时间:2023-08-04 09:20:25
引言:寻求写作上的突破?我们特意为您精选了12篇数字农业的前景范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
由于现今农业机械的设计水平相对落后,所以数字化设计技术必然在农业机械的设计过程中有更广阔的应用前景。比如,可以将虚拟技术运用于农业机械设计中、数字化设计技术与农业机械设计协同设计以及在农业机械的设计中注重增强创新意识,下面将对这些数字化设计技术在农业机械设计中的运用前景进行详述。
2.1将虚拟技术运用于农业机械设计中
虚拟技术是利用计算机技术来生成产品的三维图像设计,通过虚拟技术可以使设计人员更加清楚地了解产品的形状,另外虚拟技术可以对机械运动进行仿真模拟,即可以模拟所设计的产品的功能,这样就便于设计人员对产品进行改进,更大程度上保障了产品设计的可行性。通过虚拟技术还能够加快产品设计的速度,完善产品的质量。
2.2数字化设计技术与农业机械设计协同设计制造
在农业机械的制造过程中运用数字化设计技术能够最大程度提升产品的可靠性,降低产品设计过程中的成本费用和设计时间。利用这一技术能够使设计方案得到较快地更改,避免不够完善的计划造成生产成本浪费。
2.3农业机械数字化设计过程中更加注重创新设计
现今的农业机械种类和样式差异不大,没有较大的改良,所生产的农业机械不能完全满足农民的需要,而且作用较单一,如果能够对农业机械进行创新设计,那么将会使农业产品的种类更加完善,并且能够更大限度的提高农业生产率。数字化设计技术可以较快捷、可靠地帮助研发人员设计出不同的农业机械,这将是未来农业机械的设计的必然发展方向。
其次,是对农业机械进行概念化的设计。事实上这种设计理念就是对于农业机械进行设计的早期阶段,要拥有一个非常清晰的设计思路以及产品设计模式。换句话说,设计师在进行产品设计的时候,就要对设计出来产品的具体需求做出一个总结。在进行产品功能、产品原理以及整体布局的设计的时候,进行必要的规划。要能够做到在产品的设计过程中融入这些构思,使得最后生产出来的产品更加具有实用性以及创新性。设计师可以在产品的设计过程中将需要用到的知识以及其他资源进行一个综合性的总结,然后把得到的结果充分融入到数字化模板中去。将CAD作为一款重要的开发工具,制作出关于产品的设计经验、设计原理以及设计手册,帮助农民们在实际的生产生活中充分地了解产品的性能,让他们对产品做出合理的使用。
最后,对产品进行虚拟设计。许多的产品在设计最初的时候都会存在许多不合理的地方,这些不足都不可能一次性的解决,那么,就需要对产品进行虚拟设计,要对产品所需要的知识以及资源进行总结,建立一个基础模型,利用所建立起来的虚拟模型,进一步地对产品进行分析,对产品进行不断地完善。最终在产品的功能上做到尽善尽美,设计出需要的产品。
中图分类号TH16 文献标识码A 文章编号 1674-6708(2013)92-0074-02
随着科技的进步和国家对高效农业的支持,我国的农业生产正在想着“数字化”、“精确化”发展。数字农业的快速发展,将大大地提高我国的农业生产力,将有效地实行精确化、远程化操作,这也会彻底地改变传统农业的生产模式,在不就的未来,我们面对的将是以信息化、智能化的农业机械装备来作业的生态。
我国的农业机械化的水平完全不能够适应建设和发展农业产业的具体要求。尤其是农业机械化的技术条件,技术运用能力和技术科研能力。这些都是制约农业发展的重要因素。随着信息化科技化的到来,我们面临着又是新一轮的机遇和挑战。农业产业结构的调整,经济发达地区开始重视和扶持农业生产,加大资金投入和农业机械化的普及。这都为我国农业机械化的发展增加了一把熊熊烈火。数字化技术在农业机械中的运用将极大的将农业机械推向另一个农业发展的新顶峰。下面笔者就来结合自己对数字化技术在农业机械中的应用理解来谈一下自己的看法,希望能起到抛砖引玉的效果。
1就当今农业机械设计的特点进行分析探讨
传统型的农业机械设计根深蒂固,如果不积极地应对当今的发展潮流,我国的农业机械只会停滞不前的。因此就要是时候抓住机会,迎接挑战积极发展。这样才能将农业发展提上日程,将农业产品优化,提高农业产品的质量,解放生产力,提高企业的效益。
1)农业机械产品结构单一,复杂程度小。一般的农业播种机都是由简单的轴轮,机件,传动系统,开沟器和镇压器等基本的零件组成。虽然不同性能的播种机有差别,但是基本的机器结构是大同小异的。这样就非常有利于数字模块化的设计。这种播种机器的结构也非常适用于数字参数的设计;
2)农业机械产品结构类型繁多。例如播种机的运用。在不同的农耕地中农作物的不同就不能之运用一台机器,而是需要根据不同作物的特点,设计出符合农作物播种的机器。通过这些特点,就发明出了很多类型的播种机。例如有精密的播种机,条播机和穴播机等特种机器。还有按工作原理而分类的播种机和按作业量而分类的播种机。就此看来,农业机械以播种机为例的机械种类还是相当多的;
3)农业机械产品受农产品成熟季节的不同,农业机械的试验也就会随着季节的变化而变得不同。这就需要在研究农业机械的同时,充分考虑农作物的季节性,调整科研时间,有效地降低科研成本。
2剖析农业机械中的数字化技术
1)数字化技术指的是用多媒体计算机技术及网络实现产品的科研和开发的一种新型信息化的技术。就是利用计算机和网络的有利环境,对产品进行设计,分析和研发。建立一个产品模型,通过对产品模型的不断分析检验,达到产品最终的最优化;
2)数字化技术在农业机械中的应用,极大地提高了农业机械的开发水平和科研时间,还降低了研究成本和研究所花费的时间等。运用数字化的技术,还能使我国农业机械产品设计更加现代化和自动化。在设计的同时,还可以增加企业间的技术交流和技术能力,取长补短,积极吸取先进的数字化技术知识,提高整体的数字化知识水平,增加企业竞争力,还增进同企业间的团结协作精神。
3数字化技术的具体应用
1)计算机作为数字化技术应用的重要工具,对数字化的阐述是很重要的。通过对计算机的操作,最大化的将数字技术运用起来。其中,CAD/CAPP/CAM/CAE分别是计算机的辅助设计,计算机辅助工艺设计,计算机辅助制造和计算机辅助工程的英文缩写。这些技术是现代计算机技术的核心。他们的不同作用为产品的设计和研发具有重要意义;
2)可以将产品设计过程需要的用的知识资源进行综合,融入到CAD中去。将计算机的辅助设计作为开发的重要工具。设计出产品知识中的设计原理,设计经验和设计手册。帮助了解产品的基本信息和合理运用;
3)虚拟设计和创造。通过对产品的初步设计,就可以开始综合知识和资源,建立基础模型。利用建立模型,分析研讨,仿真实验等虚拟技术对产品进行完善。在连接网络的前提下,可以和业内人士一起交流讨论。通过模型来评估产品的综合实用性。在产品的功能,性能上加以研究,达到产品的最优化。对产品的设计,加工,质检都能够进一步的调节和掌控;
4)概念化设计就是在设计产品的过程的早期阶段,有一个清晰地设计结构和产品的基本模式。也就是说,在产品设计的时候,要将产品的需求到运用进行一个总结化的分析。从产品的功能设计,产品的原理设计和布局设计等方面进行一个基础性的规划。在产品设计的过程中,将人的具体构思加入到产品的设计中去也是很重要的。比如对产品色彩的选择等人性化方面进行合理添加。把设计员的创造性思维和审美与产品设计相结合,是产品更具有创新性;
5)绿色环保设计。它是针对资源的优化和能源的节约,防止污染的一项新型的绿色环保设计。主要就是应对在研发产品的过程中,对于产品资源的优化,对于污染的防止和对于资源循环利用废物的处理等设计。因此在进行产品设计的同时,还是要以绿色环保为主,这样才符合可持续发展的战略。
总而言之,随着社会的进步,信息化的普及。我国对数字化技术也有了一定的了解和一定的发展。虽然对比其他产业领域,我国农业发展相对来说有些落后。但是有些发达地区早已经开始了数字化的农业机械设计,并且也取得了很大的成效。这就说明数字化技术在我国农业机械中还是具有很广阔的发展前景的。
参考文献
关键词:数字农业;时空推理;专家系统
数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。
为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。
1主要关键技术研究现状
1.1数字农业
数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。
1.2时空推理
近年来,时空推理(Spatio-temporalReasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。
1.3时空数据标准与共享
不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:
(1)空间数据交换
空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准;以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各GIS软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。
(2)基于GML的空间数据互操作
开放式地理信息系统协会(OpenGISConsortium,OGC)提出了简单要素实现规范和地理标记语言(GeographyMarkupLanguage,GML)。OGC相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,ZhangJianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,ZhangChuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML构造WebGIS的框架结构,给出实现框架技术。其中采用GML作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。
1.4时空本体
1.4.1本体、语义Web和OWL
本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(WebOntologyLanguage,OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。
1.4.2时空本体
基于本体方法对时空建模的相关研究工作如下:
1998年,Roberto考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年ZhouQ.和FikesR.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。
2主要研究内容
(1)农业时空数据规范
现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。
(2)农业基础时空数据库
基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。
(3)农业时空分析方法库与农业时空知识库
时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。
(4)农业时空本体库
在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。
以上三个库通过WebService方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。
(5)系统体系结构
系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过WebSer-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。
(6)基于平台开发农业生产智能应用系统
基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。
3相关系统对比分析
3.1数字农业空间信息管理平台
平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。
3.2全国农业资源空间信息管理系统
全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。
3.3中国西部农业空间信息服务系统
计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。
(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。
0引言
数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。
为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。
1主要关键技术研究现状
1.1数字农业
数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。
1.2时空推理
近年来,时空推理(Spatio-temporalReasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。
1.3时空数据标准与共享
不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:
(1)空间数据交换
空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准;以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各GIS软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。
(2)基于GML的空间数据互操作
开放式地理信息系统协会(OpenGISConsortium,OGC)提出了简单要素实现规范和地理标记语言(GeographyMarkupLanguage,GML)。OGC相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,ZhangJianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,ZhangChuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML构造WebGIS的框架结构,给出实现框架技术。其中采用GML作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。
1.4时空本体
1.4.1本体、语义Web和OWL
本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(WebOntologyLanguage,OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。
1.4.2时空本体
基于本体方法对时空建模的相关研究工作如下:
1998年,Roberto考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年ZhouQ.和FikesR.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。
2主要研究内容(1)农业时空数据规范
现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。
(2)农业基础时空数据库
基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。
(3)农业时空分析方法库与农业时空知识库
时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。
(4)农业时空本体库
在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。
以上三个库通过WebService方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。
(5)系统体系结构
系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过WebSer-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。
(6)基于平台开发农业生产智能应用系统
基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。
3相关系统对比分析
3.1数字农业空间信息管理平台
平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。
3.2全国农业资源空间信息管理系统
全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。
3.3中国西部农业空间信息服务系统
计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。
(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。
(2)由于大量的底层服务、数据、知识和方法由平台集中统一提供,简化了开发数字农业应用软件的工作,节约了成本。
4结束语
数字农业时空信息管理平台从系统目标、适用范围、采用技术、系统接口等方面不同于任何现有的基础农业空间数据管理平台,是一个概念全新的系统,定位于基础农业空间数据管理平台的上层,更便于开发数字农业应用。其中的本体库等机制为将来建立农业时空数据网格奠定了良好的基础。
参考文献:
[1]于淑惠.数字农业及其实现技术[J].农业图书情报学刊,2004,15(7):5-8.
[2]唐世浩,朱启疆,闫广建,等.关于数字农业的基本构想[J].农业现代化研究,2002,23(3):183-187.
[3]Geographymarkuplanguage(GML)[EB/OL].(2003)./techno/specs/002029PGML.html.
[4]RANCOURTM.GML:spatialdataexchangefortheinternetage[D].NewBrunswick:DepartmentofGeodesyandGeomaticsEngineering,UniversityofNewBrunswick,2001.
如今信息技术的重要体现就是现代测控技术,它在21世纪得到了飞速的进步。当前社会市场经济水平不断地提升,发展速度也迅速提高。在此同时,先进的科学技术也得到了迅速融合的发展,很大程度上带动了现代测控技术的进一步发展,当前现代测控技术是远程化、虚拟化、智能化以及集成化等的发展方向。测控技术拥有非常强的实践性,它的应用金额元深入到一级国防、工业以及农业等众多方面,拥有极大的影响力与可观的发展前景,它将会有效地推进先进技术水平的提升以及生产率的大量增加。
1特点
1.1网络化
基于因特网的信息计算机网络技术的快速完善和发展,很大程度上帮助解决了事物和地域的制约,推动了测控技术的发展与完善。网络化也就是指网络技术和测控技术有机融合,便捷的建立分布式网络化的现代测控系统。现今,信息网络技术以及各相关技术都得到了快速的发展和完善,这就很大程度上壮大了信息网络系统。目前,在航空航天、气象、国防以及通信等方面都成功的运用了现代测控技术。
1.2智能化
智能化测控仪器的应用,使得现代测控系统具有功能多面化、灵动、快捷便利等优点,极大地加速了现代测控技术的发展。目前,微电子技术具有很好的发展态势,人工智能也得到了发展和引进,设备仪器越来越智能化和高科化,计算能力和方法都取得了很大程度的提高和发展。
1.3数字化
现代测控技术的数字化有着十分关键的特点。现代测控系统中的很多方面都体现了数字化的特点,比如:信息通信处理、远程终端和控制器之间的数字化控制以及传感器的控制数字化等。
1.4分布化
分布地点不同的测控设备能够有效地选择最适宜的仪器,测控技术的分布化是基于微型计算机技术以及网络技术,现代测控系统是由有效的联合分布式设备组建而成的。生产控制分布式仪器的过程是一个集测试、控制、管理为一体的全程自动化过程,这就使得测控成本得到了降低,同时增加了测控效率。现代测控系统的分布式特点能够做到安全高效,而且故障部分不会对别的系统部分产生影响。
2 发展前景
2.1现状
随着先进科学技术和社会经济的迅猛发展,现代测控技术的应用范围得到了很大的扩展,具有很快的发展速度,同时极大地提高了测控技术水平。可是,仍然存在着许多或大或小的问题。测控技术在我国没有进入高水平的发展阶段,在微型化、数字化以及智能化等方面仍落后于发达国家。所以,我国需要加强先进技术和设备的引进和应用,不断开拓创新,尽量缩小发展差距,达到高水平的现代测控技术。
2.2 前景
测控技术的发展逐步面向全球化和网络化等,更加紧密地促进了世界国与国之间的联系,逐步向先进科学的发展态势进步。社会经济全球化很大程度上促进了现代测控技术的不断前进,与社会发展相辅相成,带动科学技术的全球化发展,分析现代测控技术的发展可以发现开放化和标准化是其清晰的发展态势。当前,社会信息化发展迅速,现代测控技术必定具有广泛和深远的发展前景。
3结束语:
现代测控技术逐渐趋向于全球化、网络化。国家之间的联系日益密切,沟通也日益方便,科学技术发展步伐也逐渐加快。现代测控技术成为了现代工业文明的重要标志之一。现代测控技术可以促使整个社会的不断进步以及产业链更加完善。已经成为现代社会发展程度的一个标志。现代测控技术被广泛运用到生活生产中,发挥其功能给社会带来福音。
中图分类号:P2文献标识码: A
随着数字地籍测绘技术的发展,其已经在人们生活的各个领域中得到了广泛的应用和推广。因此,对数字地籍测绘技术的应用与发展的探讨有其必要性。
1.数字地籍测绘技术
数字地籍测绘技术,简单来讲,就是解析式的机助测图方法。从技术上讲,其融合于地籍测量内业、外业于一体的综合性操作系统。在实践应用中,其主要通过GPS、全站仪进行信息数据的收集和采集,并且结合相应的计算机系统,进行各种图、文、表等地理信息的综合传输和处理。可以说,数字地籍测绘技术构建了现代社会的立体化通信网。另外,再加上互联网的发展快、作用大、影响广、公众关注程度高的特点,极大地促进了数字地籍测绘技术的广泛应用。在当前信息领域中,它是信息化社会的一种具体表现形式。
2.数字地籍测绘技术的应用
数字地籍测绘技术,主要涉及到的关键技术有空间信息技术、空间数据基础设施、高分辨率卫星遥感技术、高速网络技术、大容量存储技术、虚拟现实技术、可视化技术以及高性能计算能力等等。为了了解数字地籍测绘技术的应用,进行了以下分析:
2.1.资料分析
在地籍测量中,通过卫星遥感技术和GPS定位技术,通过相应的卫星遥感技术,对所测地区的地籍数据进行全面分析,加强对所测地区地形的了解和掌握,结合相关的设备和数据库,最终确定测量成果。在地籍测绘过程中,由于其中卫星遥感具有高分辨率,能够有效地观测到影像上所能看到的地面最小目标尺寸,同时,用像元在地面的大小来表示,它从遥感形成之初的80米,已提高到30米、10米、5.8米乃至2米,军用的甚至可达到10厘米,最终获得所测量地区的清晰卫星影像。
2.2.数据获取与采集
一般而言,数据获取的内容主要包括地类数据、地籍数据、地形数据、属性数据以及控制数据等。通常数字地籍测绘技术获取信息途径大体上有两种:其一,就是在野外进行直接地采集和收集;其二,就是利用已有的资源,经过资料分析,最终获得相应的数据资料。在数字地籍测绘中,数据的获取和采集要注意以下几点:①、在采集数据时,建立相应的数据库,形成相关的数据格式,同时,通过相关的空间和地理分布信息,加强空间信息的研究;②、地籍测绘过程中,在处理、和查询信息时,通过GPS系统和计算机系统,找到与地理空间位置有关的大量的信息,并将其作为基础信息,存储于数据库中。为此,在这里数据存储技术就显得至关重要。
在计算机系统中,散乱的数据信息没有任何的价值和意义。为此,就需要进行数据的编辑、处理以及整合。计算机系统作为一个复杂的庞大系统,对于一些许多事件、变化和过程以及十分复杂而呈非线性特征,都可以有效的处理、归类。为此,要利用高速计算机,结合数据挖掘技术,更好地认识、分析和利用所观测到的海量数据,从中找出规律和信息。同时,数字地籍测绘技术就是将有关所测区上的每一点的信息,按其地理坐标加以整理,然后构成一个系统化的信息模型。
3.数字地籍测绘技术的发展
数字地籍测绘技术的发展和应用越来越普遍,其主要原因就是由于数字地籍测绘技术的用途越来越多,几乎涉及了人类活动的所有领域,从军用到民用,数字地籍测绘技术无所不在在,这里我们做具体的分析:
3.1.军事领域
在军事中,数字地籍测绘技术主要在海、陆、空作战时,进行高精度的定位,通过与系统的测量,体现了其在测量时的强大的优势。数字地籍测绘技术的出现,为军事现代化提供了强有力的支持。现代战争中,其被成功地应用于精确指导、军事部署与调度、战略决策与指挥等一系列军事行动中。
3.2.工农业领域
工农业领域中,在机械工业、农田管理、森林资源管理与调查等方面数字地籍测绘技术得到广泛的应用。在农业生产中,数字地籍测绘技术在农业信息遥感、太空农业等领域有着广泛的研究前景,一些国家利用资源卫星进行农业资源调查、作物长势和产量监测等。例如,美国利用资源卫星在估测本国小麦产量的同时,还对其他国家小麦产量进行估测,根据所得数据制定生产布局、储运、加工等计划,确定对外贸易策略,每年因此可获利数亿美元。此外,数字地籍测绘技术还可以有效地进行土地资源利用状况调查、合理布局农业、农作物产量预测等等。在实践中,要综合考虑各种技术在农业及其他领域的应用,并全面考虑农业生产、经营、加工各个环节以及相关地理环境变化等,促进农业的更好发展。
3.3.交通领域
在交通领域中,主要用机、汽车、船舶行驶的测量,为行人、探险者、旅游者提供了很大的方便。如数字地籍测绘技术在航海、航空中的应用,采用 GPS, RTK技术以及全站测量仪,从而全面了解航海情况。例如:利用卫星遥感进行土地资源调查和土地利用动态监测,为快速及时的变更地籍测量作好参照,得到的地籍图信息丰富,实时性强,既具有线划地图的几何特征,又具有数字直观、易读的特性,而且地籍图上的界址点完善。
3.4. 人类日常生活领域
在人类日常生活领域中,为人们生活提供了更方便、更安全的保障。在信息社会中,数字地籍测绘技术正在步入我们的日常生活。例如:遥感技术能够实时的对大江、大河和湖水水位进行监测,可实时监察院测洪水灾害面积,RS和GIS集成能及早预报洪水淹没范围和干旱范围,为防灾、抗灾提供准确信息。遥感技术不公能够调查地上水资源,还能调查地下水资源,监测水污染。目前,我国各地、各部门已建成众多灾情预报系统(如黄河下游洪水预警信息系统),它们将在防灾、抗灾、救灾中发挥重大作用。
三、发展前景
1.数字城市
从广义上说,通过宽带,将数字地籍测绘技术与现代的地理信息系统、多媒体技术以及信息网络有进行有效的整合,构建一个基础设施平台,对城市信息资源进行整合处理,并加以充分利用,完善城市化系统。同时,建立相应的子系统,如电子政务、电子商务、、劳动和社会保障信息系统、科技信息系统等,推进远程医疗、网上教育、信息家电的发展,为人们生活构建信息化的社区,从而有效地实现国民经济的信息化以及社会发展的信息化。
2.数字化社区
顾名思义,数学化社区,数字地籍测绘技术与现代的数字技术有效的结合起来,实现管理与服务的结合与统一,进而为城市社区的每一个住户提供最为方便的服务。这种形式的数字化管理,实现了社会管理者与用户之间的信息交流与共享,同时,利用先进的数字技术和各种网络多媒体技术,加强对城市社会的动态实时监控与管理,从而营造出了一个丰富多彩的虚拟社区,为用户提供更加丰富的精神生活。
3.数字化地球
在现有的社会形势和经济条件下,数字地籍测绘技术与互联网的产生和使用,带动了人们生活的信息化,如现在的信息高速公路的出现,既有效缩短了我国联系交往的时间,也缩小了我们的生活空间,使得我们生活的世界成为一个同时性、全球性的地球村。与此同时,地球村的出现,带动了人们的数字化生存。曾有IT界人士对未来人类的生活状态进行了以下描述:宽带将代替电话拨号的窄带方式成为家庭和外部信息交流的高速公路;单芯片技术产生的数字产品会不断丰富、满足用户高品质数字化生活的需要;所有产品通过有线网络或无线网络联成一体并实现设备之间的数据交换、资源共享以及自动化控制。
总结:
总而言之,数字地籍测绘技术是包括全球定位系统、遥感技术、地理信息系统等多种技术的综合系统。目前,数字地籍测绘技术已经渗透到人们生活的各个领域,因此,在实践中,要加大数字地籍测绘技术的深入研究,进一步提高其测量精度,逐步完善相关的理论和方法,为数字地籍测绘发展奠定良好的基础。
参考文献:
[1]肖建华,谭仁春.建设数字城市地理空间框架促进地理信息资源共建共享[J].城市勘测.2011(06)
[2]邓义龙.数值模拟在上海跨江输水隧道盾构施工中的应用[J]. 兰州工业高等专科学校学报.2012(04)
[3]郑凤娇.地面LiDAR技术与移动最小二乘法在三维建模中的应用[J].测绘科学.2012(04)
[中图分类号] S23 [文献标识码] A [文章编号] 1003-1650(2017)03-0221-01
由农机消费大县迈向农机生产大县,是河南省汝南县的全新定位。该县在新农机的研发和应用方面,建立以农业机械研发、生产、销售、服务等为主体的3平方公里的农机产业园,为推动农机产业发展搭建了平台。平台的诞生,不但催生了农机生产企业加速成长,也吸引了大批农业机械制造项目扎根汝南县,这些项目的建成投产填补了汝南县农业大县无大型农机制造的空白。目前,该县农机总动力达到120万千瓦,农业机械总值16.3亿元,农业机械总拥有量5.1万台,其中大中型农业机械1.2万台,配套农具11万台(套)主要农作物耕种收综合机械化水平达到86%以上,小麦基本实现生产全程机械化,玉米机收率达75%以上,玉米秸秆还田率达80%以上,实现了农机合作社乡镇全覆盖。
1 数控机床技术在农业机械制造行业中的应用
进入新世纪以来,随着我国改革开放不断深入,数控技术在各个领域都得到了比较广泛的应用,特别是在我国农业机械制造行业中应用更加频繁。最近几年,我国各种中高职院校培养了大批数控技术人才,为了数控机床制造技术发展做出了巨大的贡献。在过去我国机械制造行业中,很多数控技术都是由外国企业控制,引进国外的机械设备,国内机械制造行业对国外技术比较依赖,国内的农业机械制造企业所生产出来的零部件技g水平较低,缺少自己的核心技术体系。为了进一步促进数控技术在农业机械制造行业中的应用,提高自身的净胜能力,需要我们逐渐构建属于本国特有的体系化和规模化数控机床产品,为我国的农业机械制造领域提供充足的零部件,满足现代农业发展需要。数控技术在农业机械制造行业扮演着十分重要的角色,其可以整体提高农业机械设备的配套能力,同时,在农机设备机床可靠性方面,也能够利用数控技术得以实现。此外,应用数控技术还能够有效提升农机设备生产质量和水平,使农业机械制造行业逐渐向着自动一体化方向发展。最近几年,我国很多机械制造企业不断推出了大量高性能的数控机床产品,显示了我国在机床生产水平提升。我们相信国内机械制造企业完全可以依靠自主数控技术制造高质量的农业机械设备。
2 数字化技术在农业机械制造行业中的应用
首先,CAD技术在农业机械制造行业中的应用。随着工业技术更新加快和竞争日趋激烈,机械产品更新换代速度越来越快,产品的设计周期越来越短,现代化的CAD技术也在不断向前发展。过去传统的CAD技术主要以计算为基础,处理符号推理。但是传统的CAD技术已经不能很好适应创造性设计要求,工作很困难,因此,在农业机械制造行业中的应用CAD技术必须在系统中引入人工智能方法,采用专家系统技术,积极发展智能化CAD技术,以适应创造性设计要求。智能化CAD设计系统是由多个智能体功能模块有机组合在一起而设计出来的复杂系统。在农业机械制造行业中的应用应用智能化的CAD系统,可以很好解决农业机械设计制造过程中复杂的设计、利用率低的难题,缩短机械产品开发周期,在未来具有巨大的经济效益和应用前景;其次,数字化技术在农业机械装备制造中的应用。随着数字计算机的诞生,其逐渐被应用到控制加工机床的加工运动方面,形成了数字控制机床。经历了长时间的发展,数控机床技术逐渐称为衡量一个国家机械制造能力的重要标准。在国外发达国家的机械制造企业中基本上已经实现了无图纸生产,广泛使用CAD技术和CAN技术,实现了全部的数字化设计。最近几年,数字制造技术在我国有了一定的发展,如数控技术、制造信息支持持系统为主体的技术在我国农业机械制造行业中不断得到应用。但是从目前整体的发展情况来看,数字化技术在农业机械制造行业中的应用还比较滞后,但我们相信在今后的农机制造领域将会越来越多的应用到数字技术,直接推动农机制造行业实现自动化发展
3 虚拟技术在农业机械制造行业中的应用
首先,虚拟装配技术在农业机械制造行业中的应用。利用虚拟样机技术在农机产品开发阶段进行装配评价,从而保证在农业设备设计阶段对整个产品的功能、性能从装配角度进行分析,避免设计中存在失误,为接下来的生产定型提供方便,节省大量时间和金钱。采用二维图纸进行了平面设计和线性设计无法及时发现重设计制造过程中存在的的装配干扰问题,在生产过程中一旦出现装配干扰问题在后续需要花费大量时间和金钱重新设计,增加了制造成本,浪费大量时间和精力。而通过使用虚拟装配技术,设计人员在设计阶段就可以对产品进行模拟加工,对设备零部件进行全方位的检查,通过程序自动检查机械设备设备装配存在的干扰问题;其次,虚拟制造技术在农业机械制造行业中的应用。其中应用比较广泛的是热加工技术的应用。模拟系统针对机械金属材料的物理特性和化学特性以及制造技术难度进行全面分析,模拟机械设备成型过程中各种数值和物理量,对机械设备形成过程进行动态化的仿真模拟,在不同生产条件和制造环境分析不同金属材料的配置情况,进而对机械设备热成型零部件的质量和性能急性控制和优化,充分发挥不同看金属材料的潜能,实现生产加工最轻化和材料应用最优化。
数字数据网可以说是数字数据传输网,主要是利用卫星、数字微波等的数字通道和数字交叉复用。分组交换网又称为X.25网,它主要是采用转发方式进行,通过将用户输送的报文分成一定的数据段,在数据段上形成控制信息,构成具有网络链接地址的群组,并在网上传播输送。帧中继网络的主要组成设备是公共帧中继服务网、帧中继交换设备和存储设备。
(二)无线数据通信
无线数据通信是在有线数据的基础上不断发展起来的,通常称之为移动数据通信。有线数据主要是连接固定终端和计算机之间进行通信,依靠有线传输进行。然而,无线数据通信主要是依靠无线电波来传送数据信息,在很大程度上可以实现移动状态下的通信。可以说,无线数据通信就是计算机与计算机之间相互通信、计算机与个人之间也实现无线通信。这主要是通过与有线数据互联系,把有线的数据扩展到移动和便携的互联网用户上。
二、数据通信的应用前景
(一)有线数据通信的应用
有线数据通信的数字数据电路的应用范围主要是通过高速数据传输、无线寻呼系统、不同种专用网形成数据信道;建立不同类型的网络连接;组件公用的数据通信网等。数据通信的分组交换网应用主要输入信息通信平台的交换,开发一些增值数据的业务。
(二)无线数据通信的应用
无线数据通信具有很广的业务范围,在应用前景上也比较广泛,通常称之为移动数据通信。无线数据通信在业务上主要为专用数据和基本数据,其中专用数据业务的应用主要是各种机动车辆的卫星定位、个人无线数据通信、远程数据接入等。当然,无线数据通信在各个领域都具有较强的利用性,在不同领域的应用,移动数据通信又分为三种类型,即:个人应用、固定和移动式的应用。其中固定式的应用主要是通过无线信道接入公用网络实现固定式的应用网络;移动式的应用网络主要是用在移动状态下进行,这种连接主要依靠移动数据终端进行,实现在野外施工、交通部门的运输、快递信息的传递,通过无线数据实现数据传入、快速联络、收集数据等等。
1.引言
家畜解剖学是农业类高等学校动物医学专业的专业基础课,本课程主要讲授正常家畜、家禽的形态、结构、器官的位置关系和发生发展规律。本课程的特点是名词众多、结构复杂,对于首次接触动物医学专业的学生来说学习起来比较困难,不知道应该怎样学习。传统课堂讲授方式难以满足现代化教学发展需要,虚拟仿真技术正逐渐应用到各专业教学课程中,对教育行业产生了巨大影响。
2.虚拟仿真技术的优势及其在医学教育中的应用
虚拟仿真技术是用计算机虚拟场景逼真地模拟现实世界事物的技术,涉及计算机图形学、人工交互、人工智能和传感技术等。具有真实性、交互性和沉浸性的特点,逐渐成为现代教育技术领域的热点,应用于不同专业教学过程中。随着计算机技术的发展,虚拟仿真技术在人类医学上得到了广泛应用。虚拟仿真技术打破了传统实验空间和经费的限制,在充分保证教学效果的基础上,不仅节约了实验成本,而且大大提高了学生的学习兴趣。使学生通过虚拟场景的人机交互,由视觉、听觉、触觉等手段获取场景的反应,通过学生自我组织,制订并执行学习计划,进行自我评价,开展适应式学习。很多高校、科研院开发了人体解剖虚拟仿真实训平台、虚拟动画、三维网络课程等应用于理论和实践教学,充分发挥了现代教育技术的优势,提高了教学水平。
1989年美国首先开展了“可视虚拟人”的计划,并于1994年完成世界第一例男性“虚拟人”数据采集,1998年完成女性虚拟人数据采集,共采集到56GB的数据。随后,韩国“可视韩国人”项目于2000年完成第一例韩国人标本的数据采集;2003年,钟世镇主持的“虚拟中国人”项目完成中国人体数据的采集工作。以这些虚拟人数据集为基础,对人体器官进行了三维重建,精细逼真的三维结构为人体解剖学提供了大量素材。基于虚拟人体数据集产生了很多人体解剖三维虚拟仿真实验平台用于人体解剖学教学。在仿真平台上可以对人体结构进行任意角度旋转、缩放、标注等操作。便于教师教学及学生学习和课后复习。2010年10月在上海世博会期间,瑞典首次向公众展示了代表先进医学虚拟仿真技术的“虚拟解剖台”。此虚拟解剖台数据来源于人体的磁共振(MRI)和CT成像数据,利用计算机处理将这些数据从二维平面图变成真实感极强的三维模型,将人体内部的精细结构完整地展示出来。这款虚拟解剖台可用于人体解剖学教学,学生用手指通过触摸屏进行人体器官操作,能完整地展示骨骼、血管、肌肉等的不同形态,还可以移除或添加内脏器官、血管、神经等结构,从而理解各器官的形态结构和相互位置关系。
3.虚拟仿真技术在家畜解剖学的应用现状
家畜解剖学是一门实践性很强的学科,家畜的器官标本、模型等教学材料在本课学习中有重要作用。但是近些年随着招生规模扩大,一般理论授课时学生人数较多,不能发挥标本、模型的作用,学生只能在实验课上观察标本、模型。虚拟仿真技术在家畜解剖学中的报道较少,由于数字人的数据采集方法投资巨大,过程复杂,需要多领域专业人员合作完成,目前还没有完整的大家畜(牛、马等)虚拟解剖系统。很多科研机构利用数字人的数据采集方法对猪、兔、小鼠、大鼠等动物进行了数据采集和虚拟仿真工作。Maierl等在1999年报道了第一例“可视化狗”,但其数据不完整,没有四肢部分的结构,而且图像不精细。2005年9月,重庆理工大学、第三军医大学和重庆市畜牧科学研究院共同完成了世界第一例“数字可视化猪”数据集的采集工作,图像质量比较高,能够清晰显示内部结构[1]。2014年,连国云[2]采集完成了“数字化新西兰兔”的数据集。但是对于家畜解剖学重点讲授的牛、马等大家畜,还没有虚拟解剖数据集的报道。主要原因是牛、马的体型比较庞大,采用数字人运用的冷冻铣削设备无法完成铣削,牛、马等动物只能采用其他方法建立三维模型,虽然这些模型不如冰铣削得到的数据精确,但是仍然能够在家畜解剖学教学中发挥巨大作用。苏杨生[3]等报道了通过3D Max软件建立了牛的椎骨模型,并建立了交互程序,学生可随时随地进入程序观察解剖标本。张蕾[4]等采用Photoscan软件对动物头骨进行了三维重建。付大鹏等[5]采用三维激光扫描仪获得了动物股骨的三维点云数据,进行三维重建,得到了股骨的三维模型。以上研究成果为虚拟仿真技术在家畜解剖学中的应用提供了思路和教学资源。
4.虚拟仿真技术在家畜解剖学的应用前景
虚拟仿真技术在家畜解剖学及相关专业有着非常广阔的应用前景。三维模型能够形象清晰地展示动物的解剖结构和器官的相互位置关系。虚拟仿真技术的应用能够将理论授课中教师采用图片、照片等素材难以描述清楚的概念、结构给学生以感性认识,能够加深学生的理解程度,帮助学生学习和记忆。虚拟仿真技术的应用能够将抽象的结构变具体,使枯燥的概念形象生动,提高学生的学习兴趣和主动性,突破传统解剖学实验空间和时间的限制,学生可以通过网络自由地学习,方便自学。综上所述,虚拟仿真技术能够将家畜解剖学的抽象教学内容形象地展示出来,提高学生的学习积极性,使学生由被动接受转变为主动学习,极大增强家畜解剖学教学效果。
参考文献:
[1]张建勋,徐凯,邱宗国.世界首个三维可视化的数字猪.重庆理工大学学报(自然科学版),2011,(03):69-73.
[2]连国云.数字化新西兰家兔的三维结构重建研究.计算机光盘软件与应用,2014,(12):24-26.
[3]苏杨生,宋斯伟,李颖,等.牛骨骼模型三维数字化重建.黑龙江畜牧兽医,2015,(09):249-250.
中图分类号: G230.7 文献标识码: A DOI编号: 10.14025/ki.jlny.2016.21.077
新媒体是相对传统媒体而言的,是继报刊、户外、广播、电视4大媒体之后的第5媒体。随着互联网技术和信息技术的迅速发展,信息的传播渠道不断地拓展,新媒体已经不知不觉的融入到人们的工作和生活当中,改变着人们获取信息的方式和阅读习惯,所以科技期刊也应跟随时代的发展,不断的进行转型、整合,利用新媒体扩大影响力,从而寻求到更好地发展空间。农业科技期刊承载着推动农业科技进步、传播农业知识、交流最新农业科研成果、农业科学评价等使命,是展示一个国家农业科技水平和发展现状的窗口,在科技期刊中占有十分重要的地位。新媒体背景下,对于农业科技期刊的发展既是挑战也是机遇,本文主要探讨新媒体下农业科技期刊的发展模式。
1新媒体的特点
目前,新媒体主要包括互联网新媒体(网络采编平台、 官方主页、电子邮件、官方微博、 博客),网络电视,网络广播,网络报刊,手机新媒体((手机报、手机电视、微信、飞信)),电视新媒体等[1] 。新媒体的4大特点为:交互性和时效性;海量性和共享性;个性化和社群化;多媒体和超文本。其具有形式丰富、互动性强、渠道广泛、覆盖率高、精准到达、推广方便等特征,因此新媒体在灵活性方面远远超越了传统媒体。
2 农业科技期刊在新媒体下的发展模式
2.1 与读者的互动
2.1.1 传播方式的双向性 传统科技期刊是单向地向读者传递信息,而新媒体的传播方式则是双向的,新媒体技术传播的互动性决定了其在科技期刊领域有着广阔的发展前景。传统科技期刊中读者只能处于接受的角色,而在新媒体下,读者却能成为信息的传播者。作者既是信息的提供者也是信息接收者,利用新媒体和读者进行交流,这种信息的互动性使传统科技期刊焕发出新的活力[2]。
2.1.2 新的交流方式 传统科技期刊以学术交流为主要的交流方式,而新媒体可以通过网站、微信平台、QQ等新兴的传播方式,更好的和作者、读者之间进行互动,同时新媒体的受众更多,传播面更广。因此在新媒体下,能增强期刊工作者和读者、作者之间的互动和沟通,进一步丰富期刊内容、增强期刊的影响力。
2.1.3 新的推送模式 农业科技期刊的读者,期望获得对自己工作、生活有实用价值的文章。编辑部工作人员可以收集读者的需求信息,和期刊现行的模式进行整合,在保证期刊科技价值的前提下不断地扩大期刊的受众群体,并推送给可能有需求的读者,使读者有个性化、定制化的感受。在进行推送的过程中不仅要注重内容的质量,还应该尝试推送方式的个性化,通过调研了解部分读者阅读爱好,采用取多元化形式来推送,例如推送文字、图像、视频、声音的结合体。
2.2 创新发行模式
2.2.1 表现形式 传统科技期刊往往以文字和图片2种形式来呈现,而新媒体则可采用文字、图片、音频、视频等多种信息的表现形式,使期刊的内容形式表现的更灵活,更“接地气”,以鲜明的特色赢得更多的读者。
2.2.2 新的发行模式 新媒体下,人们的信息获取方式和阅读习惯正在发生着改变,尤其是年轻人现在更习惯在电子设备上进行阅读,所以科技期刊在做好纸质发行的同时,应该将目光转移到电子期刊的发行。但是,目前我国的科技期刊特别是农业科技期刊的数字化发行,还主要依赖于国内一些大型的数据库平台,只是机械地将传统期刊纸质版内容数字化,并上传到网上进行有偿地下载和浏览[3],这离真正的期刊数字化还有一定距离,编辑工作者应探索移动终端的发行模式,这样才能使科技期刊融入到人们的生活当中,更好的服务于读者。使读者可以在任何时间、任何地点都可以通过网络阅读文章,并且实现读者、作者、编辑三者之间的交流和沟通。
农业科技期刊的工作者已经逐步认识到新媒体技术在办刊过程中的重要性,开始尝试着新媒体下的转型。农业科技期刊编辑新媒体素养培养的主要内容包括:
2.3.1要有宽阔的视野和活跃的思维 我国农业科技正处于高速发展阶段,农业科技期刊的编辑应具有扎实的编辑技术能力和丰富的农业知识,能熟练应用数字技术、计算机技术、网络技术,同时要了解农业科学技术的新成果和发展方向,掌握编辑领域的前沿信息,还要把握好市场动态并具有选题策划及组织实施能力,随时吸收最新的国内外农业科技热点,了解新的农业科技知识,这样才能起到正确的引导作用。
2.3.2熟练的使用新媒体工具 多数科技期刊采用了网络采编平台,同时,在期刊的推广中,许多期刊运用了微信公众平台。 编辑工作者应熟练的运用好各类新媒体工具,发挥新媒体的优势,更好地完成信息的获取、加工、处理等工作。加工出作者搜得到、读得懂、用得上的好作品,努力提高大数据下论文的显示度。
2.3.3 术业有专攻,细化编辑的分工 应对新媒体的发展,编辑工作者不能只局限于常规的校编工作,应该将工作进行细化,根据数字出版的特征可将编辑分为:策划型编辑、学术型编辑、技术型编辑、营销型编辑。这样编辑可以根据自己的擅长方面,选择适合自己的发展方向,在专项上的做到更专业。
3结语
随着新媒体时代的到来,科技期刊应主动顺应从传统媒体传播向网络传播转变的这个趋势,适应新的发展模式。而农业科技期刊应结合自身的特点,寻求自身的发展道路,积极探索创新,不断的拓展期刊的广度和深度,提高期刊的权威性和可信度,实现在新媒体时代的进化,进而实现跨越式发展。
参考文献
[1] 石磊.新媒体导论[M]. 北京:中国传媒大学出版社, 2009.
[2] 陈唯真.在新媒体时代传统科技期刊如何实现跨越式发展[J].中国科技期刊研究,2013,24(03).
中国幅员辽阔,农村人口众多,发展农业远程教育极有意义。远程教育的最大优势在于能使任何地方的农民学员方便快捷地获取最好的教育资源,极大地提高农村劳动力的科技文化素质,为推动各地农业农村经济做出积极贡献。中国农业远程教育有着广阔的发展前景,尽管中国农村基础薄弱,大多数基层农广校缺乏广播、电视等远程教育资源,在地方电台、电视台也没有教学节目播出时段,但从长远看,这都不会影响远程教育优势和效益的发挥[1]。发展农业远程教育,存在一个发展模式选择的问题。考虑到中国东西部地区、城乡之间经济发展的不平衡,以及广大农村信息基础设施建设和农户家庭条件现状和发展趋势,中国农业远程教育应该采用数字技术与非数字技术恰当结合、优势互补、共同发展的道路,综合利用VCD光盘、有线电视、卫星网、互联网等手段,采取以下两种不同的教育发送和传输的模式[2]:
1.主流模式
卫星传输数字化教育发送技术,适用于中国广大农村、特别是中西部农村。采用主流模式的地区可以采取的扩展数字化教育应用的技术方案为:CD-ROM光盘刻录和发送方案;各类局域网应用方案;基于有线电视网的多媒体数据广播系统方案和电话拨号接入或其他公众电信网回传方案。
2.替代模式
计算机宽带网的地面接入技术,适用于东部沿海经济发达地区农村。
二、农业远程卫星教育系统建设
随着现代信息技术的发展,互联网和卫星网作为一种新的技术手段开始在远程教育领域广泛应用,但很多农村家庭由于家庭贫困买不起电脑,另外,受农村人口教育水平限制,很多人也不懂电脑和网络方面的知识。中国广大农村地理条件复杂,通信网络线路建设难度较大,架设网络线路成本相对较高,互联网普及率和使用率非常低,短时期内,在中国农村推广互联网教学还很难实现。卫星教育网建设属于公共财政支持范畴,由政府投资建设,具备提供话音、视频、通信服务的综合能力,性价比高、技术先进、性能可靠,是提供农村远程教育简单经济、行之有效的手段。卫星远程教育不受时空限制,能为农村学员提供与发达地区质量相同的远程教育服务,能有效解决广大农村教育发展不均衡、优秀教育资源稀缺的局面。目前,农广校在以色列政府的援助支持下,已经建设了拥有1个中心主站和360个双向远端站点,以中央农广校为演播和资源服务中心,各省、地、县级农广校以及乡镇教学班为卫星网络远端接收和教学服务点,能实现数据通信、远程教育培训和视频广播会议的远程卫星教育系统。通过卫星教育系统,中央农广校将农业教育培训、实用技术等音视频节目、多媒体课件、农业科技教育培训等方面的教学内容实时发送到网络各远端接收站,面向全国开展实时交互式的农业现代远程教育培训和科技推广,对各级农广校农业教育和科技培训工作进行远程指导和管理,实现信息互动交流,共享教育培训资源。农广校卫星教育系统利用“SkyBlaster”卫星通信系统,采用“TrainNet远程教学/培训系统”作为远程教育培训平台。卫星系统网络结构是星型网,主站可联接大量的VSAT远端小站,支持所有基于IP的数字信息技术,可实现全国范围的远程实时教学、数据文件多点分发等业务。卫星网主站提供DVB-S标准的出向信道,信息速率从2Mbps到52.5Mbps,远端小站的入向信道采用FTDMA接入机制,系统采用不对称的数据流通信方式[3]。在卫星平台上,运行应用软件的各类功能服务器通过快速以太网联接到卫星主站数字基带设备,通过卫星发射到全国各地的卫星小站。基层教学点的学员通过远端小站接收主站发送的教学内容,与主站老师进行双向视频、单向音频的互动交流,获取各类教学支持服务。
三、农业远程教育公共服务平台建设
近年来,农广校综合采用各类教学手段,整合应用各类教育资源,发挥独特的媒体资源优势,紧跟世界信息技术的发展,引进、吸收、应用各类远程教育技术的最新成果,加快建设具有中国特色的农业远程教育公共服务平台。平台以农广校体系多种教育教学资源建设为核心内容,以媒体资源库系统建设开发为硬件支撑,以数字化、网络化传播渠道为主要途径,对涉农教育培训工作进行高效管理,对涉农科教需求迅速反映,对基层办学机构提供便捷服务。平台运用现代信息技术,集信息采集、存储、编辑加工、传输多种功能于一体,具有运行机制公益性、媒体应用大众性、教学内容多样性和服务对象定向性的特点[4]。
中央农广校作为国家级的现代农业远程教育教学中枢和媒体制作传播中心,具有广播电视和网络教育节目的制作、播出和传送等多种功能,将具备自办1套广播和电视节目的能力,可以录制各种文艺节目、语言节目,对录制的文艺节目和语言节目素材可进行编辑、复制、加工、审听,可对外交换录制好的素材和成品节目。每年能制作电台节目、区域节目、少数民族节目和综合类等农业专题广播节目1500集,电视节目1270小时,网络教学节目2000小时,发送音频资料100万张,节目原始磁带数字化存储1910小时。农广校将逐步实现媒体资源制作、存储、管理、应用的数字化和网络化,建成农业媒体资源数字化采集、加工、整理、存储和传播利用的数据中心、工作平台和传播共享网络,并具备以下功能:
1.资源数字化加工存储整合电视、广播、网络、报刊杂志、教材、光盘等多种媒体资源,统一集中存储管理数据,建立数字化媒体资源库,实现数字化存储。