机械传动的效率范文

时间:2023-08-03 09:18:23

引言:寻求写作上的突破?我们特意为您精选了12篇机械传动的效率范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

机械传动的效率

篇1

液压机械传动控制系统是一种流体传动与控制技术有效结合的先进技术,其主要包括动力元件、液压元件、控制元件和液压辅助元件[1]。该系统采用液体作为能量传动以及控制的有效介质,并由元件回路控制对能量进行传递。目前该系统已在诸多领域得到广泛应用,特别是机械设计制造领域已离不开液压机械传动控制系统的大量使用,其也促使机械设计制造领域的不断发展,因此研究液压机械传动控制系统在机械设计制造中的实际应用情况意义重大。

一、液压机械传动控制系统的优缺点

1.液压机械传动控制系统的优点

液压机械传动控制系统的优点可以归纳为以下4点:首先是功率高,液压机械传动控制系统主要由动力元件、液压元件、控制元件和液压辅助元件等组成。与传统的液压传动和机械传动相比,这种系统的液压机械传动功率相对较大,同时这种系统引入了微电子技术,使得该系统的功能集成化程度高,可在较小空间内达到功率有效控制。其次是小型化,这是由于液压机械传动控制系统的各元件高度集成化的特点,使得该系统小型化、轻质化发展。同时由于系统内部各元件的相互协作性较好,也使得该系统可操作程度高,可针对不同的工作要求进行有效的液压机械传动。接下来是稳定性好。这种液压机械传动控制系统实际应用可将机械工作过程中产生的热量通过液压油流动传递,可有效降低系统温度,避免系统局部过热的情况,进而保证机械的使用稳定性。同时由于上述原因,该系统也可用于低速重载条件的液压机械传动。最后是自动换挡功能,为了使得操作人员根据相关要求对机械进行简便灵活操作,提高机械工作效率,可使用这种液压机械传动系统。该系统具有自动换挡功能,可根据实际工作条件和机械运行要求的不同进行有效的挡位自动调节,方便操作人员进行工作装置的操作,不要考虑挡位操作的问题,可降低机械工作中的操作失误概率,进而实现整体机械的工作效率。

2.液压机械传动控制系统的缺点

液压机械传动控制系统的缺点主要包括以下5个方面:首先是液压系统漏油问题,这是液压机械传动控制系统的重要缺点之一,其严重影响整个传动控制系统的稳定性和正确性。这种液压系统漏油问题使得液压机械传动的传动比率波动性大,达不到相关液压机械传动控制要求,严重影响液压传动系统的稳定运行和传动控制的正确性,该缺点也会对整个机械工作状态造成不利效果,使得机械工作效率低,同时由于这种原因,该系统不适宜长距离传动。其次是温度变化问题,通常系统内的温度变化会直接影响到系统的运动特性。这种液压机械运动控制系统对温度要求较高,当系统温度升高时,系统内的液体粘度发生变化,使得系统的运动特性也随之改变,进而影响机械的工作稳定性。因此该系统运行过程中应对温度变化进行重点监控,防止机械运行因温度变化造成的偏差问题。再次是故障的检查和排除难度大,液压机械传动控制系统的故障检查和排除工作量和难度较大。该系统正常运行时,液压元件运行产生的金属粉末容易引起机械设备故障问题,而系统外的粉尘的大量附着到机器设备上,也会对系统的运行稳定性造成严重影响。对于系统而言,这些金属粉末和粉尘通常是不可避免,其也增加了故障的检查和排除工作量和难度。最后是清扫工作,实际运行时,液压机械运动控制系统容易由于一些外界因素干扰,使得系统的稳定性和运行结果得不到保障,因此需要在系统实际运行前进行全面的清扫工作,尽可能的避免外界因素对系统的干扰。

二、液压机械传动控制系统在机械设计及制造中的具体应用

1.液压机械传动控制系统的应用特点

根据液压机械传动控制系统的高度集成化特点,其可有效满足不同行业对机械设计及制造的规模、功率、精度和工作效率的严格要求。而小型化、轻质化的特点也使得该系统可应用在不同施工环境和施工条件。在机械设计和制造领域,液压机械运动控制系统可以根据自身特点有效弥补传统传动系统的不足,同时该系统的大量应用可降低机械设计和制造的难度,提高机械制造精度和缩短制造周期。液压机械传动控制系统将自动化控制技术实际应用到机械设计和制造领域,其可加快机械设计和制造的自动化进程,同时自动化也是未来机械设计和制造的研究开发的重要方向[2]。这种应用可有效控制产品质量以及提高生产效率,实际满足机械产品的行业需求。目前液压机械传动控制系统也广泛应用在国防、农业、冶金和煤矿等众多行业。

2.液压传动无级变速器

机械设计制造中,可采用液压机械传动控制系统来实现对其速度的有效控制,也就是无级变速技术。一般而言,该液压系统正常运行需要使用变量泵以及定量马达。当系统工作时,通过发动机将动力分离,其中一部分顺着离合器传送给行星架,而另一部分则是经过液压系统到达太阳轮,这两部分动力通过差动轮系部分进行有效合成后,再通过差动轮系的齿圈对外输出。通常实际机械工作前需要断开离合器C1,同时闭合C2,使得发动机的全部动力进入液压系统,从而保证机械的正常启动。而机械实际工作时,离合器C1闭合而C2断开,采用控制系统将液压马达的转速降至0,此时发动机的所有动力通过机械系统进行有效传递,其可提高机械工作过程中的动力传递效率,并对系统马达转动方向进行合理调整,进而调节机械工作的输出速度,保证系统在不同速度下的正常运行,进而实现这个机械系统的无级变速。目前这个液压传动无级变速器已实际应用在装载机和推土机上,该装置运行效果良好,可大量应用在工程机械领域。

3.纯水液压机械传动控制系统

目前机械制造业领域中,纯水液压机械传动控制系统是液压传动技术的重要发展方向之一,该系统是科技进步和环境保护的结合产物,其是一种新型的液压传动技术,其采用纯水作为能量传动以及控制的有效介质,这是该系统的最大特点。与液压油相比,纯水价格便宜、制备简单以及来源广泛,可有效降低企业的运营成本,从而提升企业的经济效益。冶金、煤矿等特殊行业,对液压机械传动控制系统要求较高,常规的液压油泄漏容易引起火灾,这严重威胁着企业的安全运营,而纯水具有良好的阻燃性,可防止液压机械传动控制系统液压油泄漏引发的安全问题。与矿物型的液压油相比,纯水的压缩系数较低,使得纯水的压缩损失相对较少。同时常规液压机械传动控制系统的液压油泄漏问题,会对水体和土壤造成严重的污染,这也制约着冶金、煤矿等行业绿色化、可持续化发展,而采用纯水液压机械传动控制系统,其可造成的环境污染程度较低。目前纯水液压机械传动控制系统已在一些行业得到实际应用,该系统污染小、成本低等特点符合我国相关行业环境保护要求,其也是常规液压机械传动控制系统的代替技术,因此纯水液压机械传动控制系统作为机械制造业领域中的热点研究对象,该系统的研究开发以及实际应用前景广阔。

三、液压机械传动控制系统实际应用存在的问题

液压机械传动控制系统采用的技术成熟度的不断提高,也促使着该系统在诸多领域得到广泛的应用,尤其是在机械设计制造领域,其不仅可以降低人工劳动强度,同时也可有效控制相应的企业运行成本。但是当前系统的实际应用还存在一些问题,其中较为突出的问题是当前我国液压机械传动控制系统使用的各种元件基本需从国外进口,如动力元件、液压元件、控制元件和液压辅助元件等[3]。与发达国际相比,我国制造的元件在强度和精度方面均较为落后,而系统正常运行时,系统需要这些元件的相互协作才能完成相关工作,因此这些元件的质量严重影响着整个液压机械传动控制系统的完善性和功能性。如这些元件的质量达不到相关要求,可能造成系统运行的不稳定和低功能性。因此为了实现液压机械传动控制系统在各领域的大规模应用,需要对液压机械传动控制系统的各种元件实现国产化,并通过国外技术引进和自主创新,保证相关元件的强度和精度达到系统要求,有效提升相关元件的功能性和适应性,优化和改善液压机械运动控制技术,实现液压机械运动控制系统运行的稳定性,从而带动机械设计制造领域和相关领域的深入发展。

四、结语

通过本文对液压机械传动控制系统优缺点的阐述,以及该系统的实际应用情况和存在的问题的分析来看。液压机械传动控制系统作为一种新型的液压传动技术,其可有效的提高机械的工作效率和能源利用率,保证机械工作质量以及实现企业经济效益的有效提升。目前该系统已在诸多领域得到广泛应用,但是应用过程中仍存在一些问题,随着液压传动技术的不断完善以及这些问题的及时处理,液压机械传动控制系统应用前景将会更加广阔。

作者:岑名熹 单位:西京学院

篇2

引言

随着工业的发展,在机械设计制造过程中,液压机械传动控制系统的出现频率越来越高,这主要是因为该系统能够对能量进行精准的控制和传送,但通过调查可以发现,液压机械传动控制系统在应用的过程中仍旧存在部分问题,因此,这就需要工作人员通过对该系统进行更加深入探究的方式,将其在机械设计制造过程中所具有的功效进行最大发挥,促进我国机械行业的发展。

1液压机械传动控制系统的原理

在液压机械传动控制系统中存在的液体压强一致,在该系统中所应用的活塞,可以根据自身能够承受的压力大小,选择相应压力对系统进行施加,通过保证系统平衡的方式,使液体能够始终处于静止的状态之下,也就是说,小活塞对应的压力值较小,而大活塞对应的压力值较大,并且经由液体所具有的传递性,将压力值进行变换。在对液压进行传动的过程中,需要相应的元件对其加以辅助,其中具有代表性的为动力、控制和执行元件,动力元件存在的意义在于能够对系统运行过程中所需的动力进行产生,例如通过对自身容量加以变化保证动力产生的容积液压泵。在选择所需液压泵时,工作人员不仅应当对其能量消耗的相关因素加以注意,还应当将其进行液压的效率列为重要的参考因素之一,保证液压泵能够与其所在的液压机械传动控制系统完美契合[1]。另外,液压马达也是比较具有代表性的动力元件,它的工作原理是通过对液压能量的转换,使其成为相应的机械能,进而实现对外做工的目的。由此可以看出,液压元件存在的意义在于,通过对系统压力大小和液体流动方向加以控制的方式,保证该系统能够与机械设计制造要求相满足。

2液压机械传动控制系统所具有的优势

液压机械传动控制系统和传统的控制系统相比,在应用范围方面更为广泛,无论是常见的塑料加工,还是技术含量较高的钢铁冶金,该系统都能够将自身所具有的价值进行成分展示,保证制造效率和质量和提高。由于液压机械传动控制系统具有速度快、效率高等诸多优点,在应用其进行机械设计制造的过程中,能够保证传动功率的提高,并且通过和相关微电子技术进行配合的方式,实现在较小的空间范围中,对功率进行精准控制的目标,保证机械质量的提高[2]。当然,需要工作人员明确的是,随着科技的发展,不同行业和部门对该系统及相关技术所具有的要求也变得越发严格,因此,只有通过对系统的不断完善,才能使其更加高效的为机械设计制造进行服务。

3液压机械传动控制系统所具有的不足

一方面,由于液压机械传动控制系统在工作过程中所应用的主要介质是矿物油,一旦出现漏油问题,不仅会对该系统的运行产生不利影响,甚至还会在一定程度上降低其在运行过程中所具有的稳定性,进而导致机械设计制造效率的下降,影响企业效益。另一方面,液体自身所具有的特性决定一旦其温度出现波动,就会对系统自身的运动特定产生相应影响,为了避免这一问题的发生,需要工作人员在应用液压机械传动控制系统进行机械设计制造时,始终保证矿物油温度处于合理范围内。另外,因为液压元件在运行时,较易产生金属粉末,这部分粉末会导致机械污染,进而产生故障,想要降低这一问题的出现几率,需要工作人员在对液压机械传动控制系统进行应用前,首先对其进行彻底的清扫,避免由于灰尘或其他杂质的存在,导致系统故障的发生[3]。另外,在机械设计制造的过程中,应用液压机械传动控制系统虽然已经取得了良好的效果,但仍旧存在问题有待解决,其中最主要的一点就是,现阶段我国所应用的液压机械传动控制系统,部分元件需要通过外国产品的辅助才能加以应用,这对于该系统在我国的高效应用是非常不利的,而且还会导致我国产品与国际标准间的差异,因此,目前相关人员最重要的工作内容就是,对液压机械传动控制系统的不足进行解决,通过提高我国所应用液压技术的整体水平,保证我国机械行业的飞速发展。

4在机械设计制造中对液压机械传动控制系统进行应用的方向

我国在进行国防或经济建设的过程中,都需要对大型工程设备加以应用,而这部分设备大多安装了相应的液压机械传动控制系统。作为近几年新兴的控制系统,液压机械传动控制系统的作用在于,对大型工程设备在工作过程中所具有的需求进行高度满足,这是因为该类设备通常具有极其精确的效率要求,而液压机械传动控制系统能够通过对不同设备的集成化要求进行满足,保证设备与其所处施工条件、环境等需求相符合。另外,现阶段,在机械设计制造中所应用的液压机械传动控制系统已经逐渐呈现出了集成化的发展趋势,这从侧面证明了我国针对该系统所开展的研发工作的方向是正确的,也就是说,在未来的一段时间内,我国必然会研制出与机械设计制造需求高度符合的产品,保证其价值得以最大化的呈现。但需要工作人员注意的是,虽然液压机械传动控制系统的出现,在一定程度上促进了机械行业的发展,但这并不代表该系统已经处于一个科学、高效的工作状态下,现阶段,仍旧存在部分问题在液压机械传动控制系统发展的过程中对其加以阻碍,因此,想要保证该系统的高效应用,需要工作人员以机械行业的现状的基础,通过对该系统在机械设计制造中所体现出的优点和不足进行探究,保证对其现有的缺点加以解决,真正实现通过液压机械传动控制系统的出现,将我国机械行业的发展水平提升到一个全新高度的目标[4]。除此之外,工作人员还应当根据该系统所对应传动技术的优势,将其在工业生产的过程中加以推广的应用。通过对工业市场进行调查可以发现,液压工业在市场中所占销售份额相对较大,几乎占据机械工业总产值的3%,这一数字表明了在工业生产过程中,液压系统和技术存在的必然性,作为具有高传递率的技术,液压机械传动控制系统在结构构成方面与传统系统相比更为简单,因此,这就决定了该系统对功率的利用更加高效,而将液压技术和计算机进行结合,能够对传统技术无法保证对工业生产过程中所涉及的动力和运动参数进行准确控制这一问题进行解决,通过保证传递效率科学性的基础上,实现恒功率生产操作的可能性,达到提高工业生产的效率的效果。

5结束语

综上所述,液压机械传动控制系统作为近几年新兴的技术之一,在机械设计制造过程中具有非常重要的作用,但现阶段仍旧存在急需工作人员加以解决的不足,因此,这就需要工作人员对该系统所对应液压技术进行发展,使其与微电子技术相结合,能够保证液压机械传动控制系统在机械设计制造过程中的有效应用,加快行业的进步。

参考文献

[1]高艳红,张昌松.机械设计制造中液压机械传动控制系统的应用[J].时代农机,2016(03):74+77.

[2]岑名熹.试论机械设计制造中的液压机械传动控制系统[J].现代经济信息,2016(06):354+356.

篇3

引言

随着工业的发展,在机械设计制造过程中,液压机械传动控制系统的出现频率越来越高,这主要是因为该系统能够对能量进行精准的控制和传送,但通过调查可以发现,液压机械传动控制系统在应用的过程中仍旧存在部分问题,因此,这就需要工作人员通过对该系统进行更加深入探究的方式,将其在机械设计制造过程中所具有的功效进行最大发挥,促进我国机械行业的发展。

1 液压机械传动控制系统的原理

在液压机械传动控制系统中存在的液体压强一致,在该系统中所应用的活塞,可以根据自身能够承受的压力大小,选择相应压力对系统进行施加,通过保证系统平衡的方式,使液体能够始终处于静止的状态之下,也就是说,小活塞对应的压力值较小,而大活塞对应的压力值较大,并且经由液体所具有的传递性,将压力值进行变换。在对液压进行传动的过程中,需要相应的元件对其加以辅助,其中具有代表性的为动力、控制和执行元件,动力元件存在的意义在于能够对系统运行过程中所需的动力进行产生,例如通过对自身容量加以变化保证动力产生的容积液压泵。在选择所需液压泵时,工作人员不仅应当对其能量消耗的相关因素加以注意,还应当将其进行液压的效率列为重要的参考因素之一,保证液压泵能够与其所在的液压机械传动控制系统完美契合[1]。另外,液压马达也是比较具有代表性的动力元件,它的工作原理是通过对液压能量的转换,使其成为相应的机械能,进而实现对外做工的目的。由此可以看出,液压元件存在的意义在于,通过对系统压力大小和液体流动方向加以控制的方式,保证该系统能够与机械设计制造要求相满足。

2 液压机械传动控制系统所具有的优势

液压机械传动控制系统和传统的控制系统相比,在应用范围方面更为广泛,无论是常见的塑料加工,还是技术含量较高的钢铁冶金,该系统都能够将自身所具有的价值进行成分展示,保证制造效率和质量和提高。由于液压机械传动控制系统具有速度快、效率高等诸多优点,在应用其进行机械设计制造的过程中,能够保证传动功率的提高,并且通过和相关微电子技术进行配合的方式,实现在较小的空间范围中,对功率进行精准控制的目标,保证机械质量的提高[2]。当然,需要工作人员明确的是,随着科技的发展,不同行业和部门对该系统及相关技术所具有的要求也变得越发严格,因此,只有通过对系统的不断完善,才能使其更加高效的为机械设计制造进行服务。

3 液压机械传动控制系统所具有的不足

一方面,由于液压机械传动控制系统在工作过程中所应用的主要介质是矿物油,一旦出现漏油问题,不仅会对该系统的运行产生不利影响,甚至还会在一定程度上降低其在运行过程中所具有的稳定性,进而导致机械设计制造效率的下降,影响企业效益。另一方面,液体自身所具有的特性决定一旦其温度出现波动,就会对系统自身的运动特定产生相应影响,为了避免这一问题的发生,需要工作人员在应用液压机械传动控制系统进行机械设计制造时,始终保证矿物油温度处于合理范围内。另外,因为液压元件在运行时,较易产生金属粉末,这部分粉末会导致机械污染,进而产生故障,想要降低这一问题的出现几率,需要工作人员在对液压机械传动控制系统进行应用前,首先对其进行彻底的清扫,避免由于灰尘或其他杂质的存在,导致系统故障的发生[3]。另外,在机械设计制造的过程中,应用液压机械传动控制系统虽然已经取得了良好的效果,但仍旧存在问题有待解决,其中最主要的一点就是,现阶段我国所应用的液压机械传动控制系统,部分元件需要通过外国产品的辅助才能加以应用,这对于该系统在我国的高效应用是非常不利的,而且还会导致我国产品与国际标准间的差异,因此,目前相关人员最重要的工作内容就是,对液压机械传动控制系统的不足进行解决,通过提高我国所应用液压技术的整体水平,保证我国机械行业的飞速发展。

4 在机械设计制造中对液压机械传动控制系统进行应用的方向

我国在进行国防或经济建设的过程中,都需要对大型工程设备加以应用,而这部分设备大多安装了相应的液压机械传动控制系统。作为近几年新兴的控制系统,液压机械传动控制系统的作用在于,对大型工程设备在工作过程中所具有的需求进行高度满足,这是因为该类设备通常具有极其精确的效率要求,而液压机械传动控制系统能够通过对不同设备的集成化要求进行满足,保证设备与其所处施工条件、环境等需求相符合。另外,现阶段,在机械设计制造中所应用的液压机械传动控制系统已经逐渐呈现出了集成化的发展趋势,这从侧面证明了我国针对该系统所开展的研发工作的方向是正确的,也就是说,在未来的一段时间内,我国必然会研制出与机械设计制造需求高度符合的产品,保证其价值得以最大化的呈现。但需要工作人员注意的是,虽然液压机械传动控制系统的出现,在一定程度上促进了机械行业的发展,但这并不代表该系统已经处于一个科学、高效的工作状态下,现阶段,仍旧存在部分问题在液压机械传动控制系统发展的过程中对其加以阻碍,因此,想要保证该系统的高效应用,需要工作人员以机械行业的现状的基础,通过对该系统在机械设计制造中所体现出的优点和不足进行探究,保证对其现有的缺点加以解决,真正实现通过液压机械传动控制系统的出现,将我国机械行业的发展水平提升到一个全新高度的目标[4]。除此之外,工作人员还应当根据该系统所对应传动技术的优势,将其在工业生产的过程中加以推广的应用。通过对工业市场进行调查可以发现,液压工业在市场中所占销售份额相对较大,几乎占据机械工业总产值的3%,这一数字表明了在工业生产过程中,液压系统和技术存在的必然性,作为具有高传递率的技术,液压机械传动控制系统在结构构成方面与传统系统相比更为简单,因此,这就决定了该系统对功率的利用更加高效,而将液压技术和计算机进行结合,能够对传统技术无法保证对工业生产过程中所涉及的动力和运动参数进行准确控制这一问题进行解决,通过保证鞯菪率科学性的基础上,实现恒功率生产操作的可能性,达到提高工业生产的效率的效果。

5 结束语

综上所述,液压机械传动控制系统作为近几年新兴的技术之一,在机械设计制造过程中具有非常重要的作用,但现阶段仍旧存在急需工作人员加以解决的不足,因此,这就需要工作人员对该系统所对应液压技术进行发展,使其与微电子技术相结合,能够保证液压机械传动控制系统在机械设计制造过程中的有效应用,加快行业的进步。

参考文献

[1]高艳红,张昌松.机械设计制造中液压机械传动控制系统的应用[J].时代农机,2016(03):74+77.

篇4

1.前言

传统的变速器采用泵和马达减速器为,驱动泵和马达的传动比是1:1,轮边减速器的传动比为9,变速器两档的总传动比是32,可以传递的理论扭矩为500焦耳。随着科学技术的迅猛发展,相关技术人员对机械传动履带底盘转向功能进行了改进。和传统的履带底盘相比,改进的机械传动履带底盘工作效率更高。它是采用驱动轮驱动履带,通过弹性连接盘传动动力,由变速器输出,经过制动器、离合器以及减速器后,完成机器的前进后退,由制动器和单侧离合器共同配合来完成机器的转向。在机器运行的过程中,如需要转大弯或者向左慢转,只要松开左侧离合器就可以实现,简单安全,容易操作。假如是要转小弯或者是左急转弯,在松开离合器之后,还需要制动左侧的制动器。向右转动的操作同上述向左转动的操作,步骤一样。

2.机械传动履带底盘转向功能的改进方案分析

在使用机械传动履带底盘的过程中,也会常常出现一些故障,比如,重载不能转向等问题。因此,在机械设备检修的过程中,一定要调整好离合器的间隙,使单侧离合器可以良好的脱开,及时切断动力。如果不及时调整机械设备,就会出现转向时驱动侧离合器会出现打滑现象,从而使传递机器转向时达不到所需的扭矩能力,不利于转弯。如果想通过加大离合器的轴向尺寸和直径,来更换更大的扭矩,一定会造成履带底盘间距和高度的增加,使机械通过能力降低。

改进的机械传动履带底盘由3大部分组成,包括1个发动机和2个驱动轮。发动机由主泵和马达驱动。驱动轮覆盖整条履带,变速器包括离合器、制动器和边轮减速器。离合器是在驱动轮以及轮边减速器共同作用下,来传递扭矩的,在保证机械总传动比稳定的基础上,离合器的传递扭矩能力和驱动轮直径成反比,即驱动轮直径越大,离合器的传递扭矩能力越小,驱动扭矩力臂也越小。并且与轮边减速器的减速比成反比,即轮边减速器的减速比越小,离合器的传递扭矩能力越大。

液压马达提供了离合器的传递扭矩,其提供的最大扭矩和离合器设定的最高压力以及排量成正比例关系。离合器的实际扭矩大小和履带负载成反比例关系。在履带底盘实际行走的整个过程中,常常会出现履带和地面打滑的现象,即在这种情况下,单侧离合器理论传递扭矩一定要近似于变速器传动比和马达扭矩的乘积,驱动扭矩最大。如果两者之积比打滑扭矩大,则在这种情况下,必须添加安全系数参数。一般地,安全系数可以取1.2至2.0之间的任意实数。在同一个机械传动中,前一挡传递扭矩大于后一挡,因此,应该选用前一挡的变速器传动比。在机械打滑时,单侧离合器的扭矩有相应的计算公式可以参考。通过计算公式可知,打滑机械的单侧离合器的传递扭矩与地面附着系数(履带机械工况恶劣,一般取0.8)、机器满载时的全部重力、底盘动力半径成正相关,与减速器的传动比成负相关。在计算马达传递到单侧离合器的传动扭矩时,其大小与马达每转排量、液压系统的压力、马达的效率、前一挡传动比成正比例关系。

马达传递到单侧离合器的传动扭矩和原选单侧离合器相接近,这表明离合器和马达的选用冗余小,尽可能地使综合成本降到了最低。当履带离合器打滑时,单侧离合器的扭矩小于离合器的理论扭矩,则说明正常平直线的转向大于所需扭矩。此时,履带机械离合器平路直线行驶不存在问题。履带机械转弯的时候,常常会切断一侧的旋转动力。这时,只能靠单一离合器完成全部的扭矩传动。单侧离合器吸收了马达传递的扭矩,使机械离合器的负载变大。当打滑扭矩接近于离合器机械扭矩时,离合器理论上并不能实现转向,更不能完成动力传递。

履带机械打滑扭矩和其承受的载荷大小成反比例关系。转弯时,当单侧离合器承受单侧履带的打滑扭矩时,履带附着地面所需的打滑扭矩不变。此时,离合器的安全系数的比值和原先设计的安全系数相比,明显减小,这样在一定的工况下,可能造成履带机械不能正常转向。改进后的机械传动履带底盘,传动比值明显增大。通过增加泵的排量,可以调整泵和马达的传动比。通过更换齿轮可以调整变速器以及轮边减速器的机械传动比。经过有关公式计算可得,离合器机械传动比增加,安全系数达到了1.66。在这种条件下,机器进行转向和直行都不会发生打滑现象,并且能够正常的实现转向。

改变离合器的传递扭矩能力有两种措施。措施一:在保持整机参数和减速比稳定的前提下,及时的调整轮边减速器和变速器的传动比,从而,使离合器达到转向所需要的扭矩;措施二:通过减少驱动轮的直径来改变离合器的传递扭转能力,但是,这样会使履带弯曲半径变小,在一定程度上,减低了履带的使用寿命。通过对比分析,在机械传动的过程中,为了确保其参数不变,相关工作者应该选用调整边轮减速器和变速器传动比的方法,进而提高离合器的传递扭矩能力。

3.结束语

综上所述,传统的机械传动仍然存在许多问题,给实际的现场工作带来了不少困扰。通过对其功能和结构进行改进,机械传动履带底盘的转向功能得到了明显提高,使机械传动履带底盘在不同速度、不同负载大小的情况下,都可以实现转向灵敏、爬坡有力的功能,在一定程度上,提高了机械传功履带底盘的工作效率。因此,相关技术工作人员一定要科学合理的选择提高离合器传递扭矩能力的方法,积极进取,不断探索和完善机械传动履带底盘的转向功能,勇于尝试,努力做好机械传动履带底盘的监督管理工作,使机械传动履带底盘真正的实现其价值。

参考文献:

篇5

中图分类号:U469.691 文献标识码:A 文章编号:1007-3973(2013)008-079-02

道路清扫车的使用大大提高了我国的环卫水平,减少了清洁工的劳动强度,路面清扫车不但可以清扫路面垃圾,而且还可以对道路上的空气介质进行除尘净化,既保证了道路的美观,维护了环境的卫生,又维持了路面的良好工作状况,减少和预防了交通事故的发生,延长了路面的使用寿命。

道路清扫车在作业时要求车速在5~10km/h,只有在发动机转速低的情况下才能满足作业速度的要求,但是工作装置却要求高转速,低速行驶的行车速度和高转速驱动的风机之间形成了很难调和的矛盾。为了解决上述矛盾,目前在实际应用中主要采用两种方案:一种是机械传动,就是在底盘上增加副发动机,为工作装置提供动力。另外一种就是采用全液压专用底盘,发动机直接连接液压系统,然后进行能量分配,一部分能量去进入后桥驱动车辆行驶,另一部分进入工作系统驱动清扫作业。但是这种形式动力特性较差,对路面状况要求高,其行驶系统造价昂贵一般只用于中小型清扫车。以上种种缺点限制了液压传动形式在我国的应用。目前我国清扫车广泛采用的是副发动机驱动工作装置。但是这种形式由于增加了副发动机,还必须配置发动机所需的相关附件和控制装置,增加了清扫车的制造成本。同时工作噪声大,工作油耗高造成使用成本也在增加。这种形式往往还会出现“大马拉小车”的现象。

由于全球控制排放等原因,在满足欧I到欧IV排放法规要求的过程中,中型清扫车底盘发动机的功率已经从57kW逐步上升到120kW以上,今后,国家对环卫等特种车辆将会执行更加严格的控制排放标准,如果要求清扫车车的副发动机也达到欧III或欧IV排放标准,清扫车的制造成本,油耗将面临更严峻的考验。针对以上问题,近些年来发展起来的机液复合传动形式能够满足要求。

1 机械-液压复合传动

机械液压复合传动主要由机械路,液压路,功率分汇流机构三部分组成,常见的机械液压复合传动机构可分成输入分流式和输出分流式两种基本形式,如图1所示。

图1(a)是输出分流形式传动,行星排在输出端起汇流作用;图1(b)是输入分流形式传动,行星排在输入端起分流作用。图中B,M分表表示液压泵和马达,X表示行星差动轮系,X可以是单排行星轮系或多排行星轮系组成。系统输入的动力一部分直接输入到差动轮系,为机械功率流。另一部分输入到液压泵B-液压马达M,为液压功率流,最后机械-液压汇合输出。输出分流式的传动比关系式为

机械液压复合传动是通过调节液压元件的排量在机械流给定的基础速度上实现连续的无级变速。在复合传动中机械功率流和液压功率流以相同的方向叠加输出,没有循环功率。图2为配置双发和单发的机械,液压功率流示意图。

2 机械液压复合传动在清扫车上的应用

下面举例介绍一种机械液压复合传动在清扫车上的应用。该方案采用机液复合传动方式,采用一台发动机,在不作业状态下采用机械传动方式,在车辆作业状态下采用机械传动和液压传动复合调节下驱动车辆行驶,实现无极调速。采用这种工作装置可以减少油耗,工作效率更高,同时减少了成本。为了实现目的,具体传动系统方案如图3所示。

在底盘前后传动轴之间安装专门设计的分动箱,箱体内安装有输入轴,行驶输出轴,作业输出轴,行走变量泵,定量马达,行星轮机构。分动箱上设置复合传动输出驱动行驶的变速换挡机构,满足在重污染和交通不便的地段,和在污染较轻交通便利顺畅的路段行驶的需要。

清扫车配置单发动机,采用机械液压复合传动系统,动力系统安装所占空间小,作业时,车辆以机液复合传动方式实现无级变速驱动行驶和作业,能同时以机械传动的方式实现清扫装置进行作业。行走时,切断液压功率流,以机械传动的方式驱动行走,行驶速度快。在行驶动力配置方面,机械功率占总功率的大部分,所需大功率的部分尽量采用机械传动,这样既提高了总体的传动效率又减少了油耗,降低了废气的排量。

图4为应用机械、液压复合传动技术与原双发动机配置时输出效率、功率及油耗的对比图。

3 结论

机械液压复合传动克服了双发和液压传动的缺点,能够在作业状态下实现无级变速,大大的提高了清扫效率和清扫质量。车辆还可以方便的转换为机械传动下的前进行驶和倒车,传动效率高。

参考文献:

[1] 秦娜.扫路车传动系统的探讨与研究[J].建设机械技术与管理,2000(4).

篇6

机械传动方案的设计是一个比较复杂的工作,为了可以更好的完成这项任务,首先需要对传动机构的运动特点、性能特点、工作特点、适合场合进行详细全面的了解,其次设计人员要具有比较丰富的设计经验和设计知识。在机械传动方案的设计过程中,最重要的一个环节是拟定机械传动方案和计算,传动方法设计的合理与否直接影响到机械的成本、性能和质量。因此,要认真对等机械传动方案的设计和计算工作。

1. 选择传动类型

在选择传动类型的过程中,可以有非常多的类型进行选择,一般情况下,传动机构选择的不同,得到的传动方案也是不同的,所以,只有选择了传动类型,才利用得到一个比较科学合理的传动方案。在选取传动类型的过程中,主要以运动性能的良好、效率高、质量小、外形尺寸小、符合生产条件等性能指标为选择依据,主要遵循下面几个原则:(1)当原动机的运动形式、转速、功率和执行系统的工况一致时,可以使用联轴器把执行机构的输入轴和原动机的输出轴连接起来。这种联结机构具有传动效率高、联结结构简单等方面的优势。不过如果执行机构的输入轴和原动机的输出轴不在同一条轴线上时,就需要使用等传动比的传动机构。(2)如果原动机的输出规律符合执行机构的要求,但是原动机的转矩、运动形式和转速不能满足执行机构的要求,这时就需要使用可以对运动形式进行转化或者可以变速的传动机构。(3)当对速度要求不高,使用中小功率进行传动,如果对传动要求比较高,可以使用多级齿轮传动、单级蜗杆传动、带-齿轮-链传动、带-齿轮传动的传动方案进行比较选择,选取出综合性能最优的方案。(4)传动功率大、转速高时,要选择转动平稳、承载力高、效率高的传动类型(5)尽量使用结构简单的单级动装置,如果传动比较大时,可以选择结构比较紧凑的行星齿轮传动和蜗杆传动进行,如果中心距比较大,可以使用链传动和带传动。(6)如果作业环境比较不好,有比较多的粉尘,要尽可能选择闭式传动的方法进行传动,以达到延长零件寿命的目的。(7)在进行小批量、单间生产的传动时,为了节省资金的投入,减少制造时间,要尽可能使用标准传动装置。(8)在执行机构的变化量非常大甚至超出负荷时或者载荷变化非常频繁时,可以使用有过载保护装置的传动类型,从而确保设备运转的安全。

2. 设计传动方案

2.1. 选取传动路线

在对传动路线进行选取时,可以根据东西和运动的传动路线进行选取,一般情况下,传动路线可以分为下面四种情况:(1)分路传动。在系统只有一个原动机,却有几个执行机构的时候,可以使用分路传动的传动路线;(2)单路传动。单路传动的传动结构比较简单,不过传动机构的数量非常的多,传动系统的效率也不高,所以要尽可能的降低机构的数量。在系统中只有一个原动机和一个执行机构的时候,可以使用这个传动路线;(3)复合传动。复合传动指的时几个传动路线的组合,在选择传动路线时,要根据执行机构的和求、执行机构的提醒来进行决定,要严格按照传动准确度高、传动结构简单、传动结构效率高、传动结构成本低、传动结构传动链短等原则来构建传动系统;(4)多路联合传动。在系统需要几个运动,而且每个运动的传递功率都比较高,单执行机构只有一个时,可以使用多路联合传动路线。

2.2. 对机构的顺序进行布置

在对机构的顺序进行布置的过程中,要考虑下面几个方法:(1)提升传动系统的工作效率。蜗杆涡轮机构传动虽然平稳,不过效率偏低,通常使用与中、小功率间隙的运动场合,在对于使用铜锡为涡轮材料的蜗杆传动,为了提高承载力和传动效率,促进油膜的形成,要在高速级对其进行布置。(2)机械运转时振动小、运转平稳原则。通常把动载荷低、传动平稳的机构放到高速级,比如带传动可以对吸振进行缓冲,传动也比较的平稳,而且可以进行过载保护,所以一般会将其布置在高速级;而链传动会出现运转有冲击、不均匀的情况,可以在低速级对其进行布置,再比如和直齿轮相比,斜齿轮在传动过程中,平稳性更好,所以斜齿轮经常会应用于对平稳度要求比较高或者高速级的场合。(3)承载力高、使用时间长。因为开式齿轮的工作环境非常的不好、条件也不好,磨损相对来说更加严重,使用时间不长,通常将其布置在低速级,为了防止齿面出现严重磨损或者胶合的情况,要在低速机布置铸铁或者青铜铝铁作为蜗轮材料的蜗杆传动,从而使得齿面滑动速度变低。(4)要易于加工、结构紧凑简单。带传动布置在高速级除了要求传动平稳外,还要求传动装置的尺寸要尽可能的小。为了使结构紧凑,通常会使用可以改变形式的机构布置到传动系统的最后一级,常见的有连杆机构、螺旋传功、凸轮机构等。对于大模数、大尺寸的圆锥齿轮来说,加工非常的困难,为了使模数和直径减少,一般将其放置到高速级,并对其传动比进行限制。

3. 计算传动系统动力参数

在对动力系统进行计算的过程中,各轴的转矩和功率是两个主要的计算方面:(1)传动系统的总效率。常用的单路系统总效率是各个部分效率的乘积。即n总=n1*n2…n.其中n为各个轴承、各个联轴器、各个传动机构的效率。(2)在传动系统中,在计算各个零件的工作能力时,要利用输入功率来对功率进行计算。

4. 结语

总而言之,机械传动方案的设计是一个非常复杂的工作,方案设计的好坏直接影响到了机械的性能、质量、成本等。在方案设计的过程中,要严格按照规定标准进行设计,选取正确的传动类型、传动路线。同时还要对传动机构的顺序进行合理的布置。传动方案的设计人员除了需要具有丰富的设计知识和设计经验外,在设计过程中要抱着严谨的设计态度来进行传动方案的设计工作。

篇7

2机械传动技术的发展

19世纪末,电动机和内燃机获得广泛使用,对机械传动技术提出了更高要求,到20世纪初期,机械传动技术有了很大发展,直齿轮、斜齿轮、锥齿轮和蜗杆传动相继问世,性能、精度及耐久性方面都有了很大发展,基本上可以满足机械工业的需要。20世纪40年代后,齿轮几何学逐渐发展成为一门独立的学科,齿形、啮合及齿轮之间的展成关系,可以通过数学计算实现精确化,这使得机械传动真正成为一门科学。在精确计算的支撑下,研究人员逐步掌握了齿轮传动的表面接触强度及轮齿弯曲强度,基于动载荷的机械传动设计也初步成型,并应用于高速重载的汽轮发电机传动系统。这期间,研究人员还提出了齿轮齿廓和齿向修形设计的方法,以提高承载能力。进入20世纪60年代,肇端于美国的宇航技术取得突破性进展,导航系统、火箭助推器对传动系统的要求非常高,不仅要求传动系统体积小、承载能力强,可靠性更成为首要的考量标准。为此,研究人员不遗余力,对直齿、斜齿、锥齿的表面疲劳强度进行了深入研究,并进行严谨的可靠性增长试验,通过研究,发现传动系统的原材料和齿轮的啮合性不仅关乎其承载能力,也与其可靠性密切相关,这一发现促成了非金属材料(如高强度塑料)齿轮的产生。进入70年代后,机械传动技术更有了飞跃式的发展,空间啮合理论成为这一时期的亮点,研究人员相继推出曲线锥齿轮、环面蜗杆、点接触蜗杆及圆弧齿轮等新式传动系统,极大推动了机械传动技术的发展。值得一提的是,我国正是在这一时期,在机械传动技术领域,迎头赶上发达国家,达到了世界先进国家的水平。20世纪80年代以后,随着知识经济的到来,机械传动技术更是突飞猛进,在空间啮合理论的推动下,少齿差行星传动、变型伺服传动、新型蜗杆传动等新型传动系统相继出现,弹性变形理论、制造误差的啮合理论、局部共轭理论及失配啮合理论,都达到很高水平,齿间载荷分配和应力分析也得到广泛应用。这期间,传动系统减振降噪研究,也成为一个热点,并获得诸多成果,轮齿三维任意可控修形设计便是其中最为重要的创举,根据轮齿修形的要求,多自由度数控齿轮加工机床纷纷问世。传动系统动力学研究更为深入,研究人员提出了齿轮传动系统故障诊断、状态监控和失效预警的思路,并开发出相应的监控与诊断软件,用于冶金、船舶、电厂等大型关键设备的传动系统,使之走上了智能化的台阶,取得了较好的效果。同时,传动系统的研究由微观返向宏观,即传动系统的研究并不单纯以传动系统为对象,而是把机械作为一个整体来研究,传动系统与整机的匹配、协调,越来越受到重视。

3机械传动技术的展望

随着科学技术的发展,机械传动的模式早已不再局限于齿轮、链条等接触式传动,通过电磁感应原理来传递动力的非接触传动(如电磁轴承、电磁传动等)已进入实用,与传统的接触式传动相比,非接触传动具有无磨损、寿命长、效率高等优点。当然,传统的轴承等接触式传动,仍大有用武之地。今后,机械传动技术领域的研究,应在优化改进传统传动技术的基础上,探寻创新型传动模式,在一段时间内,研究重点仍然是前者。大体来说,机械传动的研究方向主要有以下几点:

3.1提高机械传动的信息化、智能化水平

信息化和智能化是现代社会的重要特征之一,涉及到生产、生活的方方面面,机械传动领域也不能例外。机械传动技术应与计算机控制技术相结合,实现信息化和智能化,即根据原动力系统的效率特征和执行系统的功能要求,通过计算机控制技术,精确实现动力传动功率和速比的实时控制,从而使原动力系统、传动系统和执行系统趋于最佳匹配与融合,这一研究也是机械装备实现自动化和智能化的重要基础。经过科研人员的不懈努力,传动系统的信息化与智能化,以至于机械装备的信息化和智能化,已经获得重大进展,在汽车、工程机械和军工机械生产领域广泛应用。目前,自动变速传动是最为主要的信息化、智能化传动模式,一般来说,包括三种形式,即机械自动变速ASM(Automaticshiftmanualtransmisson)、液力机械自动变速传动AT(Automatictransmission)和无级自动变速传动CVT(Continuouslyvariabletransmission),这三种传动形式的技术已相当成熟,代表着传动技术信息化、智能化的主流。但在国内,相对而言,AT、CVT技术还存在较大差距,应重点攻关。

3.2传动系统新材料的突破

现代材料科学肇端于20世纪50年代,苏联成功发射人造地球卫星之后,人们认识到,先进材料对于高科技的发展起着至关重要的作用,此后,材料科学成为人们耳熟能详的热门词汇。在传动技术领域,新材料的运用也方兴未艾,比如梯度材料、陶瓷材料、纳料材料、高分子聚合物、智能材料、表面涂层及自修复材料等,均以其鲜明而独特的性能特点,推动着机械传动技术的发展和性能的提高。材料科学是多学科交叉与结合的结晶,是一门与工程技术密不可分的应用科学,我国材料科学的研究水平位居世界前列,有些领域甚至居于世界领先水平,我们应保持并发挥这一优势,将其扩展到机械传动等生产领域,为国民生产提供科学技术支持。

3.3提升机械传动的适应性

现代机械工程的发展日新月异,对于机械传动系统的要求也越来越高,比如,宇宙空间的高真空、微重力、大温差,海洋环境下的海水腐蚀,以及强磁场或强强电场等特殊(极端)环境下的机械,就需要与该环境相适应的传动系统。这类特殊(极端)环境下的传统系统开发及其适应性研究,以及传动系统在该环境下的服役特性研究,也是我们下一步研究的重点。此外,微机械中的微型传动系统,也是一个重要的研究方向。因为尺度效应的影响,微型传动系统与普通机械传动机械管理开发的工作原理和性能特征均有很大不同,当传动系统的尺寸小到微米或纳米级时,会产生很多新的科学问题。比如传动副元件的表面积与体积之比增大,表面力学、表面物理效应将起主导作用,同时微传动系统的摩擦学、热传导与常规尺度的传动系统不同,这就需要加大研究力度。

篇8

2机械传动技术的发展

19世纪末,电动机和内燃机获得广泛使用,对机械传动技术提出了更高要求,到20世纪初期,机械传动技术有了很大发展,直齿轮、斜齿轮、锥齿轮和蜗杆传动相继问世,性能、精度及耐久性方面都有了很大发展,基本上可以满足机械工业的需要。20世纪40年代后,齿轮几何学逐渐发展成为一门独立的学科,齿形、啮合及齿轮之间的展成关系,可以通过数学计算实现精确化,这使得机械传动真正成为一门科学。在精确计算的支撑下,研究人员逐步掌握了齿轮传动的表面接触强度及轮齿弯曲强度,基于动载荷的机械传动设计也初步成型,并应用于高速重载的汽轮发电机传动系统。这期间,研究人员还提出了齿轮齿廓和齿向修形设计的方法,以提高承载能力。进入20世纪60年代,肇端于美国的宇航技术取得突破性进展,导航系统、火箭助推器对传动系统的要求非常高,不仅要求传动系统体积小、承载能力强,可靠性更成为首要的考量标准。为此,研究人员不遗余力,对直齿、斜齿、锥齿的表面疲劳强度进行了深入研究,并进行严谨的可靠性增长试验,通过研究,发现传动系统的原材料和齿轮的啮合性不仅关乎其承载能力,也与其可靠性密切相关,这一发现促成了非金属材料(如高强度塑料)齿轮的产生。进入70年代后,机械传动技术更有了飞跃式的发展,空间啮合理论成为这一时期的亮点,研究人员相继推出曲线锥齿轮、环面蜗杆、点接触蜗杆及圆弧齿轮等新式传动系统,极大推动了机械传动技术的发展。值得一提的是,我国正是在这一时期,在机械传动技术领域,迎头赶上发达国家,达到了世界先进国家的水平。20世纪80年代以后,随着知识经济的到来,机械传动技术更是突飞猛进,在空间啮合理论的推动下,少齿差行星传动、变型伺服传动、新型蜗杆传动等新型传动系统相继出现,弹性变形理论、制造误差的啮合理论、局部共轭理论及失配啮合理论,都达到很高水平,齿间载荷分配和应力分析也得到广泛应用。这期间,传动系统减振降噪研究,也成为一个热点,并获得诸多成果,轮齿三维任意可控修形设计便是其中最为重要的创举,根据轮齿修形的要求,多自由度数控齿轮加工机床纷纷问世。传动系统动力学研究更为深入,研究人员提出了齿轮传动系统故障诊断、状态监控和失效预警的思路,并开发出相应的监控与诊断软件,用于冶金、船舶、电厂等大型关键设备的传动系统,使之走上了智能化的台阶,取得了较好的效果。同时,传动系统的研究由微观返向宏观,即传动系统的研究并不单纯以传动系统为对象,而是把机械作为一个整体来研究,传动系统与整机的匹配、协调,越来越受到重视。

3机械传动技术的展望

随着科学技术的发展,机械传动的模式早已不再局限于齿轮、链条等接触式传动,通过电磁感应原理来传递动力的非接触传动(如电磁轴承、电磁传动等)已进入实用,与传统的接触式传动相比,非接触传动具有无磨损、寿命长、效率高等优点。当然,传统的轴承等接触式传动,仍大有用武之地。今后,机械传动技术领域的研究,应在优化改进传统传动技术的基础上,探寻创新型传动模式,在一段时间内,研究重点仍然是前者。大体来说,机械传动的研究方向主要有以下几点:

3.1提高机械传动的信息化、智能化水平信息化和智能化是现代社会的重要特征之一,涉及到生产、生活的方方面面,机械传动领域也不能例外。机械传动技术应与计算机控制技术相结合,实现信息化和智能化,即根据原动力系统的效率特征和执行系统的功能要求,通过计算机控制技术,精确实现动力传动功率和速比的实时控制,从而使原动力系统、传动系统和执行系统趋于最佳匹配与融合,这一研究也是机械装备实现自动化和智能化的重要基础。经过科研人员的不懈努力,传动系统的信息化与智能化,以至于机械装备的信息化和智能化,已经获得重大进展,在汽车、工程机械和军工机械生产领域广泛应用。目前,自动变速传动是最为主要的信息化、智能化传动模式,一般来说,包括三种形式,即机械自动变速ASM(Automaticshiftmanualtransmisson)、液力机械自动变速传动AT(Automatictransmission)和无级自动变速传动CVT(Continuouslyvariabletransmission),这三种传动形式的技术已相当成熟,代表着传动技术信息化、智能化的主流。但在国内,相对而言,AT、CVT技术还存在较大差距,应重点攻关。

3.2传动系统新材料的突破现代材料科学肇端于20世纪50年代,苏联成功发射人造地球卫星之后,人们认识到,先进材料对于高科技的发展起着至关重要的作用,此后,材料科学成为人们耳熟能详的热门词汇。在传动技术领域,新材料的运用也方兴未艾,比如梯度材料、陶瓷材料、纳料材料、高分子聚合物、智能材料、表面涂层及自修复材料等,均以其鲜明而独特的性能特点,推动着机械传动技术的发展和性能的提高。材料科学是多学科交叉与结合的结晶,是一门与工程技术密不可分的应用科学,我国材料科学的研究水平位居世界前列,有些领域甚至居于世界领先水平,我们应保持并发挥这一优势,将其扩展到机械传动等生产领域,为国民生产提供科学技术支持。

3.3提升机械传动的适应性现代机械工程的发展日新月异,对于机械传动系统的要求也越来越高,比如,宇宙空间的高真空、微重力、大温差,海洋环境下的海水腐蚀,以及强磁场或强强电场等特殊(极端)环境下的机械,就需要与该环境相适应的传动系统。这类特殊(极端)环境下的传统系统开发及其适应性研究,以及传动系统在该环境下的服役特性研究,也是我们下一步研究的重点。此外,微机械中的微型传动系统,也是一个重要的研究方向。因为尺度效应的影响,微型传动系统与普通机械传动的工作原理和性能特征均有很大不同,当传动系统的尺寸小到微米或纳米级时,会产生很多新的科学问题。比如传动副元件的表面积与体积之比增大,表面力学、表面物理效应将起主导作用,同时微传动系统的摩擦学、热传导与常规尺度的传动系统不同,这就需要加大研究力度。

篇9

中图分类号:F416.4 文献标识码:A 文章编号:

引言

机械传动齿轮具有效率高、结构紧凑、工作寿命长以及传动比稳定的优势,在机械传动形式中受到广泛欢迎。机械传动齿轮的失效模式主要有轮齿折断、齿面胶合、齿面点蚀以及塑性变形等情况,轮齿的啮合不合理时,就极容易造成齿轮结构的超负荷运转或冲击负荷的出现,相对较软的轮齿就会出现塑性变形,甚至会出现飞边、轮齿变圆等问题。齿轮失去正常齿形后,啮合将会受到更严重的影响,大大降低了机械传动的效率与作用。但它在诊断过程中需要的技术要求也较高,只有准确判断,才能准确定位问题,并进行改造或检修。[1]

几种常见的齿轮失效模式

2.1齿面接触疲劳点蚀

齿轮在相对运动过程中,存在着相对滚动与相对滑动同时进行的情况,相对滑动容易产生脉动载荷,这主要是因为它在轮齿接触点两侧有反向摩擦力。它们将会使齿轮的表现深处产生不断循环的切应力,当其数值超过齿轮材料的疲劳极极值时,就会产生疲劳裂纹。油会在运动的过程中渗入到这些裂纹中,当温度升高时,它将会进一步增大裂纹的宽度,从而加剧裂纹的出现。最终剥落一小片金属,形成一个个的小坑,这些小坑就是所谓的点蚀

2.2齿面磨损

在轮齿齿面的接触过程中,当油不足、油质不清洁现象出现时,会造成齿面磨粒磨损,这种磨损作用将会使齿廓改变,侧隙空间加大,齿轮厚度降低,非常容易导致断齿。

图一 齿面接触疲劳点蚀 图二齿面磨损

2.3齿面胶合

在机械传动齿轮结构中,当负荷过大时,会导致温度急剧升高,齿面之间的油膜将会在高温作用下慢慢消失,齿面金属材料将会发生融化现象,附着在接触的齿面上。这就是典型的齿面胶合问题。当新齿轮在开始投入过程中,也会出现这一问题,齿面胶合会损坏齿面的结构,造成擦伤后果。[2]

2.4塑性变形

在齿轮运动过程中,如果外应力过大,轮齿的材料将会产生齿面或内部结构塑性流动的问题,在外形来看,轮齿就会发生变形。一般在硬度低的齿上更容易出现。一方面需要提高齿面的硬度,另一方面增加剂,也可以有效避免应力直接作用于齿面上,导致塑性变形的出现。

2.5轮齿折断

轮齿折断是指的数个或单个齿发生局部或是整体的断裂现象,它可以分为疲劳折断与过载折断两种主要原因形式。齿轮的轮齿弯曲应力超过极限值时,就会发生疲劳折断。当轮齿的材料不合格时,脆性过大,在承载力稍微变大时就会产生轮齿折断的问题。[3]

图三 轮齿折断

齿轮失效的诊断方法

齿轮失效的方式有很多种,但它的诊断方法却不是很多。诊断方式的确定将会侧重不同,对原因分析的重点也就不同。一般来讲,齿轮失效模式的诊断方法主要有简易诊断法与精密诊断法。

3.1简易诊断法

由于齿轮的啮合频率与两个齿轮的齿数、转速均有关系,所以简易诊断可以从这种关系入手进行研究。简易诊断就是通过传感器来对引出端的频率进行检测,比如轴承座盖等位置,同时对噪音频谱进行分析,进而对齿轮进行诊断。

简易诊断中,需要对检测的部位进行关注。比如轴承在机壳的内部,在诊断时就可以选择轴承座附近的硬度较好的位置,或者对结构的基础进行测量。在测定时可以对位置进行标记,避免重复,这是为了保持多次测定都有一个不同的结果,从而进行综合分析。如果测量时在钢铁件时,最好是保证表面为光滑状态。重点沿着水平、垂直与轴向三个方面进行测量。[4]

需要诊断的齿轮转速可以在100转以上。简易诊断的项目主要包括齿轮的偏心、齿距误差、齿形的误差与齿面磨损以及齿根断裂等。由于齿轮的各类不同,测量方法不局限于一种,而应该通过两种方法协同检测,结果会更加准确。

3.2精密诊断法

啮合频率在故障诊断中是一个非常重要的码数,由于齿轮诊断监测的振谱各有自己的特点,所以需要对各类的故障的频域进行精密测量。针对不同的参数测量,会有可能引起相关的问题,关联情况如下:

当齿轮磨损时,啮合频率以及它的谐频分量会处在一个稳定的水平,幅值稍微有一些变化,高次频率分量变化明显;当齿廓变形或者在齿轮轮齿结构有裂纹时,啮合频率幅值变大,谐频分量也随之增大;当齿轮出现断齿的时候,相当于齿数发生变化,将会对啮合频率以及固有频率产生影响;当齿轮有制造偏差时,会出现一个特定的转频谐波;当齿圈发生心偏时,振幅增大,随之固有频率与啮合频率也会出现高频信号;当齿轮角速度发生变化时,会出现调频现象。除了这些理论上的依据,还要根据客观存在的实际情况进行综合分析,得出准确的判断。[5]

浅谈机械传动齿轮失效的检修

对于已经失效的齿轮结构,如何进行判断是否达到报废标准呢?针对不同的失效形式,有着不同的结论。检修失效的机械传动齿轮主要有几种情况:

首先是齿轮有裂纹出现或是齿面断裂时,就需要报废了;二是当齿轮轮齿的表面点蚀损坏占整个轮齿表面的三成以上,深度达到10%以上,或者点蚀面积超过60%,就需要报废处理;三是对于齿轮的磨损,它对于不同的应用机构有着不同的要求。对于一般的提升机构而言,安全系数较高,磨损齿厚不应该低于原厚度的80%;对于一般性的运行机构而言,齿轮的磨损不应该低于60%,如果超出此范围,则需要更换齿轮结构了。第四,为避免胶合现象出现,应该采用高粘度的油,因为胶合会发生在低速但载荷力较大的场合,这个时候除了加油外,还需要提高齿轮面的硬度、减少齿面的表面粗糙度。加入油,对于点蚀失效、磨损失效都有较佳效果。[6]

针对不同的失效模式的齿轮有着不同的检修方法。对于高速运转使用的齿轮出现磨损情况时,一般油过少或者间隙过小,它的排除方法就是减少负荷,增加油;针对齿顶变尖的现象,可以增加齿轮的齿心距,或改用变位齿轮;针对齿形出现波纹磨损时,需要增加油;对于出现胶合的齿轮现象,可以清洁油泵,提高齿轮的表面硬度,减少负荷,或使用粘度较高的油,避免应力直接作用于齿面上;针对产生塑性变形的齿轮,就需要考虑环境条件了,要改善散热条件,或更换齿轮。

另外针对齿轮本身的修理方法包括:镶齿修复法、镶齿圈修复法、齿轮翻转使用法、修复铸铁齿轮的断齿、镶焊齿坯修理法等,通过对轮齿的修复处理达到可以使用的目的。

结语

随着机械传动齿轮在机械制造业中的使用越来越广泛,它的检修技术与诊断技术将会不断进行推广,更多的人将会掌握这一技术。运用科学的方法,不断引进国际先进仪器与技术,更加熟悉齿轮的运行规律,才能更好地判断齿轮的故障问题与解决办法,更好地为国民经济的发展贡献齿轮传动最大的能力。

参考文献:

[1]蔚海文.煤矿机械传动齿轮失效形式及对措[J].山西焦煤科技,2011(01).

[2]闫德明.煤矿机械传动齿轮失效形式分析[J].山西科技,2011(05).

[3]焦钊.采煤机械传动齿轮失效问题研究[J].科技创新与应用,2012(08).

篇10

中图分类号:F407文献标识码: A

引言

液压技术迅速发展,液压元件日臻完善,使得液压传动在工程机械传动系统中的应用突飞猛进,液压传动所具有的优势也日渐凸现。可以相信,随着液压技术与微电子技术、计算机控制技术以及传感技术的紧密结合,液压传动技术必将在工程机械行走驱动系统的发展中发挥出越来越重要的作用。

一、液压机械传动概述

液压机械传动在推土机、装载机等工程机械中的运用主要是借助HMT(无级变速器)实现的,其中液压调速、机械变速、分汇流等机构为主要构成。具体而言,先经PTO将动力分为两路,即在离合器和液压传动的作用下分别将输出的动力传至行星架和太阳轮,并分别用作机械动力和液压动力,然后经差动轮系统合成动力,并由齿圈输出。若其处于准备状态,离合器C2闭合,C1脱开,此时液压传动负责输出所有的动力,为工程机械的微动和起步做好准备;而在作业时则C1闭合,C2脱开,由于液压马达受系统控制而转速na为零,故动力全部转化为机械动力,进而实现最高的传动效率。同时根据公式nb=(1+k)/k・nc-1/k・na(nb、nc、na分别代表输出、液压马达和机械传动的转速,而k则代表行星排特性系数)可以看出当其马达发生正反向回转动作时,其nb会减小或增大,进而连续获得转动比为任何值且处于变速内的无级变速传动。

二、液压机械传动在工程机械上的应用

1、在矿石的装载机上的应用

通常装载机变速器包括液压传动、机械传动和动力合成,其中机械传动涉及4个行星排和制动器,以及1个离合器,同时根据相应的组合元件状态、转速关系、输出构件、效率等指标可以判断出其有2个行星排负责转向,2个行星排负责变速;针对涵盖变量马达和变量泵的液压传动部分,主要是在伺服阀的控制下变化斜盘角度,进而达到机械无级变速的目的;动力合成中,当装载机处于I、III档时,e、f行星排会形成差动轮系,并经构件7和8分别负责输入机械和液压两大传动动力,然后经10输出;若装载机处于n档,此时f为差动轮系,8和9分别负责输入液压和机械两大传动动力,且经合成后也经10输出;后根据科学公式计算和运动分析后得知,当液压马达的实际转速为零时,传动系统工作状态稳定,此时装载机中的发动机会将功率全部转化为机械传动动力,进而实现了传动功率最大化,而且换挡更加便捷,微动性能较好,燃料更加经济,运行更加平稳,足以见得,液压机械传动系统在装载机中的应用效果较为理想。

2、在汽车起重机上的应用

液压机械传动的运用效果通常体现在起重机的功能实现中如用于车身支承和稳定,即基于合理的进油路和回油路,促使前后腿液压缸伸出活塞,用于支承车身,而伸出稳定器位置的液压缸活塞时,则用于刚性连接后桥与车体进而起到稳定的效用;在吊臂伸缩、变幅中,主要基于液压机械传动系统,完成伸缩、变幅、起升、回转等任意机构组合的动作,进而提高工作效率,但为避免吊臂因重力荷载而自由下降,分别在伸缩与变幅回路中增设了平衡阀,并用于对液压缸进行单向锁闭,以此可靠支承吊臂;针对吊重升降动作的实现,也离不开液压机械传动系统,如对于起升吊重,可通过操纵换向阀促使泵油进入制动液压缸,然后经换向阀和平衡阀进入起升马达机构,此时起升马达便会在机械传动动力的作用下回转卷筒完成吊重上升,而在下降吊重时则会促使起升马达进行反向转动,同时结合回油路,吊重稳定下落;最后是通过液压马达带动回转工作台用于实现吊重回转,同时为保护液压元件免受损伤,故为液压泵中的排油回路增设了滤油器,而在调节工作机构的速度时,往往需要改变发动机转速结合手工调节换向阀,以此实现液压机械传动系统在起重机吊重回转中的作用。.

三、液压机械传动在矿山机械中应用中的故障

液压系统由于具有动力大,传动平稳,噪声低等优点,因而,在矿山机械中得到广泛应用。由于矿山机械在使用过程中的液压系统泵站集中,执行机构点多面广,系统压力高、流量大、阀控制多,各机构所处的环境受温度、水蒸气、粉尘和振动的影响较大,故液压系统的结构比较复杂。若出现故障,将会直接影响其工作效率,且液压系统的故障具有隐蔽性、交错性、随机性和差异性等特点。因此,对矿山机械液压系统常见问题进行调查,梳理与总结,以及对故障诊断技术与方法的合理选用等,对液压系统故障的快速诊断与维修显得尤为重要。

1、温度过高

系统产生温度过高的主要原因有:冷却器或吸油管路堵塞;油粘度过高;内泄严重;泵修理后性能差及油位低;压力调定过大;摩擦损失大。相应解决方法如为:对冷凝器或吸油管路选用合适的介质进行高温、高压清洗,冲洗过程中要用外力不断反复锤打管壁、以便更好地震落除去残留管壁的残渣、杂物。排空油箱,根据工作情况,选用相应对粘度液压油。查寻油箱漏油处,可能是油位太低,应把油位加到正常位置。如果是单向泵,则可能是由于接线错误而导致泵的旋向不对,此时应改变接线,调整泵的旋向。泵内可能有沉渣,应进行清洗排渣。由于磨粒磨损、疲劳磨损、粘着磨损和腐蚀及侵蚀磨损而造成的泵元件严重磨损或损坏,此时应更换泵元件或更换泵。

2、油液泄漏

造成油液泄漏的主要原因有:油温、油压过高;接头松动或密封失效;工件相对运动表面过度磨损;阀等元件失效。相应处理方法为:油温过高参照上面介绍。拧紧油管接头并检查是否扣环或者更换密封。研磨修复磨损表面或者更换磨损严重的元件。更换阀等失效元件。

3.3振动和噪声

产生振动或噪声的主要原因有:系统进入气或出现空穴现象;零部件出现松动或磨损;机械系统引起的振动;油流漩涡、油面过低;元件堵塞或阻力太大;压力和流量脉动大;阀门和缸体收到堵塞,泵校正不当或油粘度大。

四、在机械应用中的故障诊断技术

1、主观诊断技术

主观诊断技术是目前解决液压机械故障最有效、较常见的一种技术,主要包括:直接经验法;逻辑分析法;参数测量法;故障树分析法等;直接经验法;逻辑分析法。参数测量法;故障树分析法。

2、仪器诊断技术

仪器诊断主要是根据液压系统的流量、压力、温度、振动、噪声、油的污染、泄漏、执行部件的速度、力矩等,通过仪器显示或计算机运算得出判断结果。诊断仪器有通用型、专用型、综合型,其发展方向是非接触式、便携式、多功能和智能化。包括铁谱记录法、振动诊断法、声学诊断法、热力学诊断法等。

3、数学模型诊断技术

数学模型诊断技术是指首先用一定的数学手段来描述系统某些特征量在频率、相位、幅值及相关性上与故障之间的关系,然后通过测量、分析、处理这些信号来判断故障源发生部位。其实质是以动态测试技术和传感器技术为手段,以信号处理与建模处理为基础的诊断技术。主要包括功能诊断法、信号时-频域诊断法、随机信号频率响应法等。

结束语

总之,液压机械传动的运用对于实现工程机械高效运作、平稳运行、经济便捷有着显著的推动作用,其中在矿山机械、工程车辆等领域中已经被应用广泛。不但如此,其仍然有着良好的提升空间,这就要求我们予以深入研究和实践检验,以此提高其综合性能,进而更好地服务于工程机械事业的发展。

参考文献

篇11

关键字:

液压传动技术;农业机械;现状;趋势

1引言

液压传动低速重载的工作特性十分突出,从而易实现对其运动数据和动力参数的检测、分析与控制。液压传动由于可以实现系统的整体功率恒定输出,且系统结构简单轻便,便于系统的扩展,拥有迅速传递效能,驱动行走时能够在使用工作范围内实现无级变速,工作时容易实现正、反向运转且无停顿、冲击等突出优点。使农业收割机械中液压传动技术得以广泛应用[1]。但是由于普通液压回路存在能量损失过大,能源消耗高,功率利用率低,效率不高的特点;所以要对液压系统进行升级,将静液压传动技术引入传动系统。静液压传动(变量泵+(变量)马达组成的闭式回路系统称为静液压传动)是以高压油为介质直接传递动力的系统,其重要特征为系统压力大,回路小流量。静液压驱动系统中是以液压泵为动力源器件,通过电子控操作系统对液压马达进行指令控制,通过改变泵的流量或液压马达的排量来调节系统回路流量,从而改变马达的转速,改变系统整体的输出扭矩大小,实现工作范围的无级变速传动。静压传动系统相对于单纯机械传动和辅助的液力控制机械传动,显著优点为高效的传动比、灵活的空间布局、易于实现无级变速、便于方向转变、功率效能的优化性、操作控制传输信号的多样有效性等;静液压驱动农业装载机械在动力源工作转速范围内,即使在低速工作时,仍可保证最大牵引力恒定有效,从而提供充足的扭矩[2~4]。

2静液压驱动系统在农业机械上的技术优势

(1)收获质量高。静液压驱动技术使动力源器件在较宽的可调工作速度区间范围内能实现无级变速;在动力源件适合的工作环境下,保证传动系统中各节点、部件的输出功率、速度恒定;特别是在农业收割机械中,能够保证恒定的低速行驶,对于收获不同生长方式及困伏的农作物时可以对机器进行时时控制,改变速度,提高农产品的收获品质,增加经济效益。

(2)控制简单有效,工作环境舒适平稳。对于控制人员来说,不需要专业的控制水平,控制简单,变速平稳无冲击,变向可无间断操作;在重载满负荷的工作状态下,能够输出恒定转矩保证机械启动平稳。

(3)以低频率的机械制动成为系统的一大特色。因为静压驱动系统本身就可以进行液压制动,从而可以减少使用机械制动的次数,在紧急状态可便于实现停车保护。

(4)可对超载进行系统保护,防止损坏动力源。液压系统中溢流控制回路,可控制整个系统中的液压参数,进行超压卸载保护。

(5)高工作效率。采用静液压驱动的联合收割机与机械传动的联合收割机相比减少了不必要的辅助工作提高了工作效率,机器的工作行驶速度实现时时可控,无需机械停顿变档实现无级变速,控制方法简便,降低操作人员的疲劳强度,提高工作效率。

(6)整个系统设计安装简便,布局合理。液压泵与液压马达为液压管路柔性连接,便于合理布局。

(7)系统能耗率低。对于大型的农业联合收割机械,行走功率在工作状态仅占总功率的1/5~1/4,使用静液压行走驱动系统的农业工程机械在需要大的输出转矩时,并不需要高转速大功率的发动机,发动机在低速通过液压回路能量转变可以提供大的输出转矩,使机械可以保证低速平稳运行。降低能耗,提高经济效益,又可对节能减排、循环利用、持久发展做出贡献。

(8)方便控制机械的输出功率,提高能源利用效率。采用电子数字变量控制系统,可以时时监控系统中各节点与执行动力元器件的耗能与动力源的输出功率;将参数导入数字控制系统进行分析处理匹配,发出控制指令,使系统整体效能达到最佳[5~7]。

3国内外发展现状及趋势

世界发达国家农业机械传动方式是以静液力传动为主,并使用具有分段无级调速能力的变矩器取代了机械传动中的离合器。使用后置的动力换挡式机械变速器与之配合,能够对承载负荷进行自动匹配,从而保护动力传动装置严防过载,可将双曲线型输出扭矩-转速特性突出表现出来。在目前的农业机械市场上仅有为数不多的几家,国外公司将静液压驱动技术引入到农业机械。例如:

(1)日本福田公司的雷沃全喂入水稻收割机的传动系统使用静液压传动装置,使机器可在地形复杂恶劣的工况环境下进行收割作业;由此对液压系统提出特殊的专业性能要求:机构紧凑、布局合理、质量轻便、体积小巧;回转半径小,工作时可实现无级变速;具有超群的低速稳定工作特性和优良的动力匹配特性;动力系统与执行元件装置布局合理、易于安装、便于维护、控制方便、工作环境舒适清洁等。对于上述技术要求只有采用静液压驱动,才能解决。

(2)意大利克拉斯公司生产的LEXION500系列机型采用后置式柴油型电喷发动机,其特点利于整机行进的平衡性,减少车载配重,减小噪声对驾驶员的影响,降低机械的油耗,延长工作寿命,提高操作舒适性。变速系统使用双速静液压无级驱动,可以提供较大的变速范围,同时具有自动调节速度功能。液压系统内部加入液压自锁回路,控制各个分布工作系统,提高系统整体的安全性,延长系统的工作寿命。变速系统为三级调节可满足不同的工作环境,提高工作效率,节约经济成本。系统亮点:割台工作系统采用液压马达驱动,可以实现正反转无级变速,具有自动清理工作中堵塞的杂物功能及保证启动轻便安全维护性,减轻操作者的劳动强度,节约时间,提高经济效益。

(3)德国克拉斯自走式收割机械将静液压传动技术引入到装卸搬运系统中,能最大限度的优化机械的工作性能,使传动系统的能耗下降30%以上;铲斗举升、翻转倾倒等动作时,不降低输出扭矩,液压系统的温升不明显;进、退换挡改变转向方便、快捷、容易实现、且不会损伤液压传动系统,对动力执行元器件起到保护作用。中国是农业大国,农业机械化水平还欠发达,相当于西方工业发达国家80年代末至90年代初的水平;我国农业机械的传动方式,主要是以负荷系数较低、能耗高、环境污染大的机械传动为主,此传动系统的驱动行走方式落后于国外先进水平近半个世纪。在国内农业机械生产公司将静液压驱动技术仅使用于液压转向控制系统,重要部件底盘的变速驱动行走系统使用带轮式机械无级变速,导致工作效率低,稳定性差的特点显著。例如:新疆-2机型传动装置为三角带式无级变速器,其作业速度可在不停车的情况下通过控制液压缸改变带轮的传动比实现小范围的无级变速,满足作业要求;但是这种结构由于工作部件不密封,带轮安装结构复杂,体积臃肿,部件相对位置固定不可调,导致使用维护困难,故障率高;特别是皮带工作寿命短,容易老化,极易打滑,甚至断裂,传动效率低,传动比不稳定等缺点显著。割台工作系统沿用德国40年的链轮传动结构;导致需要改变拨禾轮与往复式切割器、螺旋输送器、搅龙速度时必须停机后对带轮进行手工调节。液压转向控制系统使用静液压驱动技术,通过建立转向与控制两个相对独立的液压系统,通过稳定分流阀,确保液压泵可以恒定向转向器输出恒定流量,保证车辆行驶的稳定性。对比国内发展现状,可以发现我国静液压在农业机械发展仅仅是刚起步阶段;农业机械存在不足点有:

(1)机械传动方式导致工作稳定性不高,工作效率低,系统能耗率高;

(2)传动机构不密封,部件容易老化,污染环境;

(3)机械自动化程度低,人工劳动强度大;

(4)农作物收获质量低,操作人员的舒适性差;

(5)机械使用功能单一。

4建议

针对国内农业机械的不足;应着重从以下几个方面提高:

(1)对落后的机械传动进行改进升级;加强对液压技术的研究,推动静液压技术在农业技术上的应用;

(2)提高农业机械自动化的水平,实现对工作过程的时时控制;随着先进的计算机数字控制技术的不断发展,将电子数字控制技术与静液压传动技术相互结合;采用电子数控液压传动技术可使农业机械易于实现节能环保、智能化操作,提升产业链的核心技术,加强产品的市场竞争力。

(3)使农业机械向工业机械学习,对重要的关键部件进行深入的研究完成系列化、标准化生产,以便实现一机多用,提高机械的利用效率,同时减轻维护使用成本。借助电子科技的快速发展,将电子数控技术与静液压传动技术相互结合,可以方便的对液压系统的各个节点与回路的参数进行时时检测,数据分析,指令控制;同时数字控制的应用和各种传感器的配合,将可最优化液压元件的工作参数,提高工作的效率,节约经济成本。传感器检测农业机械各部件的工作状态参数,经过计算机的分析处理、整合匹配,对执行元件发出控制生产指令,使农业机械在整个工作过程中实现全自动化控制,减轻操作人员的劳动强度,同时实现机器的高效节能。成为当下和未来我国农业机械的控制传动发展的趋势方向[8~10]。

5结束语

进入“十三五”期间,由于中国特色农业经济的快速发展,与劳动力逐渐老年化的社会现实矛盾;对高效能、低耗能、高智能化、复杂集成化、高技术性的农业机械的需求越来越强烈,国内静液压驱动传动行走系统必将被引入到大型农业收割机械中,并在未来极短的时间内得到快速发展。静液压传动技术成为在世界农业机械领域动力传输方向发展的主流趋势;是国家当前和未来农业机械重点发展方向,是实现全智能化机械与节约经济型社会发展的必经之路。

作者:陈恒峰 郭辉 张学军 盛会 单位:新疆农业大学机械交通学院 新疆农业工程装备创新设计实验室重点实验室

参考文献:

[1]柳涛.液压技术在农业机械中的应用研究[J].河南科技.2011(20):56.

[2]西北农业大学主编.液压传动(第二版)[M].北京:农业出版社.1994.

[3]蔡文彦.液压传动系统[M].上海:上海交通大学出版社.2003.

[4]王广怀.液压传动技术应用[M].哈尔滨:哈尔滨工业大学出版社.2001

[5]曹玉宝.液压技术在现代农业机械中的应用现状与趋势[J].农机化研究.2008(5):194~196.

[6]张立杉.静液压驱动系统在农业机械领域的应用[J].液压气动与密封.2014(10):78~80.

[7]潘石峰.王智敏.农牧业机械液压传动[M].北京:农业出版社.1982.

篇12

中图分类号:TH132.41 文献标识码:A 文章编号:1009-914X(2015)21-0031-01

在煤矿生产过程中使用的机械设备广泛采用了机械传动齿轮新技术,使得煤矿机械可以有效进行节能控制,实现高效利用、可靠生产。大型、特大型矿井提升机功率达几千千瓦,采煤机的功率增加了4~6倍,掘进机的功率增加了2~3倍。功率的增大导致机械的输出扭矩增大,使煤矿机械的元部件特别是传动齿轮的受力增大,由于受煤矿使用条件和机器尺寸的限制,传动齿轮的外形尺寸却没有多大变化。为了提高煤矿机械的可靠性和使用寿命,对传动齿轮必然要提出更高的要求。

一、煤矿机械传动齿轮传动原理

随着煤矿机械现代化水平的提高,煤矿机械的功率日趋增大,为了提高煤矿机械的可靠性和使用寿命,在煤矿生产过程中煤矿机械传动齿轮应进行科学控制,煤矿企业中使用的现在机械设备中的轴承传动结构需要适应复杂多变的井下工作需求,机械传动齿轮的应用有效提高了开采设备的使用效率,它良好的传动效能比,科学解决了机械能耗的问题,煤矿机械传动齿轮的优势是体积较小,重量减轻,传动比大,结构紧密,承载力高,提高工作效能,较少机械能耗。在我国的煤矿企业中广泛使用,在煤矿机械传动齿轮中由于工艺以及设计问题,机械传动齿轮受到一些局限,这就使煤矿机械中减速器的设计使用成了障碍。

二、煤矿机械齿轮失效形式和失效原因

齿轮运转承载后,齿面相互接触并沿齿高方向滚动和滑动,接触应力使齿面表层内相应产生很大的剪应力,齿面的相对滑动又使滑动前方受压应力,后方受拉应力,齿面又受着拉、压交变应力的作用。除不良、三体(磨粒)磨损、化学腐蚀外,一般地说,若轮齿承受的交变应力超过了材料的疲劳极限或强度极限应力,就会造成上述各种形式的磨损失效。

三、提高齿轮使用的措施

在煤矿生产过程中会存在煤矿机械齿轮传动轮轴承承载过量的情况,对生产工作存在安全隐患,在矿井机械设计中需要着重考虑。利用现在科技与先进的工程机械设备进行煤矿机械齿轮传动轮轴承的有效科学设计可以提高机械设备的使用寿命。在井下开采中煤矿机械齿轮传动轮轴承需采用合理安装以达到提高对煤矿机械齿轮传动轮轴承使用寿命的效果。加强使用管理注意观察噪声、温升是否正常、油的使用是否合理等,可以有效提高齿轮使用寿命。高效生产是安全保障的第一标准,煤矿生产中的能耗大多集中在齿轮传动设备中,齿轮传动中应用新技术进行电机齿轮调速可以有效地提升工作效率,减少能源消耗。在煤矿生产过程中使用的机械设备广泛采用了高效的节能新技术。

1、煤矿机械齿轮的高效技术

煤矿机械齿轮的高效生产是节能的第一标准,煤矿生产中的能耗大多集中在电机设备中,采取煤矿机械齿轮电机功的变频控制可以有效促进高效生产。煤矿机械齿轮的使用中最重要的是应用先进的节能设备进行科学管理,在煤矿机械齿轮传动过程中,齿轮得到了广泛的应用,齿轮中应用数字技术进行交流电机调速可以有效地提升工作效率,减少能源消耗。在煤矿生产过程中使齿轮的机械设备广泛采用可以有效进行节能控制,实现高效利用、可靠生产。

2、煤矿机械齿轮的短圆柱滚子的应用

齿轮传动轮轴承采用短圆柱滚子或自轴承是解决小直径齿轮轴承设计技术难点的有效途径。由于在煤矿生产过程中需要消耗大量的电力资源对机械设备进行科学控制,煤矿生产中的能耗大多集中在电机设备中,采取煤矿机械齿轮传动控制可以有效解决电机的高消耗低效益的问题,实现能源的高效利用。在这个过程中最重要的是应用先进的节能设备进行科学管理,在生产控制过程中,煤矿机械齿轮传动得到了广泛的应用。煤矿机械齿轮传动应用现代技术进行机械设计可以有效的提升工作效率,减少能源消耗。

3、煤矿机械齿轮的短圆柱滚子的结构

用轮内孔充当轴承滚子的外圈滚道,为保证多排圆柱滚子有良好的,采用在轮齿根处钻几个直通排与排之间小孔和在挡环圆周上开设油孔的方法。煤矿机械齿轮存在阻力较大、单位运输量较少,但是功率消耗大,牵引电机运输过程存在运输间断、生产消耗较大的问题,煤矿开采运输系统应延用煤矿机械齿轮以此减少电能消耗。为减少煤矿机械齿轮损耗,首先需要画出电气设计图以及继电器柜的布局,这样才可以安装调试,方便修改控制。但是使用煤矿机械齿轮,油能顺畅地进入密集的圆柱滚子间。煤矿机械轮内圈与轴均充当了轴承滚道,这样就对轮和轴除要求有高的加工质量外,还要有很高的热处理硬度。

4、煤矿机械齿轮的短圆柱滚子数量的确定

煤矿机械的短圆柱滚子的型号、直径和长度等参数可在轴承样本上选取。煤矿机械齿轮的短圆柱滚子数量选择模型要具有估计归纳的最小错误,并且重新设定模型在煤矿机械的设计中体现。煤矿机械齿轮的短圆柱滚子数量的典型选择中使用k=10。虽然每次拥有的是数据1/k(比以前的数据少很多),但计算还是比较贵的相对于不运用交义验证,因此需要训练每一个模型k次。然而k=10是通常的选择,在真正的问题研究中数据往往是缺乏的,有时我们会用一种极端的选择k=m,目的是每一次尽可能的避免无数据状态。计算结果取整数部分,舍去的小数部分在0.2左右,如不符合,可修正轴承孔内径。

5、煤矿机械齿轮的自轴承的应用

煤矿机械齿轮的滑动轴承有抗冲击、振动性好、定心精度高、径向尺寸较小等优点。滑动轴承的摩擦损耗大,煤矿机械齿轮对轴承材料的减摩耐磨性能要求较高,维护比较复杂,煤矿机械齿轮受国内材料业发展水平的制约。滑动轴承主要的失效形式为磨损,防止失效的关键在于能否保证轴颈和轴瓦间形成一层边界油膜。煤矿机械齿轮的自轴承可以任意改变功能性间隔而不用真正改变任何有意义的东西。当压强P较小时,即使P与pv都在许用范围内,也可能因滑动速度v过大而加剧磨损。采用短圆柱滚子或自轴承是解决小直径齿轮轴承设计技术难点的有效途径。机械齿轮直接影响机械设备的使用性能,承受外部载荷,仅有周向压缩应力把主轴受力传递给承力元件,机械内部没有支环,在大型矿井中,煤炭机械设备工作量大,保证安全生产,机械齿轮的工作构件、受力情况等均与所装配的工作元件有关。

结语

我国煤矿机械设备事故率多的现状一直困扰着煤炭生产和运输,是一个亟待解决的重要问题,其中机械齿轮的失效是造成煤矿机械设备不能正常运行的主要原因。因此,对各种齿轮的失效形式及原因的分析和讨论,对改进煤矿机械设备事故率多的现状有非常重要的现实意义。

参考文献

友情链接