电力电缆计算方法范文

时间:2023-07-23 08:22:35

引言:寻求写作上的突破?我们特意为您精选了12篇电力电缆计算方法范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

电力电缆计算方法

篇1

关键词:钢管混凝土拱桥无支架缆索吊装施工扣索索力计算

在大跨度钢管混凝土拱桥的无支架缆索吊装施工中,扣索的索力是需要十分重视的控制条件。为了尽可能精确计算扣索索力,必须了解各种扣索索力计算方法特点,以选择合理的计算方法。

1、常见扣索索力计算方法

1.1有限元法

有限元法的基本原理是将求解域看作由许多极小的互连子域组成,该小的子域称即称为有限元,然后对每一单元假定一合适的近似解,进而推导求解这个域总能满足的条件然后得出解。该方法得出的是一个近似解,而非精确解。然而就大多实际问题都是难以得出精确解的,同时有限元法得出的近似解的精度已经足够满足解决实际问题的需要,且能适应各种复杂形状,因而能有效的应用与工程的计算分析中。

1.2零位移法

零位移法的基本原理是按照桥梁的施工加载顺序,在分段吊装计算时于每段扣索处虚拟一个支座约束,利用相关的力学知识,加上每个阶段各支座反力为零的条件,可以求解出各扣索在各吊装阶段的索力值。其计算原理十分简单,且各个阶段无需设置预抬值。但是由于是按照桥梁的施工加载顺序计算,在吊装一个节段时,前面扣索的力以及控制的标高都需要调整。在实际施工中十分繁琐,尤其是对于节段较多的情况,更是容易因为频繁的调索导致拱肋截面应力超限甚至在某些拉索处出现不符合实际情况的负值。

零位移法要求在索力计算过程中以考虑成桥预拱度后的设计拱轴线作为调索的目标线形,虚拟一个支座以替代扣索扣点处,用以约束扣点处的竖向和纵向位移。由力学知识即可计算出支座反力,进而算出扣索索力。如此即可保证在该索力下达到虚拟支座同样的效果,即扣点出位移始终为零。

1.3定长扣索法

与零位移法相反,定长扣索法不是按照施工和加载顺序计算的。而是按照与实际施工加载相逆的顺序,逐步倒拆,即根据倒退分析法,确定扣索的放样长度。考虑了在实际施工中依靠后续的加载对前面扣索造成的弹性伸长,也同时考虑了弹性伸长后的扣索对后续吊装阶段的的影响。可以使各段扣索应力相对均匀,而且在后续节段的吊装过程,不需要重新张拉或者松弛已张拉扣索,并且可以使已张拉扣索的应力保持在一个范围内,不会出现过大浮动,而且全桥可以达到设计的轴线位置。

在使用定长扣索法确定索力时,其基本原理是按照倒退分析发确定放样扣索长度的,以此确定扣索初始应力的。在计算分析过程中,需要注意前面扣索的非线性影响要比后面扣索的非线性影响要大。

2、索力计算方法的比较

2.1有限元法:在有限元法提出的初期,因其需要庞大的计算量,其使用范围受到局限,然而在计算机普及的今天和随着计算机的计算能力越来越突出,计算量不再是影响其使用的最大因数甚至出现了专门的有限元计算软件。针对扣锁索力的计算,可根据施工图纸建立有限元的模型,由于建模时候通常是假设拱肋阶段在扣索张拉以后,扣索扣点位置即达到设计拱轴线和标高,所以建模时候的标准模型是以考虑考虑过预拱度后的设计拱轴线作为模型。因其扣点位移始终为零,故有限元法在原理上与零位移法有一定的类似。

2.2零位移法:零位移法的关键是将扣点约束虚拟成支座约束,在考虑预拱度后的设计拱轴线作为标准线形的条件,保证虚拟的支座约束(扣点约束)处的位移始终为零,可以计算出竖线和轴向两个方向的支反力,进而可得出相应扣索索力和索力增量。虽然在保持其位移始终为零的条件下,可以保证施工过程中扣点位置始终在设计线形位置,但是由于后续节段的施工会对前面扣点位置造成变化,所以在后续节段施工时需要对前面扣索重新张拉,使得施工繁琐;同时由于是将扣索虚拟为支座的,在虚拟条件下,支座可以提供各个方向支反力,所以经常会出现在后续节段施工时发现早期张拉扣索出现承压的情况,显然与实际情况不符;实际中线形出现偏差时,也难以用零位移法调整,拱肋轴线最终会出现“马鞍形”,所以零位移法在施工施工中对扣索索力的计算指导性不强。

2.3定长扣索法:定长扣索法是按倒退分析法先确定扣索放样长度。即在张拉早期扣索时,就考虑了后续吊装节段和扣索对该扣索的影响,然后使其最终达到考虑预拱度后的设计线形。相对零位移法而言,它不需要每吊装一个新的节段就对前面扣索重新调力,而且不会出现类似零位移法中某些扣索承压的情况,同时各个扣索的力在各节段的吊装时均不会出现太大波动,安全性较强。但是,定长扣索法是先计算各节段拱肋预抬高度,来确定张拉的扣索需要的索力,可能会出现即使扣索索力达到极限强度也未能使拱肋达到预抬高度。同时由于索力与预抬值满足拱轴线的组合有任意多组,故该法所得出的组合可能是满足施工条件中但它并不一定是施工的最优方法。

3、结语

在大跨度钢管混凝土拱桥无支架缆索吊装施工过程,控制缆索索力显得十分重要,单一采用上面某一种计算方法有时候会显得不足,经常需要多种方法进行同时计算对比方能得出比较满意的结果。

篇2

中图分类号:TM76 文献标识码:A 文章编号:1674-098X(2017)03(b)-0042-03

随着煤炭生产机械化、自动化程度的不断提高,煤矿生产设备逐步向复杂化、多样化迈进,煤矿设备的可靠运行对生产效益的提高起着决定性作用,因此,矿井设备的选型显得尤为重要,合理、准确的选型可以为设备安全可靠运行提供基本保障,该文对矿用电缆的截面积选择方法做出了介绍。

1 电缆选用的基本要求

矿用电缆由于其使用环境的复杂性,基于其所敷设的位置、倾角、作用等因素,必须满足一些基本要求,这些要求是电缆选型必须遵从的基本原则,大体有以下几条。

(1)电缆实际敷设地点的水平差应与规定的电缆允许敷设水平差相适应。

(2)电缆应带有供保护接地用的足够截面的导体。

(3)严禁采用铝包电缆。

(4)必须选用经检验合格并取得煤矿矿用产品安全标志的阻燃电缆。

(5)电缆主线芯的截面应满足供电线路负荷的要求。

(6)对固定敷设的高压电缆要求。

①在立井井筒或倾角45°其以上的井巷内,应采用聚氯乙烯绝缘粗钢丝铠装聚氯乙烯护套电力电缆、交联聚乙烯绝缘粗钢丝铠装聚氯乙烯护套电力电缆。

②在水平巷道或倾角45°以下的井巷内,应采用聚氯乙烯绝缘钢带或细钢丝铠装聚氯乙烯护套电力电缆、交联乙烯钢带或细钢丝铠装聚氯乙烯护套电力电缆。

③在进风斜井、井底车场及其附近、中央变电所至采区变电所之间,可以采用铝芯电缆;其他地点必须采用铜芯电缆。

④固定敷设的低压电缆,应采用MW铠装或非铠装电缆或对应电压等级的移动橡套软电缆。

⑤非固定敷设的高低压电缆,必须采用符合Mr818标准的橡套软电缆。移动式和手持式电气设备应使用专用橡套电缆。

⑥照明、通信、信号和控制用的电缆,应采用铠装通信电缆、橡套电缆或M型塑料电力电缆。

⑦低压电缆不应采用铝芯,采区低压电缆严禁采用铝芯。

2 电缆截面积选穹椒

通常井下电缆线路的截面选择步骤大体如以下几点。

(1)计算线路最大长时电流。

(2)按长时允许电流初选导线截面。

(3)校验机械强度允许最小截面。

(4)校验允许的电压损失。

2.1 线路最大长时电流的计算

线路最大长时电流即指电缆线路所带负荷最大时所对应的电流,假设电缆线路所带最大负荷功率为Pmax(kW),则最大电流计算方法如下:

由于 Pmax=UNImaxcosφ (1)

Imax=Pmax/(UNcosφ)=1/(UNcosφ)×Pmax (2)

设:K=1/(UNcosφ),

则 Imax=K×Pmax (3)

式中:

Pmax为电缆线路所带最大负荷功率,单位kW;

UN为电缆线路的额定电压,单位kV;

Imax为电缆线路最大负荷电流,单位A;

cosφ为电缆线路所带最大负荷时的功率因数;

K为电缆线路最大电流对应的功率系数;

通过计算,功率系数取值大体(如表1)。

对于煤矿井下设备,cosφ一般取0.75~0.8,所以当额定电压UN确定后,便可以计算出K的值,然后根据线路的最大负荷功率Pmax与K的乘积,便可以计算出线路最大负荷电流。

2.2 按长时允许电流初选导线截面

为了使导线在正常运行时温度不超过其长时允许温度,导线的长时允许电流应不小于流过导线的最大长时工作电流。即:

Ip>Ica

式中:

Ip为标准环境温度(一般为25 ℃)时,电缆线路长时允许电流,单位A;

Ica为电缆线路最大长时电流,单位A;

Ip的值可以由查表得出,以矿用移动屏蔽橡套软电缆(MYP)为例,表格(如表2),其他电缆也可通过相应表格查出,此处不再一一列出。

Ica的值一般取式(3)中的Imax,可由2.1中线路最大长时电流的计算方法算出,然后依据Ip>Ica的原则对导线截面积进行初选。

3 电缆截面积的校验

通过电缆长时最大电流与电缆长时允许电流的比较,再通过查表即可初步选择出电缆的截面积,但是要真正满足实际选型要求,还必须对电缆的机械强度和电压降落进行校验,合格后才是最终的型号。

3.1 机械强度校验

电缆在工作面和巷道中敷设,难免会受到外部机械力的作用,截面太小的电缆容易出现断线、护套破裂、绝缘损坏现象。矿用橡套电缆应符合表3的要求,以避免在拖拽、碰撞等外力作用下断线、破裂。

3.2 电压损耗校验

输电线路通过电流时,将产生电压损失,所谓电压损失是指输电线路始、末两端电压的算术差值,为了保证电压质量,从变压器出口处至电动机的线路电压损失应不大于线路的允许电压损失。

3.2.1 电压损耗的计算方法

(1)线路等效电路图。

在交流供电系统中,电缆线路存在阻抗,阻抗由电阻和电抗组成,电流流过阻抗时,在阻抗两端产生的电压差称为电压降。电压损耗指电压降得代数值。一般用百分数表示。(如图1)

U末-U初=ΔU=I×ZL

式中:

U末为电缆靠近负荷侧末端电压,单位V;

U初为电缆靠近变压器侧始端电压,单位V;

ΔU为电缆线路电压降,单位V;

I为电缆线路电流,单位A;

Z为电缆线路电抗,Z=,单位Ω/km;

L为电缆线路长度,单位km;

(2)电压降向量图。

以线路末端电压UOA为基准值,假设其初相为零,Φ为电压UOA与负荷电流I的相位差,cosΦ即为负荷的功率因担电缆有效电阻上的电压UAE与与电流同向,阻抗两端的电压UED与电流方向相差90°,所以电压降向量图(如图2)。

由图2可见,电压降为矢量,电压损耗为AC:

ΔU=UOD-UOA=UAE+UED

而UAE=IR,UED=I×jX,故ΔU=I(R+jX),若设电流有效值为IOA,用有效值表示为:

ΔU=I×

按图2换算成长度,有:

AC=AB+BC,

AB=IOAR×cosΦ,

BC=IOAX×SinΦ,

故电压损失值:

ΔUΦ=IOAR×cosΦ+IOAX×SinΦ

ΔU、ΔUΦ为每相电压降、电压损耗,再乘以就换算成了线电压降和线电压损耗。

3.2.2 基于电压降的截面积校验

井下变压器的二次侧额定电压1.05UN,电动机的允许最低电压为0.95UN,因此,变压器和线路的电压损失之和不能超过10%UN。考虑到变压器的电压损失通常不超过5%UN,故从变压器出口处到线路末端的线路电压损失不得超过5%UN,因此,当计算出电压损耗ΔUΦ时,通过下式进行校验:

ΔUΦ%≤5%

若满足要求,则所选电缆截面积合格,若不满足条件,则增加截面积型号,重新校验。

4 结语

电缆截面积的选择是煤矿生产过程中所面临的一个最为基本也尤为重要的环节,电缆的合理选型不仅有利于降低成本提高经济效益,更重要的是可以为安全生产打下坚实基础,因此,电缆选型也是工程技术人员所应掌握的一个基本技能。

参考文献

篇3

中图分类号:TM862 文献标识码:A 文章编号:1671-7597(2012)1210190-02

安全是社会首选的主题,特别强调“总书记在“十”报告中,把“确保食品、药品等安全”作为“加快推进以改善民生为重点的社会建设”的一项重要内容使我们深受鼓舞,更加坚定了立足本职岗位和全力维护人民群众的利益及确实做好本职工作的决心。我所从事的职业是电力方面的工作,大家都懂得,“电”自产生起就为人类的生活创造了极大的方便条件,同时也有不利的隐患,如何避免不利的隐患也是新时期电力工作重点。

1 电力电缆接地的利与避

1.1 电缆接地的有用性

为防止人身受到电击事故和意外电力事故的产生,确保电力系统正常运行,保护线路和设备免遭损坏,同时还可防止电气火灾,防止雷击和静电危害等。电缆金属护套或屏蔽的接地的作用有:① 电缆线芯对屏蔽和金属护套的电容电流有一回路流入大地,形成安全回流,避免了电击事故产生;② 当电缆对金属护套或屏蔽发生短路、或出现意外时,所造成的短路电流可直接流入地下,也避免了电击事故产生;③ 当因以外事情造成的电缆线芯绝缘损伤后,所发生相间短路发展至接地故障时,故障电流通过接地线也流入大地中,也完全避免了电击事故产生;④ 电缆在输电过程中存在不平衡电流所引起的感应电压、通过地线与大地形成短路,这也防止电缆对接地支架存在电位差而放电闪络所造成的电击事故;⑤ 因科技发展,线电交叉扯拉经常发生,电缆直接接地可以避免回路的产生,同时也避免了线路的有一次交叉,可以尽量避免因回路漏电产生事故。

现实社会中,大量使用的交联电缆中,大都使用的电缆属分相屏蔽电缆,屏蔽层又分为金属(铜带)层和半导电层。半导电层中含有胶质碳,它们都能起到均匀电场的作用;同时碳层又能吸收电缆本体内细小间隙中,因空气电离所产生的败坏物质等,均匀电场内,用以保护电缆绝缘。而金属屏蔽层的作用是:首先其可以保持零电位,使缆芯之间没有电位差或避免产生电位差;其次是在短路时电缆承载短路电流,以免因短路引起电缆温升过高而损坏的绝缘层,同时屏蔽层也可以防止周围外界强电场对电缆内,传输电流的干扰;再次屏蔽层可以安全有效地将电缆产生的强电场限制在屏蔽层内部,同时由于屏蔽层接地,外部不存在电缆产生的强电场,不会对周围的弱电线路及其仪表,产生强电场干扰或危及人身安全的强电场与电波。还有配电系统中电源电缆的起始端与发电厂的接地电缆网接通,末端与变电所接地网连通;变电所馈出电缆接地与各用户连通;低压电缆线与电缆铠甲接地后可与高压电缆接地等电位;大用户的电源电缆接通了独立的电源。这样,高低压电缆接地线的互相联结,与接地网连在一起。所以,电缆接地就成了接地系统总体的重要组成部分,对电网安全运行有重要保护作用。

1.2 电力电缆接地易发生的问题

该问题主要表现在低中压电力电缆方面和高压电力电缆两个方面。首先谈低中压电力电缆方面的问题总结近几年在电力工作经验,低中压电力电缆接地易发生的的问题有以下几个方面:① 低压电缆接地不良或不规范,工艺要求不规范等。造成低压电缆的铠甲接地只采用数股铜线在钢铠上绑扎几圈,而后普遍用塑料带将端头包扎成型后,再引出接地线。或还有些电气装置没有接地的母线与零线、地线与盘箱柜的金属部分连接不规范,低压电缆的心线也不压接接线端子,甚至更有甚者将电源电缆的心线与负荷的零线或地线用绑线扎在一起,形成了不规范的“鸡爪连接”的不可靠连接方式。在制作低压电缆中间接头时,对相线连接质量比较重视;对于电缆心线的连接,便不够重视;从而对于电缆铠甲的连接质量差,易发生事故等问题。② 低压电缆接地线断不规范。由于过去采用低压电网用的是三相四线制供电方式,与之相应的四芯电缆的中性线除作为中性线要通过三相不平衡电流外,还要作为保护的接地线,成为电缆的断零线。低压电缆断零原因主要有:第一中性线截面过小。过去有一错误观念是低压电缆的断零线截面可小于相线,只需通过三相不平衡电流,其电压值较小,常将断零线截面取为相线截面的1/2或1/3。殊不知断零线在电缆线路发生单相接地故障时,还要通过短路电流,必须具备短路电流热效应的线,才能承受能这种力, 否则极易发热严重或烧断线芯,形成故障。第二低压电缆线因年久失修,腐蚀断线。以前的接地装置,大都采用圆钢、扁钢、角钢或钢管等碳素钢材。因腐蚀氧化严重,经数年后不是断线,就是接地电阻变高而形成故障。

下面介绍高压电力电缆易发生的事故原因:1)是高压电缆接地不良,形成电力电缆事故。高压电缆接地问题较为复杂,接地不良因素颇多,主要表现为:① 接地线焊接不牢。高压电缆接头制作工艺简单,方便安装施工,因此而使一些单位员工忽视了接头制作质量,对接地线焊接更不重视,导致事故因素。② 铜带屏蔽层过流能力较弱。采用铜带屏蔽电缆的铜带厚度至少应为0.12mm(单芯线)和0.1mm(三芯线),规定在电缆制造时,要求铜带连接应熔焊或铜焊,但因我们在电缆施工中发现一些公司生产的电缆采用锡焊,更有甚者采用搭接后包以塑料自粘带加以应付。目前我国电缆制造行业对中低压电缆金属屏蔽层截面计算方法,没有考虑铜带搭接后引起的接触不良情况情况,这种计算方法对于新生产的电缆比较适合;但在运行或存放一定时间后会由于铜带松动、氧化等原因,使搭接处电阻增大或接触不良。易造成短路电流不是按轴向流动,而是沿螺旋方向流动,此时,屏蔽层的电阻主要取决于铜带厚度和总长度。这些因素都会造成接地不良现象。③ 接地线接触不良。近年来电缆线及其附件已形成配套供应,厂家为了降低成本,附件配套接地线的长度只有500mm左右,作完电缆头后所剩很短,只能就近接地,多数是接在电缆卡具的固定螺栓上,由于油漆和锈蚀等影响,也会产生接地端子接地不良的现象。2)高压电缆接地断线,形成电力电缆事故。其主要形成的原因有以下几点:首先是铜带屏蔽层意外损伤或断裂,造成电力电缆的事故。其次是电力电缆本身接触不良,大电流冲击的烧断,造成电力电缆的事故。再次是电力电缆接地线焊接、绑扎不牢,或端头固定时接地线受力后与电缆屏蔽层脱离,造成电力电缆的事故。还有是电力电缆的接头处进水、进潮、腐蚀、电解造成断裂等因素,电力电缆事故。最后是高压电缆因客关因素无法接地等现象。如在一些特殊环境,如城市街道、矿山、井下、还有城市供电的箱式变电所等处,由于条件等的限制,只能借助高低压电缆的屏蔽层、护套及低压电缆的零线形成复合的接地网。这样就会形成高压电缆金属屏蔽层断裂或接地线脱离,易造成高压电缆无接地,从而形成电力电缆的事故。

2 电力电缆装置时应注意的事项

我们知到,在现代生活中,电力电缆装置绝大部分是隐蔽性的,其运行管理工作有其很强的特殊性和专业性。电缆接地质量好与坏,直接关系到人身安全、电力系统的安全运行、终端的使用状况等。部分电缆施工安装人员和运行管理人员对电缆接地的重要性缺乏足够的重视。所以加强学习、提高素质、提高认识,掌握或防范接地不良故障的有效方法,应该注意以下几点:

1)首先要正确选用电缆质量。随着市政建设的大力发展,各种楼房高层、超高层建筑的崛起,单相用电设备的大量增加,电网中有相当多的电气设备不断增加,所以经常出现三相负荷不平衡现象等,电能在运行中会经常产生谐波扰动,造成三次谐波的存在。一般负荷三相电流相等时,其基础波相位角互差不会超120度,它在中性线上的矢量和为零。但是各相的三次及其倍数谐波在中性线上却处于同一相位,它们的波,不是互相抵消,而是互相叠加。当谐波电流含量大或超载时,中性线电流可能等于甚至超过相线电流。由此而引起的电气火灾等隐患,所以为保证供电更安全、更可靠,无论是高压电缆还是低压电缆,无论用于何种场所,均应注重对电缆质量的选择或电缆均应有铠甲或屏蔽为好。

2)保证电缆的接地线截面与其交联电缆接头在制作中,铜屏蔽层、铠甲层等应分别连接不得中断或两者间不加绝缘分隔层出现。也就是说无论何种电缆,接地线连接必须安全可靠,杜绝出现断线或接触不良,导致防护层击穿放电引发火灾等现象。

3)必须作好进户电缆防雷保护、塔灯照明、微波站和计算机房电源电缆等远程条件的设置等工作,确保让百姓使、用的安全、放心。

4)健全建立电缆运行状况制度和接地问题的相关措施,制定反事故先观措施。确保电力电缆安全运行。

3 结束语

安全是现代社会的主题,企业的安全管理是企业一切工作的基本保障。作好人员管理、现场管理也是为企业顺畅发展、安全管理提供基础保障。

篇4

电力电缆在城市电网中的应用越来越广泛,对城市的电力发展具有重要的作用。但是由于制造缺陷、机械损伤、安装质量、雷击现象、绝缘老化等原因,电缆故障时有发生,给社会的经济和生活造成了重要的影响。当电力电缆发生故障后,如何有效的分析电缆故障,根据电缆敷设的参数和环境,通过有效的探测方法,准确的判定故障的位置与原因,并进行快速的处理,提高电能恢复的速度。

一、电力电缆常见的故障

高压电缆或低压电缆在运行的过程中,由于施工安装、过负荷运行、外力作用、绝缘老化、环境变化等原因造成电力故障,影响电力的正常供应,主要的故障如下:

1.机械损伤:在施工安装的过程中,没有按照操作规程进行施工,造成电力电缆的机械损伤。

2.绝缘故障:由于环境的变化引起电缆的绝缘受潮、绝缘老化变质。

3.过电压:电路长期处于过电压的影响,容易造成电缆的老化。

4.质量不合格:电缆出厂时不能够满足要求,存在工艺、材料的缺陷。

5.运行维护不当:电缆护层的腐蚀、电缆的绝缘物流失,引起电缆故障。

二、高压电缆故障的探测的步骤

对于高压电缆常见的故障,一般的方法很难进行诊断,需要采用专门的仪器和方法进行测试和判定。

1.高压电缆故障性质诊断与测试

高压电缆故障性质的判断,首先根据故障的性质进行分析:故障电阻是高阻还是低阻、是闪络还是封闭性故障、是接地、短路、断线或者它们的混合、是单相、两相或者三相故障,通过分析之后,确定故障的性质,能够方便检修人员在较短的时间内确定电缆故障测距与定点方法。

2.高压电缆故障测距

高压电缆故障测距首先要进行简单的估计,便于进行下一步测试,在电缆的一端使用对应的测试仪器对故障进行分析,初步确定故障距离,有利于缩短故障点的范围,节省检修的时间。

3.故障点精确定位测定

按照故障测距所估算的结果,初步估算出故障点的位置和故障的类型,就可以对故障进行精确的测试,可以采用对应的故障测试方法确定故障点的准确位置。

三、高压电缆故障的定位测试

电缆故障的测试在经过估算之后,需要对关键点进行测试,故障测距是否精确直接影响故障点距离的判断。

1.高压电缆故障测距的方法

故障测距常用的测试方法是电桥法(有电阻电桥法,电容电桥法)。它的优点是简单,方便,精度高,能够快速的定位,缺点是不适于高阻或闪络性故障。但是在实际的电缆故障一般是高阻与闪络性故障,采用电桥法比较困难。近年来,在现代电力电子技术快速发展的情况下,电缆故障测试技术有了新的发展,如脉冲电流法、路径探测法、路径探测的脉冲磁场法,以及利用计算机技术对磁场与声音信号时间差寻找故障位置的方法等,将故障测试方法引入智能化阶段。对于故障检测的方法很多,但是在实际的测试过程中,要考虑故障的类型选择合适的测试方法进行测试,常见的电力电缆具体故障类型及对应采用的检测方法详见表1所示。

2.电桥法

电桥法就是用双臂电桥的方法,测出电缆芯线的直流电阻值,根据电缆长度与电阻自己的正比例关系,计算出电缆的故障点,这种方法简便,容易操作,这种测距方法的原理是将被测电缆故障相与非故障相短接,电桥两臂分别接故障相与非故障相,调节电桥两臂上的一个可调电阻器,使电桥平衡,通过测量实际的电阻值,计算故障点。电桥法工作原理如图1所示,即被测电缆末端无故障相与故障相短接,电桥两输出臂接无故障相与故障相,形成一个完整的桥接回路。

在图1中:R1为已知测量电阻;R2为精密电阻箱;R3为故障点通过跨接线到另一端的电阻;通过测量电阻,就可以计算L为电缆长度;Lx为电缆一端至故障点的距离。

3.高压电缆故障测距的试验分析

在某段电缆型号为ZQ20-3×240+1×120的输电段线路,长度约为200m。在运行过程中中控室收到电缆故障信号,产生故障,自动装置自动跳闸。运用上面讲述的方法和电缆探测步骤的方法,经初步判断为断线故障,可以采用电桥法进行粗测,最后通过准确的计算机,可以求出故障的关键点。利用电缆故障测试仪可以测出相应的策略数据:

按照电桥平衡原理,对线路进行测试,通过计算分析可以得数据结果如表2所示。

对表2的数据进行分析,采取平均值的计算方法,可以测距结果为故障点距配电屏172米左右,这样就可以确定线路的故障点。

四、结论

随着对电缆应用的广泛应用,可以将多种测量方法混合使用来测量线路的故障点,就故障的具体问题进行具体分析,根据电缆的故障类型,电缆的敷设特点以及电缆所处的环境等因素综合考虑,选择合适的测量方法,采用合适的方法来进行故障的测距和定点工作,缩减电力电缆故障处理时间,提高用电可靠性,大大减少了停电的损失。

参考文献

[1]李国信,张晓滨,高永涛.电力电缆测试方法与波形分析[J].中原工学院学报,2010(6).

篇5

1 电力电缆结构

常用10kV高压电力电缆额定电压为8.7/15kV,低压电力电缆额定电压为0.6/1kV,电力电缆从内至外一般分为导体-->绝缘-->内护层-->铠装型-->外护层,内外护套材料一样时,省写内护套材料(非铠装电缆可以无内护套)。电力电缆结构表1所示。

例:VV22-铜芯聚氯乙烯绝缘双层钢带铠装聚氯乙烯护套(第2个V表示内护套材质,第2个2表示外护套材质)电力电缆,YJLV-铝芯交联聚乙烯绝缘聚氯乙烯护套(V表示外护套,若有内护套则也为聚氯乙烯材质)电力电缆。YJV-铜芯交联聚乙烯绝缘聚氯乙烯护套(V表示外护套,若有内护套则也为聚氯乙烯材质)电力电缆,YJV23-铜芯交联聚乙烯绝缘聚氯乙烯内护套双层钢带铠装聚乙烯外护套电力电缆。电力电缆导体通常采用铜和铝两种,实际应用中往往采用铜,铜导电率高电阻率低,铝导电率较铜低,铝电阻率较铜高,在同等载流量下,铝导体电缆截面大概是铜导体电缆截面的1.5倍。铜芯电力电缆电损耗较铝导体电力电缆低,机械性能比铝材优越,铜芯比铝芯抗疲劳约1.7倍。往往工程实际应用中采用的是铜芯电力电缆。

电缆芯之间的额定电压必须大于等于系统标称电压,比如标称电压380V,那么选择电缆额定电压1kV就满足要求,电缆芯之间能承受的最高工频电压必须大于等于系统的最高工作电压。

绝缘材料工程中一般选用交联聚乙烯,少用聚氯乙烯,因为交联聚乙烯性价比高,允许长期工作温度90℃,短路热稳定允许温度250℃,而聚氯乙烯允许长期工作温度70℃,短路热稳定允许温度约140~160℃。还有其他比如橡皮绝缘电缆允许长期工作温度60℃,短路热稳定允许温度200℃,等。工程中火灾报警一般采用耐火电缆,普通工程采用阻燃电缆。耐火电缆就是在火焰中被燃烧一定时间内能保持正常运行特征的电缆。耐火电缆按绝缘材质分为有机和无机型,有机型式采用耐高温800℃的云母带以50%重叠搭概率包覆两层作为耐火层,外护采用聚氯乙烯或交联聚乙烯为绝缘,耐火主要依赖于云母层的保护。无机型就是矿物绝缘电缆(MI电缆),采用氧化镁作为绝缘材料,铜管作为护套的电缆,这是真正意义上的耐火电缆,只要火焰温度不超过铜的熔点1083℃,电缆就安然无恙。阻燃电缆就是在绝缘及护套里添加无卤及含卤阻燃剂。含卤型有聚氯乙烯等,无卤型有交联聚乙烯等,含卤价格低但是燃烧时烟雾浓、酸雾及毒气大,阻燃剂分为有机和无机两类,最常用的是无机类无卤材料氢氧化铝。

2 电缆、导体、电器载流修正因素

采用热稳定性校验或电流密度法选截面,不用再考虑其它修正了,电缆按载流量选截面需要按各种因素修正,比如环境温度,敷设方式等。所谓的负荷计算电流就是在实际环境中所得的真实负荷电流。电缆与导体有区别,电缆分很多层,每层都有相对应的作用,导体包括母线及一般的导线,比如架空线、硬母线,裸导体需要按实际环境温度和海拔高度修正其载流量,电缆载流量无海拔修正,高压电器载流量有环境温度修正无海拔修正,海拔因素用来修正其外绝缘强度。

例如,某一负荷计算电流,(三班制),当地电价P=0.4元/kWh,电缆6根无间距并排敷设在梯架上,梯架两层,环境温度℃;选用YJV-0.6/1kV-4芯电缆,求截面。

(1)按电缆载流量来选择电缆截面。电缆敷设方式为6根无间距并排梯架敷设,梯架两层,查配三P504续表9-24,得到修正系数 0.76,修正后负荷电流为,查配三P515表9-34得到电缆截面S=35mm2。(2)按经济电流来选择电缆截面。根据,,P=0.4元/kWh,查配三P533表9-58,S=70mm2。

3 10kV高压电缆热稳定性校验

10kV高压电缆需要校验的项目有额定电压、额定电流、热稳定性等,例如2000kVA的干式变压器所需多大型号的电缆,10kV标称电压,选择8.7/15kV额定电压电缆,2000kVA变压器额定电流约115A,选25mm2铜芯电缆,25mm2铜芯电缆空气中载流量129A,满足额定电流要求,但是需要进一步校验热稳定性,热稳定性校验采用以下公式。

(1)

其中是电缆要求最小截面积,c是热稳定系数。

(2)

其中是短路电流热效应,最大短路电流有效值,是短路电流持续时间。假如高压母线处短路容量为100MVA,可得短路电流为5.5kA,带入公式可得:

(3)

选择70mm2交联聚乙烯绝缘电缆。

综合以上校验,最终电缆选择70mm2可以满足以上要求。

4 电力电缆压降校验

无论高压还是低压电缆都存在压降,电缆导体无论是铜还是铝,都存在电阻,电阻流过电流一定会发热,有电阻和电流就会有电压差,也就是所说的电缆电压降,电压降必须要有效控制。国家标准限制了各种用电设备正常运行的电压范围,如电动机,要求正常运行情况下,电动机端子处电压偏差允许值宜为±5%,那么就要根据电缆截面,长度,电机额定电流等等来计算电压损失,当然也可以根据电压损失要求反算最多能敷设多长电缆。

(1)例如45kW,额定90A,380V,功率因数0.9电动机,电缆敷设200m;假如选用50mm2电缆,查配三手册P551表9-78,对应50mm2电缆,电压损失0.194%/(A.km),得到总电压损失为(90x0.194x 0.2)%,即3.5%,满足要求。(2)例如45kW,额定90A,380V,功率因数0.9电动机;假如选用50mm2电缆,电压损失5%,查配三手册P551表9-78,对应50mm2电缆,电压损失0.194%/(A.km),可以敷设电缆长度为(5÷0.194÷90)=0.285km,为满足电动机正常运行,电缆最长可以敷设285米。

5 电力电缆按敷设方式及环境修正载流

无论高压还是低压电力电缆均需按敷设方式及环境校验载流,也就是按载流量选电缆,按载流量选电缆需要依据环境和敷设方式这两条核心因素。在不同环境温度(空气中或埋地)下需要乘以修正系数。

(4)

其中,表示电力电缆线芯允许长期工作温度,YJV为90℃,表示敷设处环境温度,表示现载流量对应的温度。

例如16平0.6/1kV YJV电缆,桥架敷设,30℃时载流量100A,敷设处环境温度40℃,通过式(4)计算可知,修正系数为0.91,得到敷设处实际载流量为91A。埋地敷设时环境温度不等于基准温度时也需要按式(4)修正,埋地时,不同土壤热阻系数的载流量也需要修正。在此就不再分析。

电缆敷设方式各种各样,通常采用直埋、穿管埋地、电缆沟、电缆桥架、电缆隧道、排管、墙体楼板内敷设等,载流量表中均为单回路或单根电缆的载流量,在不同敷设方式下,多回路电缆有不同的排列方式,多回路的排列方式对应不同修正系数,这些修正系数是假定各回路电缆截面相等且都是在额定载流量的情况下计算而得的数字,实际情况会有所不同,计算方法十分繁琐,工程设计时,可应用这些数字,当负荷率小于100%时,实际修正系数可提高一些。

例如:YJV-0.6/1kV-(3x70+1x35),环境温度30℃,敷设方式E,单回路电缆载流量246A;敷设方式D(直埋或穿管埋地),单回路电缆载流量166A。

(1)成束,明敷穿管靠墙,共6根,查得载流量校正系数为0.57,得载流量为246x0.57=140A。(2)6回路直埋地电缆,埋深0.7m,土壤热阻系数2.5(K.m)/W,电缆相互接触,查得载流量校正系数为0.5,得载流量为166x0.5=83A。(3)6回路穿钢管埋地电缆,埋深0.7m,土壤热阻系数2.5(K.m)/W,电缆相互接触,查得载流量校正系数为0.6,得载流量为166x0.6=100A。(4)3层梯架,每层梯架单层电缆6根,无间距布置,查得载流量校正系数为0.73,得载流量为246x0.73=180A。(5)每层梯架电缆层数2层,紧靠排列,查得校正系数0.65,得载流量为246x0.65=160A.每层梯架电缆层数3层,紧靠排列,查得校正系数0.55,得载流量为246x0.55=135A。

如果电缆是在户外敷设,且无遮阳时,除了以上修正外,还要乘以一个电缆户外敷设无遮阳时载流量校正系数,仍以以上示例为例,查得校正系数为0.99。电缆在电缆沟内敷设时,电缆的长期允许载流量比空气可以自由流动的地方小,也就是说电缆沟敷设电缆载流量类似于空气中敷设电缆的载流量,只是资料表明,电缆沟敷设电缆的载流量需要按照空气中敷设的环境温度提高约5℃来修正。当电缆数量较多,采用电缆隧道敷设电缆时,一般电缆隧道采用自然通风,当隧道内气温达到50℃时,须采取机械通风。

关于环境温度的选取,可按下列取值。裸导体屋外安装,最热月平均最高温度;裸导体室内安装,该处通风设计温度,当无资料时,可取最热月平均最高温度加5℃。电缆屋外电缆沟敷设,最热月平均最高温度;电缆屋内电缆沟敷设,屋内通风设计温度,当无资料时,可取最热月平均最高温度加5℃。电缆电缆隧道敷设,有机械通风时取该处通风设计温度,无机械通风时,可取最热月的日最高温度平均值加5℃。电缆土中直埋,最热月的平均地温。

高压电器屋外安装,年最高温度;高压电器之屋内电抗器,该处通风设计最高排风温度;高压电器之屋内其它处,该处通风设计温度,当无资料时,可取最热月平均最高温度加5℃。年最高温度为多年所测得的最高温度平均值;最热月平均最高温度为最热月每日最高温度的月平均值,取多年平均值。

6 结语

为了保证电缆及设备正常运行,必须根据敷设环境、敷设方式等对电缆载流进行修正,根据各种校验方法对电缆截面进行校验,通过修正及校验后选得的电缆才能符合现场实际情况,才能运用于实际工程。

参考文献:

[1]中国航空工业规划设计研究院.工民配电设计手册[M].北京:中国电力出版社,2005.

篇6

签订地点:***开发区工地现场

买受人:**有限公司签订时间: 2004 年 9 月 24 日

第一条标的、数量、规格及技术要求:详见附件。合同总价为192.5014 万元,人民币金额(大写):

壹佰玖拾贰万伍仟零壹拾肆元整。如供货过程中数量型号发生变更,货物的单价按让利后总价同比例下浮。

第二条质量标准:所供电缆必须符合国家标准,线径及长度均不得有负公差,需提品出厂合格

证和3C 认证。

第三条出卖人对质量负责的条件及期限:质保期为安装完成验收合格后18 个月。

第四条包装标准、包装物的供应与回收:包装必须确保货物运抵现场的完好无损。电缆盘由出卖

人及时回收,若有丢失买受人概不负责。

第五条随机的必备品、配件、工具数量及供应办法:无。

第六条合理损耗标准及计算方法:无。

第七条标的物所有权自买受人验收合格后时起转移, 但买受人未履行支付价款义务的,标的物

属于出卖人所有。

第八条交(提)货方式、地点:按买受人的要求分批运至工地现场。交货时间为合同签订后10 天。

第九条运输方式及到达站(港)和费用负担:汽车运输,费用由出卖人承担。

第十条检验标准、方法、地点及期限:按电缆国家标准、现行行业标准及出卖人提供的经买受人

确认的样品验收。

第十一条成套设备的安装与调试:无。

第十二条结算方式、时间及地点:合同签订后,货物运至现场,经验收合格后付至货物价款的60%;

安装完成、调试合格、验证文件齐全后付至货物价款的90% ;其余10%作为质量保证金,在质保期满后

14 天内付清(不计利息)。

第十三条担保方式(也可另立担保合同): 无。

第十四条本合同解除的条件:出卖人的供货质量、时间未按合同约定,买受人有权解除合同。

第十五条违约责任:出卖人未按合同约定供货,买受人在权对出卖人进行合同总价1%~5% 的罚款。

买受人未按合同付款,出卖人有权停止供货。

第十六条合同争议的解决方式:本合同在履行过程中发生的争议,由双方当事人协调解决;也可由

当地工商行政管理部门调解;协调或调解不成的,按下列第(一)种方式解决:

(一)提交南京仲裁委员会仲裁;

(二)依法向人民法院起诉。

第十七条本合同自双方签订之日起生效。

第十八条其他约定事项:

采购合同

1、电缆进场后按国家相关标准进行检测,检测费用由出卖人承担。

2、供货数量为暂定量,具体量以买受人在施工过程中的要求为准,最终按实结算。出卖人投标报价

中已包含由此发生的运输费用。

3、货物单价为固定单价,不因任何原因而调整。

4、出卖人提供的电缆是全新的未使用过的。电缆不允许有接头。电缆应持有国家归口管理部门核发

的生产许可证,并有南京市、江宁区等相关政府进网许可证。

5、出卖人应负责指导电缆安装、敷设、试验等技术服务工作。

6、多芯电缆要求分色,其分色按国家标准(黄、绿、红、蓝、黑)双色。

7、电缆的封端应严密。

8、出卖人生产货物时以每号建筑为单位,不可将同种型号规格的电缆合为一根。

9、货物运至现场后,出卖人负责免费将货物卸至买受人指定的地点。

10、招标文件、投标文件、对投标文件的书面澄清等均作为合同附件,是合同不可缺少的一部分。

出卖人买受人鉴(公)证意见:

出卖人(章): 买受人(章):

住所:住所:

法定代表人:法定代表人:

委托人:委托人:

电话:电话:

传真:传真:

开户银行:开户银行:鉴(公)证机关(章)

帐号:帐号:经办人:

邮政编码:邮政编码:年月日

签订时间:签订时间:

采购合同

附件:

使用部位:

1 号建筑

序号 材料名称 型号规格 单位 数量 单价 合价

--------------------------------------------

1 铠装铜芯交联电力电缆YJV22-0.6/1KV-4*120+70 米933 225 209925

2 铠装铜芯交联电力电缆YJV22-0.6/1KV-4*70+35 米605 130 78650

3 铠装铜芯交联电力电缆YJV22-0.6/1KV-4*50+25 米823 92 75716

4 铠装铜芯交联电力电缆YJV22-0.6/1KV-4*25+16 米360 51 18360

5 阻燃电力电缆ZR-YJV -0.6/1KV-4*35+16 米40 70 2800

6 阻燃电力电缆ZR-YJV -0.6/1KV-5*4 米49 20 980

7 阻燃电力电缆ZR-YJV -0.6/1KV-5*2.5 米41 8 328

8 铜芯电力电缆VV-0.6/1KV-4*35+16 米72 65 4680

9 铜芯电力电缆VV-0.6/1KV-4*25+16 米221 50 11050

10 铜芯电力电缆VV-0.6/1KV-5*16 米46 36 1656

11 铜芯电力电缆VV-0.6/1KV-5*10 米147 23 3381

12 铜芯电力电缆VV-0.6/1KV-5*6 米67 20 1340

13 铜芯电力电缆VV-0.6/1KV-5*4 米88 15 1320

14 铜芯电力电缆VV-0.6/1KV-3*4 米29 10 290

15 铜芯电力电缆VV-0.6/1KV-5*2.5 米147 8 1176

16 铜芯电力电缆VV-0.6/1KV-4*2.5 米59 10 590

17 铠装铜芯控制电缆KVV22-22*2.5 米750 27 20250

18 铠装铜芯控制电缆KVV22-26*2.5 米320 31 9920

19 铠装铜芯控制电缆KVV22-38*2.5 米500 49 24500

20 铠装铜芯控制电缆KVV22-2*4 米1910 6 11460

21 阻燃铜芯双绞线ZR-RVS-2*2.5 米9400 2.5 23500

22 阻燃铜芯双绞线ZR-RVS-2*1.5 米22560 1.5 33840

合计 535712

使用部位:2 号建筑

序号 名称 型号规格 单位 数量 单价 合价

--------------------------------------

1 铜芯电力交联电力电缆 YJV-0.6/1KV

4*185+95 米 140 320 44800

4*150+70 米 710 250 177500

4*120+70 米 265 214 56710

4*35+16 米 250 62 15500

4*25+16 米 100 48 4800

采购合同

铜芯铠装交联电力电

2 缆 YJV22-0.6/1KV

YJV22-4*185+95 米 160 330 52800

YJV22-4*150+70 米 180 270 48600

YJV22-4*120+70 米 150 220 33000

YJV22-4*70+35 米 180 130 23400

YJV22-5*16 米 170 43 7310

3 阻燃铜芯电力电缆ZR-YJV-0.6/1KV

4*35+16 米 250 70 17500

4 阻燃铜芯电力电缆 ZR-YJV-0.6/1KV

3*2.5 米 1900 4.6 8740

4*120+70 米 50 230 11500

4*70+35 米 220 123 27060

4*50+25 米 230 86 19780

4*35+16 米 100 70 7000

4*25+16 米 150 50 7500

4*95 米 120 145 17400

4*50 米 250 70 17500

4*25 米 200 45 9000

4*4 米 50 12 600

4*2.5 米 50 10 500

5*16 米 150 36 5400

5*10 米 1200 25 30000

5*6 米 1100 16.6 18260

5*4 米 900 11.5 10350

5*2.5 米 2800 8 22400

5*1.5 米 50 8 400

5*1.0 米 450 6 2700

5 阻燃铜芯屏蔽控制电

缆 WL-KVVP-3*1.0 米 2400

5.7 13680

WL-KVVP-5*1.0 米 1500 7 10500

WL-KVVP-10*1.0 米 400 12 4800

6 阻燃铜芯控制电缆 ZR-KVV-3*1.0 米 2500 2.6 6500

ZR-KVV-5*1.0 米 900 3.5 3150

ZR-KVV-7*1.0 米 400 4.5 1800

ZR-KVV-4*1.0 米 100 4 400

7 阻燃铜芯屏蔽控制电

缆 ZR-KVVP-3*1.0 米 1200

4.8 5760

合计 744600

使用部位: 3号建筑

材料名称型号规格单位数量单价合价

铠装铜芯电力电缆

YJV22-0.6/1KV

4*120+70

米 285 225 64125

铠装铜芯电力电缆 YJV22-0.6/1KV 4*95+50 米 422 185 78070

铠装铜芯电力电缆 YJV22-0.6/1KV 4*25+16 米 153 51 7803

铠装铜芯电力电缆 YJV22-0.6/1KV 5*10 米 251 30 7530

阻燃铜芯电力电缆 ZR-YJV0.6/1KV-4*95+50 米 65 180 11700

第 4 页共 6 页

采购合同

6 阻燃铜芯电力电缆 ZR-YJV0.6/1KV -4*50+25 米 105 86 9030

7 阻燃铜芯电力电缆 ZR-YJV0.6/1KV -4*35+16 米 246 70 17220

8 阻燃铜芯电力电缆 ZR-YJV0.6/1KV -4*25+16 米 115 50 5750

9 阻燃铜芯电力电缆 ZR-YJV0.6/1KV -5*16 米 104 36 3744

10 阻燃铜芯电力电缆 ZR-YJV0.6/1KV -5*10 米 312 25 7800

篇7

中图分类号:U45文献标识码: A

一、前言

我国很多城市电能的供应多采用地下电缆隧道的方式,以便有效缓解搭设高压电杆带来的不便及有碍市容市貌,防止空中架线与高层建筑之间的矛盾。但是电缆隧道施工最大的问题就是渗水,尽管在设计过程中对防水进行了充分考虑,效果依旧不理想。有一半以上的电缆隧道出现渗水,留下了安全隐患。

二、城市电力电缆隧道的必要性

在国外的大型城市的发展中,以地下电缆方式取代传统的架空线路已经成为世界潮流。统计表明,在世界上的一些现代化都市,如柏林、东京、大阪、哥本哈根等,地下输电线路的比例已经超过70%。随着我国城市化的快速发展,城市上部空间留给架空线路的空间也越来越小。城市架空线路已经对城市建设造成了局限和困扰。在普遍使用架空线路的时代,城区供电线路的输送容量还相对不大,建筑物布局可调整空间也比现在更为灵活。但如今城市规划对功能性和美观性的重视程度越来越高,架空线路在应用空间和输送容量方面都已经越来越跟不上社会需要。

因此,从实际输送功率和美观的角度看,采用地下电缆隧道的形式来替代架空线路已经显现出其必要性。从功能上看,采用电缆隧道能够避免出现架空线路对绿化树木生长高度的制约,且不占据城市地面空间,可根据实际需要对输送容量进行调整,提高了供电的可靠性,同时对周围环境的影响也更小,不易受到气候变化的影响。从运行维护的角度看,采用地下电缆隧道,能够更方便的建立供电网络。

我国的很多城市在地下电缆隧道方面也已经做了尝试,但全国范围内大规模的应用还未出现。上海在这个方面的尝试较多也较早,最早在1983年就建成了长度为100米的万体馆电缆隧道,用于敷设2回110KV充油电缆和35KV电缆。还有具代表性的杨高中路隧道、新江湾隧道、路隧道等。2006年完工了总长度达到17000米的世博站电力电缆隧道,并尝试建立放射状的电力电缆隧道网络,这些电力电缆隧道在实用中已经取得了很好的社会效益。

从总体上看,上海所建成的各类电力电缆隧道长度和规模呈现出越来越大的趋势。虽然采用地下电缆隧道具有诸多优势,但电缆隧道的初期建设费用更高,很大程度上受到线路敷设方式的影响,对运行中的故障诊断的技术要求也更高等等相关问题,这些都是在城市电力电缆隧道应用时值得研究的问题。

三、电缆隧道渗水原因分析

许多隧道涌水量偏大的主要原因如下:

1、隧道沿线地层波浪起伏,透水含水层厚度大,有的地方直接出露地表,因此部分地段透水层不可避免切入隧道埋设区,有的地段因断层及裂隙发育,隔水层与透水层直接连通,隧道实际上置于丰水区。而这些区段虽分别进行防水处理,采用地表注浆、壁后注浆。但因目前施工技术限制,考虑地下水体的安全卫生及经济条件,不便进行化学注浆等特殊防水处理,致使个别地段仍有渗水。

2、隧道沿线的施工措施井、出线井、安全出口穿过含水层,这些井壁支护将含水层与隔水层连通。使隧道的地下水与含水层贯通,虽然施工时采用了高压旋喷帷幕防水,但若井底封闭不好和帷幕产生缺陷,局部地段也会产生漏水。

3、隧道变形缝、施工缝漏浆,止水条(带)安装不到位,混凝土结构收缩,隧道建成后变形缝、施工缝漏水,混凝土结构裂缝漏水,以及埋件孔隙渗水及疏水管涌水等。

四、电缆隧道防水措施

1、设计方面:

(1)电缆隧道中伸缩缝的间距应适宜,过长的施工缝会导致混凝土收缩裂缝加大。当然过短的施工缝会增加隧道的潜在渗水点,同时加强隧道纵向钢筋的配置,混凝土强度不要过高,以减少水化热。

(2)伸缩缝的节点处理

伸缩缝止水条(带)的迎水面不应暴露于土壤中,应设置高弹性防水材料,止水条(带)内侧应作嵌缝处理,防止止水条(带)暴露老化。

(3)电缆隧道的纵向高程与坡度设置应考虑具疏排水功能,每个区段的最低端应设置集中坑井,并配置电力抽水设备,必要时排入附近市政沟井。

2、施工方面

(1)每个伸缩缝区段的隧道不宜过快连续施工,以便混凝土有足够的时间完成自由伸缩。

(2)伸缩缝应选用优质、高强、抗老化、高弹性止水条(带),止水条(带)现场敷设前应采用焊机可靠连接成环形。

(3)地下工程施工难度较大,其中许多属隐蔽工程,不方便验收检查,这需要施工方加强责任意识并恪守职业道德,把握质量关。

3、以堵水为主

当前我国地下隧道工程的普通防水措施主要采用堵、疏、排相结合的防排措施,衬堵水层采用喷射混凝土、格栅混凝土、锚网喷射混凝土支护,使用数年后仍有透水,堵水效果不理想,这种混合型防水技术对于野外隧道和自流排水隧道尚能满足要求。城市地下水不允许大量抽排,以减少地层变形和塌陷,保持地表的稳定,保证建筑物的安全。城市地下隧道防水应以堵水方案为主导思想,拒水于工程之外,疏排只能作为堵水缺陷和防渗透水的补充。应使地下隧道形成全封闭式水密型管道防水效应

4、以渗流原理为主

大家知道,地下水的运动非常复杂,目前还不能准确掌握其运动规律和计算方法。因此,在工程结构计算中地下水的作用通常被简化为静水压力作用,这对于埋置较浅和在相对透水层中的隧道比较适用,但对于埋置较深和在相对隔水层中以堵水为主的隧道,地下水运动主要表现为对防水结构的渗透作用,应按渗透场地下层流流态的达西定律计算。目前国内外许多学者将渗透场和应力场结合起来,采用有限元法研究地下渗流的理论和计算问题,对达西定律计算结果进行互证,是地下渗流运动研究发展方向。

五、结束语

综上所述,城市电缆隧道是城市电力系统运行的大动脉,其安全运行关系到了城市的发展。因此,要重点对电缆隧道的防水高度重视,大力度进行渗水整治,保证电缆系统的安全稳定运行。

参考文献

篇8

中图分类号:TM726 文献标识码:A 文章编号:1006-8937(2013)35-0031-02

1 电力系统规划设计的基本内容

整个电力系统的规划设计主要涉及中期电力系统发展规划和长期电力系统发展规划两个方面,这项工作对于单项电力工程设计规划具有十分重要的指导意义,也是电力工程设计的主要依据。单项电力工程规划设计过程中的电力系统规划设计主要包括下述几点内容:分析工程所处地区电力负荷特性;分析附近地区电网电源规划设计情况;从电源规划和负荷预测结果出发,分析电量与电力平衡;设计电力工程电网系统接入的优化方案;接入方案的电气计算;对计算结果进行分析,比较方案的经济性。

第一,分析和预测电力负荷情况。对电力工程计划建设区域的电力负荷情况进行分析和预测是电力系统设计规划工作的基础。在设计规划电力工程前,需要预测其中短期负荷情况,在总结分析历年电力负荷数据的基础上,充分考虑社会经济发展规划,准确预测该地区中短期电力负荷情况,另一方面,对在建的和已有的电力系统工程负荷情况进行系统分析,从而最终确定其对于电力供应网络所产生的影响。

第二,电源规划情况和出力。电力系统规划设计的关键在于规划电源分布,在附近地区电网电源规划设计的基础上,形成详细全面的调查分析报告,这也是电力系统规划设计的核心内容,有助于单项电力工程的开展建设。电源通常包括统调电源和地方电源两种,其中,统调电源主要指的是电网所调度管理的各个大型发电站,而地方电源是指企业、集体和个人自备的发电机组。

第三,电力电量平衡。在电力系统规划设计过程中,首先需要考虑的问题就是电力电量平衡,在前期评估分析电源出力和电力负荷的基础上,对电力系统每年的平均负荷情况进行准确计算,将各种电源出力计算结果相结合,对电力电量盈亏情况进行计算,从而获得电力系统所需的变电数据和发电装置容量资料。

第四,接入系统方案。以电网发展规划、电源负荷分布以及现有电力网络基本特征等情况为基础,对电网项目工程在整个电力系统中的基本作用和地位进行分析,根据政府相关部门和电网规划的审批意见,设计出项目接入电网系统的基本方案,在电网新技术、节能降耗、综合考虑节约用地、远近结合等基本原则指导下,对项目接入系统方案的合理性与可行性进行论述分析。

第五,电气计算公式。①无论变压器进行多少次油过滤处理,均应保证过滤质量符合标准,计量单位设置为t,其计算方法为:油过滤数量(t)= (l+损耗率)×设备油重(t)。②带形母线计算方法为:根据电力系统设计方案,对单项延长米门象线的预留长度进行计算。③根据电力系统规划设计方案,对基础槽钢角钢的安装长度进行准确计算,若为单个柜盘,则L=2(A+B);若为多个相连接的同规格柜盘,则L=nZA+2B,其中,n表示柜或屏的数量,B表示的是柜或屏的厚度;A表示的是柜或屏的宽度,L表示的是所需长度。④盘柜配线长度计算方法为:L=配线回路数×盘柜板面半周长。⑤电缆安装工程量计算方法为:L=■(各种预留长度+垂直长度+水平长度)×(1+2.5%电缆曲折折弯余系数)。⑥电缆保护管计算方法:穿过建筑物外墙的电缆保护管应为基础外缘加1 m;垂直敷设电缆保护管应为穿地面与管口之间距离加2 m;过排水沟电缆保护管应为沟壁外缘加l m;横穿公路电缆保护管应为路基的宽度加4 m。⑦电力电缆中间头数量计算方法:N=L/l-1,其中,1为每段电缆的平均长度,L为电缆的设计长度,n为中间头的数量。⑧避雷线和接地母线敷设工程量的计算方法:L=■(施工图设计垂直长度+水平长度)×(1+3.9%附加长度)。

第六,方案比较分析。对各种项目接入方案效果进行对比分析,以各类电气的计算结果为基础,从经济性、发展适应性、实施性和可靠性等几个方面出发,对各个方面进行综合比较,从而准确评估其运行和设计效果,并选择最佳的电力系统规划设计方案。

第七,系统专业提资。利用可续的规划设计系统,通过准确可靠的电气系统计算,最终选择出最为有效且合理的项目接入系统方案,从而对电力项目工程的投产时间和工程建设规模进行最终确定,并为电力系统其他工程的设计提供专业有效的数据支持和设计依据。

2 电力系统规划设计经验总结

2.1 准备阶段

在电力系统规划设计工作开始前,相关设计人员应全面了解附近区域的电力系统建设和使用情况,对大网区的基本特征和情况进行深入分析,同时,对相关系统资料进行手机整理和分析。了解现有统调电源、线路和变电站相关资料,并将其制作为数据表录入数据库,从而建立现有电网网架的基础数据系统。另一方面,还应对最新的电力主网规划建设情况进行收集整理,从而掌握附近区域电网发展的基本特点和方向,最终建设成为各规划水平电力网架的基础数据系统。

2.2 开展工作

电力系统规划设计人员应及时了解电力系统的发展变化情况,对数据库信息进行及时的更新出来,全面了解不同地区的电力负荷特征和情况,系统收集各个地区电力线路、变电站和电厂的运行资料和分布情况,从而提高电力系统规划设计的合理性与有效性。对于新建设的电力工程项目,需要以当地电力负荷情况分析为基础,收集整个附近地区和当地的电力系统数据资料,准确计算各个电力系统的电气情况,从而为电力系统工程的设计提供数据基础。

3 总 结

综上所述,随着电力系统规划设计作用和影响的逐步扩大,电力工程设计对于电力系统规划设计也提出了更高的要求,因此,对于电力系统规划设计单位和人员来说,应不断创新和改进技术,使其更加符合社会发展的新要求、新形势,从而推进我国电力行业的进一步发展,促进社会经济的健康稳定发展。

参考文献:

[1] 张云飞.电力系统规划设计在电力工程设计中的应用[J].中国高新技术企业,2011,(7).

[2] 刘东刚.电力工程设计中电力系统规划设计的应用[J].科技传播,2013,1(5):38-40.

[3] 丁涛.电力系统规划设计在电力工程设计中的应用[J].黑龙江科技信息,2012,(5):80-83.

篇9

1 前言

随着电力系统朝着高电压、大容量、高密度的方向发展,交联聚乙烯(XLPE)电缆在城市电网建设中得到了越来越广泛的应用。但XLPE在铺设及使用过程中会受到外力的破坏形成机械损伤从而影响电缆的正常使用;一方面,电缆敷设的环境较为恶劣,敷设过程中要受到拉伸、弯曲、挤压等原因,造成护套和绝缘层的损伤;另外一方面,敷设完毕的电缆也可能受到土建施工、车辆震动等外力影响,也会造成电缆护套和绝缘破损现象。有些机械损伤可能并不严重,当时没有太大影响,但在今后的运行过程中会慢慢暴露出来问题,并发展成故障,并有可能酿成停电事故。因此,如果能在故障暴露前,通过检修等手段及时发现并解决潜在问题,可以避免故障的发生。从而保证其供电可靠性,有效降低配电网的故障率。

为了模拟现场的电缆机械损伤,并且能通过电缆振荡波局放测试系统(OWTS)进行有效的检测和定位,本文基于一套自主开发的OWTS装备和一组通过机械损伤模拟现场缺陷的试验电缆条件下,对一卷400米的XLPE电缆进行故障检测和定位研究工作,介绍了一套完整的故障电缆检测和计算方案。

2 穿刺类型损伤试验

为了模拟现场的电缆缺陷,本试验配备了10kV的交联聚乙烯(XLPE)电缆一卷,总长度400米。电缆两端压制冷缩终端接头,制作终端接头过程中不能留有尖角、毛刺、碎屑等切割不整齐的痕迹,主绝缘的相关接缝处用砂纸打磨光滑,否则终端接头处在高压下将产生电晕放电,干扰试验信号的有效采集,加工完成的试验电缆如图1所示。

在电缆标记有305米的地方,采用长度20mm,直径2mm的钉子将其穿透外护套钉入主绝缘,如图2所示。本试验过程中,为了模拟缺陷在不同严重程度下的测试效果,将钉子钉入的深度由浅到深调整,并分别进行试验和处理试验结果。

本试验使用完全自主研发的OWTS系统,将振荡波发生器的专用无局放转接电缆与试验电缆对接后,根据实验电缆的设计额定电压U0值,测试电压分别在0.5U0、0.7U0、0.9U0、1.0U0、1.2U0、1.4U0、1.5U0、1.6U0、1.7U0下进行测试(本试验使用的电缆额定有效电压为U0=8.7kV),在钉子扎入深度为约5mm、10mm和15mm时未发现放电现象,试验采集到的数据如表1所示。

图1 电缆终端接头处理效果图 图2穿刺机械损伤效果

表1 机械损伤深度5-15mm下的OWTS测试结果

序号

钉子深度(mm)

电压倍数U0

电压峰值(kV)

测试结果

1

5

0.5~1.7

6.15~20.90

无局放

2

10

0.5~1.7

6.15~20.90

无局放

3

15

0.5~1.7

6.15~20.90

无局放

结合电缆的设计参数分析可知,该段电缆的主绝缘厚道约为20mm,将钉子由5mm到10mm的不同深度钉入后,用OWTS系统进行局放测试,电压由0.5倍的U0加到1.7倍的U0均无局部放电产生。因此:

(1)主绝缘还有5mm,尚未被完全破坏;外屏蔽层只被定穿2mm左右的,机械破坏的程度不足以引起电缆产生局部放电缺陷。

(2)振荡波局放测试系统产生的电压幅值可以达到1.7倍的U0,但是其幅值成指数衰减;整个加压振荡衰减的过程只持续0.1~0.5秒左右,其能量较小,在短期内并不会暴露其缺陷。

3 屏蔽断裂损伤试验

结合现场机械损伤一般会伴随外护套及屏蔽层损伤,有些甚至损伤半导电层的情况。对现有的电缆故障进行改进。在原来的钉子拔出,并将电缆的外护套、屏蔽层、半导电层都去除,如图3所示。

同样用电缆振荡波局放测试系统进行测试。测试在电缆的标有400米的一端进行,测试的电压还是从0.5U0逐渐加到1.7U0分别进行测试。

图3 屏蔽层断裂的机械损伤效果

试验结果及分析:

序号

电压倍数U0

电压峰值(kV)

测试结果

图示

1

0.5

6.15

无明显局放

/

2

0.7

8.61

无明显局放

图.4

3

0.9

11.07

有局放,最大值352pC

图.5

4

1.0

12.30

放电次数明显增加,最大值385pC

图.6

在电缆振荡波局放测试系统的测距过程中,从0.9倍U0开始,出现局部放电,随着电压的升高,局放明显增加,并且在1.4倍U0时电缆的缺陷开始击穿,产生爆鸣声,同时伴随有电弧光放出。

图4 加压0.7U0,无明显局放

图5 加压0.9U0,出现局放

图6 加压1.0U0,局放此次明显增加

对存在局部放电的几次测试数据进行定位分析,分析方法采用的是基于XLPE电缆的时域反射的原理。对所有的放电定位结果数据进行统计分析,放电位置发生在95.76米左右,与实际的为95米(测试端在电缆标记400米处测量,故障在电缆标记305米处)非常接近。详见图7、图8。

图7 某次局放的定位分析

图8 所有局放定位结果统计

4 结束语

通过对10kV交联聚乙烯(XLPE)的穿刺和断裂两种类型的机械损伤试验,模拟了现场机械损伤在OWTS系统下的检测效果。试验证明,可以采用电缆振荡波系统对类似的机械损伤进行有效的检测并定位,定位精度能够达到1m以内,另外,OWTS系统对穿刺类损伤的检测灵敏度较差,需要结合耐压试验进行检测。本文提出的基于OWTS的电缆机械损伤故障试验方法,能够给电力电缆的检修提供了实验依据和参考,可以有效地提高电缆检修效率,从而为电网的可靠运行提供保障。

篇10

随着中国电力事业的不断发展,无论在电源建设、电网建设和用电客户的增长上,都向前迈了一大步。用电检查作为用电管理工作的重要组成部分,属于电网经营企业依法行使对用电客户受电装置进行检查的企业行为,是国家电力法律赋予电网经营企业的权利和义务。近些年来,大部分地方用电容量和客户量比以前增长一倍还要多,而用电检查人员数量基本没有增加,在人员数量配备跟不上发展需要的现实条件下,提高用电检查人员的素质就显得迫在眉睫。为了大力实施国网公司“人才强企”战略,加快培养高素质技能人才队伍,提高国网用电检查人员职业技能水平,由国家电网公司策划,吴琦同志担任主编的生产技术培训专用教材——《用电检查》,目前已在国网内部全面推广开来。为公正客观评价用电检查人员的职业能力,改进培训考核的方式及效果,帮助受训人员把握培训教材要点,根据国网公司集团化运作、统一人才培养的工作要求,开发一套与《用电检查》相配套的能力考核标准题库,对用电检查人员建立健全培训、考核机制有着十分重要的意义。

一、电力系统用电检查背景

1.用电检查概念

用电检查就是电力企业为了保障正常的供用电秩序和公共安全而从事的检查、监督、指导、帮助用户进行安全、经济、合理用电的行为。

2.用电检查现状

目前用电检查主要呈现以下特性:

(1)电力行政管理部门对电力安全管理缺失,用电检查管理职能基本消失。由于客户用电安全长期缺乏监督管理,客户用电安全形势恶化严重,导致客户用电设备故障比例逐年增加,已经影响到电网的安全稳定运行。

(2)社会舆论导向片面强调供电企业服务社会的义务,却忽略了电网安全需要供电企业和用电客户共同维护的事实,影响了供电企业维护电网安全和用电秩序,导致电力设施破坏和窃电事件逐渐增多。

(3)用电检查人员在为客户服务的过程中,提出的安全用电合理要求与客户自身经济利益以及电力优质服务之间的矛盾越来越多。这在一定程度上增加了用电检查协调工作的难度,使电力企业陷入两难境地。如果满足客户要求,则增加了事故发生的风险;如果不满足客户要求而以安全为先对客户施加压力,则带来了客户对电力优质服务工作的不满,影响供电服务形象。

3.做好用电检查对供电企业的要求

目前,违章用电、窃电方法繁多、并呈高技术化倾向,而用电检查工作人员的技术水平及相关检测设备难以满足要求,致使一些隐蔽性的、高技术性的违章用电、窃电行为难以被查到,这就需要提高用电检查人员的业务能力和服务水平。在日常的用电检查工作中,部分用电检查人员往往只注重检查结果而忽略检查程序,致使客户怀疑检查的合法性,反告供电企业侵权。用电检查人员在开展用电检查过程中,对用户线路存在安全隐患的情况,应及时帮助用户提出整改措施,提高服务广大用户的能力。

供电企业用电检查人员应具备如下条件:作风正派,办事公道,廉洁奉公。已经取得相应的用电检查资格。聘为一级用电检查员者,应具有一级用电检查资格;聘为二级用电检查员者,应具有二级及以上用电检查资格;聘为三级用电检查员者,应具有三级及以上用电检查资格。经过法律知识培训,熟悉与供用电业务有关的法律、法规、方针、政策、技术标准以及供用电管理规章制度。

二、用电检查题库开发的目标与基本原则

从当前用电检查的现状可以看出,提高供电企业用电检查人员综合素质,对提高供电检查工作的质量起着至关重要的作用。随着《用电检查》教材的推广,针对用电检查人员对自身职业能力水平的考核也成为目前给予解决的重要问题。怎样能够公正客观评价用电检查人员的职业能力,改进培训考核的方式及效果,帮助受训人员把握培训教材要点?为了解决上述问题,本课题小组根据国网公司集团化运作、统一人才培养的工作要点,针对《用电检查》培训教材开发了一套与之相配套的能力考核标准题库。根据这套标准题库对用电检查人员进行全面考核,设立考核标准,建立健全培训、考核机制,争取做到通过制定标准的考核体制来有效的考核,评价用电检查人员从而提高用电检查人员的整体职业素养。

1.用电检查题库开发的目标

建立覆盖用电检查应具备的基础、专业基础、专业和职业素养、相关法规和条例等知识;涵盖用电检查工作中应具备的基本、专业和相关操作技能;以培训教材为依据、以培训模块为基础的考核题库。题量和难度将满足对用电检查人员不同等级员工进行能力评价和各类培训项目考核的需要。对各网省公司考核题库的开发现状进行调研的基础上,开展创新型的研究。命题思维方式实现由传统经验型向现代技术规范型的转变。

2.制定统一的考核标准

在制定题库开发大纲时,考虑到用电检查人员的职责有所不同,针对不同职责的用电检查人员进行不同考点的考核,因此对其按配电与营销两部分制定考核模块与考核标准。

为了考核尽可能的全面,因此,用电检查题库应做到涵盖面尽可能广,因此,用电检查题库的开发主要包含以下题目类型:实操题、识图题、计算题、综合分析、案例题汇总、以及理论知识五部分。

3.考核题库开发的基本原则

在确定考核项目时遵循以下基本原则:

一是保证所选考核项目的典型性与代表行。做到全面反映用电检查标准的各个等级的技能水平。二是保证所选考核项目的涵盖面尽可能广。在命题时,尽可能的将用电检查的主要内容全部涵盖其中。三是坚持统一性与针对性想结合。考核项目的开发上,对基本素质、基本技能要规定统一的内容和要求。并针对不同类型用电检查人员在考核内容上侧重点有所区别。这样既统一了基本考核的标准,又适应了不同类型用电检查人员的职能所在。

三、考核模块的设定

用电检查题库从考核方式上主要分为机考题与实际操作题两部分。机考题主要考核用电检查人员对用电检查基本概念,基本技能机型考核。实际操作题,则对用电检查人员实际动手能力、解决问题的主观能动性等方面进行考核。用电检查题库从考核题目类型上分为单选,多选,识图、判断、计算、案例分析以及技能操作这几种类型。

1.配电部分考核模块设置

配电部分考核模块主要内容包括:架空绝缘配电线路施工及验收规程;10kV及以下架空配电线路设计技术规程;低压电气设备;低压电气设备的选择;低压配电设计知识;低压成套配电装置知识;配电变压器;高压断路器;互感器;隔离开关;高压熔断器;避雷器;电力电容器;接地装置;配电线路的基本知识;配电线路常用材料及选择;配电线路常用设备及选择;电杆基础;电杆组装和立杆;拉线及其安装;导线连接;导线架设;弧垂观测;接地装置的安装;接户线、进户线安装;无功补偿装置的容量选择及电气元件的配置无功补偿装置安装与调试;无功补偿后用户负荷的确定;10kV配电所主接线方式;导线直接连接方法;导线接续管连接方法;通用电工工具的使用;常用安装工具的使用;灭火器的使用;电气安全工器具的使用;万用表、钳型电流表的使用;绝缘电阻表的使用;接地电阻测试仪的使用;单臂、双臂电桥的使用;登高工具的使用;脚扣、登高板登杆操作方法和步骤;工程常用十个绳扣的打法;拉线制作、安装;接户线安装;架空导线紧线、放线操作;导线在绝缘子上的绑扎、线夹上的安装操作;服务程序和行为规范;营销服务礼仪;动力箱(盘)安装;低压成套装置安装;无功补偿装置安装;接地装置安装;剩余电流动作保护装置的选用、安装;剩余电流动作保护器的运行和维护及调试;低压设备运行、维护;低压设备检修、更换;低压设备常见故障处理;低压电气控制原理图;低压电气接线图;照明施工图的识读;动力供电系统图;高、低压配电所系统图;配电线路路径图;配电线路杆型图;杆塔组装图和施工图;配电线路地形图;电力用户功率因数要求;提高功率因数的方法;继电保护及自动装置在配电网中的任务和作用;继电保护及自动装置的基本原理;主保护、后备保护与辅助保护;电力系统对继电保护的基本要求;10kV配电网中线路保护配置;电力变压器保护配置;高压电动机的继电保护;低压开关电器安装;低压电器选择;低压供电设备验收;导线的选择;电动机直接启动控制电路安装;电动机几种较复杂控制电路安装;电动机无功补偿及补偿容量计算;10kV配电变压器及台架安装;10kV配电设备安装;10kV配电设备常规电气试验项目及方法;编制配电设备安装方案、验收方案;10kV配电设备巡视检查项目及技术要求;10kV配电设备运行维护及检修;10kV配电设备常见故障及处理;10kV开关站的运行维护;10kV箱式变电站的运行维护;农网配电设备预防性试验标准及试验方法;室内照明、动力线路安装;照明器具的选用和安装;照明、动路回路验收及技术规范;电杆基坑开挖要求;电杆组装工艺要求;起立电杆工器具的选用;起立电杆操作方法;杆塔组立施工方案的编写;10kV配电线路施工方案的编写;10kV配电线路竣工验收;10kV配电线路导线架设;10kV绝缘配电线路导线架设;10kV配电线路导线拆除;配电室、配电箱、箱式变电站电气接线;配电线路巡视检查;配电线路运行维护及故障处理;配电线路缺陷管理;配电线路事故抢修;经纬仪的使用;经纬仪在配电线路测量中的应用;电力电缆基本知识;电力电缆的敷设施工;10kv电缆头的制作;电力电缆线路运行维护。

2.营销部分考核模块设置

篇11

中图分类号:F42 文献标识码:A

供电企业是主要从事供电服务的企业,通过为客户提供价格合理、质量稳定的供电服务,来获取利润的企业。在供电企业运营中,由于电能计量装置误差、收费环节误差、监管不利等因素造成电能损失具有普遍性和典型性。

一、供电企业线损管理问题造成的电力损耗

供电企业解决管理线损的方法首先要从设备开始,定期在春秋两季树木生长繁茂的季节进行清除线路障碍工作,对绝缘子进行擦拭和维护,减少供电设施短路跳闸,带来的不必要的放电损耗。如果线路故障导致某条线路停止工作,就有可能被另外设备代替工作。于是负荷就随着增大,消耗也随着增加。定期做好维护避免损耗发生。

供电企业的线损管理中,人为因素也占有相当大的比例。由于管理不当窃电问题常有发生,尤其是用电量大的用户最容易窃电;由于抄表人员错抄、漏抄、估抄等人为工作失误造成的供电量流失;解决人为线损主要办法是严肃用电纪律,严打窃电行为。加强工作规范,大量采用电能量采集系统进行远程抄表,这样就能有效克服了传统的手工抄表,抄表员不到现场、估抄等问题。已经完成远程抄表的抄表终端系统与计算机连接,可实现数据的快速导入和导出,省去以往由收费员手工录入表码这一步,避免二次录入的差错,大大提高工作效率。同时,系统与SG186营销管理系统接口可快速计算客户电量、电费,并对客户电量异常发出报警,提示抄表员进行现场重新复核,减少抄表差错率。该系统还能实现客户电表信息、电价信息、地址信息、联系信息、用电信息、欠费信息等的查询。从技术上直接解决了漏抄、错抄、估抄等不良行为。

电能计量的误差是产生于电能计量装置综合误差。为了避免误差的产生需要选择高精度、稳定性好的多功能电能表。由于电子技术的发展,现在多功能电子表已日趋完善,其误差较为稳定,且基本呈线性,具有四种电能计量和脉冲输出、失压记录、追补电量等辅助功能,且过载能力强、功耗小。使用电子式电能表,在控制电量损耗的同时由于它精确程度高,也保证了用户的利益。

二、供电企业设备管理导致的线损问题

供电设备主要由线路、变压器、低压线路、电动机、绝缘子、电能表等为供电服务的设施构成。

由于资金问题,和历史遗留等问题,导致电网规划与布局不合理,变压器与其所带负荷不匹配,输配电变压器容量选择不当,高耗能配电变压器不能及时更换,变压器运行方式不科学等原因,造成的迂回供电、近电远送、变压器负荷运行、空载、轻载等情况,进而造成电能损耗增加。

解决布局不合理问题主要是科学制订电网规划,合理配置输变电设备,经过技术经济比较优选设计方案,确保电网建设施工质量。合理选择变压器及输电线路,禁止淘汰型高耗能输变电设备进入电网,加强电网和用户无功补偿设备的配置,城乡公用变压器宜按照靠近负荷中心、小容量、密布点、短半径的要求进行设置。

导线截面过大过小引起的线路轻载、空载或超负荷运行以及电力设备、线路老化引起的绝缘等级降低、阻抗增大、介质损耗、瓷瓶或瓷套泄漏增大等问题都容易导致线损增加。

及时做好供电线路维护工作。做好大型用电单位的增容工作。定期进行夜间巡查,检查绝缘子和导线接头有没有打火现象产生。定期清理绝缘子上面的污垢,避免由于接触不良导致不必要的放电,损耗电量。

电动机的绕组,以铜或者铝材料为导体时,当电流通过情况下,对电流呈现的特有阻力。电能在电力网传输中,必须克服导体的电阻。电动机需要建立并维持旋转磁场,才能正常运转,带动机械负荷作功。变压器需要建立并维持交变磁场,才能起到升降压和输送电能的作用。在交流电路系统中,电流通过电气设备,电气设备消耗系统的无功功率,建立并维持磁场的过程,即是电磁转换过程。在这电磁转换过程中,电气设备的铁芯中产生磁滞和涡流,使电气设备的铁芯温度升高和发热,从而产生电能损耗。因这种损耗是交流电在电气设备铁芯中建立和维持磁场作用而产生的,这种损耗与通过电气设备的电流大小无关,从而产生了电能损耗,这种损耗比较固定。不容易降低。

变压器在工作中应该尽量避免三相电源的电压不对称。三相不平衡时,使变压器处于不对称的运行状态,导致变压器损耗加大的同时严重消耗电量。使变压器零序电流过大,局部金属件温度升高,甚至可以烧毁变压器。在无功耗电的状态下,造成直接的经济损失。为了达到三相负载的对称,应该把三组单相接户线应由同一电杆上引下,并且保持三组单相的接户线负载应尽可能保持平衡。在日常维护工作中定期测量三组接户线的负载,检查三相负载是否平衡,不平衡时应该立刻进行调整。减少单相接户线的总长度,一般不得超过20米,单相负载电流超过10A时必须直接从三相四线制线路上引下,如距三相四线制线路较远,应重新架设三相四线制线路,来保证三相平衡。

增加导线截面积及每相的分裂导线数,或采用耐高温线材。最近耐高温线材技术的进步,为减轻中短距离输电线的热稳定极限的限制提供了一条有效途径。采用耐高温线材的输电线传输的电流是普通铝包钢增强型导线的2到3倍,而它的截面直径与普通导线相同,不会增加杆塔等支撑结构的负担。在许多情况下,由于电压约束、稳定性约束和系统运行约束的限制,输电线路的运行容量远低于线路的热稳定极限。许多技术即针对如何提高输电容量的利用程度而被发明出来。当发生并联支路潮流或环路潮流问题时,调相器常被用来消除支路的热稳定限制。串联电容补偿是另一种远距离高压交流输电线路常用的提高输电容量的方法。现在人们利用大功率电力电子技术开发了一系列设备,统称为柔流输电设备,它可以使人们更好地利用输电线、电缆和变压器等相关设备的容量。达到节能降耗的目的。

三、供电企业线损计算方法

输出线路损耗的计算公式:P=I2R P--损失功率,W;I--负荷电流,A;R--导线电阻,Ω。

三相电力线路损耗计算公式:P=PA十PB十PC=3I2R

电缆线路的电能损耗由导体电阻损耗、介质损耗、铅包损耗、钢铠损耗,组成。一般情况下介质损耗约为导体电阻损耗的1%-3%,铅包损耗约为1.5%,钢铠损耗在三芯电缆中,如导线截面不大于185mm2,可忽略不计。电力电缆的电阻损耗,一般根据产品目录提供的交流电阻数据进行电能损耗的计算,在代表日电力电缆的损耗为W=3r0l×24×10-3(kWoh);r0-电力电缆线路每相导体单位长度的电阻值,Ω/km;1-电力电缆线路长度,km。

电网中功率消耗和运行电压的平方成反比,在输送相同功率时适当提高运行电压,即可以确保电压质量,也能降低损耗。在降低消耗工作中可以通过提高供电设备的功率因数,来减少无功电流的分量。从而改变公用变压器的功率因数,来给正在运行中的配电变压器进行合理的无功补偿,提高公用变压器的功率因数。平衡变压器运行的数量,保证变压器以最小功率运行。避免超负荷运行。

线损的计算方法还有均平方根电流法和平均电流法。均方根电流法的物理依据是线路中流过的均方根电流所产生的电能损耗,相当于实际负荷在同一时期内所消耗的电能。它的计算公式应用均方根电流法计算,由于配电变压器的额定容量不能体现其实际用电量情况,因此对于没有实测负荷记录的配电变压器,用均方根电流核与变压器额定容量成正比的关系来计算一般不是完全符合实际负荷情况的。只可以借鉴作为线损推理的辅助数值。各分支线和各线段的均方根电流根据各负荷的均方根电流代数相加减而得到,而在一般情况下,实际系统各个负荷点的负荷曲线形状和功率因数都不相同,因此用负荷的均方根电流直接代数相加减来得到各分支线和各线段的均方根电流不尽合理。这是产生误差的主要原因。

总结

电能作为普遍使用的能源,在生产过程中,线路传输方式里,经过转化和应用出现了大量损耗,有效降低损耗利国利民,控制线损、降低线损、实现电网经济运行是电力企业现代化管理的核心内容,也是电力企业生存和发展的必要条件。

参考文献

[1]周云丹.县级供电企业线损管理分析[J].中国科技信息.2005.

[2]陈丽君.关于提高线损管理水平的探讨[J].农村电工.2005年.

[3]宋成.浅析县级供电企业的线损管理[J].电力学报.2006.

[4]宋德庆.孙凤林.提高供电企业经济效益的有效途径[J].电器开关,2005,4.

篇12

中图分类号:TM63 文献标识码:A

1. 监理方案编制依据

1.1 本工程监理细则

1.2 业主与承建供货等单位签订的相关合同及文件(设计、施工、安装、调试、设备制造等单位)。

1.3 国家及行业颁发的现行施工及验收规范、质量评验标准、设计技术规程、规范等。

1.4《电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收范》GB50148- 92。

1.5 《电气装置安装工程电气设备交接试验标准》GB50150-2006。

1.6 《电气装置安装工程质量检验及评定规程》DL/T5161.1~5161.17。

1.7 《防止电力生产重大事故的二十五项重点要求》国家电力公司。

1.8 设备安装作业技术措施及设备厂家资料等。

1.9 本工程设备厂家试验报告。

2. 施工阶段安全监理

2.1 施工组织设计中的安全技术措施或者专项施工方案:

2.1.1 审核施工组织设计中安全技术措施的编写、审批:①安全技术措施应由施工企业工程技术人员编写;②安全技术措施应由施工企业技术、质量、安全、工会、设备等有关部门进行联合会审;③安全技术措施应由具有法人资格的施工企业技术负责人批准;④安全技术措施应由施工企业报监理单位审批认可;⑤安全技术措施变更或修改时,应按原程序由原编制审批人员批准。

2.1.2 审核施工组织设计中安全技术措施或专项施工方案是否符合工程建设强制性标准:①土方工程:a.地上障碍物的防护措施是否齐全完整;b. 地下隐蔽物的保护措施是否齐全完整;c. 相临建筑物的保护措施是否齐全完整;d. 土方开挖时的施工组织及施工机械的安全生产措施是否齐全完整。②模板施工:a.模板结构设计计算书的荷载取值是否符合工程实际,计算方法是否正确;b.模板设计应包过支撑系统自身及支撑模板的楼、地面承受能力的强度等;c.模板设计图包括结构构件大样及支撑系统体系,连接件等的设计是否安全合理,图纸是否齐全;d.模板设计中安全措施是否周全。③临时用电:a.电源的进线、总配电箱的装设位置和线路走向是否合理;b.负荷计算是否正确完整;c. 选择的导线截面和电气设备的类型规格是否正确;d.电气平面图、接线系统图是否正确完整;e.是否实行“一机一闸”制,是否满足分级分段漏电保护。

3. 电气安装监理

3.1 变压器

3.1.1 准备阶段:①变压器安装、试验作业指导书已报审;②施工机械(含真空泵、高真空滤油机)、试验仪器、仪表已选择并报审;③安装、试验人员组织已报审;④基础土建、安装间已办理中间交接手续;基础水平误差

3.1.2 安装阶段①附件安装:a.附件开箱、作好检查及填写开箱记录;b.从人孔、升高座底孔对器身作检查;器身检查时不能碰应力锥,否则局放试验可能不合格。c.散热器汇油管检查应干净、无污物。d.对用过的密封圈不得使用,应更换使用新的密封圈,且按产品技术的要求涂以密封胶。②抽真空及抽真空注油a.抽真空是大型变压器安装的重要工艺,所以必须特别重视,例如500kV 变压器绝缘的含水量在0.5%左右,电力设备预防性试验规程规定在常温20℃时,对应绝缘0.5%含水量的真空残压约为13Pa,而变压器制造厂商的安装说明书一般都规定:变压器现场安装应达到真空残压为67- 133Pa,为严格变压器绝缘的水分管理,防止运输和安装过程中的任何受潮所带来的不良后果。b.机械设备选择:高真空滤油机一台,其容量600L/h,能滤掉0.5μm 的微粒,能将油中水分降低到不高于10PPm,真空度达6TORR。大容量真空泵一台,容量480m3/h,能把油箱中抽至残压小于10Pa。c.抽真空范围的确定:由产品技术条件所决定,具体参照变压器出厂说明书。比如:冷却器等需用蝶阀关闭。

3.2 电缆工程

3.2.1 核对电缆型号、规格:电压等级(如35kV 26/35 21/3510kV 8.7/10 6/10)阻燃型(ZR)铠装、屏蔽、铜芯、截面、芯数等);

3.2.2 电缆护管:管内径应不小于电缆外径的1.5 倍,2 根电缆同穿一根保护管时,2 根电缆直径之和小于保护管内径0.7 倍,弯曲半径满足电缆最小弯曲关径的要求,3 根电缆同穿一根保护管时,电缆总面积不应大于管内径面积的40%。

3.2.3 直埋电缆:一般埋深0.75m,电缆上、下部应铺以不小于100mm,厚软土或沙层,其全长覆盖宽度不小于电缆两侧50mm 保护板。

3.2.4 单相(独芯)电力电缆应穿PVC 管,且绑定物不能形成闭合磁路产生涡流。35kV开关室与主控楼之间应采用光缆,且穿PVC管。

3.2.5 电缆敷设:①在同一通道同一侧的多层支架上时,从上到下接电压等级从高到低的电力电缆,强电至弱电控制和信号电缆、通信电缆的顺序排列,同一重要负荷的双电源电缆应配置在不同通道或不同层次的支架上。②敷设整齐美观、固定牢固、挂牌正确、字迹清晰。重点注意由制造厂安装的计算机柜下的电缆敷设,一般比较乱。③接线:正确、排列整齐、绑扎规范、标示正确、清晰。④对于金属护层及屏蔽层的电力电缆,应分别用不小于10mm2 和25mm2,接地线引出,两两之间互相绝缘,尤其是对接电缆。

3.3 二次回路接地

3.3.1 保护屏内及端子箱内均须有25*4(100mm2)的二次专用接地铜排,该小铜排与保护屏及端子箱间用小绝缘子隔离。

3.3.2 在保护室的电缆夹层中装设不小于100mm2 的二次专用接地铜排,该铜排是沿保护屏的布置的方向平行敷设,各行铜排首未同时连通,形成专用二次接地环网,该环网(是否要与电缆支架吊架绝缘,在图纸会审时确认,有的单位做成绝缘的,有的单位并无此要求)。该环网与电缆沟的接地铜导线连通。且有一点经不小于100mm2 铜排与保护室的地网可靠连接。铜排(带)之间的连接可以螺栓连接或焊接。

3.3.3 在主电缆沟内敷设一根或两根(视设计而定)不小于100mm2 的接地铜导线,支沟及仅敷设一根不小于50mm2 铜导线,其与电缆支架之间绝缘无要求。本接地铜导线同时兼做高频汇流线。支沟内接地铜导线与主沟接地铜导线可靠相连,并在耦合电容或结合滤过器接地点3- 5m 处与地网接通。

3.3.4 屏蔽控制电缆接地①用于集成电路型或微机型保护和控制的电流、电压和信号点的引入线,应采用屏蔽电缆,屏蔽层应在开关站和控制室同时接地,在控制室内屏蔽层接地保护屏接地专用铜排,开关场接在端子箱内,接地专用铜排上,从互感器至端子箱间电缆,屏蔽层分别在端子箱及互感器二次接线盒内接地端子上。②高频同轴电缆屏蔽层经截面不小于1.5mm2 多股铜线,在开关站和控制室或保护室两端接地。在开关站侧屏蔽层接地接到结合滤过器二次侧接地点后经截面不小于10mm2 长度3- 5m 的绝缘铜导线引出与高频汇流支线相连。

4.加强变电站施工监理的具体的注意要点

(1)保障资料规范,侧重信息管理。在监理工作中,信息是开展一切活动的基本前提,在监理信息管理策划方案方面必须要做到以下几点:第一,在组织项目监理大纲与监理规划编写以前,总监理工程师要对开工前的变电站进行深入地了解,要着重收集那些较为相似项目的建设信息,这对于有序进行建设准备来说是非常必要的;第二,要预先策划项目建设竣工信息的整理、归档以及移交工作,提前分析施工过程中应该要收集和留存的有关资料,为后期的维护和正常运行打好基础;第三,促进有关部门对管理信息重要性的认识以及对现代化信息管理的认同;第四,监理信息管理必须选择信息交互关键结点,从而加以科学地管理监控。(2)严格流程控制。在变电站的施工过程中存在许多危险因素,哪怕一个微小的失误,都有可能造成电源点到电网或者是用户的重大安全事故,必须严格规范管理施工流程。施工现场必须要规范布置,材料堆放必须要分区分类,在安全标识方面也要做到齐全和美观;在施工现场,从项目经理到施工的管理人员再到一线的作业工人,都必须要统一着装,为了方便管理,还要按照相关规定佩带颜色不同的安全帽;安全教育课必须做到每周都要进行,还要坚持每日的班前安全例会;施工现场监理人员不仅要应用丰富的工作经验,同时还要应用较强的专业知识,真正实现以建设单位的身份去管理,监督变电站工程建设;要时常组织现场施工人员进行安全学习考试,对于那些新上岗的人员必须要进行严格的资格审查,安全教育以及考试合格后才可以上岗。

5.结语

综上所述,变电站的施工监理工作对于我国社会的整体稳定以及广大群众生命财产安全有着重大的影响,因此,我们必须要提高变电站施工监理的有效性,在施工过程中严把质量关,使监理工作逐步走向正规化,将质量问题的发现与控制贯穿于施工的全过程,继而保证变电站的工程能够达到安全、优质的建设目标。

友情链接