min)等特点,设计采用了泵组式的全淹没系统。在地下室泵房内设置1个储水池和3台(2用1备)高速水喷雾泵,系统持续供水时间为20min。采用开式高压细水雾喷头,布置比较灵活,可用正方形、矩形或菱形均匀布置喷头,但喷头间距不应大于3m,距离被保护对象表面不应小于0.5m,距离边墙不应大于1.5m。

大楼机房屋顶设有一个停机坪,可满足中、小型直升机起降。因涉及油类火灾,由专业设计单位配置一套H2级泡沫灭火设备,每次火灾至少需要5m3消防水,与屋顶高区消防水箱合并设置,容积由18m3增加至24m3。

4 结语

总的来说,超高层综合楼的使用功能复杂,我们要考虑到建筑给排水各个层面的问题。在进行设计的时候来说,我们不仅要满足大楼的基本功能需求,还应该有意识地运用新技术、新材料,使建筑朝节能、节水、环保等绿色建筑方向发展,这样才能创造更多的经济和社会效益。

篇6

一.超高层建筑特点

工程多功能,有酒店、办公、公寓、商场、餐饮等,如上海的金茂、广州的西塔等;为满足竖向交通的便捷要求,电梯多,如上海环球金融中心有多部垂直电梯;管道井多,有新风井、排烟井、正压送风井,以及强电、弱电、给水排水、暖通、消防、天然气管道井等竖井,这些竖井能增加火灾蔓延的渠道和速度;因为高度高,室外风速随高度增加呈现幕指数增大,且上下、室内外风压差大,导致建筑为全封闭结构,开窗困难,特别是超过150 m 以上的高楼,通常不开窗。因功能多,管道井多,加之用电用气,致使点火能源多,导致火灾发生和蔓延的几率大,同时一旦起火造成的损失和社会影响大,为此超高层建筑的消防更应重视其安全可靠性。

二.给水方式的选择

2.1并联分区消防给水系统

并联分区消防给水系统;各区设有独立的消防水泵和消防水箱等,系统简单清晰,供水安全可靠性高,控制系统简单容易;不足的是水泵台数较多,所需泵房面积较大,初期投资大,设备维修管理麻烦。这种方式只有上区底部管路及阀门工作压力等级要达到2.5Mpa,其他部分均可控制在1.6Mpa这个压力等级范围;故比较适合用于供水高度在200m以下建筑。

另外一种并联分区系统减压阀分区消防给水系统,此方式有前者的所有优点,同时减少了中间水箱,减少了水泵数量,减少了占地面积,也减少了初期投资,而且系统更简洁。考虑控制管路系统承压在1.6MPA以内,此方式推荐在供水高度在120m以下建筑中采用。

2.2串联分区消防给水系统

串联分区消防给水系统又分水泵转输串联与水泵直接串联两种分区消防给水方式,水泵转输串联分区消防给水系统是通过中间转输水箱和转输泵一级一级把消防用水提升以满足消防用水要求;水泵直接串联形式与转输串联基本相同,只是水泵不是从转输水箱吸水,而是直接从下一级水泵的供水管上吸水。串联分区理论上不受建筑高度影响,可满足任何高度超高层建筑的消防给水要求;这种形式系统管网工作压力低;消防水泵功率较小,安全可靠。不足是,各区都要自设泵房,占地面积大,造价高,系统复杂,控制系统也复杂,设计计算繁琐,安全性没有并联的高;水泵直接串联方式存在水泵出水扬程不稳定,一级一级叠加,超压现象严重。

2.3重力式消防给水系统

重力式消防给水在建筑物最高处的适当位置设置高位消防水池,且水池有效容积能满足该建筑在火灾延续时间内室内消防总用水量,消防水池的水以重力方式向以下各消防给水分区供水。这种消防给水形式最重要的特点就是重力向下供水,避免了机械故障和火场供电中断对消防给水的影响,最为安全可靠。不足是增加了结构荷载,占用较多的宝贵的建筑面积,增加了初期投资。

以上仅介绍了几种常见的且应用比较广泛的超高层建筑消防给水系统形式;除了这几种形式外,还有很多其他形式,由于应用较少,就不在此累述了。另外在超高层建筑消防给水系统设计中,一般都是几种给水形式组合,很少单一形式应用,比如重力式系统中常结合串联转输系统和减压阀并联分区组合形式出现。如按压力分,还可分为常高压和临时高压制,

三.设计系统注意的问题

3.1中间转输水箱的溢流

由于火灾时消防泵不宜频繁启动,消防转输泵在火灾扑灭前应保持连续运转,加之火灾初期时中间转输水箱输入水量大于输出水量,必然造成消防水量的大量溢流损失。为解决这一问题,设计一般采用以下两种措施:①溢流管直接接入地下室消防水池;以确保储存足够的消防水量。②日常的转输水箱补水(非工作状态)可通过生活给水进行补水,不得用转输泵来补水。

3.2建筑避难层内泵房的隔音减震

建筑避难层一般设有生活及消防水泵房,若处理不好水泵运行时产生的噪声和振动,将会使上下楼层受到严重影响。对此设计上采取了以下措施:①泵房内墙面布置消音、吸音等材料;②水泵基础设阻尼减振装置;③在管道穿楼板处填充或缠绕弹性材料,禁止管道与楼板刚性连接;④水泵出水管上设缓闭式(消声)止回阀及水锤消除器,减少、消除水锤对管道造成的振动影响;⑤水泵进出口设置可曲挠橡胶接头,水泵进出水管上安装可隔振的弹性支、吊架;⑥必要时可在水泵机组外加装隔声罩,罩内强制通风,同时安装进、排气消声器。

3.3高区消防水泵接合器的设置问题

根据《高规》条文的规定,在消防车给水压力范围内的分区,应分别设置水泵接合器。而对于超出消防车的给水压力范围的高区,可通过水泵接合器接至中间转输水箱或预留的高区消防水泵接合器接力泵向高区管网给水。同时在考虑到消防电源被切断,即转输消防泵无法工作的极端情况下向高区的给水,可以在消防转输泵房内预留手抬泵位置,高区消防环管上预留手抬泵出水接口,手抬泵的吸水应由转输管分支管引来,可不进入转输水箱,通过首层的水泵接合器可实现接力给水。

四.关于系统可靠性建议

4.1对消防给水系统的改进建议

在超高层建筑消防给水系统中,串联式与重力式消防给水均存在大量中间水箱;如转输水箱、减压水箱和高位水箱。水箱容积一般按10min,消防用水量加18m3或15min-30min消防用水量确定,把所有水箱联通起来,可当作消防水源使用;在并未增加机房面积及初投资的情况下,增加了消防给水的安全可靠性。

4.2关于重力式系统消防水池容积如何确定的思考

重力式消防给水系统消防水池(尤其是高位消防水池)容积大小不仅决定了消防供水的安全可靠性,还影响着建筑功能性、结构的安全性及工程投资大小。在满足规范消防用水量要求前提下综合考虑这些相关因素,确定消防水池容积。

4.3加强自喷系统的应用

对于超高层建筑来说,消防应立足于自救,而自动喷水灭火系统是当今世界上公认的最为有效的自救灭火设施,应用最广泛,具有安全可靠、经济实用、灭火成功率高等优点。据有关资料统计,自动喷水灭火系统扑救初期火灾的效率在97%以上。所以我们在超高层建筑消防设计中应注重自喷系统应用,并应优先考虑自喷系统的消防给水可靠性。

4.4水泵接合器的设置

篇7

中图分类号: TU97 文献标识码: A 文章编号:

1 概况

本工程总建筑面积约26万m2 ,其中地上建筑面积19.4万m2,地下建筑面积6.7万m2。建筑层数北楼为地上54层,南楼为地上36层,建筑高度南楼180.4 m(36层顶结构连梁高度) ,北楼203.55 m。地下共6层,地下6层为人防,地下2层~5层为车库,地上1层~ 7层为裙房。塔楼部分以北楼为例,其中7层,22层,38层为避难层。8层~33层为办公层,35层~53层为酒店层。下面以北楼为例介绍一下该项目建筑给排水及消防系统设计。

2 给水系统设计

2.1 水源

由市政给水管网引入两根DN250 的给水管道,管道供水压力为0.35MPa,给水管道进入红线后设生活用水水表。

2.2 生活给水系统

1) 地下室及1 层给水均由市政直供。

2) 北楼其余楼层的给水系统竖向分区为四个区: 2层~6层为一区,7层~17层为二区,18层~33层为三区,34层~53层为四区;一区采用变频供水,其余区域采用低位水箱—水泵—高位水箱供水方式,并按规范要求静压不超过0.35MPa 设置减压阀。

2.3 冷却塔补水系统

冷却塔补水由地下4 层生活消防泵房内变频泵供给,Q =50 m3/h,H = 60m。

3 生活排水系统设计

1) 本楼采用污、废水分流制排放。

2) 所有污废水经室外污水检查井后排至市政污水管网。

3) 本楼排水采用专用通气立管通气排水; 立管设置检查口。

4) 洗衣房排水及锅炉房排水设置降温池。

4 雨水系统设计

1) 裙房屋面雨水采用虹吸排水系统,需满足50年重现期雨水排水要求。

2) 主屋面雨水采用重力流排水,屋面雨水排水系统考虑溢流,满足50年重现期雨水排水要求。

5 消防给水系统设计

楼建筑高度约为203.55m,按一类高层建筑进行消防给水设计。火灾延续时间按3h。消防初期水量18m3,储存在本工程北楼屋面消防水箱间内。地下室消防水池内储存3h室内消防用水及1h喷淋用水850m3。

1) 本工程室外消防给水水量为30L/s,室外消防给水管网在建筑红线内形成环状,室外消火栓沿消防车道布置,其保护半径不大于150m,间距不大于120m,并保证室内消防水泵结合器40m范围内有室外消火栓。

2) 本建筑室内消防系统采用临时高压制,竖向分为两个区,-6层~21层为低区,22层~54层为高区,每区设一套消火栓加压水泵,一用一备,超压部分(-3F~2F,7F~16F,22F~29F,35F~52F)设减压稳压消火栓。低区泵房内设置消防水池,高区于38层避难层设置消防转输水箱,水箱有效容积为110m3。

3) 室外设地上式消防水泵接合器与室内消火栓给水管网相连。

6 自动喷水灭火系统

1) 本楼地下室及主楼均设自动喷水灭火系统,主楼为中危险Ⅰ级,喷水强度为6L/(min·m2)、作用面积为160m2。1 层门厅采用大空间自动水灭火装置,用水量取10L/s。地下汽车库采用泡沫—水喷淋系统,喷水强度为6.5L/(min·m2) 、作用面积为465m2,喷淋用水量取100 L/s。水喷淋系统的火灾延续时间按1h考虑。

2) 喷淋系统竖向分为两个区,-3层~28层为低区,29层~54层为高区,每区设一套喷淋加压水泵,一用一备。水源来自地下2层消防蓄水池,高区设置消防转输水箱。火灾初期用水由屋顶水箱供给。

3) 地下车库设置泡沫喷淋为一个系统,地下1层及其以上设自动喷水系统,喷淋供水管由消防泵房内的喷淋泵供给,报警阀间设湿式报警阀,水箱间内的消防、喷淋稳压设备维持平时压力。地下车库一夹层车道出入口处的防火分区设置预作用自动灭火系统,并应按要求设置电动阀和快速排气阀。

4) 44F~49F喷淋管上设置60mm孔板,29F~34F喷淋管上设置55mm 孔板,8F~16F喷淋管上设置50mm孔板。

5) 喷头温度采用68℃,厨房部分采用93℃。有吊顶的房间均采用DN15装饰型闭式玻璃球喷头,无吊顶房间及地下室均采用DN15直立型K =80闭式玻璃球喷头(朝上安装)。客房及办公间内设置边墙型闭式喷头,K=115。直立型喷头溅水盘距顶板不小于75mm,不大于150mm。

6) 室外设地上式水泵接合器,与自动喷水泵出水管相连,并设各系统区分的标志。

7 建筑灭火器配置

本工程各层均设置灭火器系统,本建筑属严重危险级,火灾种类为A 类,局部为C 类或带电火灾,地下车库按B 类中危险级考虑,采用手提式磷酸铵盐干粉灭火器灭火,且灭火器均附设在消防箱内。地下室消火栓箱间距大于12m,按保护距离不大于12m增设灭火器。地上消火栓箱间距大于15m,按保护距离不大于15m增设灭火器。楼层每具消防箱内设磷酸铵盐干粉灭火器两具。型号为:MF/ABC5,每具5kg,地下车库每具消防箱内设磷酸铵盐干粉灭火器两具。局部增加放置灭火器箱,箱内设磷酸铵盐干粉灭火器两具。型号均为MF/ABC5,每具5kg,充装方式为储压式。高低压变配电室设置推车式磷酸铵盐干粉灭火器。

8 管材选择

8.1 生活给水管

生活冷水、热水管道采用内衬不锈钢复合钢管,DN100以下采用丝扣连接,DN100及以上采用卡箍连接。热水管道采用铜管,焊接。管件采用与管材相同材质、公称压力不小于2.0MPa。

8.2 排水管道

1) 排水采用柔性接口排水铸铁管,采用法兰承插A 型接口,顺水进水三通,所有管件与管材成套供应。立管底部牢固支撑。

2) 与潜水排污泵连接的管道,除水泵出口采用一段橡胶夹布软管外,均采用内涂塑钢管,接口同给水管。

3) 虹吸雨水管管材和管件采用高密度聚乙烯管(HDPE)粘结。管材需满足满水试验要求。管道公称压力1.00MPa,承受负压能力不小于0.07MPa。

4) 水箱水池溢、泄水管均采用内外涂塑钢管,接口同给水管。

8.3 消防给水管道

1) 消火栓给水管道采用热浸镀锌焊接加厚钢管,DN≤80丝扣连接,DN>80采用镀锌无缝钢管,沟槽式卡箍连接,阀门及拆卸部位采用法兰连接。管道公称压力为2.5MPa。

2) 自动喷水管采用内外热镀锌焊接加厚钢管,丝扣或沟槽式机械接口。管道公称压力为2.5MPa。

9 结语

本项目是一个以酒店、办公为主的综合性超高层建筑,笔者在该项目建筑给排水设计过程中总结了如下几点:

1) 给水系统设计中,主要采用了水池—水泵—水箱—用户的供水方式,此供水方式更加安全可靠,水压恒定,关于水箱水质二次污染问题,本工程采用水箱自洁消毒装置来处理水箱供水水质。

篇8

二、概述

某大厦,总建筑面积11万多平方米;D栋塔楼35层,屋面高度119.8米,一至六层为商场,七至三十一层为写字楼(其中二十 一层为避难层);A、B、C栋塔楼29层,屋面高度96.0米,为商住楼;裙楼六层,作为商场;地下一层,作为设备用房及车库;现主 要介绍D栋塔楼的消防给水系统,另根据业主要求,由于资金问题,该大厦的设计按分二期使用考虑,一期为地下室至六层及裙楼部分,二期为七至三十五层。

三、消炎栓系统及竖向分区

《高层民用建筑设计防火规范》(GB50045-95),下面简称《高规》,第7.4.6.5条规定:消火栓口的静水压力不应大于 0.80Mpa时,当大于0.80Mpa时,应采取分区给水系统,消火栓口的出水压力大于0.50Mpa,消火栓处应设减压装置,根据规范要求,本工程消火栓系统采取分区给水,通过对多种方案的对比,研究以计算,最火后确定,消火栓给水系统采用高位水箱供水以及高位 水箱结合减压阀进行减太分区供水的供水方式。

《高规(GB50045-95)第7.4.6.2条规定:消火栓的水枪充实水柱应通过水力计算确定,且建筑高度不超过100m的高层建筑 不应小于10m,建筑高度超过100m的高层建筑不应小于13m,本建筑消火栓处补充水柱按13m计,消火栓箱内设置DN65消火栓接口一个,DN65衬胶水带长25m一套,φ19枪一支,消防卷盘一套(DN25胶管长25米一套,特制水枪一支),报警按钮一个,各供水分区最不 利点消火栓口压力按公式:Hd=AdLdq2+q2/B计算,经计算Hd 为22.0m水柱。

系统分为四个区,I区根据使用要求,设计为独立的消火栓系统,设置于七层处的水箱充分利用了裙楼的屋顶空间,系统压 力由设于裙楼天面处的一套稳压装置保证,该稳压装置的气压水罐其调节水量为两支水枪与5个喷头30S的用水量(水火 栓系统与自动喷水系统合用),水箱为生活消防合用水箱,火灾发生时,水枪喷水灭火,系统压力降低,消火栓泵启动,从地下贮 池抽水向系统供水灭火,(消火栓泵设于地下室的水泵房中),消火栓泵的启动由系统压力控制直接启动,也可以通过消火栓处的 报警按钮或消防控制中心启动消火栓泵,Ⅱ区为屋顶高位水箱经减压阀减压供水,减压阀设置于避难层中,采用减压代替减压水箱 ,增加了建筑物的有效使用面积,且便于管理与维修,消火栓口处出水压力大于0.50mPa时设减压孔板减压,Ⅲ区为屋顶高位水箱直 接供水,屋顶水箱底距Ⅲ最不利点消火栓的最小垂直距离按式:H=Hf+Hd计算。经计算,管道阻力损失Hf小于3m水柱,按3m计,由此可得出H为25m,Ⅱ、Ⅲ区火灾初期十分钟消防用水量由屋顶高位水箱供给,十分钟后的消防用水,由专用消防泵从地下贮水池将 水提升至屋顶高位水箱,再由屋顶高位水箱向系统供水。专用消防泵通过消火栓处的报警按钮直接启动或通过消防控制室启动,IV 区为增压给水系统,由于屋顶高位水箱供水不能满足Ⅳ区消火栓口处的水压要求,我们采取了气压罐与消防主泵相结合的给水罐的 调水量同Ⅰ区,火灾发生时,通过系统压力变化直接启动屋顶消防主泵,向系统供水灭火,同时启动设于地下室水泵房中的专用消防泵,向高位水箱供水,Ⅳ区增压给水系统为消火栓系统与自动喷水灭火系统合用,自动喷水灭火系统于湿式报警阀前与消火栓系 统分开设置,设于屋顶的消防主泵选取运行特性曲线平缓的水泵。

四、自动喷水灭火系统与竖向分区

《高规》第7.6.1条规定:建筑高度超过100m的高层建筑,除面积小于5.00m的卫生间,厕所和不宜用水扑救的部位外,均应 设自动喷水灭火系统,又《自动喷水灭火系统设计规范》第5.4.5条及第5.2.5条规定:自动喷水灭火系统管网内压力不应大于1.2kg /cm2;闭式自动喷水灭火系统每个报警阀控制的喷头数不宜超过800个,本建筑自动喷水灭火系统按规范要求设置了

组湿式报警阀,根据使用要求,地下室至六层及裙楼部分为I区,该区设置一级自动喷水灭火系统消防喷水泵,系统稳压由设于楼裙 屋面的一套稳压装置保证。(该装置为消火栓系统与自动喷水灭火系统合用,如前所述),火灾发生时,由系统压力变化自动控制消防喷水泵的启动,或由消防中心控制消防喷水泵的启动,Ⅱ、Ⅲ区由高位水箱经减压阀减压供水,Ⅳ区由高位水箱直接供水,Ⅴ区为增压给水系统,其增压设备为消火栓系统与自动喷水系统合用,见前述,这里不再重复。火灾期间,自动喷水灭火系统用水量按 延续时间一小时计,本建筑屋顶高位水箱贮存了一个小时的自动喷水灭火系统用水量,Ⅱ、Ⅲ、Ⅳ、Ⅴ区不再在地下室水泵房处设置自动喷水灭火系统消防喷水泵。系统设置,减少了一组消防喷水泵,简化了管道系统,且联动控制简单,维修方便,供水安全可靠。

五、屋顶重力水箱的容积确定

屋顶重力水箱为生活消防合用水箱,本建筑本着预防为主,立足于自救的原则,为确保消防供水的可靠性,充分地发挥自动 喷水灭火系统的作用,将火灾有效地控制在初期阶段,屋顶重力水箱容积设计为220M3,其中贮存一个小时自动喷水灭火系统用量(108M3),十分钟消火栓系统用水量(24M3),合计消防贮水量为132M2,其余88M3为生活用水量,水箱中生活出水管高于消防用水水位,以确保消防供水的可靠性,十分钟后,Ⅱ、Ⅲ、Ⅳ区消火栓系 统用水量由专用消防泵从地下贮水池将水提升至屋顶水箱,再由屋顶水箱供水灭火。

六、问题探讨

《高规》第7.4.7.5条规定:除串联消防给水系统外,发生火灾时由消防水泵供给的消防用水不应进入高位水箱。根据其条 文说明解释,本人认为这里所指的消防水泵出水管直接与消火栓系统连接的消防泵。(注:这种情况下,如果消防泵启动后,消防用水进入水箱,消火栓口处所需的压力就难以保证),本系统设置与《高规》要求没有抵触,且能保证消火栓口处水压要求,同时保持压力恒定。

七、优点与结论

超高层建筑消防给水系统采用高位水箱重力供水,对于静水压力大于80m水柱的分区采用高位水箱结合减压阀减压分区供水 的供水方式具有以下优点:

1、与并联供水系统比,其管网所承受的压力大大降低,系统各供水分区均不存在高压管道,压力恒定,不会出现超压现象。

2、与设置中间传输水箱的供水方式比,设备少,系统简单,管路简化,维修方便,便于管理,系统联动控制简单,同时增加了建筑物的有效使用面积。

篇9

以深圳市某大厦为例,本工程为一商业-办公综合超高层建筑,建设用地面积8089.94 m2,总建筑面积162129.67 m2。地下四层,地上四十四层,其中裙楼五层,建筑高度为199.50m。第十六层和三十二层为避难层,消防控制室设在地下一层。

一、手动报警按钮的设置问题。

根据《火灾自动报警系统设计规范》(gb50116-98)第8.3.1条规定:每个防火分区应至少设置一个手动火灾报警按钮。从一个防火分区内的任何位置到最邻近的一个手动火灾报警按钮的距离,不应大于30m。手动火灾报警按钮宜设置在公共活动场所的出入口处。例如:在本工程中一个半径30m的圆形商业区,附近有两个疏散出口,属一个防火分区,有的设计人员只在中心设一个按钮,虽然满足“每个防火分区应至少一个”和“30m”的原则。但并不执行疏散出口“宜”设报警按钮得要求。火灾时因为按钮不在人员逃生必经得疏散路线上,报警的几率是非常小的,可以说形同虚设。因此,遇到这样的设计问题,我们一定要灵活运用规范,应首先满足报警按钮“应”设在公共活动场所的出入口处要求。其次才能遵循“30m”和“每个防火分区应至少一个”的原则。而只按30m的原则设置报警按钮是不完全满足规范要求,也是不负责任的。

二、防火卷帘的控制问题。

电动防火卷帘门主要起隔离作用,其本工程设置位置在地下汽车库、裙房商业区及自动扶梯周围,按建筑的防火分区界限安排。一般的电动防火卷帘门内外侧各设一对烟感器、温感器,除了控制箱(一个)可设在内侧或外侧外,内外侧还应各设一个手动启停按钮,距地1.4米左右明装,而位于自动扶梯周围的电动防火卷帘门,其烟感器、温感器只设在外侧(本层工作区一侧)。

从电动防火卷帘门的工作方式来区分,可分为两种:一为隔离式,一般设在防火分区边界的出入口处,一旦探测器报警并确认火灾,防火卷帘门一步降到底,同时喷淋系统开始向起火区和卷帘门喷水。二为疏散式,一般疏散通道上,烟感器报警后经确认(人工确认或两个以上探测器报警)先降金属卷帘至距地1.8米处,如火势发展,温度升高,则温感器动作后防火卷帘门再降至地面。两次动作之间的时间用于门内人员逃离。

无论哪种电动防火卷帘门,在超高层建筑中整个消防系统的一个组成部分,其动作不是独立的。因此,电动防火卷帘门两侧从属于卷帘门控制箱的烟感器、温感器,均应与火灾报警系统的探测器回路相接并在一个系统内工作。

规范中关于防火卷帘的规定有以下三方面:(1)《民用建筑电气设计规范》(jgj16-2008)第13.4.5条及《火灾自动报警系统设计规范》(gb50116-98)第6.3.8条均要求疏散通道上防火卷帘两次降落到底;用作防火分隔的防火卷帘应一次下降到底。(2)两规范均要求疏散通道上的防火卷帘两侧应设置手动控制按钮。(3)对用作防火分隔的防火卷帘只有《民用建筑电气设计规范》(jgj16-2008)要求其两侧宜设置手动控制按钮。前两个方面的规定是为了满足火灾时人员疏散及逃生的方便快捷;而后一方的规定是为了非火灾状态探测器误动作时,能强制开启防火卷帘,所以为“宜”,而不是“应”。两本规范并不矛盾,仅是出发点不同,我们应结合实际工程认真领会规范实质,并根据具体情况区别对待,才能做出合理的设计。

三、非消防电源的切除问题。

《火灾自动报警系统设计规范》(gb50116-98)第6.3.1.8条和《民用建筑电气设计规范》(jgj16-2008)第13.4.9条都明确规定,消防控制室在确认火灾后,应能切断有关部位的非消防电源,由于消防设备总能量一般小于普通设备负荷总容量,因此总配电室的总计算负荷一般不包括消防设备容量。为了火灾扑救方便,防止消防队员扑救时的触电事故,保障消防设备的用电安全,防止因过载使电气线路起火,造成火势蔓延扩大,因此在消防人员进入火场进行扑救之前应切断起火部位的非消防用电。不过切断非消防电源时应控制在一定范围之内,《火灾自动报警系统设计规范》(gb50116-98)第6.3.1.8条文解释切断非消防用电的有关部位是指起火的防火分区或楼层。切断顺序应考虑按楼层或防火分区的范围,逐个实施,以减少断电带来的不必要的惊慌。在火灾确认后,当两探测器“与”门报警或消防泵启动后,才可以切断非消防电源,特别是在面积较大、人员密集的公共场所,这样可以防止因探测器误报引起的切非而引发不必要的恐慌和事故。

四、火灾自动报警系统总线制中应注意的问题。

本项目的火灾自动报警系统采用总线制。《民用建筑电气设计规范》(jgj16-2008)第13.10.5条规定:当横向敷设的火灾自动报警系统传输线路如采用穿导管布线时,不同防火分区的线路不应穿入同一根导管内;探测器报警线路采用总线制布设时不受此限。可见,总线制系统不同防火分区的线路可以穿入同一根导管。我们知道,当火灾自动报警系统总线发生故障时,隔离模块作用是将故障总线与整个系统隔离开来,以保证系统的其它部分正常工作,同时便于及时确定故障的总线部位。当故障部分的总线修复后,隔离器自行恢复将被隔离的部分重新纳入系统。如下图所示:

《消防联动控制系统》(gb16806-2006)也规定,报警回路每隔32个编址单元(包括探测器、模块、手动报警按钮等)至少使用一个隔离模块。综合两规范规定,报警总线虽然可穿管跨越不同防火分区,但总线回路中的隔离模块同样应按照防火分区进行设置,即总线跨越防火分区时必须设置隔离模块。否则,当某一个防火分区发生火灾时,其线路有可能被烧短路,在其他防火分区与之连接的探测器因没有模块的隔离作用而不能被控制器监控,从而造成故障范围的扩大,降低了报警系统的使用功能。

五、火灾报警系统智能化的提高。

本项目为超高层建筑,相对于普通的高层建筑而言,在消防设计中还应该考虑系统智能化的问题。这个问题分内外两个层次。对火灾报警系统内部而言,超高层建筑一般采用智能型地址编码探测器,而中小普通建筑多用非编码探测器,以回路区分建筑区域。鉴于超高层建筑体量大,面积多,其使用面积的分割具有较大的不确定性,因此,为了适应房间形状、面积、使用性质的变化,每条报警回路应留出30%左右的探测器数量裕量。

对火灾报警系统外部而言,智能化的含义主要指系统联动。超高层建筑一般为重要建筑,其政治、经济价值巨大,如果灭火不及时,损失将是惨重的。因此,采用系统联动方式,就成为争取火灾前期时间和主动权的有效手段。例如,火灾报警系统与保安监控系统联动,在火灾之初,火场的摄像机可将现场画面迅速传至中央控制室,通过实景画面,值班人员可以立即确认火灾或是探测器误报,从而马上采取排烟、广播、正压送风、启动消防泵、喷淋、向消防局119台报警、降客梯、切非消防电源等一系列应急措施。又如,火灾报警系统与车库管理系统联动,一旦发现火情,便可声光报警,强制抬起进出口栏杆,使车辆尽快逃出车库。另外,火灾报警系统还可与楼控系统、广播音响系统及门禁系统等联动。只要这些措施可靠得力,超高层建筑的火灾便可被消灭在萌芽状态,将损失减至最小。

篇10

一、手动报警按钮的设置问题。

根据《火灾自动报警系统设计规范》(gb50116-98)第8.3.1条规定:每个防火分区应至少设置一个手动火灾报警按钮。从一个防火分区内的任何位置到最邻近的一个手动火灾报警按钮的距离,不应大于30m。手动火灾报警按钮宜设置在公共活动场所的出入口处。例如:在本工程中一个半径30m的圆形商业区,附近有两个疏散出口,属一个防火分区,有的设计人员只在中心设一个按钮,虽然满足“每个防火分区应至少一个”和“30m”的原则。但并不执行疏散出口“宜”设报警按钮得要求。火灾时因为按钮不在人员逃生必经得疏散路线上,报警的几率是非常小的,可以说形同虚设。因此,遇到这样的设计问题,我们一定要灵活运用规范,应首先满足报警按钮“应”设在公共活动场所的出入口处要求。其次才能遵循“30m”和“每个防火分区应至少一个”的原则。而只按30m的原则设置报警按钮是不完全满足规范要求,也是不负责任的。

二、防火卷帘的控制问题。

电动防火卷帘门主要起隔离作用,其本工程设置位置在地下汽车库、裙房商业区及自动扶梯周围,按建筑的防火分区界限安排。一般的电动防火卷帘门内外侧各设一对烟感器、温感器,除了控制箱(一个)可设在内侧或外侧外,内外侧还应各设一个手动启停按钮,距地1.4米左右明装,而位于自动扶梯周围的电动防火卷帘门,其烟感器、温感器只设在外侧(本层工作区一侧)。

从电动防火卷帘门的工作方式来区分,可分为两种:一为隔离式,一般设在防火分区边界的出入口处,一旦探测器报警并确认火灾,防火卷帘门一步降到底,同时喷淋系统开始向起火区和卷帘门喷水。二为疏散式,一般疏散通道上,烟感器报警后经确认(人工确认或两个以上探测器报警)先降金属卷帘至距地1.8米处,如火势发展,温度升高,则温感器动作后防火卷帘门再降至地面。两次动作之间的时间用于门内人员逃离。

无论哪种电动防火卷帘门,在超高层建筑中整个消防系统的一个组成部分,其动作不是独立的。因此,电动防火卷帘门两侧从属于卷帘门控制箱的烟感器、温感器,均应与火灾报警系统的探测器回路相接并在一个系统内工作。

规范中关于防火卷帘的规定有以下三方面:(1)《民用建筑电气设计规范》(jgj16-2008)第13.4.5条及《火灾自动报警系统设计规范》(gb50116-98)第6.3.8条均要求疏散通道上防火卷帘两次降落到底;用作防火分隔的防火卷帘应一次下降到底。(2)两规范均要求疏散通道上的防火卷帘两侧应设置手动控制按钮。(3)对用作防火分隔的防火卷帘只有《民用建筑电气设计规范》(jgj16-2008)要求其两侧宜设置手动控制按钮。前两个方面的规定是为了满足火灾时人员疏散及逃生的方便快捷;而后一方的规定是为了非火灾状态探测器误动作时,能强制开启防火卷帘,所以为“宜”,而不是“应”。两本规范并不矛盾,仅是出发点不同,我们应结合实际工程认真领会规范实质,并根据具体情况区别对待,才能做出合理的设计。 转贴于

三、非消防电源的切除问题。

《火灾自动报警系统设计规范》(gb50116-98)第6.3.1.8条和《民用建筑电气设计规范》(jgj16-2008)第13.4.9条都明确规定,消防控制室在确认火灾后,应能切断有关部位的非消防电源,由于消防设备总能量一般小于普通设备负荷总容量,因此总配电室的总计算负荷一般不包括消防设备容量。为了火灾扑救方便,防止消防队员扑救时的触电事故,保障消防设备的用电安全,防止因过载使电气线路起火,造成火势蔓延扩大,因此在消防人员进入火场进行扑救之前应切断起火部位的非消防用电。不过切断非消防电源时应控制在一定范围之内,《火灾自动报警系统设计规范》(gb50116-98)第6.3.1.8条文解释切断非消防用电的有关部位是指起火的防火分区或楼层。切断顺序应考虑按楼层或防火分区的范围,逐个实施,以减少断电带来的不必要的惊慌。在火灾确认后,当两探测器“与”门报警或消防泵启动后,才可以切断非消防电源,特别是在面积较大、人员密集的公共场所,这样可以防止因探测器误报引起的切非而引发不必要的恐慌和事故。

四、火灾自动报警系统总线制中应注意的问题。

本项目的火灾自动报警系统采用总线制。《民用建筑电气设计规范》(jgj16-2008)第13.10.5条规定:当横向敷设的火灾自动报警系统传输线路如采用穿导管布线时,不同防火分区的线路不应穿入同一根导管内;探测器报警线路采用总线制布设时不受此限。可见,总线制系统不同防火分区的线路可以穿入同一根导管。我们知道,当火灾自动报警系统总线发生故障时,隔离模块作用是将故障总线与整个系统隔离开来,以保证系统的其它部分正常工作,同时便于及时确定故障的总线部位。当故障部分的总线修复后,隔离器自行恢复将被隔离的部分重新纳入系统。

《消防联动控制系统》(gb16806-2006)也规定,报警回路每隔32个编址单元(包括探测器、模块、手动报警按钮等)至少使用一个隔离模块。综合两规范规定,报警总线虽然可穿管跨越不同防火分区,但总线回路中的隔离模块同样应按照防火分区进行设置,即总线跨越防火分区时必须设置隔离模块。否则,当某一个防火分区发生火灾时,其线路有可能被烧短路,在其他防火分区与之连接的探测器因没有模块的隔离作用而不能被控制器监控,从而造成故障范围的扩大,降低了报警系统的使用功能。

五、火灾报警系统智能化的提高。

本项目为超高层建筑,相对于普通的高层建筑而言,在消防设计中还应该考虑系统智能化的问题。这个问题分内外两个层次。对火灾报警系统内部而言,超高层建筑一般采用智能型地址编码探测器,而中小普通建筑多用非编码探测器,以回路区分建筑区域。鉴于超高层建筑体量大,面积多,其使用面积的分割具有较大的不确定性,因此,为了适应房间形状、面积、使用性质的变化,每条报警回路应留出30%左右的探测器数量裕量。

篇11

中图分类号:X93 文献标识码:A 文章编号:1674-098X(2016)10(c)-0092-03

Reliability Evaluation of Fire Safety of Super High Rise Building Based on Entropy Weight and Fuzzy Matter Element Model

Wang Qilei* Li BenLi Jia Chunlei Hou Yaohua

(Chinese People’s Armed Police Forces Aorces Academy, Langfang Hebei, 065000, China)

Abstract:Reliability evaluation of fire safety can provide important decision-making basis for the design and management of super high-rise building fire safety design, the key lies in how to establish a suitable index system for the fire safety evaluation and reasonable evaluation of the weight of each evaluation index. According to the main characteristics of fire safety in super high-rise building, the fire safety evaluation index system of super high rise building is put forward, which is composed of three subsystems: active, passive and fire safety management. In order to effectively explore the main and objective evaluation information of fire safety evaluation index system of high rise building, improve the conventional entropy weight method, propose a method based on information entropy to determine the weight of each index in the evaluation system. The results show that the overall and systematic characteristics of fire safety of high-rise buildings based on entropy weight and fuzzy matter element model, and the evaluation results are consistent with the analysis of the experts, which shows that this method has certain application value.

Key Words:Super high-rise; Entropy weight; Fuzzy matter element; Fire safety; Reliability evaluation

超高咏ㄖ是现代社会经济、技术与文化的综合体,由于其楼层多、体量大、结构复杂、功能多样化,在相同的防火条件下,超高层建筑比多层建筑和普通高层建筑的火灾危害性更大,一旦发生火灾,外部救援和灭火装备几乎无效,易造成相对重大的损失和伤亡事故。目前,国内外相关研究明确了超高层建筑必须立足于自救,即依托建筑内部固定消防设施进行灭火救援和疏散[1-3]。超高层建筑消防安全影响因素众多,同时这些因素之间还存在着一定的联系,如何评价超高层建筑物中消防安全影响因素及指标体系对于整个消防安全系统起着至关重要的作用。

该文依据超高层建筑规范、专家评价及相关监测检查数据,并结合熵权法对评价指标进行赋值,利用模糊物元模型对超高层建筑消防安全进行评价,得出超高层建筑消防安全各评价指标及系统安全的定性定量评价结果,并列举实例评价该建筑的消防安全程度。

1 影响消防安全的评价指标

建立合理的评价指标体系是超高层建筑消防安全评价模型建立的基础,建立指标体系要客观地反映消防安全评价因素的构成及内在联系,并且能够把各评价指标划分为一个有序的层次使之条理化,同时考虑评价指标数据的可获得性。

该文主要借鉴相关学者在安全评价研究方面的成果,结合超高层建筑消防安全的实际特征,利用客观性与易操作性原则,根据评价指标相关性原则,建立多层因素集。在综合分析与调查研究的基础上,提出了超高层建筑消防安全评价体系,如表1所示。

2 基于熵权与模糊物元模型

2.1 指标权重的确定

在建筑物消防安全整体评价中,利用熵权函数模型对系统安全影响因素进行有效区分与排序,然后进行分析处理。影响因素评价计算过程中,熵值及权重函数计算公式如下:假设评价体系中有m个评价对象,每个对象有n个评价指标,则数据计算初始矩阵为。

2.2 模糊物元模型

3 应用实例

3.1 建筑分析实例

选取北京市2010―2015年建立的5栋超高层建筑项目为例,进行消防安全评价,项目的基本情况及建成年份,如表2所示。

3.2 消防安全评价

利用熵权法与模糊物元法对北京地区的5栋超高层建筑进行消防安全评价,将每栋建筑实地分析测定值作为定量指标值,专家组评价分析数据加权平均后作为定性指标值。首先依据所选评价指标的具体情况,分别利用判断矩阵式(7)或式(8)进行归一化处理;其次利用式(3)与式(5)分别确定各评价指标的熵值与熵权,最后根据式(9)计算各评价指标的隶属度。观察表3中数据发现超高层建筑的固定消防设施与建筑物本身的结构设计对建筑消防安全影响较大,这与超高层建筑应加强自身防灭火的设计是一致的。

为有效区分各超高层建筑消防安全性的基本指标,结合超高层建筑评价标准制定了安全标准等级,安全标准等级结合各评价指标严格按照优、良、中、差对应项目贴近度,如表4所示。

计算比较后得出5项超高层建筑消防安全项目的贴近度与综合评价效果,如表5所示。通过对这5栋建筑的消防安全的贴近度与综合评价,可以发现:这5栋建筑消防安全总体评价中有1项评价为优,贴近度小于0.122 1,3项评价为良,贴近度在0.122 1~0.214 3,1项为中,贴近度在0.214 3~0.327 9,没有评价为差的建筑,说明超高层建筑的消防安全整体水平相对较高,优良率达到80%,该评价结果与消防安全检查结果分析基本一致,较好地反映了建筑的实际消防安全水平。

4 结论

(1)利用熵权法可有效降低计算过程的主观性,提高数据的准确度,改善权重系数计算的客观性,结合模糊物元评价模型,完善了消防安全评价项目的整体性与系统性,且评价结果较为准确,该模型具有一定的适用性,能够为超高层建筑消防安全评价提供一定的参考。

(2)通过对超高层建筑的主要影响因素研究,结合权重与熵权计算分析发现:超高层建筑的消防安全首先应加强建筑结构材料的改善,更加重视固定设施的设计与管理,其次提高管理与科技水平,充分消除火灾隐患,最后是定期开展与消防部门的合作交流,提高防火安全意识。

参考文献

[1] 郑和祥,李和平,郭克贞,等.基于信息熵和模糊物元模型的牧区节水灌溉项目后评价[J].水力学报,2013,43(1):57-65.

[2] 姚志.城市高层建筑消防安全评价[J].消防科学与技术,2011,30(7):646-648.

篇12

前言

超高层建筑自身特点大大增加了超高层建筑的不稳定因素,因此,不能将超高层建筑视为普通建筑的拉伸和重叠,以免影响到建筑的使用效果。在实际设计过程当中,要根据超高层建筑的特点开展相应施工环节的加强,减少安全隐患,确保超高层建筑整体质量,确保我国建筑行业的健康发展。

一、超高层建筑的论述

超高层建筑,如图一所示,是指40 层以上、建设高度100m 以上的现代建筑工程。随着我国社会经济的快速发展,城市中的超高层建筑也越来越多,体现了我国科学技术水平,也实现了对土地资源的高效利用。但是,基于超高层建筑的特殊性质,因此施工技术同普通建筑工程有着较大的区别,需要我们在建设过程中予以注意,从而避免相关建设问题的出现。

图1

二、超高层建筑设计中的问题分析

1.施工技术和施工设备问题

超高层建筑相较于传统建筑工程来说,建设高度较高,因此,在施工设计过程中,应该着重考虑工程技术和工程施工设备问题。良好的施工技术和工程施工设备,是确保工程施工工作顺利开展的关键因素,比如施工材料运输设备等施工设备,为工程施工安全和施工进度起到了良好的保障作用,必须进行合理的规划和安排。由于超高层建筑的建设高度较高,因此,超高层建筑的工程质量问题是影响工程使用效果及使用安全的重要因素,在施工设计过程中,要充分分析建筑

区域环境以及建筑承重、负载问题,并在制定相关技术要求,确保超高层建筑的整体施工质量。

2.超高层消防问题

在超高层施工设计过程中,一定要注意超高层防火方面的设计工作。由于超高层建筑自身特点所致,使得火灾事故成为对超高层建筑威胁最大的事故问题,需要在工程设计过程别予以重视。超高层建筑建设结构较为复杂,建筑内管线和设备较为多样,从而给超高层建筑埋下了非常大的安全隐患。由于建筑较高,使得建筑内部空气抽力较大,一旦有火灾事故爆发,很容易造成火灾的快速蔓延,最终导致极为严重的后果。同时,在火灾事故发生后,人员疏散往往只能借助消防通道,楼层越高,则疏散时间则越长,危险系数也就越高。此外,在灭火阶段,由于建筑较高,一般消防设备难以起到理想的灭火效果,造成了非常打的扑救难度。

3.电梯设计问题

电梯设备是超高层建筑中重要的运输设备,用以现实建筑内部的上下层沟通,是超高层建筑的“生命线”。一般来说,超高层建筑内部的电梯数量要远远多余普通建筑,大量的电梯设备使得设备检验人员的工作压力大大增加,且由于电梯设备的垂直高度打打提高,使得电梯设备的检修难度大大增加。同时,超高层建筑在经受15.24m 的晃动后,会使得电梯设备在摇晃中受到一定程度的损害,钢缆也会随之受到影响,容易造成电梯设备的使用效果降低,甚至会大致严重的

安全事故,造成人员伤亡事件的发生。

同时,由于电梯设备的构造影响,使得电梯设备内部出现强大的垂直气流,在冬季,如果下层冷空气进入电梯井后,就极易造成上层电梯门无法正常关闭,造成严重的影响。同时,下层气体也会由电梯井直接扩散到上层,对上层环境造成干扰,影响到上层用户的正常生活和工作。此外,当火灾事故发生以后,下层浓烟和火源也会随着电梯设备内的垂直气流快速向建筑上层蔓延,造成极为严重的后果。

三、超高层建筑设计相关建议

1.施工技术和施工设备方面

首先,在超高层建筑施工设计工作开展之前,首先应该做的便是详细分析工程项目的施工目标和施工要求,根据超高层建筑的目标高度和目标结构选取相似超高层建筑项目,参考其设计流程和设计内容,以降低超高层简述设计盲目性,降低设计风险。在施工技术方面,一定要结合实际情况确定有效的技术要求,以确保建筑的整体施工质量,比如墙体施工技术以及内部支撑柱的施工技术等等,并做好施工过程中监督工作,保证施工技术的有效落实。在施工设备方面,一定要充分考虑施工内容,做好施工设备的准备工作,如起重设备、升降设备等等,以保证建筑施工进度,保证施工安全。

2.建筑消防设计方面

由于超高层建筑自身特点影响,在实际建筑设计过程中,要加强超高层建筑消防方面的设计工作。由于超高层建筑楼层一般在40 层以上,因此,超高层建筑内人员也较多较密集,在实际设计过程中,应该适当提高超高层建筑内安全通道数量,避免火灾事故发生后人员拥挤现象的发生;超高层建筑消防通道一定要保证密封性,由于建筑高度较高,在火灾事故发生后,烟尘扩散速度较快,火势蔓延也较快,在正常状态下一定要保证消防通道的密封性,从而防止火灾事故发

生后影响消防通道使用效果;超高层建筑火灾事故发生后,电梯设备往往都直接降到底层,只有消防专用电梯能够使用,在工程设计过程中,要尽量增加消防专用电梯数量,并提高消防专用电梯安全性能,确保人员的及时疏散,以及消防专用电梯的安全系数;超高层建筑内部的消防设备要设置充分,对于危险系数较高的楼层和单元要更加重视,以确保火灾事故发生后进行及时扑救,尽量避免火势的蔓延,减少人员伤亡及财产损失。

3.电梯设备设计方面

电梯设备对于超高层建筑来说具有非常重要的作用,确保电梯设备设计的合理性,是确保超高层建筑使用效果的重要手段。由于建筑自身高度影响,使得电梯设备在受到外力作用时极易受到损害,从而埋下严重安全隐患,酿成严重的安全事故。在建筑设计时,要注意电梯设备检测系统的建立,随时保证检测系统的正常运行,对电梯设备和钢缆进行严格的监控,从而及时发现安全隐患,确保隐患的及时消除。由于建筑高度影响,使得电梯井和电梯设备内形成强大的垂直气

流,对建筑安全构成一定的危害,因此,可在建筑设计过程中,根据建筑实际情况进行分段式设计,降低空气抽力,从而有效控制垂直气流,提高超高层建筑的安全性能。

四、结语

随着社会的发展,城市中的超高层建筑越来越多,这不仅集中体现了我国科技的进步,也象征着我国综合国力的增强,标志着城市竞争力的提高。然而,超高层建筑不可避免地要消耗大量的人力、物力与财力,其设计及维护需要大量的金钱,这使其已经违背了原先设计这种建筑的节约的目的。同时,在超高层建筑设计中还存在许多问题,需要人们的重视。

参考文献:

友情链接