时间:2023-07-30 08:50:39
引言:寻求写作上的突破?我们特意为您精选了4篇超高层结构设计范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
工程概况
宏欣豪园项目位于深圳市福田中心区,该工程由4栋45层的超高层住宅塔楼组成,地上1层为商业裙楼,地下3层为地下室,屋顶结构高度为139.54米。A塔楼平面尺寸为33.85x21.65米; B塔楼平面尺寸为31.85x20.75米; CD塔楼平面尺寸为53.45x21.7米; E塔楼平面尺寸为43.75x21.9米。各层层高分别为:地下-3层、-2层、-1层分别为5.2米、4.0米和4.5米,1层5.0米,2层6米,标准层3米。
高层塔楼与裙房的地下室连为一个整体,从地面开始通过设抗震缝把整个建筑分为五个结构单元,其中A、B、E栋高层塔楼各为一个单元,CD栋合为一个单元,裙房分为一个单元。塔楼与裙房间的抗震缝缝宽100mm,A、B座塔楼之间的抗震缝缝宽350mm。
结构设计思路及超限情况判别
本工程地处深圳市,该地区的特点是风荷载大、地震作用相对较小,因此提高结构的抗侧刚度是结构设计的关键。根据以上特点和住宅建筑的功能要求,采用了经济适用的钢筋混凝土剪力墙结构体系。
设计之初,依据《建筑抗震设计规范》及《高层建筑混凝土结构技术规范》,对建筑进行了高度、平面规则性、竖向规则性检查。本工程平面和竖向规则,但建筑高度大于120米,属于高度超限结构。
结构整体计算和分析
弹性计算结果
设计使用美国 CSI公司开发的ETABS、中国建筑科学研究院编制的SATWE、PMSAP软件对整体结构的自振特性进行了分析计算,几种软件计算结果较为接近,结构的主要振型以平动为主,ETABS计算的T1=3.18S,T3=2.70s,扭转为主的第一自振周期与平动为主的第一自振周期之比小于0.85,满足《高规》的要求。
风荷载及小震作用下的结构反应计算是结构设计中的重要内容,本工程结构在风荷载及小震作用下结构最大的层间位移角分别为1/2199和1/1526,小于规范要求的1/800,满足规范限值。
根据《高规》的要求,B级高度高层建筑最大水平位移和层间位移不宜大于该楼层平均 值的1.2倍,不应大于该楼层平均 值的1.4倍。本工程在偶然偏心的地震作用下结构有部分楼层的位移比和层间位移比超过1.2,但均没超过1.4,层间位移比的结果说明结构具有较好的抗扭刚度。
地震作用下楼层剪重比同样是结构整体分析时需要分析的重要内容。《高规》、《抗震规范》对在7度区的结构的剪重比的要求:X方向应大于1.6%,Y方向应大于1.6%,不满足《抗震规范》(5.2.5)验算要求的,应调整地震剪力系数。由于地震影响系数在长周期段下降较快,对于基本周期大于3s的结构,采用振型分解反应谱法计算得到的水平地震剪力可能偏小,出于对结构安全性的考虑,规范规定了不同设防烈度下楼层的最小剪重比。由于本工程前三个振型的周期接近或大于3s,所以底部的地震剪力计算偏小,需要根据规范要求调整地震剪力系数。
《高规》4.4.3规定B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不应小于其上一层受剪承载力的75%,比《抗规》的要求更严格。楼层的受剪承载力不仅与竖向构件的截面、材料强度、轴力大小等有关,还与剪跨比即层高有关。因此,墙厚的变化及所配钢筋的减少,随着楼层逐渐降低的混凝土标高,轴压力的减少及层高的突变,都会导致受剪承载力的改变。顶层刚度突变主要是由于复式楼层竖向构件截面减小或去除造成的。计算结果表明,层间剪力均满足规范要求,与规范限值相比有一定的富余。
弹性时程分析
采用安评报告所提供的三组人工合成地震波的加速度时程曲线(USER1、USER2、USER3)选出其中1条影响较大的场地人工波,另加两条天然波,考虑双向水平地震作用,同一组地震波的两个水平分量加速度比值取1:0.85。通过对结构的弹性时程分析结果可以得到:(1) 每条时程曲线计算所得结构基底剪力均大于振型分解反应谱法的65%,三条时程曲线计算所得结构基底剪力的平均值均大于振型分解反应谱法的80%,地震波的选择满足规范要求;(2) CQC法的层间剪力曲线基本能包络所选的三条地震波对应的平均层间剪力曲线,但在结构顶部少数楼层,CQC法的地震剪力偏小,说明设计反应谱在长周期阶段的人为调整以及计算中对高阶振型的影响估计不足,施工图设计将对顶部楼层的地震剪力进行调整,满足对时程分析法的内力包络。
中震不屈服分析
由于本塔楼为超限结构,为确保结构的安全可靠,进行了在中震(设防烈度)下的抗震计算,使这些重要的抗震构件(剪力墙、柱、连梁和框架梁),在中震作用下不屈服。
采用空间三维有限元模型固接于地下室顶板,调整地震作用参数进行计算。中震不屈服验算是根据极限状态和小震设计下得到的配筋,计算各主要构件的屈服承载力(按材料的标准值计算),并与中震下的效应组合进行比较,确定构件的状态。若组合效应小于屈服承载力,表示构件未屈服,否则表示此构件屈服。
计算结果表明,有一部分框架梁及连梁在中震时屈服,因此需对该部分构件配筋进行调整。
钢筋混凝土剪力墙采用N-M包络线与内力组合效应的比较确定构件的屈服状态。计算结果表明剪力墙的受弯和受剪承载力满足中震不屈服求。剪力墙的受弯富余系数随楼层数上升逐渐增大。受剪安全系数随楼层数上升逐渐减小。
通过中震不屈服分析和判断可以清楚的看到,结构体系中竖向构件在中震作用下没有发生屈服。连梁有部分进入弯曲屈服状态,但没有发生剪切破坏。框架梁有少数进入弯曲屈服状态,但没有发生剪切破坏。通过调整连梁和框架梁的配筋和对部分连梁截面调整,使主要水平构件不进入屈服。
这从设计上保证了中震不屈服概念的具体落实,也体现了地震中各构件的屈服顺序基本上是首先是连梁屈服,其次有部分框架梁屈服,而竖向构件则没有出现屈服的情况。
动力弹塑性分析
《高层建筑混凝土结构技术规程》5.1.13条规定:B级高度和复杂的高层建筑结构宜进行罕遇地震下的弹塑性静力或动力分析。因此,我们针对本项目结构进行了弹塑性动力时程分析的专向研究。
非线性动力时程分析是进行结构非线性地震反应分析比较完善的方法。这种方法可以准确展现结构高振型的影响, 也能够正确地自动地对多向地震输入的效应进行迭加及组合。动力弹塑性时程分析方法直接模拟结构在地震力作用下的非线性反应,将结构作为弹塑性振动体系加以分析,直接按照地震波输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内结构的内力和变形随时间变化的全过程。
在进行弹塑性动力时程分析前对结构非线性模型(以下简称ABAQUS模型)的各主要弹性性能指标与ETABS弹性模型结果进行了对比分析。在考虑P-Δ效应时,ABAQUS程序能够同时考虑几何非线性与材料非线性。结构的动力平衡方程建立在结构变形后的几何状态上,因此P- 效应被自动考虑。
结果显示非线性模型和弹性模型吻合的比较好,能够很好的反映结构的各项性能表现。因此可以用作罕遇地震下的动力分析。
(1)结构总质量:
ETABS模型:57.69万吨(DL+0.5LL);ABAQUS模型:57.49万吨(DL+0.5LL),模型的质量误差约为1%。
(2)自振周期与振型
对ABAQUS模型和ETABS模型的前6个振型、周期及变形形状进行了对比,结果显示,ABAQUS弹性模型与ETABS弹性分析模型的动力特性是一致的。
通过以上对比,可以认为用于罕遇地震作用下的结构动力弹塑性时程分析的计算模型是准确的。
通过弹塑性动力分析,得出如下结论:(1)罕遇地震作用下,连梁在t=5.4s时开始进入弹塑性工作阶段,分析结束时刻连梁的塑性发展得比较充分,对结构的抗震有利。剪力墙在t=6.6s时进入弹塑性工作阶段,晚于连梁。(2)罕遇地震作用下,结构位于中下部的剪力墙出现了中等程度的损伤,但剪力墙中钢筋基本未出现屈服;(3)罕遇地震作用下,结构中的连梁在罕遇地震双向输入作用下出现损伤程度较为严重,起到了一定的耗能作用,部分连梁钢筋进入屈服阶段;(4)罕遇地震作用下,结构最大层间位移角小于规范限值;(5)顶部中下部楼层楼板在罕遇地震下损伤情况较为明显,可能需要适当加大楼板配筋;(6)该结构具有良好的抗震性能,能够抵御7度大震地震波(峰值加速度220gal),能够实现“大震不倒”的性能目标。大震下,结构能达到抗震性能设计目标D级。
结论
本文介绍了深圳宏欣豪园项目E栋塔楼的结构设计内容,包括弹性小震场地谱、规范谱分析,时程分析,中震不屈服分析及动力弹塑性的计算分析,通过对计算结果的分析比较,证明了主体结构在承受水平荷载和竖向荷载的作用下,能够完全满足承载力的使用要求及正常使用极限状态下的变形要求,保证了各构件的正常使用和整个结构的安全、经济可靠。本文有关设计的思路可为低地震烈度、高风荷载地区超高层住宅的结构设计提供参考。
中图分类号:TU323.5 文献标识码:A 文章编号:
1 工程概况
本工程为一幢超高层综合写字楼( 图 1) 。主楼结构平面尺寸为 34. 6 × 34. 6 ( m) ,核心筒尺寸为 12. 6 ×15. 1 ( m) 。主楼地下 5 层( 高 20. 4 m) ,地上 47层( 结构出地面高度 179. 6 m) ,其中裙房共 7 层( 高 34. 5m) 。除避难层层高为 3. 9 m 外,其余标准层层高均为3. 4m。抗震设防烈度为 6 度,基本地震加速度为 0. 05 g,设计地震分组为第一组,建筑抗震设防类别为丙类。结构抗震等级为二级。主楼基本风压按 100 年重现期风压值 0. 45 kPa 考虑,地面粗糙度为 B 类。
图 1 建筑效果图
2 结构抗震超限情况及性能设计目标
本工程为高度超限的高层结构。设计时采用两阶段的抗震设计并采取相应的抗震构造措施来满足三个水准的要求,抗震设计在满足国家及地方规范的基础上,根据性能化抗震设计方法进行设计,并采取表 1 的性能控制目标。
表 1 结构构件抗震性能目标
3 结构抗震性能计算分析
分别进行结构在多遇地震,设防地震及罕遇地震作用情况下分析。
3. 1 多遇地震下结构性能分析
3. 1. 1 多遇地震下振型分解反应谱法计算分析
采用扭转欧联振型分解反应谱法对结构进行多遇地震作用下弹性分析,在强制刚性楼板假定条件下采用 STAWE,ETABS 及 MIDAS - Building 进行对比计算分析,控制结构的位移比、位移角、周期比、刚度比,抗倾覆及整体稳定等指标。上述不同力学模型计算结果表明,主要控制指标结果相近,未出现异常。表 2 ~3 为周期及位移角计算结果比较。
表 2 结构周期及振型
表 3 风和地震作用所得层间位移角
3. 1. 2 多遇地震下弹性动力时程分析
根据拟建场地特性选取了 2 组天然地震波,1 组人工波作为时程分析的输入。3 组地震波的反应谱与《抗规》标准地震反应谱的基本吻合,结构前三周期点上地震波反应谱的平均值与《抗规》标准地震反应谱相差均在 20% 以内。多遇地震弹性时程分析所得结构底部剪力峰值与按照《抗规》振型分解反应谱法进行分析所得的底部剪力的对比情况,可见单组地震波输入所得的底部剪力峰值均在《抗规》振型分解反应谱法( CQC) 的 65 ~135% 之间,3 组地震波结果的平均值与《抗规》振型分解反应谱法( CQC) 结果之差在 20%以内。满足高规要求。
表 4 时程分析底部剪力与 CQC 反应谱法对比
多遇地震时程分析时地震波主分量峰值统一取为18cm / s2。3 组地震波时程结果的平均值与 CQC 法的结果吻合较好,单组地震波计算所得的结构底部剪力峰值的最小值达到了反应谱法底部剪力的 89%。X 主向时 3 组地震波时程计算所得的结构最大层间位移角包络值为 1/2034,Y主向时该值为 1/2012,均小于按照规范规定计算所得限值1 /680。多遇地震作用下结构、构件的设计均取时程分析和反应谱方法的较大值,对反应谱方法的计算结果采用相应楼层地震力放大的方法来调整楼层地震剪力。最终计算结果均能满足规范要求。
3. 2 设防地震下结构性能分析
3. 2. 1 设防地震下振型分解反应谱法计算分析
采用中国建筑科学研究院研制的多层及高层建筑结构空间有限元分析与设计软件 SATWE 进行结构的中震弹性和中震不屈服设计。场地特性参考《抗规》规定取值,场地特征周期为 0. 35 s,水平地震影响系数最大值取为 0. 12( 对应于 5%阻尼比) 。
( 1) 位移分析。设防地震反应谱分析得到的结构两个主向的层间位移角 X 向最大层间位移角为 1/673,位于第34 层; Y 向最大层间位移角为 1 /720,位于第 34 层,均小于性能目标设定的设防地震下层间位移角限值 1/340。
( 2) 承载力分析。
1) 设防地震作用下 2 号楼核心筒剪力墙按照正截面承载力不屈服进行设计,其受剪承载力满足下式要求:
γGSGE+ γEhS*Ekh≤ Rd/ γRE
( 1)式中,γG和 γEh分别为重力荷载代表值和水平地震作用地震作用效应的分项系数; γRE
为抗震承载力调整系数; SGE和 S*Ekh分别为重力荷载代表值效应和未经调整的水平地震作用标准值效应; Rd为承载力设计值。计算表明,2 号楼结构核心筒剪力墙均能满足性能目标的要求。
2) 设防地震作用下框架柱按弹性设计。分析表明,所有框架柱均能满足式( 1) 的要求。
3) 设防地震作用下框架梁按正截面承载力不屈服进行设计。
4) 验算表明,钢筋混凝土连梁受剪承载力均满足下式,达到性能目标要求:
SGE+ S*Ekh≤ Rk
( 2)式中,Rk为按照材料强度标准值计算的截面受剪承载力,其余符号同式( 1) 。
3. 2. 2 设防地震下非线性动力弹塑性计算分析
计算程序为中国建筑科学研究院研制的 EPDA 结构动力弹塑性分析程序。梁、柱等构件采用纤维束模型模拟其弹塑性性质,剪力墙则采用非线性壳单元模拟。设防地震下的结构非线性时程分析采用 2 组天然地震波和 1 组人工波共 3 组地震波作为输入。地震波水平主分量的加速度峰值按照《抗规》的规定调整为 0. 05g,水平次方向的加速度峰值调整为 0. 0425g。结构阻尼比仍取为 0. 05。鉴于目前地震工程学科的研究尚存诸多课题有待解决,以及适宜的地震动加速度记录较少,处理非线性时程分析位移结果时仍需参考多遇地震的弹性反应谱分析结果。具体做法是: 将弹塑性分析得到的结构某部位在某地震波下的弹塑性位移与该部位在该地震加速度记录下的多遇地震位移之比作为弹塑性位移放大系数; 多组地震波的弹塑性位移放大系数包络值与结构弹性反应谱方法得到的该部位位移之积作为其结构弹塑性位移。本报告中对设防地震和罕遇地震非线性时程分析所得结构位移结果均采用这一处理方法。
设防地震作用下的弹塑性层间位移角 X 主向和 Y 主向时最大层间位移角分别为1/453( 第 27 层) 和 1/563( 第 28层) ,分别为规范弹性层间位移角限值的 1. 50 倍和 1. 21 倍,均小于设防地震水准下结构性能目标所定位移角限值 1/340。
设防地震作用下各组地震波 X 向底部剪力峰值与相应多遇地震水准时底部剪力峰值之比的平均值为 2. 04,Y 向为 2. 13。设防地震和多遇地震的主分量加速度峰值之比为2. 72。X 主向和 Y 主向设防地震作用下结构底部剪力峰值与相应的多遇地震作用下结构底部剪力峰值之比均小于加速度峰值之比,表明结构在设防地震作用下部分连梁出现塑性铰后,结构刚度有所下降,结构部分耗能机制已经形成,吸收的地震作用较相应的弹性结构有所减小。
3. 3 罕遇地震下结构性能分析
罕遇地震作用下结构的层间位移角计算方法同设防地震时的情况,即以各组地震波罕遇水准输入得到的结果与相应多遇地震输入结果的比值的包络值和多遇地震弹性反应谱分析的结果的乘积作为罕遇地震下的结构反应。结构罕遇地震下 X 向和 Y 向最大层间位移角出现在27 层,达到1 /189; Y 向最大楼层层间位移角为 1 /207( 28 层) 。罕遇地震下最大层间位移角均小于罕遇地震水准时结构性能目标所定限值 1/170。
各组地震波 X 向底部剪力峰值与相应多遇地震水准时底部剪力峰值之比的平均值为 3. 48,Y 向为 3. 83。罕遇地震和多遇地震的主分量加速度峰值之比为 6. 94。X 主向和
Y 主向罕遇地震作用下结构底部剪力峰值与相应的多遇地震作用下结构底部剪力峰值之比均明显小于加速度峰值之比,表明结构在罕遇地震作用下塑性发展程度较为显著,结构刚度下降较多,地震输入能量大多被进入塑性阶段的构件耗散。
( 1) 为提高结构核心筒剪力墙在罕遇地震下的抗剪能力。各片剪力墙的承担的剪力值均偏于安全地采用罕遇地震弹性反应谱分析的结果; 剪力墙的截面控制条件采用下式:
VGE+ V*EK≤ 0. 15βcfckbh0( 3)
式中,VGE和V*EK分别为重力荷载代表值和地震作用标准值产生的构件剪力,βc为混凝土强度影响系数,fck为混凝土强度标准值,b 和 h0分别为构件截面宽度和有效高度。验算表明,所有剪力墙均能满足式( 3) 的要求。
( 2) 罕遇地震下混凝土框架柱正截面承载力满足公式( 2) ,斜截面承载力满足公式( 1) 。均达到了性能目标的要求。外框架的大部分梁已经进入屈服阶段。满足性能目标的要求。
( 3) 罕遇地震下部分钢筋混凝土连梁已屈服。经验算,其抗剪能力满足下式的要求:
( 4)
中图分类号:TU398文献标识码:A文章编号:1007-7359(2015)06-0121-03
1工程概况
某大型综合办公楼,规划建设用地面积为12202m2,总建筑面积为79110m2。该项目由1栋37层办公楼及附属裙房组成,地下3层,主要功能为办公及商业。地上总建筑面积为51240m2,地下总建筑面积为27870m2,办公楼结构主屋面高度为149.35m。
2结构设计
2.1结构选型及结构布置
本建筑标准层平面形状接近正方形,局部凹进,平面尺寸为37.5m×37.5m,高宽比为3.98。基础埋深18.75m(约1/8),屋面以上局部收进。一~五层(裙房)层高均为4.99m,标准层层高为3.8m。竖向结构采用平面布置对称均匀、沿竖向贯通落地的型钢混凝土框架-钢筋混凝土核心筒结构体系。筒体连续完整,尺寸为16.5m(X向)×14.8m(Y向),核心筒最大高宽比为10.1。外框柱的布置主要依据建筑的轴网来确定,上部结构基本柱网为12.6m×12.45m。在设计的过程中,考虑到甲方对层高要求较高,同时梁的跨度较大,因此结构设计时对结构的主要框架梁均采用型钢混凝土梁,通过降低结构梁的高度来提升建筑楼层的净高。
2.2结构设计参数本工程主要结构设计参数。
2.3主要构件截面尺寸、配筋及材料
2.3.1混凝土核心筒
核心筒墙体的厚度从下至上面逐步减薄,使得上部筒体适当弱化,整体结构刚度变小,可减弱水平地震作用。相对来说,使得框架的剪切刚度得到了提高,因此对于结构的抗震来说是有利的。为保证其与型钢混凝土框架梁的连接,在核心筒的四角以及框架梁与核心筒连接处,均设置了端柱,并在其内安徽建筑2015年第6期(总206期)安徽建筑小震、风荷载作用下结构的位移角、位移比对比表表6计算软件水平地震作用下最大层间位移角风荷载作用下最大层间位移角规定水平力作用下最大扭转位移比SATWEX向Y向1/18681/20601/14431/14631.38(X+5%)1.32(Y+5%)盈建科X向Y向1/16491/18771/12071/12481.37(X+5%)1.31(Y+5%)主体结构周期、平动和扭转系数对比表表4振型编号SATWE周期(s)盈建科周期(s)SATWE平动系数(X×Y)扭转系数振型14.124.42(0.56+0.44)0.01振型24.104.39(0.43+0.56)0.00振型32.893.21(0.01+0.00)0.99振型41.171.26(0.88+0.00)0.12振型51.061.14(0.00+0.98)0.02振型61.051.13(0.12+0.02)0.86T扭/TI0.70<0.850.73<0.85核心筒墙厚、混凝土强度等级表2楼层墙体厚度(mm)内部墙体厚度(mm)混凝土强度等级地下1~2层450200~250C50一层~六层400200~250C50~C45六层~屋面层350200~250C40~C35标准层结构平面布置图部设置了型钢柱,可大大提高墙体的延性,核心筒剪力墙的墙厚、混凝土的强度等级详见表2。
2.3.2外框柱
为减少柱截面,提高结构的延性,以及便于与楼层型钢混凝土梁的连接,外框柱均采用型钢混凝土框架柱。
2.3.3楼面梁
型钢混凝土框架梁:截面尺寸为400×750,内置型钢为H-450×200×12×16。次梁截面尺寸:300×700、250×650。
2.3.4楼板厚度
标准层核心筒内楼板厚150mm,核心筒外楼板厚120mm,屋面板厚为150mm。
3结构的分析与计算
3.1多遇地震作用下计算分析
为保证计算结果的准确性,采用两个不同力学模型的结构空间分析程序SATWE和盈建科进行计算,整体结构的主要计算结果及相互对比见表3~6所示。从计算结果的对比来看:①计算结果基本相符;②SATWE计算的结构刚度略大于盈建科;③所有竖向构件未出现拉力,满足结构抗倾覆要求;④结构刚度、竖向规则性等各项计算指标均满足现行规范。
3.2多遇地震作用下的弹性时程分析
本工程采用时程分析法进行了多遇地震的补充计算(采用SATWE软件计算),并根据规范的相关要求选取1条人工波RH1TG045和2条天然波TH1TG045、TH2TG045进行计算。分析结果。从以上分析图中可以看出:①所得的计算结果规律基本一致;②不同的地震波作用下结构的内力有较明显的区别;③不同地震波作用下的结构平均效应均小于振型分解反应谱下的结构内力。因此,本工程最终采用振型分解反应谱法的计算结果作为设计依据。
3.3中震作用下结构的竖向构件性能分析
按中震弹性做结构计算,外框柱及核心筒剪力墙截面均未出现抗剪超筋信息,处于抗剪弹性阶段。按中震不屈服做结构计算,所有抗震等级自动按照抗震等级四级处理,外框柱及核心筒剪力墙截面均未出现抗弯超筋信息,处于抗弯不屈服阶段。综合以上分析,竖向构件可以满足预先设定的中震作用下的性能要求。
3.4罕遇地震作用下的静力弹塑性分析
分析表明,核心筒中的部分剪力墙及连梁在大震作用下处于屈服状态。为从整体上把握结构的抗倒塌能力,找到结构相对较为薄弱环节,主体结构采用PUSH&EPDA软件进行静力弹塑性推覆分析(为简化,推覆模型中不带地下室)。在倒三角形荷载作用下,结构Y向结构弹塑性静力推覆能力谱验算结果如图6所示(X向计算结果相似,此处略去)。计算结果表明:X向及Y向结构变形性能均能满足需求谱需求,可以达到大震作用下的抗倒塌目标。
4设计结论、抗震措施
本工程属于超高层建筑,上部结构主要跨度12.6m×12.45m,跨度较大。考虑到型钢混凝土结构构件的承载能力可以高于同样尺寸的钢筋混凝土构件的1倍以上。因此,对于本工程,通过采用型钢混凝土柱和型钢混凝土梁来减小构件截面,可以增加使用面积和层高,其经济效益显著,同时也极大的提高了结构的延性性能,抗屈服能力增强,具有优良的抗震性能。计算考虑藕联,并对框架梁配筋加强;标准层局部凹口较大处,采用双层双向配筋;为保证结构的延性、使得框架部分具有二道防线的能力,对框架柱采用如下加强措施:①型钢柱含钢率不小于4%,纵向钢筋配筋率不小于0.8%,底部加强区适当提高框架柱的含钢率;②底部加强区、斜柱(屋面局部收进处采用斜柱)转折处的上下一层框架柱进行中震弹性设计;型钢混凝土梁含钢率不小于3%,配筋率不小于0.3%。
参考文献
[1]徐培福,傅学怡,王翠坤,等.复杂高层建筑结构设计[M].北京:中国建筑工业出版社,2005.
[中图分类号]F407.9 [文献标识码]A [文章编号]1672-5158(2013)06-0252-01
前言
随着我国经济的进步,高层建筑已经无法满足社会发展的需求,超高层建筑就逐渐出现在人们的视线中,并且大范围的扩展,在我国的各个城市的角落,都能看到超高层的建筑。超高层建筑之所以发展的如此的迅速,有两个方面的原因,一是由于城市的发展的需要,需要超高层建筑作为城市的形象,另一个最主要的原因,还是由于土地资源的紧张,从而不断的研究建筑物的高度缓解土地短缺的压力。因此,本文重点介绍了有关超高层建筑结构设计的相关的问题。下面就对超高层结构设计进行具体的分析。
1 超高层建筑与高层建筑结构设计中的区别分析
首先,在建筑物高度的设计上,一般超高层建筑的高度超过100m到几百米之间,而高层建筑的高度一般在100m之内。超高层建筑物的结构类型比高层建筑物的结构类型要多。超高层建筑物的平面形状一般为方形,而高层建筑物的平面形状的选择比较多。超高层建筑物的基础形式一般为等厚板筏基和箱基,而没有高层建筑物所用的梁板筏基。超高层建筑物一般不采用复合地基,而高层建筑基本上采用的是复合地基。在对超高层建筑物进行设计的时候如果建筑物超过200m需要满足在风荷作用下的舒适度的相关要求,而对高层建筑物的设计一般不考虑上述的因素。
2 超高层建筑结构设计中主要考虑的因素分析
在进行超高层结构设计中对于结构类型的选择需要充分的考虑当地地质条件及其对抗震目标的设定等。对于地质的条件,在拟建筑基地需要具备能够采用天然地基的条件,并且具有抗震设防烈度较低的特点。因此,在建筑结构上,可以优先的考虑钢筋混凝土的结构。如果在地震高发区应该优先考虑钢结构及其混合结构。对于抗震方面的考虑主要是要确定抗震性能的目标。要求超高层建筑物的竖向构件承载力需要达到在中震的时候能够不被破坏,在这样情况下,钢筋混凝土结构很难达到抗震的目标,因此,需要钢结构或者混合结构;另外对于结构类型的选择上,需要充分的考虑经济条件。在一般的工程建筑中,钢筋混凝土结构类型造价比较低,全钢的结构类型是最贵的,因此,应根据超高层建筑物的经济上的条件进行合理的选择。现在超高层建筑结构多采用钢筋混凝土柱、钢筋混凝土核心筒这种混合型的结构。因其这种混合结构与全钢结构造价要便宜,与钢筋混凝土结构刚度要好,因此,被广泛的应用与超高层建筑结构设计中。
3 超高层建筑结构中的基础设计
在超高层建筑物,一般有多层地下室,超高层建筑物基础埋置的深度需要满足稳定性的要求。而对于一些地区的基岩埋藏较浅的特点,无法建构多层的地下室,需要设置嵌岩锚杆进而满足稳定性的要求。超高层建筑物的地基基础的形式需要根据建筑场地工程地质的条件,在满足其稳定性的要求的情况下,还需要满足其沉降和变形设计的要求。当超高层建筑物的基底砌置在黏性土层或者海沉积的土层的时候,而这种土层的地基承载力不能够满足变形设计的时候,需要应用合理的用桩基方案。当超高层建筑物在40层以上的时候,而基底砌置在厚度较大的卵石层的时候,这种基底的承载力特征值以及压缩模量都比较高,因此,需要考虑天然地基的方案。如果基底砌置在中风化以及微风化基岩上的时候,都需要采用天然地基的方法。
3.1 天然地基基础
在卵石层或者微风化基岩上的地基都需要天然地基的方法。但是其基础的形式是不同的,当基底是卵石层的时候,一般采用等厚板筏形的基础。等厚板筏基在板厚的要求上,应该具有非常大的刚度,从而使基底的压力能够均匀的分布,从而减小外框以及内筒的沉降变形,在设计时,等厚板筏基的板厚取外框以及内筒之间的跨度应该保持在四分之一左右。超高层建筑物的结构设计中对于基底砌置在微风化的基岩上,这种基岩承载力的特征值是比较高。因此,外框柱应该采用立基础,内筒应该采用条形基础或者等厚板筏形的基础。并且,由于微风化基岩的刚度非常的大,在荷载作用下沉降以及变形比较微小,因此,在地下室的底板厚应该按照构造的设置以及按照岩石裂隙水有关的水浮力进行计算。在基岩上独立柱的基础,通常情况下,为了使施工不破坏基岩达到整体性的效果,一般采用人工挖孔桩的方式进行开挖。
3.2 桩基础设计
对于超高层建筑物桩基础的设计,主要考虑桩基底承受的压力比较大,从而要求单桩竖向能够承载很高的压力。因此,我们在对超高层建筑物的桩基础设计的时候一般采用大直径钻孔灌注桩以及采用大直径人工挖孔扩底灌注桩。对于选择桩端持力层上,最主要的是应该充分的考虑层厚较大以及密实的卵石层或者微风化基岩,从而减少桩端的沉降和变形。在对超高层建筑物桩基础设计的主要的原则是,应该集中布于柱下及墙下。如果在进行桩基础设计的时候采用的是端承桩或者摩擦端承桩,因为单桩竖向的承载力特征值比较高,因此,需要的桩数比较少,可以布于柱下以及墙下。如果对桩基础的设计采用的是端承摩擦桩或者摩擦桩,因为单桩竖向承载力的特征值比较低,因此需要整个基底都采用满布桩才能够满足其稳定性和不变形的要求。对于上述所探讨了不同的布桩形式,桩承台板的厚度上是不同的,满布桩于柱下以及墙下承台厚度需要冲切进行确定。并且超高层建筑物的地下室底板的厚度可以小于外框和以及筒承台的厚度。对于满布桩承台的厚度需要和天然地基基础的等厚板筏基的要求一样,承台板应该具有很大的刚度,从而以便基底承台桩能够承受相当大的压力。由此可见,一般承台板的厚度并不是由冲切所决定的。有关满布桩等厚板承台内力方面的计算,可以根据单桩竖向的承载力及其平均反力进行计算,这样计算出来的结果比较符合工程受力的实际情况。另外,对于钻孔灌注成孔的方法,在以往,一般采用的反循环钻机进行施工,但是现在对于桩长一般采用的是旋挖钻机,其施工的速度比较快,尤其是桩端沉渣厚度很小,进而能够确保钻孔桩的施工质量。这种钻机在实际的工程实施中,凡是有条件的都应该优先采用这种钻机。
4 结束语
本文对超高层建筑结构设计进行了相关方面的研究与探讨,通过了解超高层建筑与高层建筑在实际的设计中的区别,从而能够更加的清楚在超高层建筑结构设计中应该针对于高程建筑设计的不同点。通过分析在超高层建筑结构设计中的需要考虑的因素,进一步了解了超高层建筑结构设计中应该把握哪些重点的问题。并且具体的分析了超高层建筑结构设计中的基础设计,全面了解其基础设计中的设计要点。通过本文的分析,能够为日后的超高层建筑结构设计提供一些理论性的参考价值,进一步促进超高层建筑结构设计能够更加的科学和合理。
参考文献
[1]陈天虹,林英舜,王鹏罛,超高层建筑中结构概念设计的几个问题[J],建筑技术,2006(05)