时间:2023-08-04 09:20:11
引言:寻求写作上的突破?我们特意为您精选了12篇智能化制造技术范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
一、智能化工厂
智能化机械工厂是以“智能化”为核心,以智能化、数字化、网络化为主要特征的生产、经营实体。智能化工厂将逐步分层次实现。智能工业机器人在智能自动化制造工厂中扮演着重要角色。
(1)智能工业机器人在智能化数控设备中,除了各种数控设备和相关数控配套设备以外,智能工业机器人在智能制造单元、智能制造系统和智能制造工厂中具有重要作用。
例如日本发那科开发的智能化工业机器人,安装了三维视觉传感器和力传感器,用于数控设备自动上下料和产品组装方面。视觉传感器能识别三维图像、能识别零件的位置和姿态,能抓取散放零件。发那科的智能工业机器人,在安装了用于生产的视觉传感器之外,还使用了力传感器用于产品组装作业。
最近几年,国内外的工业机器人专家都把注意力和精力投入到“视觉伺服”智能工业机器人的研究方面,成为国内外最热门的研究课题。工业机器人的“视觉伺服”研究,包括从视觉信号处理到机器人控制的全过程。包括机器人运动学、控制理论;包括实时图像的识别与处理,以及三维信息的获取、处理和重构技术;包括实时计算技术等领域的融合;包括机器人本体标定和摄像机标定技术等。
“视觉伺服”智能工业机器人,技术难点较多,较复杂,但是目前在数控技术领域已有较成熟的高速度、高灵敏度、高精度伺服控制技术和机器人方面的视觉传感技术作为基础和借鉴,相信是能够攻克“视觉伺服”工业机器人技术的。
(2)智能化自动化工厂在各种智能化自动化数控设备的基础上,智能化工厂将由工厂局部智能自动化、逐步分层次地发展到全工厂智能自动化和社会化智能制造。
第一层次:单机或单元智能自动化。单机或单元智能自动化,可以实现长时间无人值守。国内外都有用于生产的实例。比如日本发那科在20世纪80年代第一代智能数控加工中心上,加几个用于人工上下料托盘,可以实现24h 连续运转。20世纪90年代的第二代智能加工系统,以4 ~6 台加工中心和装有带加工夹具的立体托盘架,能摆放待加工的大量毛坯件,可实现60h 连续运转。
20世纪末和21世纪初的第三代智能加工系统,称作“智能机器人化加工单元”,该单元就是用智能化机器人为智能加工数控设备的夹具自动装卸工件。与第二代加工系统相比,由机器人代替了人工上下工件,解放了工人的繁重劳力,减少了夹具,减少 了设备投资,缩短了生产准备时间,加工质量更加稳定,降低了生产成本。
第二个层次:生产制造系统智能自动化。
在第三代“智能机器人化单元”的基础上,实现计算机网络控制生产车间全自动化系统。包括毛坯仓储管理,再制品仓储管理,成品零件仓储管理及其搬运、装卸、装配作业和质量检验等。
第三个层次:智能化数字化网络制造系统。在第二层次生产制造系统智能自动化的基础上,配置网络综合管理系统,来实现全工厂的智能化数字化网络制造。智能化工厂的实现主要是靠信息通信技术(ICT)和智能网络的可靠运行加以保证。具有实时资料搜集与传输功能、高效能计算机与分析预测功能、远程监控与诊断功能及模拟功能等。
智能化工厂最核心的部分是生产过程和全面经营运行的智能自动化,包括设计智能化,生产排序自动化,生产线自动化,测试检验自动化,仓储自动化,电力管理智能自动化等等,进一步发展到自动化无人化工厂(绝大多数设备可以无人值守)。除生产过程智能自动化外,还包括人力资源优化调度,物资资源(设备,工具,材料等)智能优化调配,并具有强化专案时程能力,时间弹性应用支配能力,完善调整生产周期,优化生产经营方案,达到提高生产效率和降低成本的目标。
目前,这种工业网络智能工厂基本形态在技术先进国家有实力的技术先进企业已率先实现。但是用于工业智能网络不同于一般ICT 通信网络,有不少难点需要克服。工业智能化网络必须具有防水、防尘、防磁、防爆以及抗高低温和抗腐蚀的能力。在可靠性、耐用性方面都比一般通信网络要求高得多。
例如:Tata汽车有限公司在印度Gujarat投资4亿1700万美元建造一座先进的具有智能化特征的工厂,每一个生产环节都采用“智能化”制造技术,对于来自经销商的订单,可以及时对客户的偏好加以调整,满足个性化需求。采用“智能化”制造技术,可以追踪每种零件的来源,可以快速确认及解决任何可能产生的质量缺陷和安全问题。此外,智能网络还可以与智能电网相连,以便在能源最为充沛或最便宜时段大量投入设备运行以降低成本。
智能化制造工厂,应该具有掌握整体市场的需求与变化能力,适时调整生产经营的弹性灵活运行,协调生产线,推出最适合市场需求的产品。发展智能化制造工厂,绝对势在必行。这取决于三大关键要素:人性化操作接口,高功能高速度计算机运算平台连接及跨网络的云端运算与信息集成分析与统计。
第四个层次:智能化社会化生产。智能化网络化社会化制造,将由企业内部局域网经因特网向企业外部传输。这就是所谓的Internet/Intranet。网络可使企业与企业之间进行跨地区协同设计、协同制造、信息共享、远程监控、远程诊断和服务等。网络能为制造提供完整的生产数据信息,可以通过网络将加工程序传给远方的设备进行加工,也可远程诊断并发出指令调整。网络使各地分散的数控机床联系在一起,互相协调,统一优化调整,使产品加工不局限于一个工厂内而实现社会化生产。智能化社会化制造能够借助Internet网实现跨行业、跨国际智能化制造,进入Internet/Intranet时代。云计算借助Internet网整合了计算机资源,为智能化制造开了先河。智能化网络化社会化制造将引领社会和全球资源的整合与优化运用,同时将有效地提高人类的生活质量,逐步地减少人类的体力劳动而扩大脑力劳动的比重,进入知识社会,智能社会。
Keywords: machinery manufacturing; intelligent; technology
中图分类号:TD406 文献标识码:文章编号:
前言:
机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。随着社会的发展,人们对产品的要求也发生了很大变化,要求品种要多样、更新要快捷、质量要高档、使用要方便、价格要合理、外形要美观、自动化程度要高、售后服务要好、要满足人们越来越高的要求, 就必须采用先进的机械制造技术。
1机械制造技术的发展在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。当前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体。机床联网,实现了中央集中控制的群控加工。
2智能化技术发展趋势
2.1性能发展方向
2.1.1 高速高精度高效化。速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。
2.1.2 柔性化。包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大。可裁剪性强,便于满足不同用户的需求;群拉系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。
2.1.3 工艺复合性和多轴化。以减少工序、辅助时间为主要目的的复合加工。正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。
2.1.4 实时智能化。早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展。由此产生了实时智能控制这一新的领域。
2.2功能发展方向
2.2.1 用户界面图形化。用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。当前Internet、虚拟现实、科学计算可视化及多媒体等技术,也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用。人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。
2.2.2 科学计算可视化。科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语育表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理数据的动态处理和显示以及加工过程的可视化仿真演示等。
2.2.3 插补和补偿方式多样化。多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D+2螺旋插补、NANO插补、NURBS插补(非均匀有理B样条插补)、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。
2.2.4 内装高性能PLC。数控系统内装高性能PLC控制模块,可直接用梯形圈或高级语言编程,具有直观的在线调试和在线帮助功能,编程工具中包含用于车床铣床的标准PLC用户程序实侧,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。
2.2.5 多媒体技术应用。多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域。应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。
2.3体系结构的发展
2.3.1 集成化。采用高度集成化CPU,RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度,应用LED平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点。可实现超大尺寸显示。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,掘高系统的可靠性。
2.3.2 模块化。硬件模块化易于实现数控系统的集成化和标准化,根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服,PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。
2.3.3 网络化。机床联网可进行远程控制和无人化操作,通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行。不同机床的画面可同时显示在每一台机床的屏幕上。
在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。当前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体。机床联网,实现了中央集中控制的群控加工。
二、智能化技术发展趋势
1.性能发展方向
(1)高速高精度高效化。速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。
(2)柔性化。包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大。可裁剪性强,便于满足不同用户的需求;群拉系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。
(3)工艺复合性和多轴化。以减少工序、辅助时间为主要目的的复合加工。正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。
(4)实时智能化。早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展。由此产生了实时智能控制这一新的领域。
2.功能发展方向
(1)用户界面图形化。用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。当前Internet、虚拟现实、科学计算可视化及多媒体等技术,也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用。人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。
(2)科学计算可视化。科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语育表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理数据的动态处理和显示以及加工过程的可视化仿真演示等。
(3)插补和补偿方式多样化。多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D+2螺旋插补、NANO插补、NURBS插补、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。
(4)内装高性能PLC。数控系统内装高性能PLC控制模块,可直接用梯形圈或高级语言编程,具有直观的在线调试和在线帮助功能,编程工具中包含用于车床铣床的标准PLC用户程序实侧,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。
(5)多媒体技术应用。多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域。应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。
3.体系结构的发展
(1)集成化。采用高度集成化CPU,RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度,应用LED平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点。可实现超大尺寸显示。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,掘高系统的可靠性。
(2)模块化。硬件模块化易于实现数控系统的集成化和标准化,根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服,PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。
二、智能化技术发展趋势
1.性能发展方向
(1)高速高精度高效化。速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。
(2)柔性化。包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大。可裁剪性强,便于满足不同用户的需求;群拉系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。
(3)工艺复合性和多轴化。以减少工序、辅助时间为主要目的的复合加工。正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。
(4)实时智能化。早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。
2.功能发展方向
(1)用户界面图形化。用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。当前Internet、虚拟现实、科学计算可视化及多媒体等技术,也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用。人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。
(2)科学计算可视化。科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语言表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理数据的动态处理和显示以及加工过程的可视化仿真演示等。
(3)插补和补偿方式多样化。多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D 2螺旋插补、NANO插补、NURBS插补(非均匀有理B样条插补)、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。
(4)内装高性能PLC。数控系统内装高性能PLC控制模块,可直接用梯形圈或高级语言编程,具有直观的在线调试和在线帮助功能,编程工具中包含用于车床铣床的标准PLC用户程序实侧,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。
3.体系结构的发展
(1)集成化。采用高度集成化CPU,RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度,应用LED平板显示技术。可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点。可实现超大尺寸显示。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,掘高系统的可靠性。
(2)模块化。硬件模块化易于实现数控系统的集成化和标准化,根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服,PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。
1 机械制造技术的发展
在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。当前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体。机床联网,实现了中央集中控制的群控加工。
2 智能化技术发展趋势
2.1 性能发展方向
(1)高速高精度高效化。
速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。
(2)柔性化。
包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大。可裁剪性强,便于满足不同用户的需求;群拉系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。
(3)工艺复合性和多轴化。
以减少工序、辅助时间为主要目的的复合加工。正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。
(4)实时智能化。
早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展。由此产生了实时智能控制这一新的领域。
2.2 功能发展方向
(1)用户界面图形化。
用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。当前Internet、虚拟现实、科学计算可视化及多媒体等技术,也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用。人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。
(2)科学计算可视化。
科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语育表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理数据的动态处理和显示以及加工过程的可视化仿真演示等。
(3)插补和补偿方式多样化。
多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D+2螺旋插补、NANO插补、NURBS插补(非均匀有理B样条插补)、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。
(4)内装高性能PLC。
数控系统内装高性能PLC控制模块,可直接用梯形圈或高级语言编程,具有直观的在线调试和在线帮助功能,编程工具中包含用于车床铣床的标准PLC用户程序实侧,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。
(5)多媒体技术应用。
多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域。应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。
2.3 体系结构的发展
(1)集成化。
采用高度集成化CPU,RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度,应用LED平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点。可实现超大尺寸显示。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,掘高系统的可靠性。
(2)模块化
硬件模块化易于实现数控系统的集成化和标准化,根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服,PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。
(3)网络化
机床联网可进行远程控制和无人化操作,通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行。不同机床的画面可同时显示在每一台机床的屏幕上。
3 智能化新一代PCNC数控系统
当前开发研究适应于复杂制造过程的、具有闭环控制体系结构的、智能化新一代PCNC数控系统已成为可能,智能化新一代PCNC数控系统将计算机智能技术,网络技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,形成严密的制造过程闭环控制体系。
参考文献:
1前言
近年来随着科学技术的发展,机电一体化系统已经逐步成为机械制造与发展的主要趋势,使更多的机械设备制造实现自动化、智能化的主要方式,机电一体化系统在智能制造中的深入应用,极大的满足社会发展需求,它将在工业发展中表现出无法比拟的优越性,满足工程可靠性与效率需求的同时,有效减少因人工操作造成的失误,从而实现精度的生产,对促进企业生产自能化方面有着举足轻重的作用。
2机电一体化概述及发展现状
首先,机电一体化技术主要是为了满足社会工业生产的需求,于20世纪60年代出现,主要是将电子与机械集于一体的先进科学技术,其中它涵盖了计算机、机械、信息技术、传感和自动控制等多项技术于一体的综合性技术。其中,详细的说机电一体化的基本组成部分主要有机械体,实现各部件之间的连接构造;驱动动力部分,提供动力并帮助机械实现能量的转化,使实现动力功能;遥感测试部分,检测机械内外部环境实现其预算计测功能;执行部位,接受控制信息,对要求动作完成;信息处理单元,运算、处理、决策、实现控制功能。这一技术进入21世纪以来,融入了微处理技术和计算机技术的精华,得到了快速发展,之后又融入信息电子技术,模拟人脑对生产流程进行分析判断,使企业的生产逐步实现智能化。其次,机电一体化发展现状介绍,机电一体化技术主要是应用于一些大型的生产企业中,机电一体化依赖于众多学科的先进技术的融合,实现对人脑的模拟,使其对企业机器生产的全过程能够进行有效分析,判断和处理,通过发出各项指令操作,通过机器实现复杂的生产流程,通过机械设备进行智能控制,运用机械操作代替人力的操作,使整个生产过程简单,便于管理,在极大减轻人工工作用负担的同时,也为企业的发展减少了很大的成本。随着世界经济一体化进程的加深,世界工业的发展早已不再仅仅局限于某一领域内,或是某一区域内,而是考虑利用最小成本的同时,实现世界各地的就地取材,面对这种发展现状,机电一体化体系也有了新的发展要求,将远程控制技术也应用于机电一体化体系中来,因此,不难看出机电一体化技术是伴随着生产技术要求和科学技术的发展不断向前发展的,机电一体化技术有着广阔的发展空间,另外,机电一体化技术也逐步打破企业的自有生产方式,通过对机电生产产品的统一标准,生产流程的规范,从而实现模块化的集成机电生产。
3智能制造技术及其发展
智能制造是指通过运用计算机程序模拟人类的思维活动,实现机器对在无人控制操纵下的机械自动化生产。智能制造技术已经成为现阶段机械制造技术主流的趋势,通过智能化的制造可以有效帮助人解决很多复杂繁琐的操作,极大的避免了因人工不小心失误造成的生产损失,提高了生产设备的精确度,因此,智能制造的应用要比往往传统的制造具有无法比拟的优越性。使机械设备的制造在人类不可能达到的空间展开。智能制造在机械生产制造方面已经为人类创造了很大的价值。智能控制技术是发展人类智能中一个重要的领域,其主要目的是为了改善以往传统制造中较为复杂多样的控制任务。
4机电一体化技术在智能制造中的应用
机电一体化体系中,智能控制的应用途径十分的广泛,在我们社会生产生活的方方面都有体现,随着科学技术的进步,现阶段的机电一体化正在逐渐向人工智能化的方向发展,这是社会发展所需求的在必然趋势,是经济发展水平与科技发展相结合的应然产物,在我国机械制造业发展过程中,能够有效快速实现机电一体化是机械制造发展的重点内容,机电一体化能在提高生产产品效率的同时,还能确保产品的质量,目前的科学技术水平在机械制造的领域内最大的实现计算机网络技术和智能制造控制技术有机结合,从而实现由人工管理操作到智能控制监管的有效过度。同时,智能监管控制的部分,还可以实现对机械设备运作的检测预测管理工作,实现对可能发生的机械事故有预测的作用,以确保生产的顺利进行,或是通过智能控制系统有效协调工作的进行。(1)机电一体化中应用智能制造的优势。智能控制技术对机电一体化系统中的程序或部分结构进行智能化调试与控制以保证程序系统工作的可靠安全性;工作人员采用计算机网络技术将编写的程序或是代码输入到机电一体化系统中,实现对机械的智能控制;智能控制技术可以实现根据外部环境变化,对其工作内容,进行调控,实现机电一体化工作的精确度。(2)以机电一体化体系中智能制造在建筑领域的应用做详细解释说明,智能控制在建筑领域的广泛应用主要体现在两方面,分别是在保暖制冷系统和建筑照明系统中。其中的照明智能控制系统,是通过应用通信技术和计算机网络技术两者有效结合实现的,能够有效的实现对照明区域,照明亮度,照明时间的合理控制与调节。从而有效节约能源,较大可能的提高资源利用率。(3)机电一体化技术中的智能制造在数控领域的有效应用。社会生活的各行各业都在应用机电一体化技术,而其中的数控技术对机电一体化技术的要求越来越高,数控技术由于其是进行大规模的生产,数控技术在逐步实现智能化方面具有很大的发展空间,利用计算机网络技术在数控方面实现智能监控,编程,建立自身的数据库。智能控制技术在数控技术中的应用还可以实现,在一些较为大型复杂的工程问题或是机器设备有问题的情况下,人工无法实现的检测,借助数控技术可以进行推理与演算,适时给出修改意见。
5结语
伴随着科技的发展,机电一体化在智能制造中的应用产品已经渗透到了我们生产生活的多方面,这种通过多种高新技术结合的产物极大的为我们生产生活带来便捷,这种机电一体化的智能发展方式进一步推动生产方式的深化改革。仍将有广阔的发展前景,需要我们相关从业人员根据实际的生产生活不断的进行改进,为我们社会经济的发展做更大的贡献。
参考文献:
[1]吴小龙.机电一体化技术在智能制造中的应用[J].城市建设理论研究:电子版,2015,1(29):68.
[2]秦立峰.机电一体化技术在智能制造中的应用分析[J].工程技术:引文版,2016(4):272.
[3]纪钰珩.机电一体化技术在企业智能制造中的发展与应用[J].企业技术开发月刊,2014(8):42.
在科技技术逐渐发展下,机电一体化技术也具备了更多的优势,并且使其在更多的领域中被运用。机电一体化技术的出现,让电子和机械有效的结合在一起,进而达到了对机械设备进行智能化管控的目标,这是智能制造的基础构成。在目前的生产制造中,主要是包含了智能系统以及智能制造技术。其是目前社会工业化发展的主流趋势。
1智能制造相关概念以及机电一体化技术的现状
在我们目前的社会发展现状来看,智能制造具体是包括了2个方面内容:其一是智能制造技术,具体是技术人员将计算机模拟系统作为辅助工具,进而对特定系统进行分析以及决策,从而节省了大量的人力与财力。相关人员只需要使用计算机系统就能够对系统进行分析,提升了研发的可行性,并且也确保了生产制造的高效性。其二是智能制造系统,这就能够简单的理解为人机一体化,是经由智能机器人与人类专家构成的,在运用的时候主要是将计算机作为工具,让人类专家进行分析以及构思等等,以此替代了在制造工厂中人为的脑力活动。智能制造系统是对智能制造技术的延伸与发展,其是将网络化、自动化技术整合为一体的制造系统,让整个子系统能够进行智能化的运行。在机电一体化技术发展初期时,电子技术和机械技术并没有有效结合,其主要是依靠电子技术在机械工业中的使用,以此提升机械生产效率和产品质量。不过,在目前的计算机技术以及信息技术发展现状下,机电一体化被注入了新的活力,其在生产中得到了普遍的应用。将其运用在智能制造中,更加促进了整个机械各行业的发展,让生产管理工作实现了智能化、自动化,从而让生产工作的实施更加的方便。在机电一体化中涵盖了很多种技术,并且随着科学技术的发展也融合了更多新的技术,确保了这种技术的先进性与实时性。机电一体化技术运用了电子技术,在人工智能的基础上运用计算机系统,进而达到了对机械设备的自动化管理以及控制,从而让整个生产过程更加的方便和高效,也让生产活动更加的规范。
2机电一体化技术在智能制造中的具体应用
(1)传感技术的相关应用。在集体一体化技术中,传感技术是最为基本与关键的构成。因为其具备很高的准确性以及敏感度,能够尽可能的避免受到外界杂乱信号设备的干扰。如果把其运用在智能生产中,能够发挥其巨大的作用,在这个基础上建设相关的传感网络系统,这样就能够实现信息之间的相互传输,并且使用计算机把其收集到的相关信息进行整理与分析,进而让整个生产过程能够被有效管控。在目前的生产制造中运用的传感器中,其是以光纤电缆传感器为主要,运用标准化的接口,大幅度减少了设计难度以及成本。(2)数控生产中的相关应用。我们将机电一体化最早是运用在数控加工技术方面,其在我国机械制造水平方面发挥了很大的作用。把机电一体化技术运用在数控制造中,能够提高机械加工的精准度和机械加工的效率,数控生产的主要是在其加工精准度方面,因此数控在智能控制系统方面要求比较严格,现在数控机床中运用的智能控制系统大部分运用的是CPU预计总主线模式,这种模式主要是进行在线判断以及智能控制技术,在此基础上进行三维仿真,对整个数控技术加工的过程进行模拟实验,以此对实际操作提供参考依据。(3)在自动线和自动机械中的应用。当前很多比较大的企业中,均是运用了自动化生产线依据自动生产机械,这种技术是使用了电子技术中光电控制系统和人机界面控制系统,进而对整个生产制造系统进行全面控制。自动生产线和自动机械运用范围比较广泛,比如目前的电脑以及手机都是自动化生产线。其主要是运用计算机控制系统对在生产中的相关设备进行有效融合,即为数控设备、计算机设备等相关的方面进行一体化管控,进而进行集约化以及网络化的生产模式。(4)机电一体化技术的发展应用。将机电一体化技术运用在智能制造中,工业智能机器人是最为先进的应用,其融合了各种相对先进的技术,是将人工智能、仿生技术以及计算机技术等相关的科学技术融合的新技术。机器人是目前科学技术中研究的重点,是控制论以及传感技术等相关的总体,其在生产制造行业中被广泛的应用。在工业生产中智能机器人的出现与应用,提升了产品质量的同时也增加了产品产量,并且也减轻了工作人员的劳动量。工业智能机器人在运用时具备了能够对信息进行判断、迅速完成复杂的工作流程以及生产准确度高等相关的优点,并且还能够运用在军事生产制造中,其得到了各行各业的高度认可。
3结束语
综上所述,在目前的工业生产行业中,智能制造是最为主要的发展趋势,其能够对工业生产进行自动化以及智能化的管理,从而提高了生产效率以及质量。而机电一体化是智能制造的关键与基础,其应用水平对智能制造的实现有很大的影响。所以必须要重视机电一体化在智能制造中的相关应用,在此基础上保障了智能制造能够更好的发展,从而为生产企业带去更多的经济效益。
参考文献:
[1]林少锐.机电一体化技术在智能制造中的应用[J].科技资讯,2015(14):92+94.
[2]王伟.机电一体化技术在智能制造中的应用浅析[J].中小企业管理与科技(中旬刊),2016(10):160-161.
中图分类号:TG659 文献标识码:A 文章编号:1009-2374(2013)29-0001-02
纺织工业是国民经济传统的支柱产业,也是关系民生的重要产业和国际竞争较为明显的产业,其产业链众多,需要人员较多,在繁荣市场的同时,也能增加就业、提高人民收入水平和促进城镇化发展。然而,纺织工业工艺的改进、效率的提高需要依赖于先进织造技术,现在国外纺织装备智能化技术在纺织企业中应用已实现了智能一体化管理,我国的纺织装备智能化技术虽在纺织企业中有所应用,但仍处于初级阶段,与智能一体化管理还有差距,需要对制造装备智能化技术的产业化进行不断的研究。
1 织造装备智能化技术现状
1.1 群控技术
目前来看,织机普遍采用的是微处理机,其优势是能对运行设备的状况和不同参数进行监测并以显示在织机操控屏幕上,而以CN总线、以太网和光纤为主的通讯形式组成的局域网,能实现织机的群控,管理人员能较快地查询不同织造生产数据和织机运行状态,这些国外织机基本具备。而国内的织机虽然具备联网功能,但是群控技术上不成熟。
1.2 织机远程控制技术
随着电子计算机技术、数控技术和互联网技术快速的发展,机电一体化技术已经成为剑杆织机设计的重要技术。高档剑杆织机上先后出现了电子多臂开口、电子送经和电子卷取等电子控制装置,并逐步形成单台织机的智能控制系统。而从国产织机现状来看,虽广泛使用了高档剑杆织机,但因受国内生产设备数量、生产现场与现场控制距离较远且环境恶劣等因素的影响,使国产自动化织机生产管理水平得不到进一步的提高。
目前来看,国产织机因受各种条件的限制,国内织机监管领域主要使用的是BITBUS或RS-485作为通信总线,但因这种通信总线的主线的主节点对可靠性要求相对局限,通信方式为命令响应型,其灵活性相对较差,系统容易处于瘫痪状态。同时,BITBUS的物理层使用的是RS-485规范,其总体效率相对较低,特别是错误处理能力较弱。若想使通信总线的主节点的可靠性和数据通信方式的灵活性、错误处理能力得到提高,使之更好满足监测系统的需求,需要研发一种能弥补上述缺陷的织机远程控制技术。
1.3 织造工艺专家系统
织造工艺专家系统很早以前便已提出,但目前仅有日本津田驹的喷气织机运用此项技术,其他国内外织机织造厂家还未采用该项技术。织造工艺专家系统最大的优势是其内部存有知识库和案例设计,用户使用该系统时,输入织造工艺参数值便能推理计算出织机织造所需要的全套工艺的参数设定值,这样不仅能降低车间对工人的技术要求,同时也能减轻工作强度,满足现代织机的智能化发展趋势。互联网技术的出现和在织造工艺系统中应用,织造工艺专家系统实现了群控管理、远程控制和专家管理,然而就国内织机现状来看,织造工艺专家系统这三种功能还未能全部实现。
2 织机智能化技术问题解决方案
针对国内织机智能化技术现状,丰凯公司借助物联网技术来攻克织机远程设备管理、诊断、工艺数据专家库系统与开速调机的联动等关键技术,研制出具有自主知识产权的基于物联网技术的智能织机解决方案。智能织机管理系统架构图如图1。具体内容如下:
2.1 群控技术
织造装备具备联网功能,通过组网群控,让客户在自己的工厂内使用服务器,透过现有的网络自动采集各机台的张力信号、油温信号、油压信号、断纬信号、断经信号、报警信号、开关按钮信号等数据,以对所有机台进行有效监管,实时了解各机台的生产运行情况(效率、产量、排产等),同时能实现客户决定其服务器是否要与设备厂家的服务数据库系统连接。
2.2 远程控制技术
在群控管理基础上,当客户设备出现异常需要厂家工程师服务时、客户采用租赁模式需定期加解锁时、当设备生产厂家有重大程序需要更新时,不再需要厂家工程师带电脑上门处理,只要客户授权群控管理服务器与设备厂级连线,厂家工程团队就可以第一时间处理,不光快速响应了客户需求,而且大大提高了设备厂家工程师的工作效率,节省大量出差费用与时间浪费。
2.3 制造专家控制技术
在高端织机工艺参数智能化设定基础上,提出一种基于数据库技术的织机专家系统总体结构设计。通过在客户处建立织机工艺参数数据库,将各种工艺参数统计整理到后台数据中,这样不仅能帮助客户建立工艺管理平台,而且织机可以通过读取数据库数据,实现织机工艺参数的智能化设定,快速完成换线生产的能力。并借助物联技术让客户的数据库可以同步设备厂家的工艺专家系统,从而大大缩减客户开发新产品的调机时间。
3 织造装备智能化技术产业路线方案与策略
3.1 重视项目实施,创造和谐工作环境
织造装备智能化技术产业化路线项目依托于省级企业技术中心和省级工程技术研究开发中心的研究力量,且企业领导高度重视,使配套条件得到有效落实,对项目环境进行了优化,为技术研发人员创造了和谐舒适的工作环境,提供了先进的办公软件,使技术研发人员能较为轻松、愉快地投入到研究工作中,为尽快研究出项目产品而做出最大的努力。
3.2 加大科研资金投入,多渠道融资
加大科研资金投入,并建立专款专用保证制度,除将专项资金用于研发项目外,还用于奖励技术研究工作中有突出贡献的科技研发人员,激发科技研发人员潜力,提高其工作积极性。同时公司将严格依照高新技术企业科研要求,每一年将销售额收入的3%用于科学研究,并从中提取一部分,作为项目专项经费,满足项目资金需求。同时争取银行贷款、风险投资公司资金的投入,拓宽项目融资渠道,确保项目顺利进行。
3.3 构建技术平台,重视硬件建设
3.3.1 项目实施过程中,人是主要力量,为最大化实现项目效益,需要对项目参与人员进行有效的整合,并使之形成强大且专业化的研发队伍。项目组积极组织与各纺织协会或同行业技术交流和研讨会以及组织小组成员参加国内外大型机械展览会,通过与相关行业和同行业人员的交流和讨论,及时、准确地掌握或了解国内外制造装备发展趋势和动向,确保研发的项目能与市场接轨。
3.3.2 重视项目研发中的硬件投资和建设,项目人员在项目产品研发过程中,需要采用多种设备进行实验和检测,最终研究出符合市场需求的产品,这就需要企业在为其软件创造条件的同时,也能为其硬件研究开发创造平台和环境,进而使项目综合开发能力得以显著地提高。
4 结语
织造装备智能化技术成熟并应用于纺织产业,将会使国产织造装备的技术性能达到质的飞跃,进而不断地提高同类产品市场竞争力,打破当前国内高端品牌被国外织机市场垄断的局面,有效地促进我国纺织企业的转型和升级。为了更好地实现这一目标,仍需要企业对织造装备智能化技术进行深入研究,对自身的不足进行完善,为我国织造装备智能化技术产业化路线的实现创造条件。
参考文献
[1] 冯学本.国内外非织造装备的新进展及发展趋势[J].
应用技术,2012,(12).
[2] 刘新伟,杨莉,侯亚峰,高森,代畅.浅论机械制造
的智能化技术发展趋势[J].科技与企业,2013,(3).
[3] 张克艳,张秀峰.浅谈先进机械制造技术的特点及我
国机械制造技术的发展趋势[J].内燃机与动力装置,
2008,(3).
[4] 孙名佳.数控机床智能化技术研究[J].设计与研究,
2012,(39).
中图分类号:TH-39 文献标识码:A 文章编号:1009-914X(2017)16-0345-01
0.引言
在这个技术时代下,机电一体化技术也得到了较为显著的发展和进步,所以在各个领域中也得到了较为广泛的应用,在现如今也已经成为了工业发展的重要动力。在工业生产制造过程中,应用机电一体化技术能够真正的将机械和电子结合在一起,以此来对设备进行智能化管理和控制,这样就能真正实现智能制造。由此可见,在智能制造过程中应用机电一体化技术有着非常重要的作用,能够真正促使工业生产变得更加的人性化、智能化,最大程度提高制造生产效率和质量。
1.机电一体化技术在智能制造中应用的意义
机电一体化技术是随着时展而发展的,这一技术在最开始还没有真正实现机械和电子技术的融合,在实际应用过程中机械和电子还是分割的独立个体,所以在实际应用主要是在机械工业中应用电子技术,通过这一应用方式来提升机械生产效率,最终促进产品质量提升。但是,在社会技术不断发展过程中,信息技术、计算机技术在不断的发展,在这种时代背景下,机电一体化技术也就得到了发展,尤其是在智能制造中的应用尤其的显著,能够最大程度促进整个机械行业的发展[1]。机电一体化技术本身就包含了各种技术,再加上社会的不断发展,这一项技术也就在不断的发展更新,所以机电一体化技术也就具备一定的先进性,在智能制造中应用这一技术,其能够利用电子技术、计算机系统、人工智能等方式来真正实现对机械设备的自动化控制,这样就能最大程度提高生产的效率和速度;另外,在实际应用过程中,网络技术的存在则能有效地实现远程操作这一工作。综上,机电一体化技术在智能制造中的应用有着非常显著的意义,能够让整个生产活动更加的智能化、规范化、自动化。
2.机电一体化技术在智能制造中的具体应用
机电一体化技术包含了很多内容,为了更好地对其进行分析,笔者也对其在智能制造中的具体应用进行了以下的分析:
2.1 传感技术在智能制造中的应用
在机电一体化技术中,传感技术属于其中较为重要的一个技术,这一技术最为显著的特点就是具备较高的敏捷性、精准性,所以在实际应用过程中,能够有效地避免外界因素对其它设备所造成的影响,也正是因为如此在智能制造过程中传感技术受到了较为广泛的应用。在智能制造过程中,应用传感技术其在实际生产过程中效果会明显的优于普通的传感器,但是,在实际应用过程中需要构建出相应的传感器网络系统,这样就能真正的实现信息之间的传输和对接,同时还能利用计算机将那些信息进行有效地分析和整合,最终就能对整个制造生产过程进行控制。就目前只能制造过程中所应用的传感器,笔者发现大多数传感器都属于光纤电缆,而其接口则是标准化的接口,这主要是因为应用这种传感器能够在很大程度上降低设计的标准以及难度,同时还能在一定程度上降低成本[2]。
2.2 机电一体化技术在数控生产中的应用
机电一体化技术在智能制造中的应用,最早就是应用在数控加工当中,而这也是机电一体化技术在智能制造中的具体应用以及表现,同时还在一定程度上提高了我国机械制造水平以及能力。在数控生产过程中应用机电一体化技术,其本身就能有效地提高机械加工精度以及效率,促进机械制造业的发展,最终促进我国工业水水平提升。就目前来看,数控机床中所使用的智能控制系统,大多是CPU和总主线模式,在应用这一模式的过程中,其主要是利用智能控制技术以及在线诊断技术进行三维仿真,以此来对整个加工过程进行模拟,从而为数控机床实际操作提供相应的数据支持。
2.3 自动生产线与自动机械的应用
就目前来看,一些规模^大的生产企业在实际生产过程中,都应用了自动化生产线以及自动生产机械设备,这也是机电一体化技术在智能制造中的应用体现。在实际应用过程中,这一技术主要是利用电子技术中所存在的人机界面控制装置、光电控制系统对整个生产流程进行控制,这样就能确保控制的全面性系统性,最大程度提升生产效率和质量。在智能制造中自动生产线与自动机械的应用在现如今是十分普遍的,就像是在对手机、电脑进行制造的过程中,就一定使用了自动化生产线,而很多智能制造企业在实际生产过程中大多是采用了柔性制造系统(系统构造如图1所示),通过这一方式来真正实现网络化、集约化生产[3]。
2.4 工业智能机器人的应用
就目前而言,工业智能机器人属于机电一体化技术中较为先进的一项技术,这一技术结合了各种先进技术以及学科,其中就包括了仿生学、计算机系统、人工智能技术等方面,将其应用到智能制造过程中能够最大程度提高工作的效率和质量,同时降低人员的失误,减少人工成本。也正是因为如此,现如今很多领域都在加强对机器人的研究,希望通过研究来真正实现智能制造,这样在实际生产过程中,就可以应用工业智能机器人来对信息资料进行有效地甄别、最快速度完成一些较为复杂的工作流程、提高生产精准度。
3.结语
综上所述,在社会不断发展过程中,机电一体化技术在智能制造中的应用也越发的广泛,应用这一技术能够促使整个制造生产过程更加的智能化、自动化,真正实现多样化、高批量生产,同时还能在一定程度上减少人工成本、降低人为失误,最大程度保证生产经济效益,提高产品质量,最终促进我国工业水平提升。
参考文献
【关键词】500kV变电站 智能化技术 改造过程
1 引言
变电站智能化改造是智能电网实现的节点支撑和必要基础,是国家电网建设的重要内容。根据我国国家电网公司《国家电网智能化规划总报告》等相关标准和规章制度来看,500kV变电站智能化改造的完成在很大程度上将提高电力调度能力、优化电网进而促进电网改造全面完成。500kV变电站智能化改造过程的技术探讨变成了当下亟需研究的一个课题。
2 500kV变电站现状及其智能化改造的意义
2.1 500kV变电站现状分析
当今我国大部分500kV变电站采用的主要是枢纽变电站。随着我国电力行业
现代化的进程不断推进,电力行业呈现出了迅猛发展之势。但是,设备互操作性不高、缺乏规范、缺乏标准、系统多套等问题影响了500kV变电站的日常运行,阻碍了电网安全运行的水平提高。随着高新技术的出现,尤其是通信网络和计算机等技术的迅猛发展,500kV变电站自动化系统得到了很大的改观。但是由于通信网络和计算机等基础的出现,新应用、新技术也应运而生,传统的500kV变电站已经逐步不能实现各个系统之间的协同和联系,导致了变电站日常运行缺乏安全和稳定。
2.2 500kV变电站智能化改造的意义
智能电网的建设是我国“十二五”期间的重点项目,500kV变电站的智能化
改造自然也位列其中。而面对我国500kV变电站的运行现状,实现500kV变电站的智能化改造将极大促进500kV变电站自身的发展和管理,使变电站的智能化能够与当今通信网络与计算机技术的发展并肩而行。而且,实现500kV变电站智能化改造将实现新旧技术的融合,提高变电站中各项系统的互操作性、灵活性、快捷性。故而,500kV变电站智能化改造有着极其重要的划时代的技术革新意义。
3 500kV变电站智能化改造应当遵循的原则
根据我国国电公司《“十二五”电网智能化规划报告》和《变电站智能化技术原则》等相关内容来看,500kV变电站智能化改造必须要遵循以下几个基本原则:
(1)遵循电力行业和社会科技发展的需要,智能化改造首先应当具有一定的发展性,充分考虑改造之后技术设备的兼容性。
(2)一定要将全寿命周期的理念渗透到智能化改造的各个环节中,积极避免由于智能化改造产生的不必要破坏。
(3)技术人员的设计原则一定要向典型化设计靠拢,加强设备配置和主接线等的优化。
(4)全面考虑500kV变电站智能化改造中的系统规划、系统设计、系统制造、系统配置、系统安装、系统运行、系统维护等环节。
(5)以当下节约清廉的思想进行改造,充分考虑选用设备的经济学、先进性和可靠性。
(6)将实现供电质量、寿命周期的提高以及企业的利益最大化作为改造最为核心的基础原则。
4 500kV变电站智能化改造技术的分析
4.1 一体化信息平台的建立
基于500kV变电站的现状来看,一体化信息平台的建立是实现500kV变电站智能化改造的基础。凭借着一体化信息平台的建立,操作人员可是实现远程操作或者监控后台操作,并通过计算机监控对变电站的实际运行情况进行全面、及时的了解。而且,一体化信息平台还能实现遥测进行信息采集。此外,标准化、统一化和规范化对各个子系统的管理可以实现全面有效的监控。
最为重要的是,通过信息一体化平台的建立,让变电站成功转型为数字化变电站。采用计算机检测能够让变电站顺序控制功能得以实现,进而让500kV变电站的智能化改造能够朝着自动化和数字化发展。
4.2 应用功能智能化
一般而言,500kV变电站的智能化改造中除了满足电路工程规范改造以外还应当针对变电站的应用功能进行智能化开发和研究。这就需要在系统一体化的平台之上分成构建智能化一次设备和二次设备,逐渐让500kV变电站内的电气设备能够通过智能化改造实现互相操作和信息共享。此外,基于信息一体化平台,加强变电站智能调控、智能调度和智能操作的优化,积极采用数字化信息技术进行建模,确保变电站内所有设备及其控制过程的数字化,让变电站成功转型为现代化和智能化的变电站。
4.3 设备智能化
设备智能化往往指的是变电站内的所有电子产品和设备的智能化。故而,在进行500kV变电站智能化改造的时候,首先要确保变电站内所有设备的精确化控制,其次,不断开发和研究新型设备,让变电站内的各种组件得以优化。例如高地产的控制和布设就必须结合在线装置,在此基础上经常性和长期性的进行在线维护和检修。
4.4 辅助功能智能化
在实际进行500kV变电站的智能化改造的过程中,各项辅助功能的智能化改造是实现无人值守的重要条件,也是实现变电站稳定安全运行的保证。故而,变电站一定要根据实际情况构建符合自身的智能化巡视系统,例如推进监控、测量、保护一体化,断路器配置的保护装置等。同时,变电站也可以根据系统自动化配置中PT、分段和总路的需要进行变电站温湿度、火警和空调测试。
5 结束语
总的来说,随着电网的发展以及智能电网普及,500kV变电站智能化改造是及其重要的。要想满足电力发展需求、顺应社会发展就必须实现500kV变电站的智能化改造,紧抓500kV变电站智能化改造的关键技术,不断优化智能化改造方案,从而达到全面提升500kV变电站智能化的水平,让智能化的500kV变电站充分发挥出作用。
参考文献
[1]国家电网公司.国家电网智能化规划总报告[Z].北京:国家电网公司,2009.
[2]国家电网公司."十二五"电网智能化规划报告[Z].北京:国家电网公司,2010.
[3]张斌,倪益民,马晓军等.变电站综合智能组件探讨[J].电力系统自动化,20010(21).
[4]陈树勇,宋书芳,李兰欣等.智能电网技术综述[J].电网技术,2009(08).
[5]韩天祥,李莉华,余颖辉等.用LCC进行500kV变电站改造经济性评价[J].中国设备工程,2008(03).
[6]张沛超,高翔.数字化变电站系统结构[J].电网技术,2006(24).
作者简介
2 柔性制造系统在企业智能制造中的应用
柔性制造系统主要由自动控制系统和物料运输系统组成,通过这两大系统配合可以完成汽车产品的及时有效的调度、运输、生产的整个过程。其最大的特点是具有人性化,对于不同产品系统会选择指定的设备以及运输工具,整个过程不需要人的参与,完全自动化,这不仅可以对多种产品进行大批量的生产,而且有着很高的效率,可以根据客户及市场的变化对产品设计方案进行调整,还可以合理的分配人力设备等资源,降低产品成本,提高生产利润。
柔性制造系统是一项先进且高度智能化的技术,其中自动控制系统又可分为信息控制系统和数字控制系统。信息控制系统可以对汽车零配件产品进行大批量的集中生产,无需人工操作就可以提高生产效率,而数字控制系统则可以检测产品各项参数是否符合规格标准,再配合物料运输系统,流水线生产模式以及自动运输来减少人力资源的浪费,将生产模式推向高度自动化。与此同时,柔性制造系统是一种有着高自动化的先进技术,不仅可以提高产品生产效率,合理分配人力设备资源,还可以降低生产成本,其特点主要有以下几点:1、可以合适分配设备的使用率,有着一套完整的人性化的系统,遇到生产故障时可以采取相应的措施而不影响其他产品的生产;2、运行灵敏,且可靠性强,可适用于多种产品的同步生产中。
3 计算机集成制造系统在汽车企业智能制造中的应用
计算机集成系统是集先进制造技术、敏捷制造和虚拟制造于一体的集成系统。先进制造技术,就包括各种先进的、不断改进与引进的新的技术,且能够对现有的汽车制造技术进行优化,对汽车零部件生产设备的能力及时效进行更新和创新,在实践的过程中总结经验,不断改进和完善,最终实现高自动化、高效率的生产模式。
敏捷技术是一项非常专业性的制造技术,敏捷制造主要包括三个要素,分别是生产技术、组织方式及管理手段。敏捷制造技术将柔性生产技术、技术、知识、劳动力与能够促进企业内部和企业之间合作的灵活管理,这三个要素集成在一起,通过所建立的共同基础结构,可以对迅速改变的市场需求和市场实际做出快速响应。
虚拟制造等于对汽车产品制造的一种试验,当客户需要生产某种特定的汽车产品时,我们可以对其进行数据模拟,选择合适的材料,运用特定的生产方式,生产出一个产品模型,然后再总结生产的过程中会遇到问题,如产品质量、生产成本、以及市场需求等等一系列的问题。如通过虚拟制造能够在模拟生产过程中顺利解决相关系列的问题,那么此汽车产品就可以进行正常的大批量的生产,走向市场。相反的,如果没有虚拟制造,只会让汽车生产商盲目的生产产品,在实体产品试验过程中发现问题继而进行优化。这样的制造方案并不会考虑到市场需求等因素影响,同时也会大大的提高生产风险,给汽车制造企业带来损失。所以说,虚拟制造是一种可以对产品成本进行预估算、优化产品结构、降低投资风险,可以更好的迎合市场需求的一种先进技术。
4 工业智能机器人中机电一体化技术的应用
中图分类号:TH164 文献标志码:A
On Promoting Intelligent Manufacturing of Textile Machinery Accessories with the Construction of Digitalized Workshop
Abstract: The paper introduces the overall structure of digitalized workshop for intelligent manufacturing. It suggests that the construction of digital application platform should play equal emphasis on carrying out business process based on model manufacturing and numerically-controlled manufacturing of machine parts based on model technology. It also analyzes the structure and main functions of enterprise information network and its connection with digitalized workshop.
Key words: digitalized workshop; intelligent manufacturing; textile machinery accessories
随着“中国制造2025”的出台,经纬纺机榆次分公司在跻身全国首批200家两化融合管理体系认证企业之列的同时,按照以智能制造推进企业制造转型升级的思路,对纺机专件产品智能制造数字化车间进行了系统性打造,力争通过智能制造项目的实施,实现纺织专件制造的全面提升。
1智能制造数字化车间的总体架构
以罗拉产品为例,智能制造数字化车间总体架构如图1所示。
总体架构设计分企业层、车间层、控制层、设备层等4级模型,第一级企业层主要以PLM、ERP为数据平台,集成应用有CAD、CAE、CAPP、CAM、虚拟制造、过程仿真等;第二级车间层主要以MES为数据平台,集成功能有计划排程管理、生产调度管理、库存管理、采购管理、设备管理、刀具管理、工装管理、质量管理、成本管理、人力资源管理、看板管理、生产过程控制等;第3级控制层和第4级设备层以网络DNC为数据平台,包括控制层的过程控制系统、数据采集系统与设备层的数控机床、机器人(机械手)、输送系统、工业识别系统、工业控制系统、仪器仪表分析系统等。4级模型是建立在工艺流程、车间布局、产能优化模拟仿真的基础之上,遵循基于模型定义MBD(Model-Based Definition)的数字化设计与制造方法。
2智能制造数字化车间各平台的功能建设
2.1数字化应用平台的建设
数字化应用平台的建设围绕基于模型的制造执行业务流程和基于模型技术的零件数控加工制造两个方面进行重点打造。
2.1.1基于模型的制造执行业务流程(图2)
在PLM中完成产品、工艺、工装设计与验证后,对产品EBOM与工艺PBOM发送的ERP系统进行主计划编制,形成生产工单与物料BOM,再发送到PLM和MES系统;PLM系统接收到生产工单与物料清单后,与对应版本的产品和工艺数据组合,形成制造工作包,下发到MES系统;MES系统接收到生产工单和制造工作包后,进行生产排程和物料准备,然后下发到工作中心,进行生产制造、产品检验及数据采集,必要时进行现场问题反馈和超差品处理,最终将数据返回PLM系统,将计划完工和物料消耗等数据返回ERP系统。
2.1.2基于模型技术的零件数控加工制造
基于模型技术的零件数控加工制造的打造要通过后置处理产生数控程序(NC)代码,NC代码在PLM平台中进行版本控制和文件管理,通过PLM与DNC的紧密集成,实现基于模型技术的数控加工编程的输出与加工机床的连接。数控程序的管理是将其挂接在工艺结构上的数控工序下,基于工序对象实现版本控制,在统一的流程控制下实现数控程序下发和回传。
各种信息的交互实现如下。
(1)数控程序传输到数控机床:工艺人员根据流程指令可选择程序(系统自动保证最新流程中版本),通过DNC接口下发到相应数控机床。
(2)在数控机床上查看和首件试切:机床上操作者即可查询到可下传的NC程序列表。NC程序通过同MES系统关联化管理,机床操作者可以直观查看执行具体工序内容、每个工序使用的NC程序,根据需要可以查看工序三维模型和尺寸要求。
(3)回传数控程序:对NC进行验证和确认之后,通过DNC接口回传确认过的数控程序,扫描到数据回传之后,通知相关工艺员,工艺员确认之后将程序挂接到相应的工艺结构树下。
(4)DNC系统可以将NC程序文件直接提供给机床控制器。借助车间连接,机床操作员可直接访问生产数据。操作员可通过作业编号或工作数据包标示符找到生产所需的正确数据文件,包括NC程序、刀具清单、设置表和图纸。
2.2 信息网络平台的搭建及其功能
2.2.1 企业信息网络架构(图3)
图3中上层为企业局域网,覆盖了公司产品研发、生产经营、销售采购、质量、人力资源、财务等各职能部门和生产车间,由50多台服务器作为数据服务平台;下层为车间设备层DNC网络,与数控机床、机械手、输送系统、工业识别系统、工业控制系统、仪器仪表分析系统及管理人员客户端等实现连接,并通过网络交换设备连接公司局域网。
2.2.2 信息网络平台的主要功能
(1)基于PLM平台的集成化系统
在统一的平台上实现需求的解析和确立、功能架构、逻辑设计、物理设计及系统验证,实现系统驱动的产品开发,使企业可以从整体上把握价值链的上下游系统。通过设计流程,可早期全面理解产品,使各个部门都能对整个系统有一个全面的了解,企业可以利用所掌握的知识来更好地权衡影响具体设计、制造、销售、采购和服务决策的各种因素。
(2)专业CAE分析
通过与数字化生命周期管理和数字化产品开发的紧密集成,能够在一个可视的三维环境中访问最新的已经配置好的设计数据、产品结构、要求、规格、变更单和其它相关的信息,进行全面配置管理和产品结构管理,以协调CAD模型、CAE模型以及过程,管理实际分析数据,并与实际设计数据和实际制造数据相匹配和关联。
(3)基于模型的全生命周期质量管理
在产品设计阶段,直接从模型中提取数模和进行尺寸建模,通过仿真产品的制造和装配过程预测产品的尺寸质量和偏差源贡献因子,实现模型中公差分配的优化。在工艺规划阶段,实现基于实体模型三维标注驱动的智能化离线编程与虚拟仿真,有效准确地传递尺寸设计信息,确保数字化测量路径规划与虚拟仿真验证结果的可靠性与唯一性,为输出高质量零缺陷的执行程序提供有力支持。在产品生产阶段,通过对实时生产质量信息跟踪、分析和,帮助管理人员及时发现生产过程中的质量问题,通过对制造数据的深度关联分析,寻求问题的根本解决方案,同时将产品开发过程中制造质量和设计质量挂钩,形成企业质量管理的闭环。
(4)基于模型的零件工艺
以产品三维模型为基础,工艺设计和CAM编程基于产品设计数据,并且通过工艺与产品、制造资源的关联实现设计与制造过程中关键元素的有机结合;以制造特征为内在因素构建结构化的工艺结构,为下游ERP、MES系统做数据准备;基于产品三维模型的工艺设计过程是工艺仿真验证的基础,通过对工艺资源进行三维建模,实现产品加工和装配的仿真验证;三维实体造型的工艺展现形式使工艺表达形式更为直观,手段更为丰富,对于车间工人操作更加具有现实意义;面向产品设计的编程,识别零件特征与公差要求,基于典型零件和特征的模板化编程,可以提高编程效率,改善质量,减少对员工经验的过分依赖。
(5)基于模型的数字化制造-质量检测基于数字化检测,提供从检测编程到检测执行的功能,涵盖从制造工程到生产执行的环节。数字化检测与三维尺寸公差仿真、测量数据统计分析共同构成了全面的质量管理体系,帮助企业提升产品制造质量。
(6)基于模型的作业指导书
将格式多样、关系复杂的产品定义、制造过程定义和沉淀的工艺知识等信息展现到制造现场或维护维修现场,使现场人员无二义地快速理解和执行,是整个基于模型的数字化工厂体系的重要一环。提供满足数字化需求的纸质和电子作业指导、脱机和实时联机的作业指导、基于Web的在线作业指导、3D交互式作业指导和基于便携终端的作业指导。
(7)基于模型的实做数据管理
将制造执行系统中的产品制造过程、检验结果、消耗的物料、任务批次等信息组成实做数据,提交给PLM系统,以实做BOM的形式进行管理,构成完整的实物的虚拟表现,固化和追踪产品实物技术状态。
3数字化车间的实施
建设纺机专件产品智能制造数字化车间,企业要以两化融合的思想为指导,充分应用现代信息技术、制造技术实现物流、信息流的高度统一,重点是对底层制造自动化、信息集成进行拓展应用。目的是进一步提高生产效率、提升产品质量、缩短产品研发周期、打造信息化环境下企业综合实力以及提高资源和能源利用效率,也是企业主动顺应纺织机械行业由传统制造向现代制造转型升级、实现企业技术创新、面向未来制造业抢占未来市场竞争制高点的战略性举措。
经纬榆次分公司纺机专件罗拉产品数字化车间采用PLM的管理方法,以网络和数据库为技术支撑,从CAD、CAPP、CAM、PDM、ERP等各环节对产品信息进行管理和动态跟踪;运用网络DNC技术对车间数控机床、输送系统、检测系统进行互联和集成;通过物联网技术实现产品制造质量的动态检测和全程跟踪;通过虚拟化的产品规划和设计,利用制造执行系统,赋予工厂更多的灵活性,满足多品种纺机专件产品的混线生产,并可为将来的产能调整做出合理规划。
3.1产品制造流程
罗拉是细纱机牵伸机构的一个重要零件,是决定细纱机成纱指标好坏的核心零件,技术要求极高。细纱机上有6对罗拉,每对罗拉由几十乃至上百节罗拉通过导杆、导孔、内外螺纹及罗拉轴承连接而成,最长可达到40余米,每对罗拉跳动要求不超过0.02mm,因此罗拉的各个技术指标均要达到极高的水平,是一种制造难度和复杂系数极高的产品。目前企业罗拉产品共七大类300余个品种。其工艺流程:备料外协粗加工来料检验切入磨加工双头车连线援齿热处理校直成型磨粗磨轴承档精磨轴承档数控打孔粗磨端面半精磨端面砂光钢丝轮抛光清洗锤前布轮抛光清洗电锤精磨孔端面锤前布轮抛光清洗孔精加工车外螺纹完工检验装配装箱。
3.2生产过程采集与分析系统的建设
经纬榆次分公司罗拉工厂应用无线射频质量跟踪系统,在罗拉生产中及售后进行产品跟踪和质量追溯。
3.2.1罗拉生产的过程采集
罗拉生产加工过程进行跟踪和记录,根据罗拉的材质、加工工艺和规格,在罗拉上打印二维条码来进行跟踪。生产过程处于受控状态,对直接或间接影响产品质量的生产、安装和服务过程所采取的作业技术和生产过程进行分析,诊断和监控。
3.2.2罗拉质量追踪数据的采集及分析系统
质量管理主要记录、跟踪和分析产品及过程质量数据,用以控制产品质量,确定生产中需要注意的问题。
质量数据采集:通过布置在车间的数据采集终端或手持终端上报检验结果,系统自动将数据存储起来,供其他模块进行数据处理和即时显示。
质量检测记录:通过在系统中的“质量检测记录”界面录入检测项目的真实内容信息(如实际尺寸、粗糙度等)。
质量分析:可对车间生产的质量情况,按日、月、年、人、设备、日期等条件或复合条件自动生成报表文件、存储或打印。可以提供有关产品、人员在生产过程中的基本信息给绩效管理系统,通过对信息的汇总分析,以离线或在线的形式提供对当前生产绩效的评价结果。
3.2.3售后产品质量追溯
罗拉产品销售后,可以通过产品的激光条码查到该产品的批次、生产设备及生产人员等信息,客户发现罗拉产品存在质量问题,能及时反馈给罗拉生产厂,作为质量改进的依据。
3.3无线射频质量跟踪系统与其子系统MES系统的集成
企业对无线射频质量跟踪系统与其子系统罗拉厂MES系统实现无缝数据集成。
(1)基于工单的排产及采集信息的集成
罗拉厂MES系统生成工单后,打印产品生产跟踪卡,所有的采集信息(包括物流信息、质量检测数据、激光打码信息)直接录入工单及工单对应的所有产品的数据中,实现了采集数据与工单的无缝数据集成。
(2)质量分析与罗拉厂MES系统的信息集成
技术部门通过经纬纺机无线射频质量跟踪系统的质量分析系统发现问题,及时反馈给罗拉厂MES系统,罗拉厂MES系统及时对生产计划进行调整。