风险评估分析方法范文

时间:2023-07-24 09:24:28

引言:寻求写作上的突破?我们特意为您精选了4篇风险评估分析方法范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

风险评估分析方法

篇1

摘要:随着我国污染场地环境管理水平的不断提升,风险评估已成为场地环境调查和修复中间必不可少的一个环节,国家和地方层面也相继颁布了一系列技术规范文件以指导污染场地风险评估工作的开展。以场地风险评估的工作程序为主线,依次对国家和地方技术规范文件确定的技术路线和主要工作内容的异同点进行了比较分析,并对完善我国污染场地风险评估技术方法体系提出了相关建议。

关键词 :污染场地;风险评估;技术方法

中图分类号:X82 文献标识码:A 文章编号:1008-9500(2015)07-0047-06

收稿日期:2015-06-09

作者简介:李春平(1988-),女,辽宁阜新人,硕士研究生,主要从事污染场地风险评估与场地修复方面的研究。

近年来,随着城市化进程的加快及产业结构的快速调整,我国大中城市多种行业企业的关闭和搬迁一直在持续进行,由此遗留的潜在污染场地的环境管理工作正受到国家和地方层面越来越多的关注和重视。

早在2009年10月,北京市就开始实施《场地环境评价导则》(DB11/T 656-2009)[1](北京导则),以规范北京市污染场地的环境评价和风险评估流程,防止潜在污染场地的开发利用危害群众健康。2010年1月,重庆市颁布《重庆场地环境风险评估技术指南》[2](重庆指南),从场地环境调查、风险评估及修复方案3方面规定了重庆市污染场地环境风险评估和修复工作要求。2011年8月,北京市《场地土壤环境风险评价筛选值》(DB11/T 811-2011)[3](北京筛选值),作为潜在污染场地开发利用时是否需要开展环境风险评价的判定依据。2013年6月,浙江省颁布《污染场地风险评估技术导则》(DB33/T 892-2013)[4](浙江导则),详细规范风险评估的整个流程,并提出浙江省适用的部分关注污染物的土壤风险评估筛选值。2014年2月,国家环境保护部《污染场地风险评估技术导则》(HJ25.3-2014)[5](国家导则),从国家层面规范了污染场地人体健康风险评估工作。2014年10月,上海市制定《上海市污染场地风险评估技术规范》(试行)[6](上海规范),以规范上海市污染场地人体健康风险评估的原则、内容、程序、方法和技术要求。

人体健康的定量风险评估已成为我国污染场地管理体系中必不可少的技术手段[7]。本文以污染场地风险评估的工作程序为主线,依次对国家导则和各个地方技术规范文件确定的技术路线和主要工作内容的异同点进行了全面的比较分析,并对完善我国污染场地风险评估技术方法体系提出了相关建设。

1风险评估的工作内容和程序

国家导则按照污染场地风险评估的工作流程将其划分为5部分:危害识别、暴露评估、毒性评估、风险表征和控制值计算。地方导则中,浙江导则和上海规范中风险评估的工作程序与国家导则保持一致。北京导则中,风险评估作为场地环境评价中污染识别和现场采样分析后的第三阶段,主要内容为建立场地概念模型、进行风险计算、确定修复目标并划定修复范围。重庆指南中,首先要求对第一阶段场地污染调查进行了工作回顾,在补充污染调查的基础上,提出了暴露分析、毒性分析和风险评估的要求,并要求在污染土壤修复方案中提出土壤的修复标准,重庆指南中同样未涉及地下水的修复标准。

国家导则和地方导则中关于风险评估工作内容的规定比较见表1。

由表1可见,国家导则和地方导则中风险评估的主要工作程序基本保持一致,只有北京导则在工作程序中未明确提及毒性评估,仅在附件中列举了一些常见污染物的毒性参数,作为污染物毒性评估的参考依据。

2危害识别与筛选值

2.1危害识别

危害识别为污染场地风险评估的第一阶段。国家导则中,此阶段需获取如下场地信息:详尽的场地相关资料及历史信息、场地土壤和地下水样品中污染物的浓度数据、场地土壤的理化性质分析数据以及场地气候、水文及地质特征信息数据等,并要求明确场地及周边地块的土地利用方式,在此基础上来确定场地的敏感受体,并结合相应筛选值通过一定的技术方法来确定场地的关注污染物。

北京导则中虽未明确提出危害识别这一阶段,但在场地环境评价的第一阶段污染识别及第二阶段现场勘查与采样分析中分别提及资料收集及污染识别等相关内容,并在第三阶段风险评价的“建立场地概念模型”中,明确在此过程中需要确定污染源、未来用地方式并确定污染场地受影响的人群。重庆指南中场地环境风险评估程序中提及了污染源分析阶段,但其资料调查分析及采样分析分别在场地环境调查及污染调查工作回顾中进行,土地利用方式、敏感受体及关注污染物则在暴露分析中进行详细阐述。浙江导则和上海规范中危害识别阶段的内容与国家导则保持一致。

需要指出的是,在确定场地敏感受体时,除考虑居住人群等敏感人群外,国家导则、浙江导则和上海规范均考虑了土壤污染对地下水的影响,将地下水同样列为敏感受体之一。北京导则在此阶段提及的敏感受体仅涉及受影响的人群,而重庆指南在风险暴露评估分析中提及的敏感受体包括居民和临时活动人员,但均未考虑地下水体等其他可能的受体。

部分地方导则将危害识别阶段与场地环境调查或其他相关工作阶段一同进行阐述,而国家导则对此的技术要求则相对清晰完整。

2.2筛选值

在进行关注污染物的初筛时,一般应用筛选值作为判定是否开展土壤或地下水环境风险评价的启动值。

国家导则中虽暂未制定污染物的土壤和地下水筛选值,然而环境保护部已《建设用地土壤污染风险筛选指导值》(征求意见稿),待正式后可作为国家层面筛选土壤中关注污染物的参考。北京市有一套完整的土壤筛选值[3],共制定了88种污染物的土壤筛选值,可以作为北京市场地土壤环境风险评价的参考启动值。重庆指南中,对于未来用地性质没有明确规定时,要求应用《展览会用地土壤环境质量评价标准(暂行)》(HJ 350-2007)[8](展览会用地标准)A级标准对污染物进行筛选。浙江导则中同样列举了88种污染物的土壤风险评估筛选值,作为当地土壤关注污染物筛选的参考依据。上海目前要求分别应用展览会用地标准A级标准和《地下水质量标准》(GB/T 14848-93)[9](地下水国标)Ⅲ类标准及其他相关的环境质量标准对土壤和地下水中的污染物进行筛选。目前看来,除上海参考地下水国标进行地下水中污染物的筛选外,国家和其他各地方均暂未制定地下水中污染物的筛选值。

对比北京和浙江的土壤筛选值,污染物的种类及筛选值均相同。北京筛选值中单独制定了公园与绿地用地方式的土壤筛选值,与住宅用地相比,公园与绿地用地方式的土壤筛选值相对宽松;浙江则将住宅用地、公园与绿地用地方式统称为住宅及公共用地。对比北京/浙江住宅用地土壤筛选值和展览会用地标准A级标准,仅少数污染物如砷、镍、多氯联苯及滴滴涕等的住宅用地土壤筛选值与展览会用地标准A级标准相同,大部分污染物均存在差异性。

3 暴露评估

暴露评估是在危害识别的基础上确定场地土壤和地下水污染物的暴露情景、主要暴露途径和暴露评估模型,确定评估模型参数取值,计算敏感人群对土壤和地下水中污染物的暴露量。

3.1暴露情景

暴露情景是指在特定土地利用方式下场地污染物经由不同暴露途径迁移和达到受体人群的情况,其对后续暴露量计算公式的选择起着重要的指导作用。国家导则、重庆指南和上海规范均对暴露情景进行了明确的分类,基本可分为以住宅用地为代表的敏感用地和以工业用地为代表的非敏感用地;浙江导则中对暴露情景的分类则以敏感人群中是否涉及儿童来定;北京导则中暂未明确提及暴露情景这一说法,但在北京筛选值中分别提及住宅用地、公园与绿地和工业/商服用地的土壤污染物筛选值。

3.2暴露途径

暴露途径是场地污染物迁移到达和暴露于人体的方式。对比分析各导则的暴露途径,国家导则和上海规范对暴露途径的考虑比较全面,在综合考虑保护人体健康各途径的基础上,还考虑了对地下水的保护即土壤淋溶至地下水的暴露途径。重庆指南对各暴露途径尚未进行详细的划分,如未区分土壤呼吸吸入途径的室内外颗粒物及蒸气,未考虑土壤淋溶至地下水及地下水室外蒸气途径等,但增加了其他导则中没有的土壤果蔬种植摄入及地下水皮肤接触暴露途径。

风险评估技术的暴露途径比较见表2。

3.3暴露量计算及暴露参数

在进行暴露量的计算时,国家及各地方导则应用的模型基本保持一致。其中,北京导则和重庆指南直接将污染物的浓度带入暴露量的计算中,计算得到各暴露途径土壤或地下水中污染物的暴露量,其他导则仅计算得到各暴露途径下土壤或地下水的暴露量。此外,重庆指南在计算呼吸吸入途径污染物的暴露量时,未区分污染物室内外颗粒物及蒸气。

国家及各地方导则均按照敏感受体及暴露情景的不同,对风险评估中需要的暴露参数进行了统计。国家导则、浙江导则和上海规范中统计的暴露参数相对较为详细,考虑了住宅和工业用地两种暴露情景;北京导则中统计了包括体重、皮肤表面积、暴露频率在内的7种暴露参数,考虑了居住、公园、商业和工业用地4种暴露情景;重庆指南在统计暴露参数时,考虑的暴露情景更加详细,综合考虑了居住、工业、商业/娱乐/市政用地、开挖施工及农业用地。

风险评估技术暴露参数的比较(以住宅类敏感用地为例)见表3。

表3以住宅类敏感用地为例,选取了部分代表性暴露参数进行了比较,与国家导则相比,上海规范的参数取值与其基本保持一致,其他导则中部分参数取值与其保持一致,取值不同的各参数与国家导则相比差别不大。

4毒性评估

毒性评估即在危害识别的基础上,分析关注污染物对人体健康的危害效应,包括致癌效应和非致癌效应,确定与关注污染物相关的毒理学及理化等参数。

4.1污染物毒性分级及参数

美国国家环保局(United States Environmental Protection Agency,USEPA)对污染物进行了如下毒性分级。A:人类致癌污染物;B2:很可能的人类致癌污染物;C:可能的人类致癌污染物;NA:暂时未对其致癌性进行划分[10] 。我国目前参考USEPA对污染物进行毒性分级。

污染物致癌效应的毒性参数包括呼吸吸入单位致癌因子(IUR)、呼吸吸入致癌斜率因子(SFi)、经口摄入致癌斜率因子(SFo)和皮肤接触致癌斜率因子(SFd)。污染物非致癌效应的毒性参数包括呼吸吸入参考浓度(RfC)、呼吸吸入参考剂量(RfDi)、经口摄入参考剂量(RfDo)和皮肤接触参考剂量(RfDd)。

国家导则中,呼吸吸入途径的SFi和RfDi可分别通过IUR和RfC外推得到,皮肤接触途径的SFd和RfDd则可分别通过SFo和RfDo外推计算得到,并列出了外推计算公式。北京导则中,呼吸吸入途径的SFi和RfDi及皮肤接触途径的SFd和RfDd直接为文献参数值,未进行外推计算。重庆指南中暂未列举污染物的毒性参数。浙江导则中直接列举了部分污染物的毒性参数,对于未收录的污染物毒性参数,规定可参考国外毒性数据库或可根据相关外推模型进行计算。上海规范与国家导则保持一致,在毒性参数取值时应用了具体的外推模型进行计算。

对比国家及各地方导则中污染物的毒性参数,由于参考不同的文献,污染物的毒性参数各有不同,污染物毒性参数的差异会导致后续污染物风险的不同,在风险评估中需根据地方政府的要求合理选择污染物的毒性参数。

4.2污染物理化性质及其他参数

风险评估中还涉及到一些污染物的理化性质参数及其他一些和暴露途径相关的吸收因子参数。

国家导则、浙江导则和上海规范中分别列表给出了部分污染物的理化参数,而北京导则和重庆指南中暂无污染物的理化性质参数。具有代表性的理化性质参数即无量纲亨利常数(H’)、水中扩散系数(Dw)、空气中扩散系数(Da)、土壤-有机碳分配系数(Koc)和水溶解度(S)等,浙江导则中未给出溶解度的参考取值。由于参考不同的文献,各导则中污染物的部分理化性质参数取值也存在不同。以四氯化碳为例,对比国家导则和上海规范,其H’和S的取值相同,而Dw、Da和Koc存在轻微差异;对比浙江导则和上海规范,其Dw和Da的取值相同,而H’、Koc和S存在轻微差异。

四氯化碳理化性质参数的比较见表4。

污染物的吸收因子参数主要包括消化道吸收因子ABSgi、皮肤吸收因子ABSd和经口摄入吸收因子ABSo,分别用于计算皮肤接触致癌斜率因子及参考剂量、皮肤接触土壤途径的土壤暴露量和经口摄入土壤途径的土壤暴露量。国家导则、浙江导则和上海规范对吸收因子参数考虑的较为全面,北京导则中仅考虑了ABSd,重庆指南中考虑了ABSd和ABSo。参数取值方面,各导则中污染物的ABSgi和ABSo的取值均相同,由于参考不同的文献,各导则中污染物的ABSd不完全相同。

5风险表征

风险表征是在暴露评估和毒性评估的基础上采用风险评估模型计算土壤和地下水污染物的致癌风险和危害商。

在进行污染物的风险表征时,国家导则和地方导则的相同之处在于,均分别考虑了致癌污染物的致癌风险和非致癌污染物的非致癌危害商,并首先分别计算土壤或地下水中单一污染物经单一途径的致癌风险和非致癌危害商,再计算单一污染物的总致癌风险和非致癌危害指数,计算方法也保持一致。此外,国家导则和地方导则均选择相对保守的10~6作为单一污染物的可接受致癌风险水平,选择1作为单一污染物可接受非致癌危害商。

国家和地方导则的不同之处在于,首先,在进行单一污染物非致癌危害商的计算时,是否考虑暴露于土壤和地下水的参考剂量分配系数SAF和WAF。上海规范同国家导则应用的推荐模型保持一致,在进行非致癌危害商的计算时,均考虑了暴露于土壤和地下水的参考剂量分配系数,而北京导则、重庆指南和浙江导则未对其进行考虑。此外,在完成污染物总致癌风险和非致癌危害指数的计算后,应进行不确定性分析,以分析污染场地风险评估结果不确定性的主要来源,国家导则、重庆指南和上海规范中分别对该部分内容进行了详细分析,而北京导则和浙江导则中未涉及该部分内容。

6风险控制值的计算及修复目标值的确定

污染物的风险控制值是基于健康风险评估模型的计算值,是确定污染场地修复目标值的重要参考值。而污染物的修复目标值是根据不同修复方式(原位/异位)和不同修复技术(污染物总量削减/风险途径控制)而确定的,修复目标值不完全等同于风险控制值。

6.1风险控制值的计算

当风险评估结果表明场地土壤或地下水中污染物浓度超过可接受风险水平时,需要计算土壤和地下水中关注污染物的风险控制值。国家导则、浙江导则和上海规范中计算污染物风险控制值应用的模型基本一致,不同之处在于在进行非致癌污染物的风险控制值计算时,国家导则考虑了暴露于土壤和地下水的参考剂量分配系数SAF和WAF,而地方导则中未对其进行考虑。北京导则和重庆指南中均仅提及计算方法,未给出计算模型。

此外,国家导则和上海规范中考虑了对地下水环境的保护,主要考虑土壤污染物淋溶至地下水后对地下水造成的危害,制定了保护地下水的土壤风险控制值的确定方法。其他导则中暂未考虑对地下水环境的保护。

6.2修复目标值的确定

国家和各地方导则中对污染物修复目标值有不同的确定方法。我国《污染场地土壤修复技术导则》(HJ25.4-2014)[11]中指出,在分析比较风险评估计算获得的风险控制值、场地所在区域土壤中目标污染物的背景含量及国家有关标准中规定的限值后,合理提出土壤目标污染物的修复目标值。北京导则中,在确定污染物的修复目标值时,还应参考该污染物的检出限、评价地区的土壤和地下水中污染物的背景值、当地的法律法规和修复技术的可行性。重庆指南中,需综合考虑技术、经济等,执行相对严格的修复目标值。浙江导则中指出,应根据污染物的风险控制值以及场地的实际情况和用途确定修复目标值。上海规范中明确区分了污染物的风险控制值及修复目标值,当选择原位修复技术时,修复目标值可引用风险控制值;选择异位修复技术时,修复目标值应根据不同的修复策略和处置方式制定。

需要指出的是,对于地下水的修复目标值,浙江导则还有一特殊规定,要求在比较经过风险评估计算得到的地下水修复限值及《地下水质量标准》(GB/T 14848-93)中规定的地下水污染物浓度最大限值的基础上,选择最小值作为污染场地地下水修复建议目标。

7 其他

铅污染场地的风险评估在国家和地方导则中均有提及但各有不同。与其他化学物质的非致癌性危害相比,铅的主要特点即在很低的浓度下依然可能对儿童或胎儿造成非致癌危害。

国家导则和上海规范的适用范围中均指出其不适用于铅、放射性物质、致病性生物污染及农用地土壤污染的风险评估。而北京导则和浙江导则的适用范围中则未提及不适用于铅污染场地的风险评估,也未给出铅的毒性参数,但均提出了铅的土壤参考筛选值。重庆指南中,对于住宅用地及公共用地,铅污染场地风险评估采用儿童血铅评估方式,要求经各种暴露途径导致的儿童体内血铅水平高于0.1 mg/L的概率小于5%,其具体方法参照USEPA公布的方法;而对于商服及工业用地,铅污染场地采用单因子评价方法,评估标准为展览会用地标准中的B级标准。

8结论与建议

8.1结论

从以上综合比较分析可以得出以下结论。

(1)我国污染场地风险评估相关的国家导则和地方导则中有关风险评估的工作内容和程序要求基本相同,各工作程序的内容综合比较也无很大差异。

(2)在进行污染场地风险评估时,各导则考虑的污染物暴露途径各有不同,而暴露途径的选择不同,将导致风险评估的结果存在差异。

(3)各导则对于包括暴露参数、毒性参数及理化参数等在内的数据库的选择各有不同,这也将导致计算得到的污染物风险控制值或修复目标值存在差异。

(4)在进行非致癌污染物的风险评估时,计算危害商及风险控制值时,模型中是否考虑暴露于土壤和地下水的参考剂量分配系数,将对非致癌污染物风险评估的结果存在影响。

8.2建议

我国污染场地风险评估技术方法有关的国家和地方导则各有优势和不足,国家导则在评估程序、各程序的工作内容、风险评估各计算模型的选择等方面相对完善。通过对比分析,对完善我国污染场地风险评估技术方法提出了如下相关思考和建议。

(1)国内有关场地土壤及地下水污染物的筛选标准尚不完善,且大多仅有污染物的土壤筛选值,基于此,建议从国家和地方层面分别完善各自的土壤筛选值并制定地下水筛选值。

(2)暴露评估阶段,各地应以国家导则作为参考依据,并根据本地区的实际情况,完善地方特定的暴露参数数据库。

(3)毒性评估阶段,国家和地方导则中污染物的毒性参数取值各有不同,且均参考国外的污染物毒性参数数据库,建议从国家层面整体规范污染物的毒性参数。

(4)建议在制定非致癌危害商及非致癌污染物的风险控制值时,统一考虑暴露于土壤和地下水的参考剂量分配系数。

(5)污染场地风险评估应从健康与环境两个方面来进行,应考虑对地下水环境的保护。

参考文献

1DB11/T 656-2009.场地环境评价导则[S].

2重庆市环境保护局.重庆场地环境风险评估技术指南[EB/OL].重庆:重庆市环境保护局,2010[2010-01].pan.baidu.com/s/1bnjB7yv

3DB 11/T 811-2011.场地土壤环境风险评价筛选值[S].

4DB 33/T 892-2013.污染场地风险评估技术导则[S].

5HJ 25.3-2014.污染场地风险评估技术导则[S].

6上海市环境保护局.上海市污染场地风险评估技术规范[EB/OL].上海:上海市环境保护局,2014[2014-10-10].

sepb.gov.cn/fa/cms/shhj//shhj2103/shhj2104/2014/10/87719.htm

7陈梦舫,骆永明,宋静,等.中、英、美污染场地风险评估导则异同与启示[J].环境监测管理与技术,2011,23(3):14-

18.

8HJ 350-2007.展览会用地土壤环境质量评价标准(暂行)[S].

9GB/T 14848-93.地下水质量标准[S].

篇2

我国大型游乐设施概况及危险因素分析

a我国大型游乐设施概况

我国的大型游乐设施多是由钢架结构、机械运动部件、自动控制与电气等设备结合在一起的机电设备,它的实质就是利用加速度的梯级变化,给予游乐者身体感官刺激的机电平台。

我国的游乐场所建设相比于国外起步较晚,20世纪八十年代初,我国才开始兴建各类大型游乐场所,受益于改革开放带来的经济快速发展,我国的游乐事业前进势头较猛。到21世纪初,我国游乐设施无论是在设计、制造水平上,还是产品质量、安全性上,距世界先进水平已经相差不远了。根据2014年的统计数据可知,我国中型以上游乐场所已超过650家。

按照大众游乐设施的结构和运动特征,我国的游乐设施可以被分为十三个大类,包括了从单一型到综合型、从室内到室外、从地面到空中等等。根据我国相关法律法规要求,这些游乐设施归属于我国相应质量技术监督部门监管,国家质检总局根据这些设备的危险指数和相关行业标准,将这些游乐设施分为A、B、C三级。

我国大型游乐设施危险因素分析

a设备固有风险

游乐设施的固有风险指的是这些游乐设施在工厂设计制造过程中,未能满足国家相关规范标准,并且在现场组装、调试过程中因操作不规范而带来的风险。

b安全管理风险

大型游乐设施安全管理风险指的是,这些大型游乐设施在具体使用过程中,由于管理上的疏忽大意带来的隐患,其具体表现在管理机构混乱、没有相应的事故应急措施和救援预案;缺乏相关安全技术备案、规范的管理制度、安全操作守则以及难以界定相关人员的责任等。

c运营过程风险

大型游乐设施运营过程风险指的是由于人员操作不规范,或者未及时地保养,以及没有按时到相关部门进行检验,或者违规使用不合格设备所造成的风险。

d作业人员风险

大型游乐设施作业人员风险指的是设备负责人或者操作人员在对这些设备进行管理或者操作的过程中麻痹大意,进而造成事故的风险。

大型游乐设施设计风险评估及控制技术

a大型游乐设施设计风险评估方法

在实际生产过程中,我们可以将风险评估方法分为两大类:定量分析和定性分析,能够应用于游乐设施的风险分析方法主要有以下几种:模糊分析法、安全检查表法、失效模式和后果分析法、预先危险性分析法等,我们一般采用的是定性分析与定量分析相互结合的方式来进行风险评估。由于我国游乐设施建设起步较晚,相应的风险分析与评价方法的研究并不完善,因此国内在进行风险评价分析时,常常将模糊分析与层次分析交叉使用。林伟明等研究者在这方面的研究上取得了一定成果,即在层次分析和模糊分析的基础上,建立了大型游乐设施的评价指标体系和评价层次等综合评价模型,并在游乐园中的观览车上得以大规模使用。

b大型游乐设施设计风险控制技术

有限元分析技术,高常青等研究者结合COSMO SWorks 的有限元分析技术,对海盗船上的安全杠组件的安全系数进行了量化,通过对其在运动过程中的极端应力分布进行分析的方式,评估出其性能指数和安全指标,这有助于优化该类游乐设施的安全性能。

虚拟样机技术,在虚拟机方向做出较大贡献的学者朱海荣等人,在建立较为精准的设备模型的前提下,通过动态模拟设备运行过程,并记录其运动过程中的状态参数,对各关键部件进行强度分析,在游乐设备的安全评价、事故分析再现以及验证产品设计性能等方面发挥出作用。

在线检测技术,在这一方面的研究者以王业等人为代表,他们结合MAPX、VB等技术,开发了一套基于GIS可视化的设施再现评估和监测系统。系统具有人性化的操作界面,并且能在线实时采集、分析游乐设施的动态数据,得出游乐设施的安全裕度。

c远程安全监控预警技术

李果等学者在研究大型游乐设施故障和事故起因后,在现代智能测控技术和人工智能技术的基础上,建立了基于 multi-agent 系统的大型游乐设施远程安全监控预警系统,通过多个Agent模块协同工作,实现安全监控和预警功能。

结语

篇3

中图分类号:X820.4文献标识码:A文章编号:1007-9599 (2010) 10-0000-02

Risk Assessment Method Based on Improved Entropy Weight and Gray Correlation Analysis

Luo Dongmei

(GuiZhou University,Guizhou Key Laboratory for Photoelectric and Application,GuiYang550025,China)

Abstract:Entropy for the current method based on traditional risk assessment of the limitations and the complex linkages between risk factors,we present an improved entropy and gray relational analysis of risk assessment methods.

Keywords:Risk assessment;Improved entropy;Gray correlation analysis;Z-scres standardization

风险评估技术作为保障信息系统安全的基础技术近日得到了快速地发展,但由于评估中受评估者的主观影响和评估标准的不完善等使得风险评估结果总会存在不同程度的偏差,研究者都在努力地探索一种更为客观准确的评估方法。文献[1]中的熵权值没有根据风险因素在评估中所起作用的特性而不同量化处理,使熵权值出现一些偏差;文献[2]则是改进的熵权法在输电设备环境分析中的应用;因此本文提出一种基于改进熵权的风险要素权值计算法,并结合灰色关联分析法综合分析信息系统中风险评估对象的复杂关联性,进而获得更为客观、有效的评估结果。

一、信息安全风险评估方法基础

(一)改进的熵权

熵(Entrony)[3]的概念起源于热力学,是对系统状态无序程度的度量;后来被引用于信息论中,用来度量信息的不确定性,但信息系统是一种有序程度的度量;因此二者绝对值相等,符号却相反。在多个目标决策评价中可量化决策者的主观判断信息,从而计算基于熵的评价因子的相对权值。设系统评估体系有m个评估对象,n项评估指标,以此构造原始评估矩阵X=(xij)m×n。对于某项指标xj,指标值xij的差距越大,则该指标在综合评价中所起的作用越大,反之就越小。若指标值全部相等,则该指标的评定在综合评价中不起作用。信息熵为:

,其中p(xi)为指标xi在评估中的概率。在熵值法的计算过程中负值不能直接参与计算,极值应做相应变换,本文采用Z-scores标准化变换: ,其中 为第j项指标的均值,即: ; rj为第j项指标的标准差,即: 。一般xij的范围为[-1,1],为消除负值,可将坐标向右平移,即 ,再进行评价。以此得到标准化后的评估矩阵,记为: 。

(二)结合改进熵权的灰色关联分析法

灰色关联分析方法是由华中科技大学邓聚龙教授于1982年首先提出的[4]。其基本思想是根据序列曲线几何形状的相似程度来判断各事物之间的联系是否紧密。曲线越接近,相应序列之间的关联度就越大;反之就越小。改进熵权的灰色关联分析基本步骤如下:

(1)根据前面1.1节的方法可由原始评估矩阵得到标准化后的评价矩阵。此处记为: 。(i)求各因素指标的比重 ;(ii)求第j项指标的熵值ej, ;(iii)计算j项的差异系数gj, ,当gj越大时,指标越重要;(iv)计算各项熵权wj, ,其中wj满足 , 。

(2)灰色关联分析:(i)根据评估矩阵各风险要素的特性对其进行极大值或极小值无量纲化处理,即从评估矩阵中选取最优序列作为参考序列,再分别对序列进行无量纲化处理, ;(ii)求绝对差Aij,Aij=pij-pijmax颍并求其最大值 和最小值 ,进而求每一序列的最大绝对误差 和最小绝对误差 ;(iii)求关联系数, ,其中 为分辨系数,一般取0.5比较合适;(iv)求加熵权关联度, ;根据关联度进行排序,关联度越大说明与样本越接近,表明对系统贡献越大,反之越小。

二、实例分析

现以某网站系统的风险评估为例进行分析。根据信息安全风险评估协议《GB/T 20984-2007信息安全技术 信息安全风险评估规范》[5]和系统的特点建立风险评估矩阵,如下表1所示:

Step 1:根据前面1.2节的1)和1.1节的方法可写出标准化后的风险评估矩阵B,如下所示:

再由后面的几个步骤最终可计算出风险要素的熵权集为:

wj=(0.0805,0.0497,0.0819,0.0687,0.1063,0.1831,0.0271,0.1267,0.2760)

Step 2:根据1.2节2)的(i)分析对原始风险评估矩阵做极大值或极小值无量纲化处理,变为:

Step 3:由1.2节2)的公式(ii)和公式(iii)计算关联系数矩阵R为:

Step 4:计算风险评估矩阵加改进熵权的灰关联度,由(2)的(iv)公式可得:

,由结果可知风险评估体系中数据的关联度最大,所有的评估对象优劣排序为:数据>管理>网络系统>应用系统>物理环境>主机系统。说明该网站系统的数据所面临的风险最大,急需提出相应的方案解决,比如更改登录设置或口令加强等方法有效改善数据的安全状况。

三、结束语

改进的熵权法用Z-scores标准化对数据初始化处理,客观的减小了评估数据的偏差,并结合到灰色关联分析法中,该方法简单有效,能比较准确的评估复杂信息系统的风险;但由于本文所选取的评估对象范围比较大,因此最后的结果不能很明确的知道风险具体是什么,有待于建立更完善的风险评估体系。

参考文献:

[1]刘霞,蔡佳妮,江建慧.熵权和三角模糊数相结合的定量风险评估方法[J].计算机应用与软件.2010,27,6:263-267

[2]董军,马博.基于改进熵权TOPSIS法的输电项目外部环境分析[J].水电能源科学,2010,28,2:152-154,162

[3]谷震离.基于改进熵值法的MCAI软件评价模型研究[J].计算机工程与科学,2010,32,7:134-136

篇4

一、权重测定方法

如何更好的进行权重的测定是必须要解决的问题。在权重方法测定的研究中,很多学者进行了大量的研究,其中具有代表性和可行性的方法是结构熵权法。程启月(2010)[1]根据熵理论提出了一种主客观相结合的权重确定方法,其基本指导思想是将采集专家意见的德尔菲专家调查法与模糊分析法相结合,形成“典型排序”按照给定的熵决策公式进行熵值计算、“盲度”分析,并对可能产生潜在的偏差数据统计处理,根据主客观结果加权平均值的方法测定了最后的权重,这种方法保留了主观方法的可说明性的同时又强调了数学方法在逻辑上的重要性,本文权重的测定方法将引用结构熵权法。

(1)专家意见收集及排序矩阵的形成

首先选定专家组成员,对专家发放指标体系权重测定反馈表,每位专家采取德尔菲法的规定和程序,对每个指标的重要性进行排序,重要性由1-N。现有N个专家对M个指标进行重要性排序,其中a11表示第一个专家对第一个指标重要性排序,其数值(1-m)由小到大表示重要性的逐渐降低,同理am1表示第1个专家对第m个指标重要性排序,amn表示第n个专家对m个指标重要性排序,根据最后的排序形成典型排序矩阵A。

(2)偏差度的纠正

由于每位专家由于所出的工作或研究领域不同,对每个指标的认识程度也不同,因此所形成的数据会产生一定的偏差,为了降低偏差的程度和不确定性,需要将上式的数据进行偏差度的纠正。对上一节的排序矩阵进行转化,定义排序转化的隶属度函数为:

F(amn)=-ηpn(amn)lnpn(amn)

其中,pn(amn)=t-amnt-1,取η=1ln(t-1),将pn(amn)=t-amnt-1 和η=1ln(t-1)代入公式并化简求得θmn=-ln(t-amn)ln(t-1),本文将θmn称为amn对应的隶属度函数值,取t=m+2,当指标的最大数为4时,t=6。θmn为专家排序数amn的隶属度,称Bmn为隶属度矩阵。

视n个专家对第k个指标(k=1,2,…m)的“话语权”相同,即计算n个专家对第k个指标的“一致看法”称为平均认识度,记作Bk;将专家对第k个指标在认知方面的偏差称为“认知偏差度”,记作Ck;

令Bk=(θk1+θk2+…+θkn)n;

Ck=max(θk1,θk2,…,θkn)-Bk+min(θk1,θk2,…,θkn)-Bk2,定义n个专家对于第k个指标的总体认识度Rk=Bk(1-Ck),则n个专家对m个指标的总体认识度向量R可写作矩阵R=R1,R2,…,Rm。

(3)归一化处理

为了求得第k个指标的权重ωk,需要对Rk=Bk(1-Ck)进行归一化处理ωk=Rk∑m1Rk,显然,∑m1Rk=1,ωk≥0,本文将所求出的ωk称之为第k个指标所占的权重。

二、风险评估步骤

在灰色理论中,灰色关联分析是分析系统中各个元素之间关联度或相似程度的方法,其基本思想是根据关联的程度对所评估目标进行排序。灰色关联分析是分析事物发展的趋势,对样本的数量没有严格的规定,同时样本也不需要服从某种数学分布。

(1)专家评分阶段

请每位专家按照评估指标的选项对选中的目标进行评估,设评估的等级为1、2、3、4、5,数字的大小说明该评估目标在其中某一指标的表现,数值越大表示表现的水平越好。设评估指标有m个,选取专家k人(本文默认选取专家的学识水平、相关经验上的水平都是相同的),则根据专家的评分可对所评估的每个目标构成一个m×k的评分矩阵A。

(2)对比矩阵的构建

灰色关联分析的首要条件是选择一个参考数列,设所评估目标结果对应的最优评估指标集F* =f*1 ,f*2 ,…,f*m ,其中f*k 表示第k个指标的最优值,k=1、2、…m。其中,fnm表示第n个企业在第m个指标的平均评估值,fnm=am1+am2+…+amkk;将最优指标集与对比矩阵合并,形成一个新的矩阵。

(3)指标值的规范化处理

在评判指标里通常有不同的量纲以及数量纲,因此一般不能进行直接比较,为确保结果的可靠性,需要对上述指标进行规范化处理。

设第k个指标的变化区间为fk1,fk2,fk1为第k个指标在所有被评估融资企业中的最小值,fk2为第k个指标在所有被评估企业中的最大值,那么可以采用下式将上式中的指标数值转换成无量纲值Cik∈(0,1)。Cik=jik-jk1jk2-jik,i=1、2…n;k=1、2…m,由此矩阵D'转换成矩阵C

D'=f 11f 12…f 1mf 21f 22…f 2m…………f n1f n2…f nm;C=C*1C*2…C*mC11C12…C1m…………Cn1Cn2…Cnm

(4)计算综合评估结果

根据灰色系统理论,将C*=C*1,C*2,…,C*m作为参考数列,将C=Ci1,Ci2,…,Cim作为最优的对比数列,用关联分析法求的第i个企业第k个指标与第k个最优指标的关联系数εi(k),即:

εi (k)=minminC*k-Cik+ ρmaxmaxC*k-CikC*k-Cik+ ρmaxmaxC*k-Cik

ρ为分辨系数,一般取0.5,ρ∈(0,1)。由关联计算方法可以得到关联矩阵E:

E=ε1(1)ε1(2)…ε1(m)ε2(1)ε2(2)…ε2(m)…………εn(1)εn(2)…εn(m)

这样综合评估结果为:R=E×W,即ri=∑mj=1W(k)×εi(k)。式中R=r1,r2,…,rnT为n个被评估企业的综合判断结果向量;W=w1,w2,…,wmT为m个评估指标的权重分配向量,其中∑mj=1wj=1。

友情链接