超高层结构设计范文

时间:2023-07-30 08:50:39

引言:寻求写作上的突破?我们特意为您精选了12篇超高层结构设计范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

超高层结构设计

篇1

工程概况

宏欣豪园项目位于深圳市福田中心区,该工程由4栋45层的超高层住宅塔楼组成,地上1层为商业裙楼,地下3层为地下室,屋顶结构高度为139.54米。A塔楼平面尺寸为33.85x21.65米; B塔楼平面尺寸为31.85x20.75米; CD塔楼平面尺寸为53.45x21.7米; E塔楼平面尺寸为43.75x21.9米。各层层高分别为:地下-3层、-2层、-1层分别为5.2米、4.0米和4.5米,1层5.0米,2层6米,标准层3米。

高层塔楼与裙房的地下室连为一个整体,从地面开始通过设抗震缝把整个建筑分为五个结构单元,其中A、B、E栋高层塔楼各为一个单元,CD栋合为一个单元,裙房分为一个单元。塔楼与裙房间的抗震缝缝宽100mm,A、B座塔楼之间的抗震缝缝宽350mm。

结构设计思路及超限情况判别

本工程地处深圳市,该地区的特点是风荷载大、地震作用相对较小,因此提高结构的抗侧刚度是结构设计的关键。根据以上特点和住宅建筑的功能要求,采用了经济适用的钢筋混凝土剪力墙结构体系。

设计之初,依据《建筑抗震设计规范》及《高层建筑混凝土结构技术规范》,对建筑进行了高度、平面规则性、竖向规则性检查。本工程平面和竖向规则,但建筑高度大于120米,属于高度超限结构。

结构整体计算和分析

弹性计算结果

设计使用美国 CSI公司开发的ETABS、中国建筑科学研究院编制的SATWE、PMSAP软件对整体结构的自振特性进行了分析计算,几种软件计算结果较为接近,结构的主要振型以平动为主,ETABS计算的T1=3.18S,T3=2.70s,扭转为主的第一自振周期与平动为主的第一自振周期之比小于0.85,满足《高规》的要求。

风荷载及小震作用下的结构反应计算是结构设计中的重要内容,本工程结构在风荷载及小震作用下结构最大的层间位移角分别为1/2199和1/1526,小于规范要求的1/800,满足规范限值。

根据《高规》的要求,B级高度高层建筑最大水平位移和层间位移不宜大于该楼层平均 值的1.2倍,不应大于该楼层平均 值的1.4倍。本工程在偶然偏心的地震作用下结构有部分楼层的位移比和层间位移比超过1.2,但均没超过1.4,层间位移比的结果说明结构具有较好的抗扭刚度。

地震作用下楼层剪重比同样是结构整体分析时需要分析的重要内容。《高规》、《抗震规范》对在7度区的结构的剪重比的要求:X方向应大于1.6%,Y方向应大于1.6%,不满足《抗震规范》(5.2.5)验算要求的,应调整地震剪力系数。由于地震影响系数在长周期段下降较快,对于基本周期大于3s的结构,采用振型分解反应谱法计算得到的水平地震剪力可能偏小,出于对结构安全性的考虑,规范规定了不同设防烈度下楼层的最小剪重比。由于本工程前三个振型的周期接近或大于3s,所以底部的地震剪力计算偏小,需要根据规范要求调整地震剪力系数。

《高规》4.4.3规定B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不应小于其上一层受剪承载力的75%,比《抗规》的要求更严格。楼层的受剪承载力不仅与竖向构件的截面、材料强度、轴力大小等有关,还与剪跨比即层高有关。因此,墙厚的变化及所配钢筋的减少,随着楼层逐渐降低的混凝土标高,轴压力的减少及层高的突变,都会导致受剪承载力的改变。顶层刚度突变主要是由于复式楼层竖向构件截面减小或去除造成的。计算结果表明,层间剪力均满足规范要求,与规范限值相比有一定的富余。

弹性时程分析

采用安评报告所提供的三组人工合成地震波的加速度时程曲线(USER1、USER2、USER3)选出其中1条影响较大的场地人工波,另加两条天然波,考虑双向水平地震作用,同一组地震波的两个水平分量加速度比值取1:0.85。通过对结构的弹性时程分析结果可以得到:(1) 每条时程曲线计算所得结构基底剪力均大于振型分解反应谱法的65%,三条时程曲线计算所得结构基底剪力的平均值均大于振型分解反应谱法的80%,地震波的选择满足规范要求;(2) CQC法的层间剪力曲线基本能包络所选的三条地震波对应的平均层间剪力曲线,但在结构顶部少数楼层,CQC法的地震剪力偏小,说明设计反应谱在长周期阶段的人为调整以及计算中对高阶振型的影响估计不足,施工图设计将对顶部楼层的地震剪力进行调整,满足对时程分析法的内力包络。

中震不屈服分析

由于本塔楼为超限结构,为确保结构的安全可靠,进行了在中震(设防烈度)下的抗震计算,使这些重要的抗震构件(剪力墙、柱、连梁和框架梁),在中震作用下不屈服。

采用空间三维有限元模型固接于地下室顶板,调整地震作用参数进行计算。中震不屈服验算是根据极限状态和小震设计下得到的配筋,计算各主要构件的屈服承载力(按材料的标准值计算),并与中震下的效应组合进行比较,确定构件的状态。若组合效应小于屈服承载力,表示构件未屈服,否则表示此构件屈服。

计算结果表明,有一部分框架梁及连梁在中震时屈服,因此需对该部分构件配筋进行调整。

钢筋混凝土剪力墙采用N-M包络线与内力组合效应的比较确定构件的屈服状态。计算结果表明剪力墙的受弯和受剪承载力满足中震不屈服求。剪力墙的受弯富余系数随楼层数上升逐渐增大。受剪安全系数随楼层数上升逐渐减小。

通过中震不屈服分析和判断可以清楚的看到,结构体系中竖向构件在中震作用下没有发生屈服。连梁有部分进入弯曲屈服状态,但没有发生剪切破坏。框架梁有少数进入弯曲屈服状态,但没有发生剪切破坏。通过调整连梁和框架梁的配筋和对部分连梁截面调整,使主要水平构件不进入屈服。

这从设计上保证了中震不屈服概念的具体落实,也体现了地震中各构件的屈服顺序基本上是首先是连梁屈服,其次有部分框架梁屈服,而竖向构件则没有出现屈服的情况。

动力弹塑性分析

《高层建筑混凝土结构技术规程》5.1.13条规定:B级高度和复杂的高层建筑结构宜进行罕遇地震下的弹塑性静力或动力分析。因此,我们针对本项目结构进行了弹塑性动力时程分析的专向研究。

非线性动力时程分析是进行结构非线性地震反应分析比较完善的方法。这种方法可以准确展现结构高振型的影响, 也能够正确地自动地对多向地震输入的效应进行迭加及组合。动力弹塑性时程分析方法直接模拟结构在地震力作用下的非线性反应,将结构作为弹塑性振动体系加以分析,直接按照地震波输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内结构的内力和变形随时间变化的全过程。

在进行弹塑性动力时程分析前对结构非线性模型(以下简称ABAQUS模型)的各主要弹性性能指标与ETABS弹性模型结果进行了对比分析。在考虑P-Δ效应时,ABAQUS程序能够同时考虑几何非线性与材料非线性。结构的动力平衡方程建立在结构变形后的几何状态上,因此P- 效应被自动考虑。

结果显示非线性模型和弹性模型吻合的比较好,能够很好的反映结构的各项性能表现。因此可以用作罕遇地震下的动力分析。

(1)结构总质量:

ETABS模型:57.69万吨(DL+0.5LL);ABAQUS模型:57.49万吨(DL+0.5LL),模型的质量误差约为1%。

(2)自振周期与振型

对ABAQUS模型和ETABS模型的前6个振型、周期及变形形状进行了对比,结果显示,ABAQUS弹性模型与ETABS弹性分析模型的动力特性是一致的。

通过以上对比,可以认为用于罕遇地震作用下的结构动力弹塑性时程分析的计算模型是准确的。

通过弹塑性动力分析,得出如下结论:(1)罕遇地震作用下,连梁在t=5.4s时开始进入弹塑性工作阶段,分析结束时刻连梁的塑性发展得比较充分,对结构的抗震有利。剪力墙在t=6.6s时进入弹塑性工作阶段,晚于连梁。(2)罕遇地震作用下,结构位于中下部的剪力墙出现了中等程度的损伤,但剪力墙中钢筋基本未出现屈服;(3)罕遇地震作用下,结构中的连梁在罕遇地震双向输入作用下出现损伤程度较为严重,起到了一定的耗能作用,部分连梁钢筋进入屈服阶段;(4)罕遇地震作用下,结构最大层间位移角小于规范限值;(5)顶部中下部楼层楼板在罕遇地震下损伤情况较为明显,可能需要适当加大楼板配筋;(6)该结构具有良好的抗震性能,能够抵御7度大震地震波(峰值加速度220gal),能够实现“大震不倒”的性能目标。大震下,结构能达到抗震性能设计目标D级。

结论

本文介绍了深圳宏欣豪园项目E栋塔楼的结构设计内容,包括弹性小震场地谱、规范谱分析,时程分析,中震不屈服分析及动力弹塑性的计算分析,通过对计算结果的分析比较,证明了主体结构在承受水平荷载和竖向荷载的作用下,能够完全满足承载力的使用要求及正常使用极限状态下的变形要求,保证了各构件的正常使用和整个结构的安全、经济可靠。本文有关设计的思路可为低地震烈度、高风荷载地区超高层住宅的结构设计提供参考。

篇2

中图分类号:TU323.5 文献标识码:A 文章编号:

1 工程概况

本工程为一幢超高层综合写字楼( 图 1) 。主楼结构平面尺寸为 34. 6 × 34. 6 ( m) ,核心筒尺寸为 12. 6 ×15. 1 ( m) 。主楼地下 5 层( 高 20. 4 m) ,地上 47层( 结构出地面高度 179. 6 m) ,其中裙房共 7 层( 高 34. 5m) 。除避难层层高为 3. 9 m 外,其余标准层层高均为3. 4m。抗震设防烈度为 6 度,基本地震加速度为 0. 05 g,设计地震分组为第一组,建筑抗震设防类别为丙类。结构抗震等级为二级。主楼基本风压按 100 年重现期风压值 0. 45 kPa 考虑,地面粗糙度为 B 类。

图 1 建筑效果图

2 结构抗震超限情况及性能设计目标

本工程为高度超限的高层结构。设计时采用两阶段的抗震设计并采取相应的抗震构造措施来满足三个水准的要求,抗震设计在满足国家及地方规范的基础上,根据性能化抗震设计方法进行设计,并采取表 1 的性能控制目标。

表 1 结构构件抗震性能目标

3 结构抗震性能计算分析

分别进行结构在多遇地震,设防地震及罕遇地震作用情况下分析。

3. 1 多遇地震下结构性能分析

3. 1. 1 多遇地震下振型分解反应谱法计算分析

采用扭转欧联振型分解反应谱法对结构进行多遇地震作用下弹性分析,在强制刚性楼板假定条件下采用 STAWE,ETABS 及 MIDAS - Building 进行对比计算分析,控制结构的位移比、位移角、周期比、刚度比,抗倾覆及整体稳定等指标。上述不同力学模型计算结果表明,主要控制指标结果相近,未出现异常。表 2 ~3 为周期及位移角计算结果比较。

表 2 结构周期及振型

表 3 风和地震作用所得层间位移角

3. 1. 2 多遇地震下弹性动力时程分析

根据拟建场地特性选取了 2 组天然地震波,1 组人工波作为时程分析的输入。3 组地震波的反应谱与《抗规》标准地震反应谱的基本吻合,结构前三周期点上地震波反应谱的平均值与《抗规》标准地震反应谱相差均在 20% 以内。多遇地震弹性时程分析所得结构底部剪力峰值与按照《抗规》振型分解反应谱法进行分析所得的底部剪力的对比情况,可见单组地震波输入所得的底部剪力峰值均在《抗规》振型分解反应谱法( CQC) 的 65 ~135% 之间,3 组地震波结果的平均值与《抗规》振型分解反应谱法( CQC) 结果之差在 20%以内。满足高规要求。

表 4 时程分析底部剪力与 CQC 反应谱法对比

多遇地震时程分析时地震波主分量峰值统一取为18cm / s2。3 组地震波时程结果的平均值与 CQC 法的结果吻合较好,单组地震波计算所得的结构底部剪力峰值的最小值达到了反应谱法底部剪力的 89%。X 主向时 3 组地震波时程计算所得的结构最大层间位移角包络值为 1/2034,Y主向时该值为 1/2012,均小于按照规范规定计算所得限值1 /680。多遇地震作用下结构、构件的设计均取时程分析和反应谱方法的较大值,对反应谱方法的计算结果采用相应楼层地震力放大的方法来调整楼层地震剪力。最终计算结果均能满足规范要求。

3. 2 设防地震下结构性能分析

3. 2. 1 设防地震下振型分解反应谱法计算分析

采用中国建筑科学研究院研制的多层及高层建筑结构空间有限元分析与设计软件 SATWE 进行结构的中震弹性和中震不屈服设计。场地特性参考《抗规》规定取值,场地特征周期为 0. 35 s,水平地震影响系数最大值取为 0. 12( 对应于 5%阻尼比) 。

( 1) 位移分析。设防地震反应谱分析得到的结构两个主向的层间位移角 X 向最大层间位移角为 1/673,位于第34 层; Y 向最大层间位移角为 1 /720,位于第 34 层,均小于性能目标设定的设防地震下层间位移角限值 1/340。

( 2) 承载力分析。

1) 设防地震作用下 2 号楼核心筒剪力墙按照正截面承载力不屈服进行设计,其受剪承载力满足下式要求:

γGSGE+ γEhS*Ekh≤ Rd/ γRE

( 1)式中,γG和 γEh分别为重力荷载代表值和水平地震作用地震作用效应的分项系数; γRE

为抗震承载力调整系数; SGE和 S*Ekh分别为重力荷载代表值效应和未经调整的水平地震作用标准值效应; Rd为承载力设计值。计算表明,2 号楼结构核心筒剪力墙均能满足性能目标的要求。

2) 设防地震作用下框架柱按弹性设计。分析表明,所有框架柱均能满足式( 1) 的要求。

3) 设防地震作用下框架梁按正截面承载力不屈服进行设计。

4) 验算表明,钢筋混凝土连梁受剪承载力均满足下式,达到性能目标要求:

SGE+ S*Ekh≤ Rk

( 2)式中,Rk为按照材料强度标准值计算的截面受剪承载力,其余符号同式( 1) 。

3. 2. 2 设防地震下非线性动力弹塑性计算分析

计算程序为中国建筑科学研究院研制的 EPDA 结构动力弹塑性分析程序。梁、柱等构件采用纤维束模型模拟其弹塑性性质,剪力墙则采用非线性壳单元模拟。设防地震下的结构非线性时程分析采用 2 组天然地震波和 1 组人工波共 3 组地震波作为输入。地震波水平主分量的加速度峰值按照《抗规》的规定调整为 0. 05g,水平次方向的加速度峰值调整为 0. 0425g。结构阻尼比仍取为 0. 05。鉴于目前地震工程学科的研究尚存诸多课题有待解决,以及适宜的地震动加速度记录较少,处理非线性时程分析位移结果时仍需参考多遇地震的弹性反应谱分析结果。具体做法是: 将弹塑性分析得到的结构某部位在某地震波下的弹塑性位移与该部位在该地震加速度记录下的多遇地震位移之比作为弹塑性位移放大系数; 多组地震波的弹塑性位移放大系数包络值与结构弹性反应谱方法得到的该部位位移之积作为其结构弹塑性位移。本报告中对设防地震和罕遇地震非线性时程分析所得结构位移结果均采用这一处理方法。

设防地震作用下的弹塑性层间位移角 X 主向和 Y 主向时最大层间位移角分别为1/453( 第 27 层) 和 1/563( 第 28层) ,分别为规范弹性层间位移角限值的 1. 50 倍和 1. 21 倍,均小于设防地震水准下结构性能目标所定位移角限值 1/340。

设防地震作用下各组地震波 X 向底部剪力峰值与相应多遇地震水准时底部剪力峰值之比的平均值为 2. 04,Y 向为 2. 13。设防地震和多遇地震的主分量加速度峰值之比为2. 72。X 主向和 Y 主向设防地震作用下结构底部剪力峰值与相应的多遇地震作用下结构底部剪力峰值之比均小于加速度峰值之比,表明结构在设防地震作用下部分连梁出现塑性铰后,结构刚度有所下降,结构部分耗能机制已经形成,吸收的地震作用较相应的弹性结构有所减小。

3. 3 罕遇地震下结构性能分析

罕遇地震作用下结构的层间位移角计算方法同设防地震时的情况,即以各组地震波罕遇水准输入得到的结果与相应多遇地震输入结果的比值的包络值和多遇地震弹性反应谱分析的结果的乘积作为罕遇地震下的结构反应。结构罕遇地震下 X 向和 Y 向最大层间位移角出现在27 层,达到1 /189; Y 向最大楼层层间位移角为 1 /207( 28 层) 。罕遇地震下最大层间位移角均小于罕遇地震水准时结构性能目标所定限值 1/170。

各组地震波 X 向底部剪力峰值与相应多遇地震水准时底部剪力峰值之比的平均值为 3. 48,Y 向为 3. 83。罕遇地震和多遇地震的主分量加速度峰值之比为 6. 94。X 主向和

Y 主向罕遇地震作用下结构底部剪力峰值与相应的多遇地震作用下结构底部剪力峰值之比均明显小于加速度峰值之比,表明结构在罕遇地震作用下塑性发展程度较为显著,结构刚度下降较多,地震输入能量大多被进入塑性阶段的构件耗散。

( 1) 为提高结构核心筒剪力墙在罕遇地震下的抗剪能力。各片剪力墙的承担的剪力值均偏于安全地采用罕遇地震弹性反应谱分析的结果; 剪力墙的截面控制条件采用下式:

VGE+ V*EK≤ 0. 15βcfckbh0( 3)

式中,VGE和V*EK分别为重力荷载代表值和地震作用标准值产生的构件剪力,βc为混凝土强度影响系数,fck为混凝土强度标准值,b 和 h0分别为构件截面宽度和有效高度。验算表明,所有剪力墙均能满足式( 3) 的要求。

( 2) 罕遇地震下混凝土框架柱正截面承载力满足公式( 2) ,斜截面承载力满足公式( 1) 。均达到了性能目标的要求。外框架的大部分梁已经进入屈服阶段。满足性能目标的要求。

( 3) 罕遇地震下部分钢筋混凝土连梁已屈服。经验算,其抗剪能力满足下式的要求:

( 4)

篇3

中图分类号:TU398文献标识码:A文章编号:1007-7359(2015)06-0121-03

1工程概况

某大型综合办公楼,规划建设用地面积为12202m2,总建筑面积为79110m2。该项目由1栋37层办公楼及附属裙房组成,地下3层,主要功能为办公及商业。地上总建筑面积为51240m2,地下总建筑面积为27870m2,办公楼结构主屋面高度为149.35m。

2结构设计

2.1结构选型及结构布置

本建筑标准层平面形状接近正方形,局部凹进,平面尺寸为37.5m×37.5m,高宽比为3.98。基础埋深18.75m(约1/8),屋面以上局部收进。一~五层(裙房)层高均为4.99m,标准层层高为3.8m。竖向结构采用平面布置对称均匀、沿竖向贯通落地的型钢混凝土框架-钢筋混凝土核心筒结构体系。筒体连续完整,尺寸为16.5m(X向)×14.8m(Y向),核心筒最大高宽比为10.1。外框柱的布置主要依据建筑的轴网来确定,上部结构基本柱网为12.6m×12.45m。在设计的过程中,考虑到甲方对层高要求较高,同时梁的跨度较大,因此结构设计时对结构的主要框架梁均采用型钢混凝土梁,通过降低结构梁的高度来提升建筑楼层的净高。

2.2结构设计参数本工程主要结构设计参数。

2.3主要构件截面尺寸、配筋及材料

2.3.1混凝土核心筒

核心筒墙体的厚度从下至上面逐步减薄,使得上部筒体适当弱化,整体结构刚度变小,可减弱水平地震作用。相对来说,使得框架的剪切刚度得到了提高,因此对于结构的抗震来说是有利的。为保证其与型钢混凝土框架梁的连接,在核心筒的四角以及框架梁与核心筒连接处,均设置了端柱,并在其内安徽建筑2015年第6期(总206期)安徽建筑小震、风荷载作用下结构的位移角、位移比对比表表6计算软件水平地震作用下最大层间位移角风荷载作用下最大层间位移角规定水平力作用下最大扭转位移比SATWEX向Y向1/18681/20601/14431/14631.38(X+5%)1.32(Y+5%)盈建科X向Y向1/16491/18771/12071/12481.37(X+5%)1.31(Y+5%)主体结构周期、平动和扭转系数对比表表4振型编号SATWE周期(s)盈建科周期(s)SATWE平动系数(X×Y)扭转系数振型14.124.42(0.56+0.44)0.01振型24.104.39(0.43+0.56)0.00振型32.893.21(0.01+0.00)0.99振型41.171.26(0.88+0.00)0.12振型51.061.14(0.00+0.98)0.02振型61.051.13(0.12+0.02)0.86T扭/TI0.70<0.850.73<0.85核心筒墙厚、混凝土强度等级表2楼层墙体厚度(mm)内部墙体厚度(mm)混凝土强度等级地下1~2层450200~250C50一层~六层400200~250C50~C45六层~屋面层350200~250C40~C35标准层结构平面布置图部设置了型钢柱,可大大提高墙体的延性,核心筒剪力墙的墙厚、混凝土的强度等级详见表2。

2.3.2外框柱

为减少柱截面,提高结构的延性,以及便于与楼层型钢混凝土梁的连接,外框柱均采用型钢混凝土框架柱。

2.3.3楼面梁

型钢混凝土框架梁:截面尺寸为400×750,内置型钢为H-450×200×12×16。次梁截面尺寸:300×700、250×650。

2.3.4楼板厚度

标准层核心筒内楼板厚150mm,核心筒外楼板厚120mm,屋面板厚为150mm。

3结构的分析与计算

3.1多遇地震作用下计算分析

为保证计算结果的准确性,采用两个不同力学模型的结构空间分析程序SATWE和盈建科进行计算,整体结构的主要计算结果及相互对比见表3~6所示。从计算结果的对比来看:①计算结果基本相符;②SATWE计算的结构刚度略大于盈建科;③所有竖向构件未出现拉力,满足结构抗倾覆要求;④结构刚度、竖向规则性等各项计算指标均满足现行规范。

3.2多遇地震作用下的弹性时程分析

本工程采用时程分析法进行了多遇地震的补充计算(采用SATWE软件计算),并根据规范的相关要求选取1条人工波RH1TG045和2条天然波TH1TG045、TH2TG045进行计算。分析结果。从以上分析图中可以看出:①所得的计算结果规律基本一致;②不同的地震波作用下结构的内力有较明显的区别;③不同地震波作用下的结构平均效应均小于振型分解反应谱下的结构内力。因此,本工程最终采用振型分解反应谱法的计算结果作为设计依据。

3.3中震作用下结构的竖向构件性能分析

按中震弹性做结构计算,外框柱及核心筒剪力墙截面均未出现抗剪超筋信息,处于抗剪弹性阶段。按中震不屈服做结构计算,所有抗震等级自动按照抗震等级四级处理,外框柱及核心筒剪力墙截面均未出现抗弯超筋信息,处于抗弯不屈服阶段。综合以上分析,竖向构件可以满足预先设定的中震作用下的性能要求。

3.4罕遇地震作用下的静力弹塑性分析

分析表明,核心筒中的部分剪力墙及连梁在大震作用下处于屈服状态。为从整体上把握结构的抗倒塌能力,找到结构相对较为薄弱环节,主体结构采用PUSH&EPDA软件进行静力弹塑性推覆分析(为简化,推覆模型中不带地下室)。在倒三角形荷载作用下,结构Y向结构弹塑性静力推覆能力谱验算结果如图6所示(X向计算结果相似,此处略去)。计算结果表明:X向及Y向结构变形性能均能满足需求谱需求,可以达到大震作用下的抗倒塌目标。

4设计结论、抗震措施

本工程属于超高层建筑,上部结构主要跨度12.6m×12.45m,跨度较大。考虑到型钢混凝土结构构件的承载能力可以高于同样尺寸的钢筋混凝土构件的1倍以上。因此,对于本工程,通过采用型钢混凝土柱和型钢混凝土梁来减小构件截面,可以增加使用面积和层高,其经济效益显著,同时也极大的提高了结构的延性性能,抗屈服能力增强,具有优良的抗震性能。计算考虑藕联,并对框架梁配筋加强;标准层局部凹口较大处,采用双层双向配筋;为保证结构的延性、使得框架部分具有二道防线的能力,对框架柱采用如下加强措施:①型钢柱含钢率不小于4%,纵向钢筋配筋率不小于0.8%,底部加强区适当提高框架柱的含钢率;②底部加强区、斜柱(屋面局部收进处采用斜柱)转折处的上下一层框架柱进行中震弹性设计;型钢混凝土梁含钢率不小于3%,配筋率不小于0.3%。

参考文献

[1]徐培福,傅学怡,王翠坤,等.复杂高层建筑结构设计[M].北京:中国建筑工业出版社,2005.

篇4

[中图分类号]F407.9 [文献标识码]A [文章编号]1672-5158(2013)06-0252-01

前言

随着我国经济的进步,高层建筑已经无法满足社会发展的需求,超高层建筑就逐渐出现在人们的视线中,并且大范围的扩展,在我国的各个城市的角落,都能看到超高层的建筑。超高层建筑之所以发展的如此的迅速,有两个方面的原因,一是由于城市的发展的需要,需要超高层建筑作为城市的形象,另一个最主要的原因,还是由于土地资源的紧张,从而不断的研究建筑物的高度缓解土地短缺的压力。因此,本文重点介绍了有关超高层建筑结构设计的相关的问题。下面就对超高层结构设计进行具体的分析。

1 超高层建筑与高层建筑结构设计中的区别分析

首先,在建筑物高度的设计上,一般超高层建筑的高度超过100m到几百米之间,而高层建筑的高度一般在100m之内。超高层建筑物的结构类型比高层建筑物的结构类型要多。超高层建筑物的平面形状一般为方形,而高层建筑物的平面形状的选择比较多。超高层建筑物的基础形式一般为等厚板筏基和箱基,而没有高层建筑物所用的梁板筏基。超高层建筑物一般不采用复合地基,而高层建筑基本上采用的是复合地基。在对超高层建筑物进行设计的时候如果建筑物超过200m需要满足在风荷作用下的舒适度的相关要求,而对高层建筑物的设计一般不考虑上述的因素。

2 超高层建筑结构设计中主要考虑的因素分析

在进行超高层结构设计中对于结构类型的选择需要充分的考虑当地地质条件及其对抗震目标的设定等。对于地质的条件,在拟建筑基地需要具备能够采用天然地基的条件,并且具有抗震设防烈度较低的特点。因此,在建筑结构上,可以优先的考虑钢筋混凝土的结构。如果在地震高发区应该优先考虑钢结构及其混合结构。对于抗震方面的考虑主要是要确定抗震性能的目标。要求超高层建筑物的竖向构件承载力需要达到在中震的时候能够不被破坏,在这样情况下,钢筋混凝土结构很难达到抗震的目标,因此,需要钢结构或者混合结构;另外对于结构类型的选择上,需要充分的考虑经济条件。在一般的工程建筑中,钢筋混凝土结构类型造价比较低,全钢的结构类型是最贵的,因此,应根据超高层建筑物的经济上的条件进行合理的选择。现在超高层建筑结构多采用钢筋混凝土柱、钢筋混凝土核心筒这种混合型的结构。因其这种混合结构与全钢结构造价要便宜,与钢筋混凝土结构刚度要好,因此,被广泛的应用与超高层建筑结构设计中。

3 超高层建筑结构中的基础设计

在超高层建筑物,一般有多层地下室,超高层建筑物基础埋置的深度需要满足稳定性的要求。而对于一些地区的基岩埋藏较浅的特点,无法建构多层的地下室,需要设置嵌岩锚杆进而满足稳定性的要求。超高层建筑物的地基基础的形式需要根据建筑场地工程地质的条件,在满足其稳定性的要求的情况下,还需要满足其沉降和变形设计的要求。当超高层建筑物的基底砌置在黏性土层或者海沉积的土层的时候,而这种土层的地基承载力不能够满足变形设计的时候,需要应用合理的用桩基方案。当超高层建筑物在40层以上的时候,而基底砌置在厚度较大的卵石层的时候,这种基底的承载力特征值以及压缩模量都比较高,因此,需要考虑天然地基的方案。如果基底砌置在中风化以及微风化基岩上的时候,都需要采用天然地基的方法。

3.1 天然地基基础

在卵石层或者微风化基岩上的地基都需要天然地基的方法。但是其基础的形式是不同的,当基底是卵石层的时候,一般采用等厚板筏形的基础。等厚板筏基在板厚的要求上,应该具有非常大的刚度,从而使基底的压力能够均匀的分布,从而减小外框以及内筒的沉降变形,在设计时,等厚板筏基的板厚取外框以及内筒之间的跨度应该保持在四分之一左右。超高层建筑物的结构设计中对于基底砌置在微风化的基岩上,这种基岩承载力的特征值是比较高。因此,外框柱应该采用立基础,内筒应该采用条形基础或者等厚板筏形的基础。并且,由于微风化基岩的刚度非常的大,在荷载作用下沉降以及变形比较微小,因此,在地下室的底板厚应该按照构造的设置以及按照岩石裂隙水有关的水浮力进行计算。在基岩上独立柱的基础,通常情况下,为了使施工不破坏基岩达到整体性的效果,一般采用人工挖孔桩的方式进行开挖。

3.2 桩基础设计

对于超高层建筑物桩基础的设计,主要考虑桩基底承受的压力比较大,从而要求单桩竖向能够承载很高的压力。因此,我们在对超高层建筑物的桩基础设计的时候一般采用大直径钻孔灌注桩以及采用大直径人工挖孔扩底灌注桩。对于选择桩端持力层上,最主要的是应该充分的考虑层厚较大以及密实的卵石层或者微风化基岩,从而减少桩端的沉降和变形。在对超高层建筑物桩基础设计的主要的原则是,应该集中布于柱下及墙下。如果在进行桩基础设计的时候采用的是端承桩或者摩擦端承桩,因为单桩竖向的承载力特征值比较高,因此,需要的桩数比较少,可以布于柱下以及墙下。如果对桩基础的设计采用的是端承摩擦桩或者摩擦桩,因为单桩竖向承载力的特征值比较低,因此需要整个基底都采用满布桩才能够满足其稳定性和不变形的要求。对于上述所探讨了不同的布桩形式,桩承台板的厚度上是不同的,满布桩于柱下以及墙下承台厚度需要冲切进行确定。并且超高层建筑物的地下室底板的厚度可以小于外框和以及筒承台的厚度。对于满布桩承台的厚度需要和天然地基基础的等厚板筏基的要求一样,承台板应该具有很大的刚度,从而以便基底承台桩能够承受相当大的压力。由此可见,一般承台板的厚度并不是由冲切所决定的。有关满布桩等厚板承台内力方面的计算,可以根据单桩竖向的承载力及其平均反力进行计算,这样计算出来的结果比较符合工程受力的实际情况。另外,对于钻孔灌注成孔的方法,在以往,一般采用的反循环钻机进行施工,但是现在对于桩长一般采用的是旋挖钻机,其施工的速度比较快,尤其是桩端沉渣厚度很小,进而能够确保钻孔桩的施工质量。这种钻机在实际的工程实施中,凡是有条件的都应该优先采用这种钻机。

4 结束语

本文对超高层建筑结构设计进行了相关方面的研究与探讨,通过了解超高层建筑与高层建筑在实际的设计中的区别,从而能够更加的清楚在超高层建筑结构设计中应该针对于高程建筑设计的不同点。通过分析在超高层建筑结构设计中的需要考虑的因素,进一步了解了超高层建筑结构设计中应该把握哪些重点的问题。并且具体的分析了超高层建筑结构设计中的基础设计,全面了解其基础设计中的设计要点。通过本文的分析,能够为日后的超高层建筑结构设计提供一些理论性的参考价值,进一步促进超高层建筑结构设计能够更加的科学和合理。

参考文献

[1]陈天虹,林英舜,王鹏罛,超高层建筑中结构概念设计的几个问题[J],建筑技术,2006(05)

篇5

1超高层及复杂高层建筑结构设计的要求

(1)科学分析构造。在设计超高层及复杂高层建筑结构过程中,设计人员需要对建筑的整体构造进行合理设计,严格遵循实用性与稳定性的原则,对结构设计细节加以高度重视,加固设计部分应力符合集中的部位。同时设计人员需要综合分析外界的环境因素,如风向风力、温度变化等,以免建筑物出现形变和侧移等问题,确保构造的稳定性[1]。此外,设计人员需要准确把握建筑材料的性能,尤其是材料的形变能力和延展性,以便因材料质量问题而影响建筑构造的使用性能。(2)优选结构方案。结构方案的选择是超高层及复杂高层建筑建设的前提与基础,因此设计人员需要以工程实际情况为依据,科学确定结构方案,在确保结构安全稳定的基础上,协调好建筑成本投入及结构优化之间的关系。同时构建系统科学的评价方案,在评价体系中纳入相关的评价标准,如自然因素、施工工艺、工程材料和设计要求等,然后分析和对比超高层及复杂高层建筑的结构设计方案,优选出最佳方案,保证工程的有序实施。(3)完善计算简图。在结构设计环节,计算简图的目的就是为方案的选择提供数据支撑,达到结构精细化分析的目的。由于计算简图的完善与否直接关系到结构设计的科学合理,因此在实际工作中,设计人员应体现出计算简图的全面性与直观性特征,对结构简图的绘制误差进行科学控制,以便获得关键性的内容,真实准确反映出工程的结构信息,便于工程的顺利开展。

2超高层及复杂高层建筑结构设计的要点

超高层及复杂高层建筑结构设计的要点具体表现为以下几方面:(1)注重概念设计。在超高层及复杂高层建筑的结构设计中,需要高度注重概念设计,适当提高结构的均匀性、完整性、规则性,保证结构抗侧力与竖向的传力路径相对直接与清晰;同时在设计中适当融合节能和环保的理念,构建切实可行的耗能机制,关注材料与结构的利用率,保证结构受力的完整性。(2)加强抗震设计。抗震设计保证超高层及复杂高层建筑安全性的前提与基础,要想做好抗震设计应做好如下几点:①关注抗震结构设计的方法和质量。由于地震作用方向的随机性强,对地震荷载进行准确计算后,需要从构件与结构等方面出发,科学选用抗侧力结构体系,使刚心与形心相重合,提高结构安全性能[2]。②认真考虑抗震设防烈度。抗震设防烈度是建筑结构设计的重要内容,在烈度设计中应以建筑物最大承受强度大小为主,以此增强建筑物的安全性与经济性,有效减少建设误差,保证人们的生命财产安全。③科学选择建材。抗震设计材料应具备材质均匀、高强轻质等特点,并且构件连接应有良好的延性、连续性、整体性,这样才能有效消耗地震的能力,降低地震反应,减少因地震造成的损失。④加强构件强度。为了增强超高层及复杂高层建筑结构的抗变形能力和抗震性能,可以选择强度较大的结构,如钢结构、型钢混凝土结构、混凝土结构等。(3)合理选择结构抗侧力体系。要想保证建筑的安全性,必须要对结构抗侧力体系进行科学选择,但是在选择过程中需要注意几点:①在实际设计环节,应该高度重视相关结构抗侧力构件的联系,使其形成统一和完整的整体。②如果建筑结构中涉及诸多抗侧力结构体系,则需要对其进行认真分析,科学评判其贡献程度,对其效用进行详细考察[3]。③从建筑物实际高度出发,对所学的结构体系进行确定,如建筑物高度不超过100m,框架剪力墙、框架、剪力墙为最佳体系构成;高度保持在100~200m的范围内,剪力墙和框架核心筒为最佳体系构成;盖度在200~300m的范围内,框架核心筒和和框架核心筒伸臂为最佳体系构成;高度低于600m时,衔架、斜撑、组合体、筒中筒伸臂、巨型框架为最佳体系构成。

3结束语

在超高层及复杂高层建筑结构设计过程中,需要对其设计要点进行准确掌握,从施工过程、抗震设防烈度和结构方案等方面处罚,做到科学分析构造、优选结构方案、完善计算简图,并加强抗震设计,注重概念设计,合理选择结构抗侧力体系。这样才能提高材料的利用率,保证建筑结构的稳固性和安全性,增强建筑的整体质量和使用性能,达到良好的设计效果。

参考文献

[1]吴荣德,李国方.复杂高层与超高层建筑结构设计要点探析[J].住宅与房地产,2015,28:40.

篇6

中图分类号: TU2 文献标识码: A 文章编号:

随着我国社会经济建设的快速发展,城市化进程不断加快,城镇人口日益增加,致使城市住房建设用地较为紧张,超高层住宅建筑的建设也日益增加。目前,超高层住宅建筑内部结构设计方面的变化愈加明显,许多新兴的结构设计方案逐渐被超高层住宅建筑工程所采用。同时住宅建筑结构类型与使用功能越来越复杂,结构体系日趋多样化,对住宅建筑结构设计工作的要求也不断提高。在超高层建筑建设过程中,部分建筑的结构设计环节并不是十分合理,加上工程设计人员容易出现一些概念性的错误,给建筑的质量安全和使用带来了一定的安全隐患。因此,如何提高超高层住宅建筑结构设计水平,就成为了工程设计人员面临的一项难题。

1 工程概况

某高层住宅建筑面积为29000.4m2,地下1层,地上43层,大屋面高度138.02m。本工程结构体系采用现浇钢筋混凝土剪力墙结构,120m<高度<150m,属于B级高度建筑,楼盖为现浇钢筋砼梁板体系。

建筑抗震设防类别为标准设防类(丙类),结构安全等级为二级,设计使用年限为50年。所在地区的抗震设防烈度为7度,设计基本地震加速度为0.10g,设计地震分组为第二组,场地类别为Ⅲ类,场地特征周期为0.55s,地震影响系数最大值采用0.08,上部结构阻尼比0.05。建筑类别调整后用于抗震验算的烈度为7度,用于确定抗震等级的烈度为7度,剪力墙抗震等级为一级。

2 基础设计

本工程的基础设计等级为甲级,主楼基础采用冲钻孔灌注桩,桩身混凝土强度等级为C35,桩直径为1100mm,单桩竖向承载力特征值为8000kN;桩端持力层中风化凝灰岩(11)层,桩身全断面进入持力层≥1100mm,桩长约50m。桩基全面施工前应进行试打桩及静载试验工作,以确定桩基施工的控制条件和桩竖向抗压承载力特征值。

承台按抗冲切、剪切计算厚度为2700mm,承台面标高为-5.200,基础埋置深度为7.7m(从室外地面起算)。

3 上部结构设计

3.1 超限情况的认定

参照建设部建质[2006]220号《超限高层建筑工程抗震设防专项审查技术要点》附录一“超限高层建筑工程主要范围的参照简表”,结合本工程实际逐条判别,将存在超限的情况汇总如下。

(1)附表一,房屋高度方面

设防烈度为7度,剪力墙结构,总高度138.05m>[120m],超限。

(2)同时具有附表二所列三项及三项以上不规则的高层建筑(因篇幅所限,本文不再详细列出)。

第一项.扭转不规则:考虑偶然偏心的扭转位移比>1.2但<1.3,虽然本条超限,但仅此一项。所以本工程不属于附表二所列的超限高层。

(3)具有附表三某一项不规则的高层建筑工程。根据SATWE计算结果分析、判别,本工程亦不属于表三所列的超限高层。

综上所述,本工程只属于高度超限的超高层建筑。

3.2 上部结构计算分析及结构设计

本工程为剪力墙结构,120m<高度<150m,属于B级高度建筑,按《高层建筑混凝土结构技术规程》(JGJ3-2002)(以下简称高规)5.1.13条规定:

(1)应采用至少两个不同力学模型的三维空间分析软件进行整体内力位移计算。

(2)应采用弹性时程分析法进行整体补充计算。

根据《高规》要求,本工程采用的时程分析计算程序为PKPM系列的SATWE软件,并采用PMSAP软件进行对比分析。

本工程属于纯剪结构,作为抗侧力构件的剪力墙,选用正确的结构分析程序尤为重要。SATWE对剪力墙采用墙元模型来分析其受力状态,这种模型的计算精度比薄壁柱单元高,所以我省大多数工程的结构计算都选用SATWE程序。实际上就有限元理论目前的发展水平来看,用壳元来模拟剪力墙的受力状态是比较切合实际的,因为壳元和剪力墙一样,既有平面内刚度,又有平面外刚度。实际工程中的剪力墙几何尺寸、洞口大小及其空间位置等都有较大的随意性。为了降低剪力墙的几何描述和壳元单元划分的难度,SATWE借鉴了SAP84的墙元概念,在四节点等参平面壳元的基础上,采用静力凝聚原理构造了一种通用墙元,减少了部分剪力墙因墙元细分而增加的内部自由度和数据处理量,虽然提高了分析效率,却影响了剪力墙的分析精度。此外,从理论上讲,如果对楼板采用平面板元或壳元来模拟其真实的受力状态和刚度,对结构整体计算分析比较精确,但是这样处理会增加许多计算工作。在实际工程结构分析中,多采用“楼板平面内无限刚”假定,以达到减少自由度,简化结构分析的目的,这对于某些工程可能导致较大的计算误差。SATWE对于楼板采用了以下几种假定:(1)楼板平面内无限刚;(2)楼板分块平面内无限刚;(3)楼板分块平面内无限刚,并带有弹性连接板;(4)楼板为弹性连接板。对弹性楼板实际上是以PMCAD前处理数据中的一个房间的楼板作为一个超单元,内部自由度被凝聚了,计算结果具有一定的近似性,某种程度上影响了分析精度。根据高规要求,本工程应采用两个不同力学模型的三维空间分析软件进行整体内力位移计算,由于PMSAP对剪力墙和楼板都采用了比较精确的有限元分析,单元模型更接近结构的真实受力状态,虽然数据处理量大大增加,但其分析精度却比SATWE高。用PMSAP软件对SATWE程序的计算结果进行分析、校核,是比较可信的。

SATWE和PMSAP两个程序均采用弹性时程分析法进行多遇地震下的补充计算,弹性时程分析法计算结果作为振型分解反应谱法的补充。

程分析主要结果汇总如下:

表1 结构模态信息

表2 地震荷载(反应谱法)和风荷载下计算得到的结构最大响应

多遇地震时弹性时程分析所取的地面运动加速度时程的最大值为35cm/s2。针对报告中提供的实际强震记录和人工模拟的加速度时程曲线,根据08版抗震规范要求,本工程选择了两条天然波和一条人工波。这三条波的时程曲线计算所得结构底部剪力均大于振型分解反应谱法计算结果的65%,且三条时程曲线计算所得结构底部剪力的平均值亦大于振型分解反应谱法(以下简称CQC)计算结果的80%。由此可见本工程选择的地震波是满足规范及设计要求的。

SATWE和PMSAP时程分析的楼层剪力曲线如(图1、图2)所示。

图1 SATWE时程分析楼层剪力图

图2 PMSAP时程分析楼层剪力图

比较上图振型分解反应谱法(CQC)计算的楼层剪力曲线图,在大部分楼层基本能包络时程分析曲线,仅电算34层以上CQC法计算楼层剪力略小于时程分析的结果。由此可见振型分解反应谱法用于本工程的抗震分析是安全可靠的。设计中仍以振型分解反应谱法计算结果为主,并将34层以上部分指定为薄弱层,该部分楼层地震剪力予以放大。这一方案也得到了本工程超限高层审查与会专家的认可。

比较PMSAP和SATWE计算出的基底剪力非常接近,其余参数如周期、结构的总质量、地震荷载和风荷载下计算得到的结构最大响应位移、地震下的剪重比等都比较接近,说明用这两个程序做计算分析是可以互相校核的。

3 抗震性能设计

本工程综合考虑设防烈度,场地条件,房屋高度,不规则的部位和程度等因素,本工程只属于高度超限的超高层建筑,且高度只超过A级而未超过B级,故将本工程预期抗震性能目标定位在“D”级,即为小震下满足性能水准1的要求,中震满足性能水准4的要求,大震下满足性能水准5的要求。

普通的高层结构抗震设计基于小振弹性设计,对于本超高层结构作为主要承重构件的剪力墙,尤其是底部加强区需要提高其抗震承载能力。根据抗震概念设计“强柱弱梁、强剪弱弯”的要求,剪力墙也需要有更高的抗震安全储备,所以本工程剪力墙底部加强区采用中震设计。具体措施如下:

(1)根据安评报告中震设计的地震影响系数最大值采用0.23,不考虑与抗震等级有关的内力增大系数(即剪力墙抗震等级定为四级),不计入风荷载的组合效应。

(2)抗剪验算按中震弹性设计,考虑重力荷载与地震作用组合的分项系数,材料强度取设计值,考虑抗震承载力调整系数。计算结果作为剪力墙底部加强区水平筋的配筋依据。

(3)抗弯验算按中震不屈服设计,不考虑重力荷载与地震作用组合的分项系数,材料强度取标准值,不考虑抗震承载力调整系数。计算结果作为剪力墙底部加强区约束边缘构件竖向钢筋的配筋依据。

本工程通过对关键构件剪力墙底部加强区进行中震设计,即抗弯承载力按中震不屈服复核,抗剪承载力按中震弹性复核,结构能满足性能水准1、4的要求,预估结构在大震作用下能满足性能水准5的要求。各性能水准目标具体描述如下:

性能水准1:结构在遭受多遇地震后完好,无损伤,一般不需修理即可继续使用,人们不会因结构损伤造成伤害,可安全出入和使用。

性能水准4:遭受设防烈度地震后结构的重要部位构件轻微损坏,出现轻微裂缝,其他部位普通构件及耗能构件发生中等损害。

性能水准5:结构在预估的罕遇地震下发生比较严重的损坏,耗能构件及部分普通构件损坏比较严重,关键构件中等损坏,有明显裂缝,结构需要排险大修。

4 结论

通过工程实例分析超高层住宅建筑结构设计工作,可以得出以下几点结论:①PMSAP和SATWE计算结果的比较表明了SATWE计算结果进行结构设计是基本可靠的;②采用合理的方法对部分楼层剪力进行了调整,能够有效确保工程抗震分析安全、可靠;③对剪力墙底部加强区采用中震设计,能够满足住宅建筑的抗震需要。

篇7

Abstract: to a tall building for, and to adapt the building structure system, structure and arrangement of the conceptual design is not absolute but reasonable structure design should be the only. Based on many years of work experience, and structure design of a high-rising structure is analyzed, in order to offer reference for the same.

Keywords: tall building; Structure design

中图分类号:TU97 文献标识码:A 文章编号:

一、超高层建筑的结构设计特点

超高层的结构体系选择与低层、多层的建筑相比,超高层建筑的结构设计显得十分重要。不同的建筑结构体系选择可以对建筑的楼层数目、平面布置、施工技术要求、各种管道的布置及投资多少等产生最为直接的影响。超高层的建筑结构设计主要具有以下几个特点:

1 水平力是超高层建筑结构设计的主要因素。有研究证明,楼房的自重与楼面的载荷在竖向放人构件中所产生的弯矩与轴力大小仅仅是与楼房的高度一次方形成正比,但是水平载荷对与建筑所产生的倾覆力矩以及轴力的大小则是与楼房的高度二次方形成正比。因此在超高层的建筑设计中,水平力是设计主要因素。

2 轴向变形是不可忽视的。当楼层十分高时,由于楼房的自重而产生的轴向压应力会导致楼房的中柱产生出较大轴向变形,会直接导致连续梁的中间支座处负弯矩值直接减小,从而导致跨中正弯矩值与端支座的负弯矩值增大。

3 侧移做为控制指标。超高层的建筑结构侧移随着高度增加会迅速的增大(侧移量和楼层之间高度四次方是正比关系),所以结构侧移是超高层建筑结构设计的关键因素。

4 抗震设计的要求更高。超高层的建筑抗震设计必须要做到“三水准”要求,即“小震不坏,中震可修,大震不倒”。

二、工程概况

某大厦由一栋30层写字楼、一栋2层商业附楼和4层地下室组成,总建筑面积90149m2,屋面结构高度18280m、停机坪结构高度19320m。

三、总体结构设计

1 结构选型

本工程采用钢筋混凝土框架一核心筒结构,虽然其结构承载能力和抗变形能力比筒中筒结构差,但避免了结构竖向抗侧力构件的转换,满足了建筑立面效果和使用要求。为解决建筑首层层高120m、结构高度超限及减小柱截面等问题,下部若干层采用钢管混凝土组合柱,楼盖采用现浇普通钢筋混凝土梁板体系。

承载力和水平位移计算时,基本风压均按重现期为100年的0.90kN/m3取值,(广东省实施《高层建筑混凝土结构技术规程》JG13―2002补充规定DBJ/Tl5―46―2005尚未颁布)。由于结构侧向位移不满足限值要求,在第3O层利用建筑避难层,设置了钢筋混凝土桁架的结构加强层,结构加强层是一把双刃剑,虽然可提高结构抗侧移刚度,也使得结构竖向刚度突变,所以结构加强层及相邻层按《高规》要求进行了加强处理。

2 超限措施

本工程结构平面形状规则、刚度和承载力分布均匀,竖向体型也规则和均匀、结构抗侧力构件上下连续贯通(如图1),除结构高度超过适用限值外,其它指标通过调整后均达到未超限。

图1 结构布置平面图

由于结构高度超限、而且首层层高12.0m,超限应对措施把首层及下部若干层的结构抗侧力构件作为加强的重点:l~15层框架柱采用钢管混凝土组合柱、1~2层核心筒剪力墙四角附加型钢暗柱、首层抗震等级提高一级。钢管混凝土柱有着卓越的承载能力和变形能力,但其防腐和防火材料不仅造价较高还有时效性,需考虑今后的维修保养,钢管混凝土叠合柱及钢管混凝土组合柱可弥补这方面的缺陷。核心筒剪力墙四角附加型钢暗柱,以解决由于首层层高较大,使得剪力墙端部应力集中的问题,并提高剪力墙的承载能力和抗变形能力。

四、钢管混凝土组合柱的梁柱节点

在工程中往往仅在框架柱中采用钢管混凝土,而框架梁则采用普通钢筋混凝土,钢管混凝土柱和钢筋混凝土梁的连接节点成为工程中难点之一。目前常用的连接节点有:钢牛腿法、双梁法、环梁法、钢管开大洞后补强法及纯钢筋混凝土节点法等,本工程采用在钢管上开穿钢筋小孔的连接节点,为连接节点的设计提供多一种选择。

1 钢管开小孔的连接节点构造(如图2)。钢管上开穿钢筋小孔的连

接节点做法要点如下:

图2钢筋穿钢管立面图

① 钢管开小孔:小孔直径D=钢筋直径+10mm,小孔水平间距:3×D,小孔垂直间距=2×D;

②钢管水平加强环:梁顶面和梁底面各设置一道,环板宽度:钢管混凝土柱时,取0.10倍钢管直径、钢管混凝土叠合柱时,取65~100mm;环板厚度=0.5t且≥16mm(t为钢管壁厚);

③钢管竖向短加劲肋:紧贴水平加强环,肋宽=环板宽一15mm,肋厚=环厚,长度为200mm,布置在梁开孔部位的两侧和中间;

④梁钢筋尽量采用直径较大的HRB400级钢筋,以减少钢管开孔数量。在钢管混凝土叠合柱时,部分梁钢筋可以在钢筋混凝土柱区域穿过。

2 钢管开小孔连接节点的优点

①钢管开小孔后对钢管截面削弱不大,梁钢筋穿过小孔后剩余的缝隙很小,钢管对管芯混凝土的约束力基本没减少,不影响钢管混凝土柱的承载能力和变形能力;②梁钢筋直接穿过钢管后,梁可以可靠的传递内力,梁长范围内的刚度保持不变,结构受力分析与实际相同。(钢牛腿法和钢管开大洞后补强法,在梁端范围内有相当长度的型钢,使得梁刚度急剧变化);③在设置水平加强环和竖向短加劲肋补强后,钢管在节点区是连续的,节点的刚性不受影响,满足“强节点弱构件”的要求;④ 现场施工较方便,即使圆弧形梁钢筋也可顺利穿过;⑤节点补强所用材料比钢牛腿法和钢管开大洞法减少很多,造价较低。

五、剪力墙平面外对梁端嵌固作用的分析

对于框架一核心筒结构,部分框架粱要支撑在剪力墙平面外方向,剪力墙平面外对梁端嵌固作用究竟如何,其研究文献较少,设计标准和规范也没有涉及。影响剪力墙平面外对梁端嵌固作用的主要因素:墙平面外对粱端嵌固作用的有效长度、墙线刚度与梁线刚度之比和墙在该层的轴压力等等。目前常用的计算分析软件虽然具有墙元平面外刚度分析功能,但未考虑墙平面外对梁端嵌固作用的有效长度,当遇到墙肢很长或筒体墙肢空间刚度很大情况时,计算分析软件会高估了墙平面外对梁端的嵌固作用,使得梁端负弯矩计算值要大于实际值,本工程应对措施如下:

1 采用梁端增加水平腋方法,用以直接增加墙平面外对梁端嵌固作用有效长度;

2 采用增加墙边框梁方法(如图3),用以增加墙平面外对梁端嵌固的局部刚度。墙边框梁截面宽度应不小于0.4倍梁纵筋锚固长度,墙边框梁截面高度应大于楼面梁截面高度,为保证梁端剪力通过墙边框梁均匀传递到墙上,墙边框梁宽出墙厚处用斜角过渡;

3 为保证梁正截面设计更加符合实际受力情况,梁端计算弯矩可以采用“调幅再调幅”方法,即分析计算时设定梁端负弯矩调幅系数后,配筋时再局部手算调幅。“调幅再调幅”时,应考虑构件的刚度、内力重分布的充分性、裂缝的开展及变形满足使用要求。

图3墙边框梁的设置

六、核心筒外墙的连梁设计

核心筒外墙的连粱纵筋计算超筋是非常普遍的情况,《高规》对连粱超筋有专门的处理措施,而且研究文献也少,但计算模型的选取也是重要因素之就一。

《高规》规定,跨高比小于5时按连梁考虑,即连梁属于深弯粱和深粱的范畴,其正截面承载力计算时,已不能按杆系考虑,也就是已不符合平截面假定,但许多分析软件仍然把连梁按杆系计算,其计算偏差当然是很大了。

按“强墙弱梁”和“强剪弱弯”原则进行连梁设计时,虽然《高规》对连梁设计有具体要求,但这个“弱”要到什么程度,还是取决于设计者的理解和经验。

本工程核心筒外墙的连梁按《高规》要求进行设计,除连梁均配置了交叉暗撑外,对非底部加强部位剪力墙的边缘构件也进行了加强处理,以满足“多道抗震防线’和“强墙弱梁”的要求。

篇8

1. 工程概况

太古汇为太古汇广州发展有限公司在广州市天河路与天河东路交汇处的西北角建造的大型综合式项目。本项目的净用地面积为43980平方米,总建筑面积约为457584 平方米。项目包括三座塔楼:一号塔楼为一座主体39层高的办公楼,二号塔楼为一座主体29层高的办公楼,酒店A为一座主体28层高的酒店;一座约58米高的文化中心(包括剧院、图书馆、展览厅等),及用作商场、电影院、宴会厅、停车场的裙楼及四层地库。地库深度为21米,开挖深度约为23米。

办公楼1为太古汇项目最高的一栋塔楼,其中主体结构高度182.6米,并在顶部设29.4米钢结构屋顶,建筑总高度212米。主体结构采用混凝土框架-核心筒结构体系。办公楼1平面大致成正方形;东南及西北角做切角设计,切角尺寸每层变化,营造出弧形建筑立面;同时为配合弧形外立面,办公楼1东南及西北角4根柱子设计为斜柱,最大斜率约6°。办公楼1标准层层高4.2米;一层大堂部分贯通二层,层高达14米;四层层高8.4米,中段设两个设备层/避难层,层高达8.1m。

1)办公楼1标准层结构平面图

2)办公楼1剖面图

2. 设计标准确定

1)结构设计标准确定

办公楼结构安全等级为二级;结构设计使用年限为50年;根据《建筑工程抗震设防分类标准》(GB50223-2004),办公楼1为标准设防类(丙类)建筑。

2)高层建筑类别确定

根据《高层建筑混凝土结构技术规程》(JGJ3-2002)4.2.1条要求,钢筋混凝土高层建筑结构的最大适用高度和宽高比应分为A级和B级。B级高度高层建筑结构的最大适用高度和高宽比可较A级适当放宽,其结构抗震等级、有关的计算和构造措施应相应加严,并应符合相关条文规定。

办公楼1为框架-核心筒结构,7度设防。根据“高规”表4.2.1-1,A级高度,7度抗震框架-核心筒结构的最大适用高度为130米;根据“高规”表4.2.1-2,相同条件B级高度的最大高度为180米;办公楼1主体结构高度182.6米,属于超B级高度超限高层。同时,由于办公楼1采用型钢混凝土柱设计,根据《广东省实施《高层建筑混凝土结构技术规程》(JGJ3-2002)补充规定》(DBJ/T15-46-2005)表10.1.2规定,型钢混凝土框架-钢筋混凝土筒体结构的最大适用高度为190米,本工程并未超限,所以,办公楼1仍按B级高度高层建筑进行设计。

3)抗震等级确定

根据《高层建筑混凝土结构技术规程》(JGJ3-2002)表4.8.3规定,B级高度,7度设防的框架-核心筒结构的框架及核心筒抗震等级均为一级。

3. 设计荷载

1)楼面设计荷载

楼面设计荷载基本上按照建筑结构荷载规范取值,然而有部份位置按太古汇广州发展有限公司要求增加活荷载。本项目的附加恒载及活载取值见下表。

2)风荷载

a)规范取值

根据《建筑结构荷载规范》(GB50009-2006)规定,广州市地区50年重现期基本风压为0.50KN/m2 ; 100年重现期基本风压为0.60KN/m2。根据《高层建筑混凝土结构技术规程》(JGJ3-2002)第3.2.2条要求,对于对风荷载比较敏感的高层建筑,基本风压按100年重现期风压值考虑。根据“高规”附录规定,办公楼1属于对风荷载比较敏感的高层建筑,基本风压需按100年重现期风压值考虑。同时,根据《广东省实施《高层建筑混凝土结构技术规程》(JGJ3-2002)补充规定》(DBJ/T15-46-2005)第2.2.2条,计算高层结构水平位移时,按照50年重现期的风压值计算。

结合上述规范,办公楼1计算位移时,按50年重现期的风压值计算;进行截面及配筋设计时,按100年重现期的风压值计算。

b)风洞实验

本项目聘请加拿大的RWDI风洞测试顾问进行风洞测试,以验证风荷载及塔楼结构是否符合舒适度之要求。有关风荷载方面,风洞试验得出结构风压小于规范要求,故此采用规范风压作结构分析及设计。有关行人舒适度方面,风洞模型于太古汇项目周边及范围之内共设有76个测试点用以分析行人舒适度。结果显示,于受风情况下,太古汇及周边的行人舒适度满意(超过80%时间,不论坐下或站立,都会感到舒适);行人不会因烈风受到安全威胁(不会出现强于88km/hr风速的烈风)。

3)地震荷载

a)规范取值

计算地震影响时,办公楼1采用考虑扭转耦连的振型分解反应谱法,主要采用设计参数如下:

抗震设防烈度 7度

地震影响系数最大值 多遇地震 αmax=0.08*

罕遇地震 αmax=0.50

抗震设防类别 丙类

安全等级 二级

地震的分组 第一组

场地类别 II

设计基本地震加速度值 0.10g

特征周期 0.35s

篇9

某项目地上建筑面积为13.45万m,地下建筑面积为4.3万m,总建筑面积为17.75万m。根据岩土工程勘察报告,本工程场地地基土层为第四纪冲海积的黏土和淤泥层,基底岩性为侏罗纪熔结凝灰岩,场地内无液化土层。宾馆塔楼柱下荷载最大达3.8×104kn,商务塔楼柱下荷载最大达3.5×104kn,采用大直径灌注桩,平板式桩筏基础。经优化比较,桩径 700~1100较为合理。商务楼和宾馆塔楼下筏板厚度为3m,其他位置底板采用厚板式,板厚为1.2m。针对本工程塔楼和辅楼预期存在的沉降差异问题,在各塔楼与辅房之间设置后浇带,并配合相应的后浇带处理措施和大体积混凝土浇筑措施,解决了超长结构混凝土的收缩裂缝问题和塔楼与辅楼间的沉降差异在基础底板中产生过大内力的问题。

二结构设计与计算

⑴结构体系。塔楼外框架柱采用现浇钢筋混凝土柱,钢筋混凝土柱外框架体系将作为有效的承重支撑,大部分竖向荷载通过轴力方式向下传递,而混凝土核心筒除了承受竖向荷载外,其主要功能是提供强大的抗侧力能力。《建筑抗震设计规范》规定:6度区现浇钢筋混凝土框架一核心筒结构适用的最大高度为150m,本工程两塔楼的房屋高度均为161.1in,仅超过11.1m;本工程属b级高度,而《高层建筑混凝土结构技术规程》规定:6度区框架一核心筒结构b级高度建筑的最大适用高度为210m,还有48.9m才超限;大跨度钢结构连廊的存在使得本工程属于特殊类型的高层建筑(大跨度连体)。但由于本工程塔楼高宽比h/b为4.4并不大,两塔楼的平面及竖向结构特性变化较少,且连廊与塔楼采用弱连接,对塔楼耦合影响小。计算分析结果也表明无异常薄弱层出现,且以风荷载为控制水平作用。综上所述,本工程有两项轻微超限,设计时采取必要的抗震加强措施,在技术上是可行的,顺利通过设计审。

⑵弹性计算。本工程采用中国建筑科学研究院编制的《多层及高层建筑结构空间有限元分析与设计软件sat–we》、《特殊多、高层建筑结构分析与设计软件pm—sap))及美国csi公司的国际通用结构分析与设计软件etabs等三个程序进行整体计算,均采用抗震耦联分析并考虑偶然偏心。用satwe程序进行弹性动力时程分析。两塔楼的自振特性计算结果见表1和表2,三个软件的计算结果较接近,从侧面反映出结构模型和分析的正确性。结构的主要振型以平动为主,扭转为主的第1自振周期与平动为主的第1自振周期之比,宾馆塔楼分别为0.577、0.605、0.538,商务塔楼分别为0.593、0.603、0.529,均小于0.85,满足《高层建筑混凝土结构技术规程(jgj3—2002)》的要求。

风荷载及多遇地震作用下的结构反应计算是结构设计中的重要内容,结构在风荷载及多遇地震作用下结构最大点位移和最大的层间位移角,可见在风荷载和地震作用下的层间位移角度均小于规范限值。两塔楼产生的最大屋面位移及最大层间位移角均是x方向风荷载作用下产生的,其中商务塔楼最屋面位移为93.44mm,最大层间位移角为1/1537;宾馆塔楼最大屋面位移为82.83mm,最大层间位移角为1/1743。最大层间位移角均小乎规范所规定的限值1/800。本工程塔楼属于风荷载为控制水平作用,在考虑偶然偏心影响的水平地震作用下,楼层竖向构件最大水平位移和层间位移与其平均值之比小于规范限值,说明结构具有很好的抗扭刚度。

地震作用下楼层剪重比也是结构整体分析的重要内容,计算结果表明,两塔楼各层x方向和y方向的层间地震剪力均满足规范的最小剪重比要求。宾馆塔基底框架和核心筒的x方向倾覆力矩分别为2.83×105kn•m,6.55x105kn•m;y方向倾覆力矩分别为2.66×105kn•m,8.09×105kn•m。商务塔基底框架和核心筒的x方向倾覆力矩分别为3.21×105kn•m,6.08×105kn•m;y方向倾覆力矩分别为2.37×105kn•m,7.66×105kn•m。核心筒所占倾覆力矩沿结构高度始终大于总地震倾覆力矩的50%,表明对于整体结构安全度是可靠的。

⑶弹性时程分析。按照《岩土工程勘察报告》确定的场地类别,采用《工程场地地震安全性评价报告》提供的地震动参数,选择两组实际地震记录波和一组人工模拟地震波进行弹性动力时程分析。每条时程曲线计算所得的结构底部剪力大于cqc法求得的底部剪力的65%,三条时程曲线计算所得的结构底部剪力的平均值大于cqc法求得的底部剪力的80%。cqc法计算结果基本包络三条时程曲线计算所得的平均值,仅在结构顶部的少数楼层地震剪力偏小,说明设计反应谱在长周期阶段的人为调整以及计算中对高阶振型的影响估计不足,设计时将对顶部楼层的地震剪力进行调整,满足对时程分析法的内力包络要求。除此以外,结构内力和配筋可直接按cqc法计算结果采用。

⑷中震不屈服分析和动力弹塑性分析。如前所述,本工程平面及竖向结构特性变化较少,多遇地震下的计算结果也无超限情况出现,鉴于本工程建筑等级较高为确保结构安全可靠,我们依然对其进行了中震不屈服验算,使剪力墙、柱、连梁和框架梁等重要抗震构件在中震作用下不屈服。

通过中震不屈服计算和判断,两塔楼结构体系中竖向构件在中震作用下保持着良好的弹性性能,而水

转贴于

平构件特别是连梁则有部分进入屈服状态,通过调整连梁和框架梁的配筋和对部分连梁截面进行调整,才使所有主要水平构件不进入屈服状态。这从设计上保证了中震不屈服的落实,体现了地震中各构件的屈服顺序基本上是首先连梁屈服,其次有部分框架梁屈服,而竖向构件则未出现屈服情况。

三主要技术及措施

⑴空中连廊支承结构抗震加强措施。连廊弱连接支座留足连廊两端活动空间确保不出现下坠,采用抗拉铰接万向支座,并用侧面限位器固定,确保水平荷载直接传递到塔楼主结构。支承连廊的框架柱抗震等级提高为一级,以确保安全性。

⑵连廊及顶部塔楼结构抗震加强措施。连廊采用空间钢结构桁架,钢筋混凝土楼板的形式,并进行专门设计。顶部莲花座高度较高且外形复杂,采用将芯筒适度上升,外复钢结构形成莲花座外形的结构设计,能极大地减轻自重保证结构强度,从而有效克服鞭梢效应,且施工方便。

⑶平面扭转不规则抗震加强措施。主要采取调整抗侧力构件的布置,使质心与刚心尽量重合,并加大结构的扭转刚度,以减小结构扭转效应,使结构各楼层的位移比不大于1.4。例如由于塔楼平面存在局部凸出圆弧,部分楼层的x向最大水平位移与平均层间位移比值超b级高度的1.4,最大达到1.47,最终通过适当加宽圆弧内柱子x向柱宽,并加强两柱联系梁刚度得以解决。

篇10

中图分类号:TU97 文献标识码:A

在建筑行业发展中,越来越多新技术、新工艺和新材料应用其中,这就对工程结构设计提出了更高的要求。尤其是在当前复杂高层和超高层建筑的结构设计中,可能受到一系列客观因素影响,为工程结构埋下安全隐患,影响工程结构设计质量。尤其是在高层建筑结构设计中,相较于普通的建筑而言,结构设计要求更高,需要充分结合建筑特性,把握复杂高层和超高层建筑设计技术要点,提升设计合理性,为后续施工活动有序开展打下坚实的基础。

一、复杂高层和超高层建筑结构设计

某建筑工程总高度78.5m,高22层,主楼地下两层,地面20层。建筑结构为框剪结构,通过多方设计方案论证,桩基工程选择后压浆钻孔灌注桩,选择端承-摩擦桩的装荷载形式,压浆钻孔灌注桩295根,φ700桩252根,有效桩长18m~19m。采用标号C25的混凝土,关注前0.5m?~0.5m?碎石置于空洞地步。关注过程中,导管同孔底之间的距离为0.5m,连续灌注混凝土。

复杂高层和超高层建筑结构设计中,相较于普通的建筑结构设计而言存在明显的差异。一般其概况下,普通建筑的高度是在200m以下,复杂高层和超高层建筑的高度则超过了200m,这就对建筑工程稳定性提出了更高的要求。普通建筑多为钢筋混凝土结构,而复杂高层和超高层建筑结构则是多为钢结构或是混合结构,设计技术含量较高,结构更为复杂。此外,在复杂高层和超高层建筑结构设计中,需要充分考虑到建筑抗震要求、环境因素、自重以及风荷载等因素的影响,设计内容较为复杂,所以复杂高层和超高层建筑结构设计难度更大。

二、复杂高层和超高层建筑概念设计

(一)提升对概念设计的重视程度

近些年来,在复杂高层和超高层建筑结构设计中,设计理念不断创新,积累了丰富的结构设计经验,其中最具代表性的就是概念设计。在概念设计中,提升结构设计规则性和均匀性;结构中作用力传递更为清晰;结构设计中应该充分体现高标准的要求;结构设计中融入节能减排理念,促使结构设计更为科学合理;设计中,提升建筑材料利用效率,在满足建筑结构整体设计要求的同时,迎合可持续发展要求。基于此,为了满足上述设计要求,设计人员应该同建筑工程师进行密切的交流,在充分交流基础上,提升建筑结构设计合理性。

(二)选择合理的结构抗侧力体系

在复杂高层和超高层建筑结构设计中,为了可以有效提升结构设计安全性,选择抗侧力体系是尤为必要的。在选择结构抗侧力体系中,应该根据建筑具体高度来选择,明确结构抗侧力体系和建筑物高度之间的关系,如果建筑高度在100m以下,可以选择框架、框架剪力墙和剪力墙体系;如果建筑高度在100m~200m以内,则选择框架核心筒、框架核心筒伸臂;建筑高度在600m左右时,选择筒中筒伸臂、桁架、斜撑组合体;在结构设计中,需要充分考虑到结构内部各个部件之间的关系,形成一个整体;如果建筑工程结构中存在多个抗侧力结构体系,应该分别对这些抗侧力结构体系进行分析,在此基础上科学分析和判断。

(三)提高建筑抗震设计重视程度

提高建筑抗震设计重视程度是尤为必要的,尤其是在复杂高层和超高层建筑结构设计中,抗震设计对于建筑安全影响较大。在选择抗震方案中,需要选择合理的施工材料,质量符合建筑要求;尽可能降低地震过程中能量的扩大,对建筑构件的承载力进行验收,计算地震下建筑结构位移数值;高层建筑工程设计中,结构抗震手段的应用需要在得到位移数据基础上实现,设计更加合理的建筑工程结构设计方案,一旦建筑结构发生变形可以起到有效的保护作用;结构设计中体现出建筑构件的生产要求和界面变化情况,提升结构设计稳定性和牢固性。

(四)复杂高层和超高层建筑结构设计融合经济理念

在复杂高层和超高层建筑结构设计中,由于工程项目较为庞大,在具体的结构设计中,可能受到客观因素影响出现一系列成本问题。故此,在建筑结构设计中,需要充分融合经济型设计理念,对结构设计方案优化处理,避免建筑工程结构冗长带来的资源和资金浪费,提升资金利用效率。

三、复杂高层和超高层建筑结构设计精准性

(一)选择合理的结构设计软件,提升设计结果精准性

在复杂高层和超高层建筑结构设计中,设计工程师需要充分掌握前沿的设计手段和方法,能够选择合理的分析软件,提升计算结果准确性。当前我国复杂高层和超高层建筑结构计算软件种类繁多,但是不同软件侧重点存在明显的差异,这就需要在结构设计中,设计人员可以了解到不同软件的具体功能和应用范围,结合工程结构设计要求来选择合理的计算机软件。此外,在复杂高层和超高层建筑结构设计中,还应该对力学理念合理判断和分析,结合自身丰富的设计经验,提升计算结果精准性。

(二)加强荷载和作用力的考量

在复杂高层和超高层建筑结构设计中,设计工程师需要充分结合复杂高层和超高层建筑结构特性,明确结构自身的竖向荷载力大小和风荷载的影响因素,将其融入到后续的结构设计中,提升设计合理性。复杂高层和超高层建筑结构设计中,除了需要考虑到结构稳定性问题以外,还可以组织风洞试验,测试建筑的抗风能力。在后续的实验中,可以设计模型来模拟在不同风场环境下,建筑物的抗风能力和受力情况,有针对性提升建筑物结构的稳定性。

建筑工程结构设计中,还需要考虑到倒塌水准,主要表现在以下几个方面:其一,复杂高层和超高层建筑的延性结构构件,构件的弹性变形能力高低同结构抗震能力存在密切联系;其二,对于复杂高层和超高层建筑中的构件,满足各项技术要求;就复杂高层和超高层建筑结构设计要求,对于建筑物中的控制构件,满足建筑结构抗震设计要求,能够在不同环境下保持相应的弹性。

(三)科学计算自振周期

复杂高层和超高层建筑结构设计中,需要充分把握震动规律,提升设计合理性。但是不同的振幅和频率,可能出现大幅度震动现象,进而影响到建筑结构稳定性。故此,在建筑结构设计中,需要科学计算出自震周期,结合抗震强度、建筑高度进行科学计算,确保自振结果精准性。

(四)建筑的垂直交通设计

复杂高层和超高层建筑的结构形式主要为框架―剪力墙和核心筒结构,此种建筑结构形式可以有效提升结构稳定性,同时垂直交通体系结构可以产生较大的水平在和抵抗力。除了需要考虑到楼梯、电梯和卫生间等区域以外,向平面中央集中,可以有效减少空间占地面积,赋予建筑更好的交通环境和采光效果。垂直交通结构体系设计中,需要充分协调采光和节能之间的关系,便于后续的维护工作开展。

结论

篇11

二结构设计与计算

⑴结构体系。塔楼外框架柱采用现浇钢筋混凝土柱,钢筋混凝土柱外框架体系将作为有效的承重支撑,大部分竖向荷载通过轴力方式向下传递,而混凝土核心筒除了承受竖向荷载外,其主要功能是提供强大的抗侧力能力。《建筑抗震设计规范》规定:6度区现浇钢筋混凝土框架一核心筒结构适用的最大高度为150m,本工程两塔楼的房屋高度均为161.1in,仅超过11.1m;本工程属b级高度,而《高层建筑混凝土结构技术规程》规定:6度区框架一核心筒结构b级高度建筑的最大适用高度为210m,还有48.9m才超限;大跨度钢结构连廊的存在使得本工程属于特殊类型的高层建筑(大跨度连体)。但由于本工程塔楼高宽比h/b为4.4并不大,两塔楼的平面及竖向结构特性变化较少,且连廊与塔楼采用弱连接,对塔楼耦合影响小。计算分析结果也表明无异常薄弱层出现,且以风荷载为控制水平作用。综上所述,本工程有两项轻微超限,设计时采取必要的抗震加强措施,在技术上是可行的,顺利通过设计审。

⑵弹性计算。本工程采用中国建筑科学研究院编制的《多层及高层建筑结构空间有限元分析与设计软件sat–we》、《特殊多、高层建筑结构分析与设计软件pm—sap))及美国csi公司的国际通用结构分析与设计软件etabs等三个程序进行整体计算,均采用抗震耦联分析并考虑偶然偏心。用satwe程序进行弹性动力时程分析。两塔楼的自振特性计算结果见表1和表2,三个软件的计算结果较接近,从侧面反映出结构模型和分析的正确性。结构的主要振型以平动为主,扭转为主的第1自振周期与平动为主的第1自振周期之比,宾馆塔楼分别为0.577、0.605、0.538,商务塔楼分别为0.593、0.603、0.529,均小于0.85,满足《高层建筑混凝土结构技术规程(jgj3—2002)》的要求。

风荷载及多遇地震作用下的结构反应计算是结构设计中的重要内容,结构在风荷载及多遇地震作用下结构最大点位移和最大的层间位移角,可见在风荷载和地震作用下的层间位移角度均小于规范限值。两塔楼产生的最大屋面位移及最大层间位移角均是x方向风荷载作用下产生的,其中商务塔楼最屋面位移为93.44mm,最大层间位移角为1/1537;宾馆塔楼最大屋面位移为82.83mm,最大层间位移角为1/1743。最大层间位移角均小乎规范所规定的限值1/800。本工程塔楼属于风荷载为控制水平作用,在考虑偶然偏心影响的水平地震作用下,楼层竖向构件最大水平位移和层间位移与其平均值之比小于规范限值,说明结构具有很好的抗扭刚度。

地震作用下楼层剪重比也是结构整体分析的重要内容,计算结果表明,两塔楼各层x方向和y方向的层间地震剪力均满足规范的最小剪重比要求。宾馆塔基底框架和核心筒的x方向倾覆力矩分别为2.83×105knm,6.55x105knm;y方向倾覆力矩分别为2.66×105knm,8.09×105knm。商务塔基底框架和核心筒的x方向倾覆力矩分别为3.21×105knm,6.08×105knm;y方向倾覆力矩分别为2.37×105knm,7.66×105knm。核心筒所占倾覆力矩沿结构高度始终大于总地震倾覆力矩的50%,表明对于整体结构安全度是可靠的。

⑶弹性时程分析。按照《岩土工程勘察报告》确定的场地类别,采用《工程场地地震安全性评价报告》提供的地震动参数,选择两组实际地震记录波和一组人工模拟地震波进行弹性动力时程分析。每条时程曲线计算所得的结构底部剪力大于cqc法求得的底部剪力的65%,三条时程曲线计算所得的结构底部剪力的平均值大于cqc法求得的底部剪力的80%。cqc法计算结果基本包络三条时程曲线计算所得的平均值,仅在结构顶部的少数楼层地震剪力偏小,说明设计反应谱在长周期阶段的人为调整以及计算中对高阶振型的影响估计不足,设计时将对顶部楼层的地震剪力进行调整,满足对时程分析法的内力包络要求。除此以外,结构内力和配筋可直接按cqc法计算结果采用。

⑷中震不屈服分析和动力弹塑性分析。如前所述,本工程平面及竖向结构特性变化较少,多遇地震下的计算结果也无超限情况出现,鉴于本工程建筑等级较高为确保结构安全可靠,我们依然对其进行了中震不屈服验算,使剪力墙、柱、连梁和框架梁等重要抗震构件在中震作用下不屈服。

通过中震不屈服计算和判断,两塔楼结构体系中竖向构件在中震作用下保持着良好的弹性性能,而水平构件特别是连梁则有部分进入屈服状态,通过调整连梁和框架梁的配筋和对部分连梁截面进行调整,才使所有主要水平构件不进入屈服状态。这从设计上保证了中震不屈服的落实,体现了地震中各构件的屈服顺序基本上是首先连梁屈服,其次有部分框架梁屈服,而竖向构件则未出现屈服情况。

三主要技术及措施

⑴空中连廊支承结构抗震加强措施。连廊弱连接支座留足连廊两端活动空间确保不出现下坠,采用抗拉铰接万向支座,并用侧面限位器固定,确保水平荷载直接传递到塔楼主结构。支承连廊的框架柱抗震等级提高为一级,以确保安全性。

⑵连廊及顶部塔楼结构抗震加强措施。连廊采用空间钢结构桁架,钢筋混凝土楼板的形式,并进行专门设计。顶部莲花座高度较高且外形复杂,采用将芯筒适度上升,外复钢结构形成莲花座外形的结构设计,能极大地减轻自重保证结构强度,从而有效克服鞭梢效应,且施工方便。

⑶平面扭转不规则抗震加强措施。主要采取调整抗侧力构件的布置,使质心与刚心尽量重合,并加大结构的扭转刚度,以减小结构扭转效应,使结构各楼层的位移比不大于1.4。例如由于塔楼平面存在局部凸出圆弧,部分楼层的x向最大水平位移与平均层间位移比值超b级高度的1.4,最大达到1.47,最终通过适当加宽圆弧内柱子x向柱宽,并加强两柱联系梁刚度得以解决。

篇12

1.工程概况

该超高层工程设有6层地下室,均用作机动车库及设备用房(地下6层为人防地下室),地下室底板面标高为-22.60米。地面以上为59层,其中首层~6层为商务办公及餐厅,13、29、45层为避难层,30层为设备层,其余各层均作办公用途,地面以上至屋面高度为264.75米,加上屋面以上电梯机房及构架高度为312米。最大高宽比为5.63,总建筑面积约154053O。

2.结构设计及分析

2.1结构布置及抗震等级

本工程由于高宽比不大、核心筒尺寸较大,故考虑采用技术成熟的钢筋混凝土框架―核心筒结构体系。落地核心筒为主要的抗侧力构件,结合建筑平面及立面造型,布置了6根1.3×3.4m的钢筋砼大柱和8根直径为φ1600~φ1800的钢管混凝土柱,以稀疏框架的形式来满足高档办公楼有大面积、开阔景观视野及尽量增加实用建筑面积的功能要求,同时亦可满足地下室车库最大限度停放车辆的需要。结构主体高度超过B类建筑高度限值,建筑结构抗震设防类别为乙类,核心筒剪力墙及周边框架抗震等级为特一级。

2.2 结构采取的分析验算方法和加强措施

针对本工程的特点,采取了下列分析验算方法和加强措施:

1)分别采用SATWE、PMSAP和MIDAS/Gen 3个不同的空间结构分析程序对结构在小震及风作用进行弹性计算,对3种程序计算的结果加以判断后用于构件设计。

2)按“屈服判别法”进行中震不屈服验算(验算时荷载分项系数取1.0,材料强度取标准值),分别按小震(αmax=0.08),屈服判别地震作用1(αmax=0.16),屈服判别地震作用2(αmax=0.20),中震(αmax=0.23)进行验算,以判别在此四种情况下,结构构件是否屈服,何时屈服及属何种屈服,从而检查和掌握本工程中震水准抗震性能,满足“中震可修”的设计要求。

3)适量加强落地剪力墙的配筋,落地剪力墙的抗震等级按特一级设计,底部加强部位(-2~6层)剪力墙分布筋的最小配筋率为0.6%,7~30层剪力墙分布筋最小配筋率为0.5%,31层及以上层剪力墙分布筋最小配筋率为0.4%,保证剪力墙在罕遇地震作用下有良好的延性,确保剪力墙在罕遇地震作用下不出现剪切铰。

4)验算罕遇地震作用下楼板薄弱位置的抗拉、抗剪强度并保证其满足强度要求(验算时荷载分项系数取1.0,材料强度取标准值),以确保在罕遇地震作用下楼板仍能作为刚性隔板可靠传递水平剪力。

5)按10年一遇风荷载取值计算顺风向横风向结构顶点最大加速度αmax,以不超过《高规》4.6.6表的限值,作为检验是否满足舒适度要求,同时,将在专门风洞试验中提出舒适度评估要求。

6)采用MIDAS/Gen软件对结构进行大震下的Pushover分析,以验证结构能否满足大震阶段不倒塌的抗震设防水准要求,并寻找薄弱楼层与薄弱构件,制定相应的加强措施。

7)采用BEPTA和ABAQU6.5软件对结构进行大震下的动力弹塑性时程分析。

8)采用MIDAS/Gen软件,通过模拟实际施工中结构逐层搭建和加载的方法,考虑混凝土和钢管混凝土随时间变化的徐变收缩特性,来分析混凝土徐变收缩变形对结构的影响。

2.3结构分析结果

1)小震及风作用:

用SATWE、PMSAP和MIDAS/Gen 3个不同的空间结构分析程序对结构在小震及风作用进行弹性计算结果表明,本工程各项整体指标均能满足相关规范的有关要求或未超出规范规定的最大限值;完全能达到“小震不坏”的第一阶段的抗震性能目标。

2)中震作用:

按“屈服判别法”进行中震不屈服验算的结果表明,在小震及屈服判别地震作用1时,所有梁不出现受弯屈服;在判别地震作用2及中震时,核心筒连梁出现屈服(主要表现为面筋配筋率略>2.5%),仅出现轻微的损伤。故本工程能满足中震重要构件不屈服,所有构件不发生剪切破坏的抗震性能目标要求。

3)大震作用:

在大震作用下,分别进行了静力弹塑性分析(Pushover)和动力弹塑性分析。两种分析方法在性能点处的指标见表1。由表1可见,大震作用下,结构的抗震性能满足防倒塌的抗震设计目标。

表1 静力弹塑性、动力弹塑性分析性能点处的相关指标

4)顶部小塔楼鞭梢效应:

本工程屋面以上的电梯机房及构架高度将近50米高,该部分顶部14米的结构布置如图1.(a)所示,根据satwe程序计算,其配筋较小,各项指标也满足要求,但根据动力弹塑性分析结果,该顶部小塔楼部分在大震作用下最大位移角达到1/58(Y向),超过规范限值,出现了强烈的鞭梢效应,剪力墙出现严重受压损伤。后小塔楼部分结构布置调整为如图1.(b)所示,才可以满足要求。

图1 顶部小塔楼结构平图

5)混凝土徐变收缩影响

本工程由于竖向构件高度大,且外框钢管柱比内筒剪力墙应力水平大,两者由于弹性变形和混凝土徐变引起的沉降差达到一个量级,会对部分结构构件和建筑正常使用造成不利影响。故本工程对混凝土通过MIDAS/Gen程序按实际逐层搭建、逐层加载的模型进行分析。分析表明外框钢管柱与内筒剪力墙在34层处竖向压缩变形差达222mm。对此情况采取措施有:a、从混凝土制作工艺上严格控制容易引起混凝土徐变的不利因素;b、在建筑施工期间结构不同高度处的层高预留不同的后期缩短变形余量的方法;C、对受竖向压缩变形差影响较大的框架梁端采用施工阶段设施工铰的措施。

图2 设施工铰时与不设施工铰时25层框架梁弯矩

由图2可知,设施工铰模型的弯矩值为531kN.m,不设施工铰模型的弯矩值为1479kN.m,前者只有后者的36%。据此可知,施工阶段梁端设施工铰的措施可以有效的降低附加弯矩。

3 小结

1)超高层建筑顶部小塔楼容易产生强烈的鞭梢效应,应采取有效的分析方法,考虑该因素,从而对顶部小塔楼采取加强措施;2)超高层建筑由弹性变形和混凝土徐变引起的沉降差达到一个量级,应采取有效措施,降低由此引起的结构构件和建筑正常使用造成不利影响。

友情链接