时间:2023-08-04 09:20:27
引言:寻求写作上的突破?我们特意为您精选了12篇先进制造技术的含义范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
在世界经济多极化的今天,面对快速的市场变化和激烈的技术竞争,发达国家都将制造业作为了本国的经济支柱,先进制造技术正是制造业为适应时代需求,提高竞争力推陈出新而形成的。先进制造技术是完成制造活动所需的一切手段的综合,产品的整个制造过程包括了:市场调研、产品设计和产品零部件制造与装配以及产品销售与售后服务四个环节,实现制造过程的整个制造系统所涉及的技术就是先进制造技术。随着我国高新技术和知识经济的快速发展,生命科学、材料科学和信息技术等新兴科学技术也随之涌现,将传统机械制造技术转变成为了如今的集机械技术、计算机技术和信息技术以及自动化技术等为一体的科学技术。自动化技术具有提高产品质量、提高产品生产率、缩短产品的生产周期、降低产品生产成本、减轻工人劳动强度和提高企业经济效益等诸多优点,将传统制造技术结合现代自动化技术,不仅可以优化设计和制造过程,同时还可以将人们从体力劳动中解放出来,使机械设备能够自动、精确、高效的完成整个制作过程,进而加快实现工业信息化。
随着社会需求个性化、多样化的发展,生产规模由单件、小批量到多品种、变批量的方向发展,同时,随着计算机技术和现代化管理技术的渗透和融化,不断改变着传统制造技术的内涵,进而形成了如今的先进制造技术。
(一)先进制造技术的含义
目前,对于先进制造技术还没有一个明确和一致公认的定义,经过近年来对发展新型制造技术方面开展的工作和对其特征的分析研究,国内专家认为:先进制造技术是制造业不断吸收机械、电子、信息、材料、能源和现代管理技术的成果,将其综合的应用与产品设计和加工以及检测等制造的全过程,逐渐实现优质、高效、灵活的生产,是提高对动态多变市场的适应能力和竞争能力的制造技术的总称。
(二)先进制造技术的特点
先进制造技术最重要的特点是,它首先是一项面向工业应用,具有较强的实用性的新技术,先进制造技术相比传统的制造技术在应用范围上的一个不同点在于,传统制造技术一般是指各种将原材料变成成品的加工工艺,而先进制造技术虽然大量应用于加工和装配过程,但是由于其组成结构中包括了设计技术和自动化技术以及系统管理技术等,因而则将其综合应用于制造的全过程。同时,传统制造技术的学科专业单一、独立,互相之间的界限明显,而先进制造技术因其专业和学科之间的不断渗透、交叉、融合,界限渐渐的淡化甚至是消失,技术趋于系统化和集成化,逐渐发展成为了集机械和电子以及信息等技术为一体的新型交叉学科。
随着微电子和信息技术的引入,使得先进制造技术成为了驾驭信息的生成和传递以及反馈的集成过程。为了能够有效的确保生产和经济效益持续稳定提高,同时能对市场变化做出更加快捷的反应,以及对最佳技术效益的追求,进而提高企业的竞争能力,先进制造技术比传统的制造技术更加的重视技术和管理的结合,更加重视制造过程组织和管理体制的简化与合理化,最终产生了一系列先进的制造模式。随着世界自由贸易体制的逐步完善,全球交通运输体系和通信网络的建立,制造业将形成全球化与一体化的格局,新的先进制造技术也将成为全球化的模式。
二、先进制造技术发展中自动化技术的应用
(一)先进制造技术的发展趋势
合理的体系结构不仅能够更好的推动先进制造技术的发展,同时还能影响其发展趋势。机械科学研究院提出先进制造技术由多层次的技术群构成,重点强调了先进制造技术从基础制造技术到新型制造单元技术再到先进制造集成技术的一个发展过程,同时也表明了在新型产业和市场需求的带动下,在各种高新技术的推动下先进制造技术的发展过程。
信息技术正向着制造技术注入和融合,以促进制造技术的快速发展,可以说先进制造技术的形成和发展,与信息技术的应用有着千丝万缕的关联。信息技术促进着设计技术的现代化、加工制造的精密化、快速化及自动化技术的柔性化和智能化等,这些都需要以信息技术的发展为支撑。
(二)先进制造技术发展中自动化技术的应用
近几年以来,自动化技术得到了迅猛的发展,其应用范围扩展到了人类活动的所有领域,从某种意义上来说,自动化已经成为了现代化的同义语。
先进制造技术与自动化技术的发展是相互依存的,是提高生产效率和竞争力的需要,同时也是促进经济增长、提高国家综合实力的需要。随着电子技术和计算机技术以及智能技术等的快速发展,自动化技术得到了较大的提升和广泛的应用,具有更深的意义。信息革命使得信息技术得到了较快的发展,其不仅与人们的日常生活有着密切的联系,同时在工业制造业中也占据着重要的地位。市场信息使得企业能够快速了解市场,根据市场实际情况而制造适应市场的产品,同时及时调整产品结构和生产模式等。此外,随着计算机技术和电子技术的发展,以并行工程和虚拟制造为代表的信息技术的应用提高了创新产品的设计与制造水平。虚拟制造是指设计和制造过程的虚拟化,设计过程的虚拟化是指对产品结构和性能进行计算仿真,对产品的受力和形状等进行分析计算,进而优化产品的性能和降低设计成本;而制造过程中的虚拟则指的是对生产过程、组织管理等活动的仿真,保证产品设计和制造以及装配的可行性,降低制造的风险和成本。
三、结束语
制造技术不仅是衡量一个国家科学技术发展水平的重要标志,同时也是各国科技竞争的重点,我们国家正处于经济发展的关键时期,制造技术是我们的薄弱环节,只有跟上先进制造技术的发展潮流,将其放在战略的优先地位,并以足够的力度予以实施,才能有效的缩短与发达国家的差距,才能在激烈的市场竞争中占有一席之地。
参考文献:
中图分类号:TP29文献标识码:A文章编号:1671-1297(2008)08-129-01
一、现代集成制造系统的含义与定位
现代集成制造系统(Contemporary Integrated Manufacutring System)是计算机集成制造系统新的发展阶段,在继承计算机集成制造系统优秀成果的基础上,它不断吸收先进制造技术中相关思想的精华,从信息集成、过程集成向企业集成方向迅速发展,在先进制造技术中处于核心地位。具体地说,它将传统的制造技术与现代信息技术、管理技术、自动化技术、系统工程技术进行有机地结合,通过计算机技术使企业产品在全生命周期中有关的组织、经营、管理和技术有机集成和优化运行。在企业产品全生命周期中实现信息化、智能化、集成优化,达到产品上市快、服务好、质量优、成本低的目的,进而提高企业的柔性、健壮性和敏捷性,使企业在激烈的市场竞争中立于不败之地。
二、现代集成制造系统的技术构成
先进制造技术(AMT Advanced Manufacturing Technology)作为一个专有名词目前还没有准确的定义。通过对其内涵和特征的研究,目前共同的认识是:先进制造技术是传统制造技术不断吸收机械、电子、信息、材料、能源和现代管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活的生产,并取得理想技术经济效果的制造技术的总称。其具有如下一些特点:
1、从以技术为中心向以人为中心转变,使技术的发展更加符合人类社会的需要;
2、从强调专业化分工向模糊分工、一专多能转变,使劳动者的聪明才智能够得到充分发挥;
3、从金字塔的多层管理结构向扁平的网络化结构转变,减少层次和中间环节;
4、从传统的顺序工作方式向并行工作方式转变,缩短工作周期,提高工作质量;
5、从按照功能划分部门的固定组织形式向动态的自主管理的小组工作方式转变。
通过对先进制造技术的定义和特点的分析发现,现代集成制造系统拥有先进制造技术的绝大部分特点,只不过先进制造技术所涉及的范围要比现代集成制造系统大,现代集成制造系统在吸收计算机集成制造系统的优秀成果的基础上,继续推动并行工程、虚拟制造、敏捷制造和动态联盟的研究工作,并不断吸收先进制造技术中的成功经验和先进思想,将它们进行推广应用,由此使现代集成制造系统成为先进制造技术的核心。
(1)并行工程(CE Concurrent Engineering)并行工程是集成地、并行地设计产品及其相关过程(包括制造过程和支持过程)的系统方法。它要求产品开发人员在一开始就考虑产品整个生命周期中从概念形成到产品报废的所有因素,包括质量、成本、进度计划和用户要求。为了达到并行的目的,必须建立高度集成的主模型,通过它来实现不同部门人员的协同工作;为了达到产品的一次设计成功,减少反复,它在许多部分应用了仿真技术;主模型的建立、局部仿真的应用等都包含在虚拟制造技术中,可以说并行工程的发展为虚拟制造技术的诞生创造了条件,虚拟制造技术将是以并行工程为基础的,并行工程的进一步发展就是虚拟制造技术。同时,并行工程是在CAD、CAM、CAPP等技术支持下,将原来分别进行的工作在时间和空间上交叉、重迭,充分利用了原有技术,并吸收了当前迅速发展的计算机技术、网络技术的优秀成果,使其成为先进制造技术的基础。
(2)虚拟制造(VM Virtual Manufacturing)虚拟制造利用信息技术、仿真技术、计算机技术对现实制造活动中的人、物、信息及制造过程进行全面的仿真,以发现制造中可能出现的问题,在产品实际生产前就采取预防措施,从而使产品一次性制造成功,达到降低成本、缩短产品开发周期,增强产品竞争力的目的。
(3)敏捷制造(AM Agile Manufacturing)敏捷制造是以竞争力和信誉度为基础的,选择合作者组成虚拟公司,分工合作,为同一目标共同努力来增强整体竞争能力,对用户需求作出快速反应,以满足用户的需要。为了达到快速应变能力,虚拟企业的建立是关键技术,其核心是虚拟制造技术,即敏捷制造是以虚拟制造技术为基础的。敏捷制造是现代集成制造系统从信息集成发展到企业集成的必由之路,它的发展水平代表了现代集成制造系统的发展水平,是现代集成制造系统的发展方向。
(4)绿色制造(GM Green Manufacturing)绿色制造是一个综合考虑环境影响和资源效率的现代制造模式,其目标是使产品从设计、制造、包装、运输、使用到报废的整个产品生命周期中,对环境的影响(负作用)最小,资源的使用效率最高。绿色制造的提出是人们日益重视环境保护的必然选择,发展不能以环境污染为代价。国际制造业的实践表明,通过改进整个制造工艺来减少废弃物,要比处理工厂处理已经排放的废弃物大大节省开支。绿色制造的实现可以通过计算机仿真来达到目的,即它是虚拟制造的一部分。从可持续发展战略的观点看,绿色制造是必然选择,它将成为现代集成制造系统的一个重要的组成部分。
从以上的分析中我们可以看到:各种先进制造技术是相互关联、彼此交叉的,在先进制造技术的含义下,现代集成制造系统成为它的核心,并随着先进制造技术的不断发展而发展。
参考文献
近年来,世界范围内出现了研究应用先进制造技术的浪潮,以机械制造为代表的先进制造技术己成为当代国际间科技竞争的重点。它的水平高低,在很大程度上反映了一个国家工业发展的水平,是现代企业提高产品开发与技术创新能力、稳定产品质量、増强竞争能力的看家本领在我国,先进制造技术的重要性己引起各界的认识和重视,被列为“九五”计划和2010年中长期科研发展规划中的主要关键技术和重要发展方向。因而,了解先进制造技术的发展趋势和前沿技术,对全面把握我国先进制造技术的发展方向,确定它的发展目标及我们的战略对策是十分必要的。
2先进制造技术的定义及技术特征
2.1定义
制造技术是使原材料成为产品所使用的一系列技术的总称,是制造业赖以生存和进步的主体技术先进制造技术是制造业为了适应时代要求以提高竞争力,对制造技术不断优化及推陈出新而形成的它是一个相对的、动态的概念,具有鲜明的时代特征,可以将先进制造技术定义为:制造业不断吸收机械、电子、信息、材料、能源及现代管理等方面的成果,并将其综合应用于制造的全过程,实现优质、高效?低耗清洁、灵活生产,取得理想技术经济效果的制造技术总称。
2.2技术特征
先进制造技术具有以下五个技术特征:
2.21先进性
先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺,它从传统制造工业发展起来,并与新技术实现了局部或系统集成2.22通用性
先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、销售使用、维修服务,甚至回收再生的整个过程
2.23系统性
随着微电子、信息技术的引入,先进制造技术能驾驭信息生成采集、传递、反馈、调整的信息流动过程。先进制造技术是可以驾驭生产过程的物质流、能量流和信息流的系统工程
22.4集成性
先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至消失,技术趋于系统化集成化,己发展成为集机械、电子、信息、材料和管理技术为一体的新兴交叉学科。
22.5技术与管理的紧密结合
对市场变化作出更敏捷的反应及对最佳技术经济效益的追求,使先进制造技术十分重视生产过程组织管理体制的合理化和最佳化,它是技术与管理自然科学与社会科学紧密结合的产物。
3先进制造技术的形成发展过程
先进制造技术的形成和发展同科技进步及市场需求密切相连在科技高速发展的推动下,制造业的资源配置沿着“劳动密集一一设备密集一一信息密集一一知识密集”的方向发展在市场需求不断变化的驱动下,制造业的生产规模沿着“小批量一一少品种大批量一一多品种变批量”的方向发展与之相适应,制造技术的生产方式沿着“手工一一机械化一一单机自动化一一刚性流水自动化一一柔性自动化一一智能自动化”的方向发展
当代制造技术的前沿己经发展到以信息密集的柔性自动化生产方式满足多品种、变批量的市场需求,并向知识密集的智能自动化方向发展在这个发展过程中,制造技术的内涵不断延伸与发展,经历了重视辅助工序、工装?生产过程,不断更新工艺方法,引入和集成信息技术以及更新管理观念,促进生产组织变革等四个环节,逐渐形成了先进制造技米
4先进制造技术的发展趋势
高生产率和高质量是先进制造技术的两大追求目标先进制造技术的发展趋势可概括成如下几个方面
4.1向自动化柔性化、集成化和智能化方向发展
微电子、计算机自动化技术与传统工艺及设备相结合,形成了多项制造自动化单元技术,经局部或简单到复杂不同档次的自动化制造系统,使传统工艺产生显著、本质的变化,极大地提高了生产效率和产品质量。当然,冷加工的发展道路是:NC(数控卜FMS(柔性制造系统)^CIMS(计算机集成制造系统hIMS(智能制造系统)热加工的发展道路是:优质高效低耗工艺-低成本自动化-综合自动化。
4.2向高精密方向发展
现代新技术产品需要高精度的制造,精密制造技术是先进制造技术的基础,它包括精密加工和超精密加工、微细加工和超微细加工、微型机械等当前有代表意义的是以纳米技术为代表的超精密加工技术和以微细加工为手段的微型机械技术。
精密加工和超精密加工的主要方法,目前有精密切削、超精密切削、超精密磨削和研磨加工等,其加工精度己从微米级(um)亚微米级(1~10-Vm)向纳米级(1dVm)进军。
微细和超微细加工是一种特殊的精密加工,它不仅加工精度极高,而且加工尺寸十分微小。如大规模集成电路芯片上的图形是用电子束?离子束刻蚀的方法加工的,线宽可达0.1um,微型机械是机械技术与电子技术在纳米级水平上相融合的产物。国外有人将纳米技术与微型机械称为“21世纪的核心技术”。
4.3向非传统加工技术方向发展
在继续开展传统切削、磨削等新工艺的同时,各种非传统加工方法也在开拓发展,并不断开创新工艺,达到新的技术水平由于这类加工方法能解决大量普通机械加工方法难以解决甚至根本无法解决的问题,因而得到迅速发展,并显示出极大的潜力和前景非传统加工方法主要指一些物理的、化学的特种加工和高能密度加工,如电火花加工、电解加工、超声波加工、激光加工、离子束加工等。特种加工的对象主要是难加工材料。高能密度加工主要指三束加工(激光束、电子束和离子束),它们是极有前途的加工方法不少非传统加工法同时又是精密加工和超精密加工方法传统加工和特种加工相结合的复合加工同样有着良好的发展前景。
4.4采用新型生产模式,使企业适应多变市场需求机械制造生产模式除有通用机床加专用工艺装备、数控机床加具有计算机辅助设计和自动编程功
柔性制造单元(FMC)加管理信息控制系统(MIS)以外,还有计算机集成制造系统(CIMS)智能制造系统(IMS)、并行工程(CE)、精节生产(LP)和敏捷制造(AM)等生产模式现代企业只有采取先进的生产模式,改进生产组织管理,才能増强在激烈的市场条件下的竞争能力。
5先进制造技术的技术前沿与新型生产模式
计算机集成制造(CIM)技术作为人类未来工厂的概念模式,得到很多国家的重视企业从经营计划、产品设计、加工制造到市场销售形成一个完整的系统,进行综合优化它不断吸收微电子、计算机、自动化等最新技术成果形成了计算机辅助设计(CAD)制造(CAM)工艺(CAPP)测试(CAT)评价(CAE)?数控机床(NC)加工中心(MC)、企业管理信息系统(MIS)?柔性制造系统(FMS)等一系列具有划时代意义的新技术对上述技术进行局部或系统集成,就形成了从单机到生产线、从刚性到柔性、从简单到复杂等不同档次的集成制造系统(CIMS)可以预言CIMS将成为21世纪占主导地位的生产方式。
智能制造技术(IMT)旨在将人工智能溶进制造过程的各个环节,通过模拟专家的智能活动,取代或延伸制造环境中的部分脑力劳动,从而在制造过程中,系统能自动监测其运行状态,在受到外界或内部激励时能够自动调整其参数,以期达到最佳状态,具有自组织能力。它被称为21世纪的制造技术。
并行工程(CE)技术旨在将产品设计与制造以及相关过程进行系统的综合,以期在产品设计的同时就将生产、维修的各个环节考虑进去,大大缩短生产周期该技术的关键在于将CADCAMCATMIS等有机地集成起来,将引入动态并行机制,即将产品生产周期中各种因素进行有机综合、并行处理,将产品设计、生产计划丨生产加工、质量检验、市场分析等同步规划,它可显著缩短新产品从构思到实现批量生产的开发周期。
精节生产(LP)是由日本丰田公司率先提出并得以应用,后来受到美国的重视,它综合了单件生产和大批量生产两者的优点,其特点是:行小组自治工作制,工人既是主人也是雇员,企业把雇员看作比机器更为重要的固定资产。
(2)精简一切生产中不产生价值的工作,减少管理层次,精简组织机构。
(3)精益求精,以尽善尽美为最终目标,持续不断地改进生产,降低成本,力争无废品、无库存和产品品种多样化。
敏捷制造(AM)是近年来美国为恢复其在国际制造业中领导地位而提出的一种生产模式它是将柔性生产技术熟练掌握生产技能和有知识的劳动力,与企业内部和企业之间合作的灵活管理集成在一起,通过所建立的共同基础结构,对迅速改变或无法预见的消费者需求和市场时机作出快速响应它的主要特点是提出虚拟制造(VM)的概念,根据市场需求,采用虚拟公司来承接项目,开发产品和组织生产。从本企业和其它企业选出各种优势力量,集成为一个单一的经营实体一一虚拟公司,当所承接的产品或项目一旦完成,虚拟公司即行解体。
CIMSIMSCELP和AM都是制造系统中新的生产模式,其宗旨都是为了提高企业竞争力,以适应多变的市场需求;在运行机理上都是强调集成,但在侧重点上有所区别。
CE强调的是产品开发和设计与其它相关过程的集成,尽量保证开发和设计工作一次完善,减少反复,缩短产品生产制造周期。
LP是通过项目组或生产小组形式把各方面人员集成在一起,在生产?检验与维修等场地集成在一起,同时还采用相应的措施做到与协作厂家、用户的集成,从而实现最大限度地精简非増值人员和机构,提高企业竞争力。因而它强调的是组织管理和人员的集成。
AM则在先进的柔性生产技术的基础上通过企业内部的多功能项目组与企业外的多功能组织组成虚拟公司,把全球范围内的各种资源,包括人的资源集成在一起。
第一代CIMS只注重信息和功能的集成,随着CIM技术的发展和应用,CIMS含义也在深化,第二代CIMS更强调技术、组织和人的全面集成
可见,CIMS与CELP及AM等生产模式并无本质区别,他们之间的关系是一种互补而不是替代 。
没有计算机通讯系统?不采用现代制造技术的集成,是很难充分发挥精节生产的组织集成和人员集成的优势,而敏捷制造的基础和主体实质还是CIMS,不过只是CIMS的横向发展,是企业级的集成扩展为社会系统内的集成;而LP和AM则为CIMS真正取得效益提供了新的思想和技术,又促进了CIMS的进一步发展
6推动我国先进制造技术发展的战略设想
改革开放以来,通过研究开发、技术改造与国外引进,我国制造技术水平不断发展和提高,己经具有相当规模和实力但是从总体上看,我国制造生产水平仍然比较落后,在质量、品种、成本效率效益和售后服务等方面与国外先进水平相比都有很大差距,缺乏国际竞争力。
为发展我国的先进制造技术,我们应把握时机,超越某些阶段,迎头赶上世界先进水平。要使这种愿望变为现实,必须明确先进制造技术的发展目标,采取相应的战略对策6.1先进制造技术的发展目标
先进制造技术是使制造业强盛的关键所在,没有先进制造技术,就不可能在发达的制造业在市场经济为主体的世界经济体系条件下,先进制造技术是由市场选择和决定的。市场是先进制造技术存在、发展的源动力。先进制造技术研究的根本目的就在于及时、高效、优质、灵活、低耗地制造市场上有竞争力的产品,这是先进制造技术研究的市场观发达国家制造业的管理专家和先进制造技术研究专家早己从残酷市场竞争中明确了这一点,把占领市场作为发展先进制造技术的最终目标,建立和完善了一整套市场、技术、产品间相互联系、相互制约?相互促进的机制。
我国市场经济处在初级阶段,制造业还比较落后,先进制造技术主要依靠引进和跟踪的格局不会改变,中国是一个大国,应当有使产品具有进入国际市场的竞争力,先进制造技术应以提高制造业产品的市场竞争力为发展目标
6.2战略对策
6.2.1组织起来,加强合作,共同开发,推动先进制理技术于一体的综合技术,它的发展涉及到规模管理资金保障、研究开发、生产应用等多个方面因此,必须把政策部门、科研单位、高等院校和企业各方面力量组织,加强合作,共同开发,尤其是要吸引企业界参与先进制造技术的研究,健全科技研究开发一体化机制,在先进制造技术研究中推进和建立大学、研究所和制造业相结合的研究体制随着市场的国际化和全球信息网络技术的发展,制造技术国际化日趋明显,我国制造领域专家和企业家要有使自己产品和技术进入国际市场、投置于国际竞争的大环境下并成为知名品牌的雄才大略,要积极促进先进制造技术基础研究的国际合作,以増强我国先进制造技术的实力
6.22确定优先资助领域,支持应用前景明确的先进制造技术基础研究,加快研究成果的应用转化
当今世界科学技术化技术科学化的科技一体化趋势日益明显,技术的生命周期不断缩短如果一种现在还算先进的技术不迅速应用,过不了几年就可能被淘汰而大学在选择制造方面的应用基础研究项目时,往往缺乏先进制造技术的市场观,不注重实际考察,不注重应用前景,不注重研究成果的应用转化国家在应用基础研究成果到技术开发和应用的成果转化过程中的机制仍不健全。各部委?产业部门及国家自然科学基金委员会在资助先进制造技术基础研究中,应确定优先资助领域,在强调支持前沿和创新的同时更要强调研究项目的应用前景,支持和鼓励项目的联合资助在跟踪国际先进制造技术研究的同时,强调结合国情选题,面向经济选题,瞄准应用选题
6.23持续开展制造业的技术改造
制造技术的发展是通过技术改造过程实现的,通过技术改造逐步淘汰老工艺、老设备,推广应用先进的新工艺和新设备,以提高企业的制造技术水平,最终达到提高产品性能质量和对市场的应变能力。“八五”期间己对一批重点骨干企业实行重点投资,进行现代化的技术改造使诸如数控机床、加工中心'?计算机辅助设计、制造和管理等新技术在这些企业得到普及、推广和应用。“九五”期间将这些技术在更多的企业中逐步推广,视不同情况或建成FMCFMS,或进一步实现计算机集成制造系统。
进行技术改造必须从经营战略和生产系统整体出发,不能单纯把技术改造局限于更新工艺设备上因此,进行技术改造时应进行经济分析与论证,以作出科学的决策与判断
6.2.4采用新型的生产模式,改进生产组织管理,提高人员技术素质
先进制造技术既包括工艺技术设备,又包括生产的组织管理和人员技术素质只有相适应的生产组织管理和人员技术素质与其配套,先进的工艺技术装备才能充分发挥其应有的作用,形成先进制造技术为此,要根据企业特点,采取适用的生产模式,改进生产的组织管理,提高人员的技术素质,使生产组织管理便于实现计算机化和信息化,便于集成为有机联系的自动化整体,使参与生产过程的人员尽可能在技术上成为多面手,更好地适应多变的市场需求
一、引言
随着教育教学模式的多样化,本科院校虽然依然是学生们努力的方向和目标,但是却已经不再是唯一的选择。加上当前社会对于应用技术的注重,更多的学生开始倾向于选择高职高专作为自己未来发展深造的基地,并在高职高专中学习更加实用的技术和知识应对未来就职过程中企业的需要。高职高专也开始越来越受到社会的关注,其教学也受到了教育界人士的重视。先进制造技术作为高职高专教学中非常重要的一门学科,其教学的质量受到了各界人士的关注。运用双语对此专业进行教学可以让学生们的视野更加开阔,能够让学生们在双语的基础上学习更加先进的技术,阅读的资料也更加广泛。因此,高职高专先进制造技术双语校本教材开发就显得尤为重要。教材是学习的基础和根本,只有双语校本教材的质量高,才能让学生在学习中获得知识能力的提升。
二、开发双语校本的原则
第一,注重教材的趣味性。很多学生在进入到高职高专学习之后,其依然保持着天然的童真之心。虽然学生看似长大成人,但是其依然是一名学生,还未真正走入社会,其依然保持着欢乐的童趣和天性。因此,教师在进行双语教本开发的时候,就需要保持教材的趣味性。只有有趣的内容才能够吸引学生们的注意力。教材的趣味性是教材开发过程中所应当注重的一个原则。
第二,注重教材与学生生活的贴近性。只有与生活相关联的内容才能真正被学生们所接受,这些内容也将会成为学生们生活中所经常接触到的知识,成为学生们内化的重要途径。因此,双语教本在进行开发的时候,要注重其与学生们生活的关联,很多抽象的知识都可以通过生动形象的,与学生生活相关联的事物描述而得以具象化。
第三,注重内容的条理性。教师在编写双语校本教材的时候要注重内容的条理性,只有内容具有条理性,学生学习起来才能具有逻辑性,学习起来才能做到切实有效。教师在进行教材设计的时候要注重导读内容的设计,做好设计能够很好地引起学生的学习兴趣。在进行教材设计的时候要依照教材的目标进行编写,保证其教材的设计符合教学的需要。其内容的条理性是双语校本教材服务学生的重要基础。
第四,注重教材的实用性。双语教材的应用目的是不为了让学生单纯学习知识,其更重要的是将所学习的知识进行应用。因此,其内容的编写要注重其应用性,只有具有实用性的教学内容学生学习起来才更有意义,学生学习的积极性才高,学生进行双语教材的学习才切实有效。
三、高职高专先进制造技术双语校本教材开发存在的问题
国内外制造业都在不断发展,尤其国外对于制造业的发展更为迅速,所掌握的技术也更加先进。因此,阅读国外的各种资料,掌握国外的各种先进制造技术非常关键。不仅是双语教学的目的,更是双脚本教材开发的重要目标。但是,当前阶段,国内在进行先进制造技术双语校本教材开发的效果并不理想,其中还存在很多问题。
第一,教师自身能力需要提高。当前高职高专进行先进制造技术课程双语教学工作的教师,大多为英语老师。英语教师的英语功底较好,但是其对于先进制造技术则并不了解。有的高职高专院校选择了先进制造技术专业教师进行双语教学,可是英语教学能力则显现出不足。寻找到既具有先进制造技术能力的教师,又具备较好的英语水平的教师非常困难,教师专业能力的不足不仅让课堂教学出现了很大缺陷,同样让校本教材的开发出现困难。先进制造专业的教师无法真正了解教材的含义,能够阅读教材的英语教师对于专业术语又无从真正掌握。[1]
第二,教材结构体系混乱。当前所使用的先进制造技术双语教材在内容的编写方面虽然具有一定的合理性和条理性,但是其结构体系并不完善,还存在很多混乱的,或者不合理的地方。不合理的结构体系将会给学生的学习思维造成混乱,让学生无法形成良好的专业思维,在进行实践操作的时候也无法将知识进行合理应用。所学习的知识仅仅成为“纸上的兵”,难以发挥实用的价值。[2]
第三,实践环节不足。高职高专院校所培养的学生更多的是为了适应未来企业或者单位的需要,因此,所培养的学生应当具有实用性技能,能够在毕业之时将所学习的知识进行很好的应用。但是,当前的教材在实践环节的编写方面还存在不足,实践内容较少,或者教材中所列明的实践内容很难在实际生活中实现,教材中的实践仅仅停留在教材中,难以转化成为现实。[3]
四、高职高专先进制造技术双语校本教材开发的策略
高职高专院校进行先进制造技术双语校本教材开发是对自身教学工作的研究和提高,是对教材应用价值的体现。教师在进行先进制造技术双语校本教材开发的时候,一方面要符合双语教材制定原则的要求,另一方面要满足学生们的需要,同时,还要注重结合高职高专教学的实际,从而让教材的价值能够获得充分的展现,让其在教学中进行更好的应用。
第一,注重原版教材的引进。教学最好的教材,莫过于对原版教材的使用。尤其对于先进制造技术专业来说,能够获得原版教材的使用,等于让学生直接与国外的先进制造教学工作进行直接接触,一方面能够让学生了解到国外的先进制造技术现状,另一方面也可以让学生感受到英语应用的魅力。国外所使用的教材相比较国内来说质量较高,对其进行引用需要教师在教学中充分发挥其引导的作用,帮助学生对教材中偏难部分,或者理论部分进行充分的讲解,让学生对于教材能够通透的、深刻的理解。高职高专院校学生普遍来说其基础较差,因此,教师在进行原版教材引用的时候,要进行甄别和选择,从学生的实际水平出发,选择适合学生的教材。[4]
第二,在原版教材基础上进行改进。高职高专院校在进行先进制造技术双语校本教材开发的过程中,一方面可以对引进的教材进行直接使用,但是,最好的方法还是对教材进行改良和改进,让其满足国内学生的需要,符合教学实情。因此,高职高专院校在引进英文原版教材的基础上,需要对教材进行在改编。比如,可以对原教材内容进行删减,对于难度过高,学生根本无从接受或者理解的部分予以删除,对于学生通过教师引导可以理解和接受的部分进行简化,或者形象化处理,让学生学习起来更加容易、便捷。[5同时,教师还要对原版教材进行本土化“建设”,将国内的先进制造技术融入其中,让学生有针对性的对比国内和国外的先进制造技术的差别和差距,从而让学生对于教材的内容内化、深化。[6]
第三,优化教材结构体系。教师在进行先进制造技术双语校本教材开发的过程中,要注重教材的结构体系建设、规划和优化。教材的机构体系将会成为学生未来学习的结构体系,也将会形成学生头脑中的学习思维,因此,教材的结构体系对于教材的教学应用来说非常重要。教师一方面可以参考英文原版教材的结构体系,在此基础上进行改进和优化,另一方面,教师也可以根据实际需要进行体系构建,以方便学生学习为主。教师在进行结构体系优化的时候要立足实际,结合学生基本情况,并对有关资料进行通篇了解。因此,教材结构体系的优化需要教师深厚的功底做基础,需要教师长时间的研究和探索。[7]
第四,增加教材的实践环节。任何专业的学习都离不开实践过程的注重和提高。因此,教师在进行先进制造技术双语校本教材开发的过程中,需要融入实践的环节,将实践的过程纳入到教材的结构体系中,成为学生学习、教师教学的重要内容。实践的环节需要教师在进行教材编写的过程中,对当前社会的实际情况有所掌握,在当前高职高专实践、实习的情况的基础上,对教材中的实践应用进行编创。[8]同时,实践环节不适宜特别困难,最好能够做到简单易行,既可以让学生在教师的引导下进行实践,也可以让学生自行组织进行实践,从而增加教材中实践环节的灵活性。
五、结束语
先进制造技术虽然具有非常枯燥的理论内容,但是其还是一门内容丰富的专业学科,并且与其他很多学科都有联系,还需要跨出国门,与国外的制造技术“挂钩”学习。所以,此专业的双语教学工作是非常重要的工作,对双语校本教材进行研究、开发和编制也同样是非常重要的工作内容。教师要此方面进行潜心研究、刻苦钻研,让教材的编制和创作更好地为教师的教学、学生的学习服务。
参考文献:
[1]陈艳.EGP+ESP模式下中职校本教材《晨读英语》的开发与探索[J].江苏教育研究,2014,30:40-42.[2]刘鹏娟.大学英语教学与双语教学的衔接问题浅析[J].赤子(上中旬),2014,24:91.[3]钦方,饶坤罗.高职物流专业校本教材开发研究——以《3D货代情景实训操作》为例[J].佳木斯职业学院学报,2014,09:35-36.
[4]韩立红.高校“国际贸易”课程双语教学改革研究[J].教育探索,2014,11:25-27.
[5]王琪.高职航海类专业双语校本教材开发实践与思考[J].航海教育研究,2015,01:8-11.
[6]李红伟,陈东.人体解剖学双语教学校本教材的开发与使用研究[J].卫生职业教育,2014,08:132-133.
中图分类号:TH122 文献标识码:A 文章编号:
现代制造技术是20世纪80年代提出的,但它的工业基础已有办个多世纪。最初的制造是靠手工,以后出现机械代替手工,从而达到提高产品质量和生产效率的目标,同时也为了解放劳动力和克服繁重体力劳动,因此出现了机械制造技术。它有两方面的含义:一时指用机械、机器来加工零件的技术,也就是通常所说的用机床来加工;另一方面是指制造某种机械的技术,例如汽车、电机产品等。其后,经过发展,制造加工方法有了更大的提高,突破传统意义上加工外出现电加工、化学加工、光学加工等等非机械加工方法。因此,原本被叫做机械制造技术则被改叫为制造技术。但是,不可否认的是,机械制造仍为其主体和重要部分。
1、现代制造技术的重要性
1.1 制造技术和社会发展休戚相关
现代制造技术是当今世界各国研究和发展的统一命题,在全球市场经济的竞争大潮中,它更是显得格外重要。
人类的发展史也就是生产制造史。人类初期,为了生存和自然界抗争,制造处石器,而后有出现陶器、青铜器、铁器并出现了简单机械,如:战争防卫用的刀、剑、弓箭,农作使用的犁、水车、碾磨等。这些都是简单的制造过程,随着社会进一步发展,制造技术也在不停提高。它的发展体现在广度和宽度的拓展,特别是蒸汽机的发明带来了工业革命和大工业生产,内燃机制造技术的出现和发展形成现在汽车、火车等制造技术并进一步促进了喷气式飞机和超音速飞机的发展,集成电路制造技术的进步左右了现代计算机的水平,纳米技术的出现更开创了微型机械的先河。因此,制造技术和人类社会发展密切相关,人类活动的水平也受到制造水平的极大约束。
1.2制造技术是所有工业基础
制造技术是国民经济的基石,在国民经济中具有十分重要的地位和作用。无论是传统产业还是新兴产业都离不开制造技术的强有力支持,因此,制造业是个支柱产业,不同的历史时期有不同的发展重点,但需要制造技术的支持是永恒的。制造技术的规模和水平更是反应国民经济实力和科学技术水平的重要标志。因而,世界各国都把提高制造技术水平当做振兴和发展国民经济的战略重点来抓,可见制造技术是如何的重要了。
1.3制造技术是科学技术转化的基础
从设想到现实,从精神到物质,都是靠制造来转化实现的,制造是科学技术向现实转化的基础,科学技术的发展反过来又促进制造水平的提高。因此,它们体现为相互作用,相互促进。信息技术的发展和引入是制造技术产生了革命性的变化,出现了制造系统和制造科学,从此制造就以系统的新概念重新定义,并以物质流、能量流和信息流组成,物质流是本质,能量流是动力,信息流则是控制,制造技术和系统论、方法论、信息论、控制论和协同论相结合造就了新的制造学科---制造系统工程学。
1.4制造技术是增强国防和国力的保障
一个国家的国力主要体现为政治势力、经济实力、军事实力。经济和军事实力依托于制造技术的基础上,只有制造技术上是强国才能是军事上的强国,一个国家不能总是靠购买别国军事装备来保卫自己,必须有自己的军事工业。国力的强盛才能凸显政治实力,才能立足于世界强国之林。二战以后,日本、德国正是高度重视制造技术,大力恢复发展制造业,因为,国力也很快得以恢复,经济实力也一直处于世界前列。而原先一直处于制造技术领先的美国则由于未能重视它则每况愈下。克林顿执政后,迅速把制造技术提到重要日程上,决心重新夺回霸主地位,期间推行很多先进制造技术和理念,促进先进制造技术的发展,并对美国经济的复苏产生巨大影响。
2、加工制造工艺
加工制造工艺是指产品实现过程中,人、机、料、法、环各相关要素的总称。它是在深入了解和实践的基础上,利用各类基础理论知识,经过实事求是的对比分析,找出客观规律解决面临的制造加工问题的学科。
加工制造工艺涉及行业众多,产品品种也成千上万,但是做好工艺工作通常可归纳为:质量、效率和经济性三类。
2.1保证提高产品质量。产品质量包括整机的装配精度、使用性能、使用寿命和可靠性,深入探究更加表现为零件的加工精度和加工表面质量。近代,由于航天、精密机械、电子工业和军工的需要,对零件的精度和表面质量的要求也越来越高,各种新工艺新材料层出不穷,加工精度更有精密加工、超精密加工和微细加工。
2.2提高制造生产效率。中国是人口大国,有较多的劳动力资源,但随着人口老年化加剧,同是也面临着社会发展人力成本的不断提高这两方面的压力,加工制造过程中也越来越看重生产效率的提高。提高生产效率的办法:一是提高切削用量,采用高速切削,高速磨削和重磨削。今年来出现得聚晶金刚石和聚晶氮化硼等新型刀具材料,其切削速度可达900m/min,高速磨削速度可达200 m/min。重磨削也是高效磨削的方向,包括大切深缓进给、大进给等磨削。二是改进工艺方法、创新工艺。例如,利用锻压设备实现快速成型和少切削加工,创新使用高效设备,如无心磨床、双端面磨床,使用粉末冶金技术直接获得零件成品等。三是提高自动化程度,实现高度自动化。如采用数控机床、柔性制造单元(FMC)、柔性制造系统(FMS)、计算机集成制造系统(CIMS)和用机器人组建实现无人化车间或工厂等。
2.3合理经济性分析。对整个加工制造过程不断的进行经济性分析,把降低成本作为持续改进的目标,节省和合理的选择原材料并不断研制新材料,合理使用和改进现有设备,不断研制新型高效设备。
先进制造工艺可大大节省原材料消耗,降低能源的消耗,提高了对日益枯竭的自然资源的利用率。应用先进制造工艺可做到零排放或少排放,生产过程不污染环境,符合广大人民群众日益增长的环境保护要求,更加是担负起社会责任的具体表现。
3、精密加工技术
先进制造技术是当前世界各国国民经济的主攻方向和战略决策,同时又是一个国家独立自主、繁荣昌盛、经济上持续稳定发展、科学上保持先进的长远大计。精密加工技术是先进制造技术中最具有实质性的重要组成部分,它是先进制造技术的基础和关键,是一个国家制造工业水平的重要标志之一。
3.1 精密切削技术。用直接切削来得到高精度仍是常用的方法,然而,要想得到高水平和高精度的产品,必须尽可能的减少材料、刀具、机床和工件等因素的影响。如要求材料的切削加工性能要好,材料的硬度不能太高,鉴于服务过程中要长久保持高的精度,材料的耐磨性、耐腐蚀性要好。机床具有高刚度、小热变形和抗震性能,就必须有更先进的技术,如机床床身采用花岗岩、使用精密控制技术、空气静压轴承、全闭环技术等,此外,提高刀具的切削速度增加机床转速进行高速切削也是有效的办法,当前的超精密加工机床早已提高到每分钟几万转。
3.2特种加工技术。特种加工是相对于常规加工而言的,它是指利用力、热、声、光、电、磁、院子、化学等能源的物理的、化学的非传统加工方法。从材料加工成型原理来分析,特种加工又可分为去除加工、结合加工和变形加工。
特种加工中,工具的硬度和强度可以低于工件的,因为它不是靠机械力来切削,适于加工高硬度材料、脆性材料等难加工材料,也适于加工精密微细零件、波比零件、弹性零件等易变形零件。又由于工具损耗小,甚至不损耗,可加工复杂成形表面、型腔等。当前特种加工已向精密加工方向发展,出现了精密特种加工,许多特种加工方法同时又是精密加工方法、微细加工方法,如电子束加工、离子束加工、激光束加工等。精密电火花加工的精度可达微米级(0.5~1μm),表面粗糙度可达镜面(Ra0.02~0.012)。
3.3 光整加工。光整加工是指精加工后,从工件上不切除或只切除极薄材料层,泳衣降低工件表面粗糙度或强化其表面的加工方法。光整加工可以获得比一般机械加工更高的加工精度和表面质量。
按照工具类型进行分类,光整加工课分为以下两种:
(1)固结磨料加工,加工时,磨粒和微粉与结合剂粘结在一起,具有一定的形状和强度。固结磨料加工时对提高形位精度和尺寸精度有较高效率,常见的有研磨、珩磨加工等。
(2)游离磨料加工,加工时,磨粒和为分成游离状态,如研磨时的研磨剂、抛光时的抛光液。游离磨料加工的典型方法有研磨和抛光等。近年来,这些传统工艺的基础上出现许多新的工艺方法,如喷射磨料加工、弹性发射加工、磁流体抛光等。
3.4 纳米技术。纳米科学是涉及到多个学科的科学,是先进工程技术与现代物理学相结合的产品。几年来,纳米机械技术取得了快速的发展,能够在硅片上刻画纳米宽的线,这充分表明信息存储的密度提高了若干个数量级。同时,纳米技术在传动、材料、密封等方面更取得了颠覆传统的辉煌成绩,随着深入的研究,纳米技术必将会越来越更好的为机械制造服务。
作者简介:周佳军(1989-),男,湖北黄冈人,博士研究生,研究方向:计算机辅助设计、计算机辅助制造、计算机集成制造系统等
0引言
制造业是中国经济增长的主体和支柱,是综合国力的重要体现。当前我国制造业的总体情况依然落后,从资源与环境的角度看,我国制造业对能源和资源消耗巨大,环境污染严重;从技术与创新水平的角度看,我国制造产业的技术创新能力薄弱,科技含量低,技术水平落后,有自主知识产权的产品少,产品的附加值较低[1];从产业内部价值链的角度看,我国传统制造业处在价值链上(研发、制造、营销)价值创造能力最低的环节,在研发和营销领域,科技创新能力弱、品牌建设不足;从市场环境的角度看,知识经济时代的市场竞争日趋激烈,消费更加个性化,传统的以追求生产效率为目的而进行的品种单一、大批量以及标准化的产品制造模式,很难适应现代市场中客户的个性化和多样化需求。
先进制造技术(AdvancedManufacturingTechnology,AMT)注重经济效益和技术的融合性,通过柔性生产、灵活生产、产品差异化、注重效率和质量等方式增强企业对市场的反应能力、提高自主创新能力,为客户提供更加人性化的服务,具有产品质量精良、技术含量高、资源消耗低、环境污染少、经济效益好等特性,通过发展AMT和战略性新兴产业改造提升传统的资源密集型和劳动密集型工业,以开辟一条科技含量高、资源消耗低和环境污染少的新型工业化道路,已成为提高我国高新技术发展、推动经济发展和满足人民日益增长需求的主要技术支撑。
2012年以来,新工业革命成为各国讨论的热点,以物联网(Internetofthings)和大数据(bigdata)为代表的信息技术、以绿色能源为代表的新能源技术、以3D打印技术为代表的数字化智能制造等技术系统协同创新,将柔性化、智能化、敏捷化、精益化、全球化和人性化融为一体,将改变制造业的生产模式和全球经济系统,引领人们的生活走向智能化时代。工业西方发达国家纷纷提出“再工业化战略”,试图实现从“产业空心化”到“再工业化”的回归,提出的再工业化战略并不是恢复传统制造业的生产能力,而是通过加快突破和应用AMT抢占新一轮科技和产业竞争的制高点,占领产业链的高端。为了保证我国制造业的持续发展,必须尽快完成制造业的转型升级,实现由制造大国向制造强国的转变。
1先进制造技术
AMT自20世纪80年代提出以来,世界各国都十分重视其理论和应用实践研究。AMT既包括先进加工技术(AdvancedProcessingTechnology,APT)(主要指材料加工工艺及方法),又包括对先进装备、人的智慧等有机构成的现代集成制造系统的智能控制和组织管理的先进制造模式(AdvancedManufacturingMode,AMM),主要指制造模式及系统。美国联邦科学、工程和技术协调委员会(FederalCoordinatingCouncilorScienceEngineeringandTechnology,FCCSET)下属的工业和技术委员会AMT工作组提出其主要包括三个技术群[2]:主体技术群(AMT的关键支撑,如计算机辅助设计、加工工艺规划、增材制造技术、并行工程,以及材料生产工艺、加工工艺、加工和测试技术等)、支撑技术群(如计算机技术、自动化技术、检测与转换技术、标准和框架等)和管理技术群(如质量管理、基础设施、人员培训、全局监督等)。虽然先进制造模式和AMT密不可分,实践中也常将二者混为一谈,但是它们是两个不同的概念。AMT注重制造单元功能效用的发挥(偏重技术),AMM注重组织方式,强调的是人、组织结构和技术三者的协同。两者的关系如图1所示。
从社会技术系统的观点看,任何制造系统都有两个尺度,即技术系统和伴随技术系统的社会系统,社会技术系统强调系统中技术系统与社会系统两类因素的相互作用,技术影响社会系统投入的种类、转换过程的性质和系统的产出。然而,社会系统决定着技术利用的有效性和效率,如果孤立地试图使其中一个系统最优化,则可能使系统的总效能降低。AMT是各个单项技术在先进制造哲理下的有机集成,从最初关注技术和工程科学等自然科学的集成,慢慢过渡为重视在AMT应用过程中科学技术、组织结构以及人的智慧等的深度融合,尤其注重自然科学与社会科学的集成、系统体系观念和整体全局优化,最终目的是使整个制造系统能对外部市场环境的变化产生及时、高效、敏捷的反应。
1.1先进制造技术的概念、内涵及主要内容
制造指对原材料进行加工或再加工,以及对零部件装配过程的总称。AMT的概念起源于美国[3],早期其定义是以计算机和信息技术为基础的制造技术群,主要包括计算机辅助设计、计算机辅助制造、计算机辅助工程、机器人及柔性制造技术、自动控制系统、数控技术及装备等[4-5],从研究的角度看,先进制造技术在不同时代具有不同的含义,当前各种新出现的、先进的机械加工技术(纳米加工、激光切割、增材制造等)、精益生产、并行工程、柔性制造、虚拟制造、敏捷制造和现代集成制造模式等,都属于AMT的研究之列。
我国学者在对国外学者有关AMT定义的归纳和研究中,更为系统地对AMT进行了定义,认为AMT是一个多学科体系,包括从市场需求、产品设计、工艺规划到制造过程与市场反馈的人—机—物系统工程[6-7]。AMT本质上是自然科学(自动控制技术、工艺规划技术等)和社会科学(组织管理和经济学等)的有机融合体,是通过生产方式的智能化和柔性化来提高企业的核心竞争力和对市场环境的反应能力。
从制造系统的观点看,AMT是一个三层次的技术群,如图2所示:第一个层次(内层)为基础制造技术,主要指优质、高效、低耗、清洁的通用共性技术,对应AMT中的支撑技术(如图1);第二层(中层)是新型制造单元技术,由制造技术与信息技术、新型材料加工技术、清洁能源、环境科学等结合而成,涉及多学科交叉、集成与融合,对应于先进制造技术中的主体技术和管理技术;第三层(外层)为先进制造模式/系统(集成技术),是由先进制造单元技术和组织管理等融合而成的现代集成制造模式,强调技术系统和社会系统的协同与融合,对应于图1的先进制造模式,是人、技术、组织和管理等要素的集成,也是人机物协同制造系统。
1.1.1基础制造技术
优质、高效、低耗、清洁的基础制造技术,主要指传统的制造工艺技术(如毛坯测量下料、铸造/塑性成形、锻压、焊接、热处理、材料强韧化、表面保护、机械加工、优质高效连接技术、功能性防护涂层及各种与设计制造等)经过优化和改进后形成的基础制造工艺,是先进制造技术的核心组成部分。
1.1.2新型制造单元技术
新型制造单元技术由制造技术与互联网信息技术、人工智能、新型材料加工技术、清洁能源、环境科学等结合而成,涉及多学科交叉、集成与融合,主要包括以下内容:
(1)新型材料、纳米技术和激光加工传统材料的研制过程通过基本材料的组合反复试验配制获得,整个过程非常缓慢。2011年6月,美国先进制造业伙伴关系(AdvancedManufacturingPartnership,AMP)计划之一的“材料基因组计划”[8],从分子结构的角度分析材料,通过原子排列找出相—显微组织—性能—环境参数—使用寿命的关系,建立了原子、分子的结构与材料性能的关系,极大地提高了研发、生产和应用先进材料的速度。纳米技术和激光加工引发了机械技术与电子技术在毫微米水平上的融合。
(2)增材制造与精密成型技术增材制造(如3D打印[9])是材料技术、粘结技术和打印技术的融合创新,由原材料直接制造成精密工件的材料近净成型技术(Near-netShapeForming,NSF)制作的零件不需要加工或少量加工即可投入使用,极大地改造了传统的毛坯成型技术[10]。
(3)机器人、自动化及智能化技术工业机器人在生产加工中可以完成某些过程复杂、费时耗力的标准化生产流程[11];自动化促使机器或生产过程从自动控制发展到自学习、自组织、自维护和自修复等;智能化技术综合了信息技术、模糊算法、神经网络控制等智能优化算法,使机器在没有人工干预的情况下进行生产,具有人机一体化、自律能力强、自组织与超柔性、自学习与自我维护等特点。
(4)先进电子技术装备先进电子装备,如平板电脑、智能手机、穿戴设备等普适人机交互设备和移动终端会越来越普及,使人与物理世界的交互方式更加普适化、虚拟化、智能化和个性化,实现任何地点、任何时间、任何人都能访问任何信息的交互,传感器和嵌入式设备将会感知和采集各种环境和监测对象信息,并对这些信息进行处理,用户能够利用自然普适智能的方式无缝地实现资源共享和服务的获取。
(5)分子生物学和生物制造通过学习生物系统的结构、功能及其控制机制,解决制造过程中的一系列难题。强调生命科学的应用,方法包括基因算法、进化算法、强化学习和神经网络等。
(6)供应链管理制造过程是物质流、信息流在控制流的协调下实现从原料到产品的转换,供应链管理以整体效益最优化为目标,以系统化的观点综合考虑对人、技术、管理、设备、物料、信息等系统构成要素的优化组合,实现产品生命全周期经济效益、社会效益和生态效益的协调统一。
(7)清洁生产技术、绿色可持续制造清洁生产和绿色制造主要表现在以下几个方面:1绿色设计,设计阶段就充分考虑对资源和环境的影响;2绿色选材,将环境因素融入材料的选择过程中;3绿色制造,采用物料和能源消耗少、废弃物少、对环境污染小的制造方法;4回收和循环再制造,实现资源―产品―废弃物―再生资源或再生产品的反馈式循环模式[12]。
(8)物联网、大数据、云计算(cloudcomputing)等新一代信息技术IBM公司基于新一代信息技术提出的智慧地球(smartplanet)掀起了物联网研究的,引起了国内外学者和政府的广泛关注[13]。物联网是利用无线射频识别(RadioFrequencyIDentification,RFID)、嵌入式系统、传感器等技术获取现实世界信息,使物体与物体之间通过网络相互连接并进行信息交互,以实现智能化识别、跟踪、监控和管理的一种网络[14]。物联网技术融入产品的全生命周期及制造过程的各个阶段,将形成新的制造模式———制造物联。随着物联网时代的到来,社交网络、电子商务、信息物理系统、移动终端等迅速发展,数据量尤其是半结构化、非结构化数据呈爆发式增长,据著名咨询公司IDC的研究报告,2011年网络大数据总量为1.8ZB,预计到2020年,总量将达到35ZB,大数据时代正在来临[15]。一般意义上,大数据指无法在一定时间内用常规机器和软硬件工具对其进行感知、获取、管理、处理和服务的数据集合[16],具有大量、高速、多样、价值密度低的特点。对于制造业而言,数据积累和数据的广度还不够,数据应用大多针对传统企业内的结构化数据,有效整合大数据,包括微博、论坛、网站等数据源,分析发掘这些数据蕴藏的潜在价值,有助于快速预测市场趋势和客户的个性化需求,细分客户并提供量身定制的合适服务,及时了解整个供应链的供需变化等。此外,制造系统中包括大量的物料、人员、生产设备状态及加工过程等数据,研究制造系统中产生的大量不同来源的数据的动态演变过程,搜索、比较、聚类、分析、处理与融合制造过程的数据,可以支持制造过程的优化决策,优化生产流程和改进产品质量,有效提升制造企业的经营管理效率和市场竞争力。大数据分析需要高效的数据处理平台,目前制造业已经进入大数据时代,而大数据具有数据体量巨大、数据类型繁多、查询分析复杂等特点,超越了现有企业的IT架构和基础设施的承载能力,因此需要高性能的计算机和网络基础设施,必须依托云计算的分布式架构、分布式处理、分布式数据库和云存储、虚拟化技术等。云计算[17]是能够提供动态资源池、虚拟化和高可用性的下一代计算平台,通过按需使用的方式为用户提供可配置的资源(包括网络、服务器、存储、IT基础设施、软件、服务等)。云计算融合物联网、面向服务、高性能计算和智能科学等技术形成云制造[18],将各类制造资源或能力虚拟化、服务化,通过网络和云平台为用户提供可高效便捷、按需使用、优质廉价的制造全生命周期服务。
1.1.3先进制造模式/系统
制造模式是制造业为了提高产品质量、市场竞争力、生产规模和生产速度,以完成特定的生产任务而采取的一种有效的生产方式和一定的生产组织形式。先进制造模式是以计算机信息技术和智能技术为代表的高新技术为支撑技术,在先进制造思想的指导下,用扁平化、网络化组织结构方式组织制造活动,追求社会整体效益、顾客体验和企业盈利,是最优化的柔性、智能化生产系统。按照历史唯物主义的观点,社会存在决定社会意识,从制造业的发展进程来看,不同社会发展时期决定了不同的制造思想、生产组织方式和管理理念,它们相互作用、共同决定了特定时期的制造模式。如图3所示,按照制造技术的发展水平、生产组织方式和管理理念,将制造模式的发展历程归纳为手工作坊式生产、机器生产、批量生产、低成本大批量生产、高质量生产、网络化制造、面向服务的制造、智能制造8个阶段。
工业革命以前,产品主要以手工作坊式和单件小批量模式生产为主,产品质量主要依赖手工匠的技艺,其成本较高、生产批量小,零部件的质量可控性和兼容性比较差,供不应求成为制造业进一步发展必须解决的问题。产业革命后,新的生产技术和管理思想大量涌现,这一阶段的早期,制造技术的改进重点是规模化大批量生产和提高生产效率,流水线式生产方式使得专业分工和标准化规模生产从技术方法上成为可能,科学组织管理理念等又从组织、结构和方式上保障了流水线式生产的实现,使得大规模制造成为可能。然而,大规模、批量化生产方式的精细化分工和高度标准化形成了一种刚性的资源配置系统,在买方市场下,市场环境瞬息万变,这种生产模式会给企业带来巨大损失,20世纪90年代,随着先进制造理念、先进生产技术以及先进管理方式的不断成熟与发展,各种新的制造理念、先进制造新模式得到了迅猛发展,理论界相继出现了高质量生产、网络化制造、面向服务的制造、智能制造等一系列新概念,各种先进制造模式之间的关系如图4所示。
(1)高质量生产
并行工程、柔性制造、精益生产[19-20]这三类制造模式是基础的生产管理方法,是虚拟制造、敏捷制造、现代集成制造的基础技术;虚拟制造[21]是实现敏捷制造[22-23]的重要手段;生物制造[24]和绿色制造[25-26]是考虑环境影响和资源利用率的制造模式,相关文献已有介绍,不再赘述。
(2)网络化制造
网络化制造是指在产品全生命周期制造活动中,以信息技术和网络技术等为基础,实现快速响应市场需求和提高企业竞争力的制造技术/系统的总称。比较典型的应用模式有制造网格(MGrid)[27]、应用服务提供商(ApplicationServiceProvider,ASP)[28]。制造网格是运用网格技术对制造资源进行服务化封装和集成,屏蔽资源的异构性和地理上的分布性,以透明的方式为用户提供服务,从而实现面向产品全生命周期的资源共享、集成和协同工作;ASP是企业将其部分或全部流程业务委托给服务提供商进行管理的一种外包式服务,以优化资源配置、提高生产和管理效率。企业用户可以直接租用ASP平台提供的各类软件进行自己的业务管理,如产品生命周期管理(ProductLifecycleManagement,PLM)、企业资源规划(EnterpriseResourcePlanning,ERP)等,不必购买整个软件和在本地机器上安装该软件,从而节省了IT产品技术的购买和运行费用,降低了客户企业的应用成本,特别适用于中小型企业。
(3)面向服务的制造
制造的价值链正不断延伸和拓展,制造和服务逐渐融合,制造企业更加倾向于为顾客提品服务及其应用解决方案。面向服务的制造是为实现制造价值链的增值,通过产品和服务融合、客户全程参与、提供生产型服务或服务型生产,实现分散的制造资源整合和各自核心竞争力的高效协同,达到高效创新的一种制造模式[29]。面向服务的制造的典型应用有众包生产(CrowdSourcing,C-Sourcing)、工业产品服务系统(IndustrialProductServiceSystem,IPSS)等。众包生产源于众包,众包一词最早出现在2006年,由美国《连线》杂志一位名叫杰夫·豪的记者首次提出[30]。众包是一种分布式的问题解决和生产模式,它将工作任务通过互联网以公开、自由自愿的方式分发给非特定的大众。众包生产就是网络化社会生产,让更多产品和服务用户参与到产品的创新活动中来,打破企业创新来源的界限,聚集大众智慧,增加公众的参与度,并通过“用户创造内容”的形式生产出符合消费者需求的个性化产品[31]。众包生产对构建创新型制造企业非常重要,它具有开放式生产、组织构成的动态性、物理范围的分布性、参与者的主动性等特点,能够突破传统生产模式,通过外部资源的整合实现产品开发任务;另外,它还可以通过激励机制代替合约机制,以极低的成本聚集外部的零散个体用户和群体资源,为客户提品及其应用解决方案。面对多样化的个性需求和不断变化的市场环境,众包生产能够灵活、高效、低成本地进行资源的重新分配和整合,有效降低产品制造成本,减少企业风险,提高适应个性化需求的灵活性,它的出现给企业的研发、生产、销售、管理和售后服务带来了巨大影响。产品服务系统(ProductServiceSystem,PSS)通过系统地集成产品和服务,为用户提品功能而不是产品本身来满足用户需求,从而实现产品全生命周期内的价值增值和生产与消费的可持续性[32]。IPSS[33]是在PSS的基础上提出的。IPSS是工业产品及其相关服务的集成,它将产品与服务作为一个集成化的整体提供给用户,这里的产品既可以是用户所有,也可以是IPSS的提供者所有,不但关注产品本身质量而且考虑顾客体验,通过用户的参与来提高产品服务创新能力;服务则是覆盖整个产品全生命周期内的所有活动(设计、制造、运输、销售、使用、维护、售后服务等),通过专业的服务共享降低用户的成本投入,从而集中更多的精力关注其核心竞争力。IPSS的核心是提供工业产品的工作能力,这依赖于提供者的知识水平和经验丰富程度,因此它具有知识服务和生产型服务的特点。
(4)智能制造
基于新一代信息技术和IBM智慧地球的研究框架,制造系统的集成协同越来越关注人的发展和周围环境的融合,研究的关注点从之前侧重信息技术和工程科学的集成,逐步转变为技术体系、组织结构、人及环境的深度融合与无缝集成,实现优势互补与可持续制造。此类制造包括云制造、制造物联、基于信息物理系统(Cyber-PhysicalSystem,CPS)的智能制造乃至智慧制造。德国政府于2013年4月举办的汉诺威工业博览会上正式推出了工业4.0战略,在该战略下提出的智能制造是面向产品全生命周期,实现泛在感知条件下的信息化制造。智能制造技术是在新一代信息技术、云计算、大数据、物联网技术、纳米技术、传感技术和人工智能等基础上,通过感知、人机交互、决策、执行和反馈,实现产品设计、制造、物流、管理、维护和服务的智能化,是信息技术与制造技术的集成协同与深度融合。在产品加工过程中,智能制造将传感器及智能诊断和决策软件集成到装备,由程序控制的装备上升到智能控制,能自适应反馈被加工工件在过程中的状况[34]。例如,基于CPS的智能制造生产过程与传统的数控加工技术相比,能感知温度、环境、加工材料的属性变化,并作出相应调整,不会死板地执行预定程序,能够保证加工出的产品精度。基于云计算、物联网、面向服务和智能科学等技术的云制造也是一种智能化的制造模式[35],它利用网络和云制造服务平台,按需组织网上制造资源(制造云),为用户提供可随时获取的、动态的、敏捷的制造全生命周期服务[36-38]。云制造能促进制造资源/能力的物联化、虚拟化、服务化、协同化和智能化。与传统的网络化制造相比,云制造具有更好的资源动态性、敏捷性以及产品和服务解决方案的灵活性,同时能更好地解决ASP模式的客户端智能性和数据安全性的不足问题,以实现更大范围的推广和应用;与制造网格相比,云制造在“分散资源集中使用”思想的基础上,还体现了“集中资源分散服务”的思想。制造物联[39]是基于互联网、嵌入式系统、RFID、传感网、智能技术等构建的现代制造物联网络,是以中间件、海量信息融合和系统集成技术为基础,基于物联网系统开发服务平台和应用系统,解决产品设计、制造、维护、管理、服务等过程中的信息感知、可靠传输与智能处理,增加制造的服务化与智能化水平的制造新模式。制造物联在制造系统中的应用能够有效地管理制造资源、监控制造过程、匹配制造需求等,将传统的产品制造从市场调研、研发设计、供应链、生产过程、销售、物流运输与售后服务融为一体,协同制造过程中物料流、能量流、信息流、价值流的优化运行,以支持产品智能化、生产过程自动化、供应链与物流的准时化和精益化、企业经营管理辅助决策等应用,极大地提高了制造企业的核心竞争力。
基于语义Web、务联网(InternetofService,IoS)、社会性网络服务(SocialNetworkService,SNS)等,智能制造/云制造的进一步发展将会诞生智慧制造(WisdomManufacturing,WM)[40-41]。WM将机器智能、普适智能和人的经验、知识与智慧结合在一起,形成以客户需求为中心、以人为本、面向服务、基于知识运用、人机物协同的制造模式。
综上所述,先进制造模式是以所追求的目标和生产开展方式的转变为基础而产生及发展的,体现的是消费者的个性化需求、科学技术发展水平和市场竞争形势,是由先进制造哲理、先进组织管理方式、先进制造技术及人的相互融合发展、相互协同作用的产物。这是一个系统灵活性不断增大、组织结构和过程不断优化的进程,将形成人机物协同制造系统,使制造资源得到最佳利用、生产效率得到极大提高,能够对市场变化和内部变化作出迅速响应。
1.2先进制造技术对产品生产活动的影响
从生产流程来看,AMT与传统制造技术对制造过程的影响如图5所示。传统制造是利用制造资源将原材料转换为产品的过程,仅为生产过程的一部分,一般包括产品的加工和装配两大内容,制造商自行生产或者从供应商购买零件,将其组装成产品并检验以符合要求。制造过程中输入的是原材料、能量、信息、人力资源等,输出的是符合要求的产品。传统的制造系统设计、制造与销售各部分之间信息的传递与反馈不畅,各部门按功能分解任务,容易只考虑本部门的利益,对系统的优化考虑较少,造成设计与制造部门间难以协调、矛盾突出。
AMT主要从材料设计、制造流程改造、产品服务融合的集成解决方案和循环利用四个方面拓展传统制造技术的内容:
(1)材料设计新型材料的成型和加工技术愈发重要,对材料分子层或原子层的定向改造极大地提高了产品性能,超硬材料、功能梯度复合材料的某些新的成形、加工技术将不断涌现,如超导材料成形加工等。
(2)制造流程改造传统制造是面向批处理、时间上和空间上分离的分布式加工,先进制造超效能加工和自动化技术能够促使连续流制造,减少零件库存。
(3)产品服务融合先进制造强调涵盖从产品研发直至客户应用的全过程,提品、软件和服务于一体的产品解决方案和端对端的服务。知识资本、人力资本和技术资本的高度聚合,使制造活动摆脱了传统制造低技术含量、低附加值的模式,通过产品设计、管理咨询等活动,技术和知识在生产过程中被实际运用,将技术进步转化为生产能力和竞争力,为企业产生更高的附加价值。
(4)循环利用[42]先进制造注重材料的回收利用,不但对环境友好而且节约原材料成本。传统的产品制造模式是一个开环系统,即原料工业生产产品使用报废弃入环境,是以大量消耗资源和破坏环境为代价的制造方式;而循环生产是一个闭环系统,整个生命周期考虑生态环境和资源效率,从单纯的产品功能设计扩展到生命周期设计,强调所有资源应该实现在经济体系内的循环利用。
基础制造技术、新型制造单元技术和现代先进集成制造技术对制造业的发展产生了重要影响。基础制造技术通过改进、整合形成新型制造单元技术,进而影响整个制造过程。诸如网络化制造、面向服务制造和智能制造等先进集成制造技术已在前文说明,这里着重探讨新型制造单元技术对制造过程的影响。具体来讲,新型制造单元技术(图2中第二层)对传统制造流程的改造如图6所示,增材/精准制造用于对加工阶段的改造;机器人/自动化技术用于组装和生产流程的自动化;先进电子技术用于产品和服务的融合以及加工过程的控制;供应链设计以整体效益最优化为目标,以系统化的观点综合考虑人、技术、管理、设备、物料、信息等系统构成要素的优化组合,在满足产品或服务供给要求的同时,达到成本最低;清洁生产技术主要用于材料的循环利用、回收等环节;分子生物学和生物制造用于材料设计及制造流程的改进;纳米材料技术用于合成与加工功能梯度材料、复合材料等;物联网、云计算和大数据用于对产品全生命周期制造过程进行全方位跟踪、分析、优化和控制,实现多维度、透明化的泛在感知,确保制造过程的高效、敏捷、可持续和智能化。
需要指出的是,AMT对传统制造流程的改造,不但使原有制造和装配工艺等制造中期阶段产生了质的变化,而且涵盖了市场信息分析、产品决策、产品设计、生产准备等生产前阶段,以及质量监测、销售使用、售前售后服务、产品报废的处理和回收再生产等后阶段,覆盖了产品生命周期的制造全过程,可提供集产品、软件和服务于一体的整体解决方案,实现优质、高效、低耗、清洁、灵活生产。
1.3各国先进制造技术发展情况和研究进展
近年来,美国、日本、德国等发达国家先后针对AMT的研发提出了国家层面的发展战略计划。美国在2009年12月颁布了《AFrameworkforRevitalizingAmericanManufacturing》(重振美国制造业框架)[43];2011年6月宣布了《TheAdvancedManufacturingPartnership》(先进制造伙伴计划)[44];2012年2月了《ANationalStrategicPlanForAdvancedManufacturing》(先进制造业国家战略)[45],提出通过加强研究和试验税收减免、扩大和优化政府投资、建设智能制造技术平台,以加快智能制造的技术创新。
日本在1989年就发起“智能制造系统”计划,推动本国AMT的研究和发展;2010年5月公布了《产业结构蓝图》,同年6月通过《新增长战略》法案,规划了日本经济2011年~2020年的十年发展战略,其中包括对先进制造业的支持策略,通过大力调整制造业结构,加快发展机器人、无人化工厂、3D打印技术等尖端领域,提升制造业的国际竞争力[46]。
德国作为工业强国,为保持其制造业的竞争优势,采取积极有效的行动,将大量人力和物力投入到AMT中,推动AMT的发展,并制订了相关的计划[47],特别是2010年7月制订了《高技术战略2020》,以支持制造领域新型革命性技术的研究与创新。其中“工业4.0”项目[48]是《高技术战略2020》确定的十大未来技术项目之一,用以支持工业技术领域新一代关键技术的研发和创新,该项目成为2013年汉诺威自动化展最热门的话题。工业4.0旨在通过互联网、物联网、CPS、IoS等技术提升制造系统的智能化水平,它包括两大主题:1智能工厂,重点研究智能化生产系统和过程,以及网络化分布式生产设施的实现;2智能生产,主要涉及整个企业的生产物流管理、人机互动以及3D技术在工业生产过程中的应用等。欧盟于1998年~2007年相继公布了第五框架计划(1998~2002)、第六框架计划(2002~2006)和第七框架计划(2007~2013),于2009年颁布了《欧盟共同关键使能技术发展战略》,次年3月颁布了《欧洲2020战略》[49]。发达国家希望以高新技术为依托大力发展节能环保产品、清洁能源、新材料等新兴产业,构筑新的优势,消除不利因素,创造有利环境及符合自身优势的新兴市场,规避在传统制造领域与中国等发展中国家相比的竞争劣势,以树立其AMT的持续竞争优势,提高其先进制造业的竞争力。
我国也十分重视AMT的发展,国家863计划在清华大学建立了CIMS工程研究中心。先进制造技术作为一个主题在国家科技部领导下取得重大进展,如数字化制造与工业工程[50]、网络协同设计[51]、网络制造、仿生制造[52]、绿色制造与区域网络制造[53]、供应链、网络化制造、大批量定制和仿生制造[54-55]等。特别是国家“十二五”制造业信息化科技工程规划中,明确提出了大力发展新一代集成协同技术、制造服务技术和制造物联技术,该规划的实施将促进互联网、云计算、物联网等新一代信息技术与制造技术相融合,为加速制造业结构调整和转型升级、发展高端制造业等战略性新兴产业发挥极其重要的作用。制造业信息化工程的实施使我国在AMT领域取得了大批具有先进水平的研究成果,促进了制造业向精益化、全球化、协同化、服务化、绿色化、智能化的方向发展,为传统产业的升级改造和高技术产业的发展做出了贡献。
2新工业革命
工业革命是生产技术的变革,同时也是一场深刻的社会关系变革。新科技群的协同效应和深度融合将导致生产组织方式和制造模式发生重大变化,从而引发新的工业革命。目前正在出现一种新工业革命,但仍是一个十分模糊的概念,不同研究者对新工业革命的概念有各自的理解,主要有5种不同的观点:
(1)杰里米·里夫金[56]认为,历史上重要的工业革命都是在新通讯方式和新能源结合之际产生的,当前正由互联网和新能源结合引发新的经济和社会变革,即包括五大支柱的新工业革命,如图7所示,其中:1能源转型,向可再生能源转型,利用风和阳光等,不再消耗石化产品;2分散式生产,互联网信息技术等基础设施的建设大大减小了时间、空间对人们的经济活动交流的制约,基于知识的共享、创新和发展的扁平式、分散化、合作性的生产组织结构更加符合现代商业的需求;3存储,充分利用社会基础设施存储间歇式可再生能源;4构建能源互联网,利用互联网技术将电网转变为能源共享网,通过一种网格式的智能分布式电力系统和他人共享;5交通工具转变,将汽车、卡车、火车等运输工具转向插电式或者燃料电池等以可再生能源为动力的交通工具,电动车需要的电可在充电站购买。这五大支柱协同发展实现了1+1+1+1+1>5的整合效应,树立起一个新经济发展范例,带领世界进入新纪元。
(2)克里斯·安德森[57]认为,新型材料的应用和增材制造技术等数字化制造方式将引发新工业革命,采用新型材料、3D打印技术和基于网络的协同制造服务等智能化与数字化制造方法,能够迅速和精准地将计算机中的虚拟设计模型转化为真实物体,甚至直接打印出零件或模具,基于网络的新型数字化设计及制造的创新提供给网络用户以创造真实物体的能力,将制造延伸至范围更广的生产人群中,这些制造过程蕴藏着由普通人完成的无限可能,众多个人制造联合推动全面创造,将直接加快向新型工业化趋势发展的步伐,从而引领新工业革命。
(3)英国彼得·马什[58]在《新工业革命:消费者、全球化以及大规模生产的终结》一书中,将工业革命划分为五次,如表1所示,而将始于2005年的第五次工业革命称为新工业革命。
(4)保罗·麦基利的三次革命说[49,59]认为,以制造业数字化为核心的第三次工业革命(新工业革命)即将到来,互联网、智能软件、新能源、新材料、机器人、新的制造方法和以网络为基础的商业服务模式将使技术要素和市场配置要素发生革命性变革,产生改变社会发展历程的巨大能量。而制造业的数字化进程正从智能计算机软件、新材料、更灵巧的机器人、基于网络的制造业服务化、新的制造方法5个方面向前推进。
(5)德国政府于2013年4月举办的汉诺威工业博览会上,正式推出了工业4.0第四次工业革命[48]项目,目的是支持工业领域新一代革命性技术的研发与创新。工业4.0强调在工业生产过程中,以信息物理融合系统为核心,将众多智能体聚集在信息平台上,形成一种高度协同的互联互通关系,从而构建智能化的新型生产模式与产业结构。工业4.0正引领新一轮的工业革命,传统的行业界限将消失,并会产生各种新的活动领域、商业模式和合作形式,将导致工业结构、经济结构和社会结构从垂直向扁平转变,从集中向分散转变。
这些研究预言了新的工业革命即将来临,勾勒出了先进制造业的影响,描绘了未来制造业的走向。从上述观点可以看出,工业革命的实质是制造方式与模式的革命:保罗·麦基利认为生产工具发生很大变化将导致新工业革命;杰里米·里夫金认为生产动力的变革将引发新工业革命;彼得·马什认为新工业革命主要集中在材料、动力、加工工艺、制造模式等方面的变革;克里斯·安德森的新工业革命观点主要体现在生产方式的革新;德国工业4.0体现在在工业生产过程中,基于CPS建立了一种高度协同的产品与服务的生产模式。其实,任何一项单一的技术都不足以引发新一轮工业革命,判断工业革命的依据关键为是否有新科技群协同效应以及是否带来人类生产、生活方式的重大变革。因此,新工业革命是基于新能源、智能制造、数字化制造、机器人技术、新一代信息网络技术等先进技术综合系统协同创新及突破性的发展,融合信息、计算机、数字化、互联网技术创新变革,使工业生产方式与制造模式发生巨大变化,从而使交易方式与人们的生活方式发生重大变化。传统的自上而下、集中规模化的生产模式将逐步被新工业革命的分散、扁平和协作的模式取代,定制化、个性化、智能化、分散化和合作化是新工业革命的主要特征。
3先进制造技术与新工业革命之间关系
从主导技术和新兴产业的角度来看,以生产方式变革为主线的AMT的群体涌现、协同融合将导致新的工业革命,各种技术之间产生的耦合效应推动了工业革命的进程。新工业革命不是依赖单一学科或某几类技术,而应该是全方位的多学科、多技术层次、宽领域的协同效应和深度融合。人类制造模式的演变从原始手工生产模式到现代先进制造模式的演变过程中,经历了3次大的革命性变革。图8所示为由市场变化与技术发展推动的先进制造模式的变革。
图中:第一次工业革命中,由于蒸汽机、电气技术、内燃机的发明与改进,机器取代手工成为主导生产方式,制造业进入机械化制造时代,成为近代工业化大生产时代的开端。第二次工业革命中,大规模制造成为主导生产方式,20世纪20年代,随着电子技术、信息技术的发展,以流水线为典型代表的大规模制造模式在组织结构上追求纵向一体化与大规模,内部分工仔细,专业化程度高,简单熟练的操作提高了生产效率,使制造成本随规模递减,同时质量的稳定性也得到提高,制造模式进入批量大规模制造阶段。新工业革命是现代先进制造模式集成协同创新的结果,进入20世纪90年代后期,随着网络信息技术、智能控制技术研究的深入和以知识为基础的经济时代的到来,制造业的市场环境与技术变革发生了根本性的改变。大规模制造系统的刚性与市场的个性化需求以及环境快速变化所要求的响应速度之间的矛盾日益尖锐,正是在此背景下,各种新制造模式研究探索与试验如雨后春笋般迅速兴起,现代AMT融合自然科学和社会科学的最新进展,以绿色、低碳、可持续为发展理念,带来了产业组织模式的转变,对转变经济增长方式、政府管理模式和社会组织形态都有巨大的推动作用,使全球技术要素和市场要素配置方式发生了革命性变化。
AMT的发展将在新工业革命中发挥重要作用。如前所述,工业革命的实质是制造业生产方式与制造模式发生重大变化,它必然也是始于制造技术突破性的发展。AMT是制造业产生变革的根本力量,新一代信息技术(云计算、大数据、物联网、务联网、云平台等)、新能源(再生能源、清洁能源等)、新材料(复合材料、纳米材料等)技术等将为新工业革命创造强大的新基础设施;分散式制造(网络化制造、制造物联、云制造、智能制造)、众包生产、集群效应、利基思维等使生产方式产生变革,将整个工业生产体系提升到一个新的水平,工业生产、经济体系和社会结构将从垂直转向扁平、从集中转向分散;以智能制造为代表的新一代先进制造模式,必将使商业模式、管理模式、服务模式、企业组织结构和人才资源需求发生巨大变化,给工业领域、生产价值链、业务模式乃至生活方式带来根本性变革,进而推进和实现新的工业革命。
制造模式的演进与新工业革命的出现由市场发展、社会变革、技术突破、管理创新多种动因的综合作用决定。对新工业革命的内涵的理解必须通过与社会科学(如经济学和管理学)等跨学科的对话和交流,适当突破自然科学和工程技术学科的理论范畴。工业发展历程表明,新的生产模式的出现均为与特定的社会制度、组织结构和经济因素等相互作用的产物,而新的制造模式又会对既有社会制度和管理方式提出新的要求,从而推进企业管理模式、社会制度环境的变革[60]。综上所述,在市场、技术、社会经济环境变化与全球一体化趋势的推动下,制造业正在经历着一场革命,一场以实施先进制造技术和经营方式彻底变革为主要内容的先进制造模式的革命,涉及制造理念、制造战略、制造技术、制造组织与管理各个领域的全面变革。
4新一代先进制造技术的应用案例
产品制造的智能化变革绝不仅是优化现有的制造业,而是将制造延伸至范围更广的生产人群中———既有现存的制造商又有正成为创业者的普通民众。随着社会化网络的发展,通过充分开发大众的智慧、力量和资源,以用户创造内容(Usergeneratedcontent)为代表的社会化生产模式更能形成突破性创新,彰显出巨大的能量和商业价值。以思科(Cisco)为例[31],2007年秋,思科借助Brightidea公司的创意网络平台,为其一个十亿美元的新业务寻找创意,通过征集创意—进行筛选—提炼创意三个阶段,最后从104个国家的2500多名参与者提交的约1200个创意中,成功筛选出最佳创意;再如美国越野赛车LocalMotors公司通过社会化生产方式,将越野赛车的个性化设计与制造分包给不同的社区,在社区内的微型工厂实现了快速小批量设计与生产;波音公司联合全球40多个国家和地区企业,通过网络协同和制造服务外包的形式协同研发制造了波音787,将研发周期缩短至原来的30%,成本也减少了50%[18]。如此一来,创意新阶层得以进入生产领域,将自己的设计产品模型转变成产品,却无需自行建立工厂或公司,制造变成了另外一种可由网络浏览器获取的云服务,实现了低成本的高技术,保持了小型化与全球化并存的能力。借助物联网、云服务、大数据等技术,用户参与不再局限于创意征集阶段,而向设计研发、制造、实验、检测、营销等纵深发展,向产品全生命周期拓展,这些生产方式将为开发出成功的产品、降低生产成本、提高效率作出巨大贡献。
以大数据、物联网/CPS、云计算等新一代信息技术为基础的先进制造技术将促进制造系统向服务化、智慧化、个性化、社会化的方向发展,智慧制造应运而生[40-41]。智慧制造将制造系统分为社会系统、信息系统和物理系统三个子系统,其中社会系统强调群体智慧和人的主观能动性,尤其是人及其隐性知识的集成,是基于人际网(Internetofpeople)所形成的社会化网络,注重客户参与的互动性、个性化和创新性;物理系统通过物联网实现物理实体的互联互通,利用RFID、嵌入在资源或产品内的感知器等获得资源状态和环境的数据信息;信息系统通过大数据技术对业务对象的属性、位置和状态等信息进行整合,从海量数据中抽取出所需的信息、知识和智慧,为需求分析、设计、生产、营销和回收等制造全生命周期过程提供知识支持。物联网获取的数据与知识的价值是通过服务的形式来体现的,通过云计算和“一切皆为服务”的理念,为用户提供按需即取的服务方式,将服务资源延伸到物理世界,最终得以在物理系统中实现产品生产。
新工业革命将促进社会制造/智慧制造理念的实现。社会制造将使传统的企业转变为能够主动感知并响应客户大规模个性化定制需求的智慧型企业,其核心就是主动、实时地将社会需求与社会制造能力有机地结合起来,从而高效、实时动态地满足客户需求。Shapeways公司就是一个典型的例子[61],该公司于2007年创立于荷兰,后将总部移至美国曼哈顿,是一家利用3D打印技术为客户定制各种产品和服务的公司,至今已获数千万美元的风险投资支持,截止2012年6月20日,其生产产品已经超过100万款,产量超过60亿件。2012年10月19日,该公司位于纽约皇后区的“未来工厂”正式投入运营。该工厂占地2.5×104m2,可以容纳50台工业打印机,每年可按照消费者的需求生产上千万件产品。Shapeways的市场运营模式如下:通过Facebook和Twitter等社会媒体接受客户关于各种产品的3D设计方案,将顾客的需求发送给Shapeways工厂,由工作人员确定是否可行,评估并制定方案,并在数天内完成产品的打印生产,然后寄送给客户。同时,该公司还为商家和设计者设立平台,使他们可以利用公司的3D打印机生产并销售自己设计或收集的产品,用户提交他们的产品创意,如果有足够多的人喜欢(如通过Twitter,Facebook等独特社区),则产品开发团队将制作产品原型,用户可在线对其进行投票、评分、提意见或建议,参与产品的设计开发、改进、预售和营销等,即通过聚集大众智慧的方式,让社区参与产品开发的整个过程。如果产品获得预期成功,则发明者和其他协作者可分享一定的产品销售收入。在过去的2014年,其月均订单已超过18.1万件,成为目前全球第一的在线3D打印社区。该案例成功地利用社会性网络、群体智慧和3D打印等技术实现了个性化产品的生产,涉及社会系统、信息系统及物理系统的各个层次,大批3D打印机形成制造网络,并与互联网、物联网、务联网和人际网(社会性网络)无缝连接,形成复杂的社会制造网络系统,从而将社会需求、虚拟设计与实物制造有机地衔接起来,在一定程度上为智慧制造/社会制造提供了例证。
5我国制造业发展的思考
新工业革命将对全球产业结构、生产资料、劳动者素质等生产力要素和人类生产生活方式、思想观念产生巨大影响,企业组织结构、管理方式、社会制度政策环境等因素决定了先进制造技术在制造业领域应用的广度和深度。我国应基于国情把握好新工业革命的发展机遇,高度重视AMT的发展动态,大力发展战略新兴产业,为新工业革命创造良好的环境条件,从而促进我国经济社会快速发展[62]。自2009年以来,我国密集部署未来新兴产业的重点发展方向和主要任务,提出积极发展新能源、新一代信息技术、新材料等七大战略性新兴产业,努力抓住“新工业革命”这一难得的发展机遇,发展知识技术密集、资源消耗小、成长潜力巨大、综合效益好的产业,增强自主发展能力。我国先进制造业目前主要由两大部分构成(如图9):1由融合先进制造技术的传统制造业改造而成的先进制造业,如数控机床、海洋工程设备、航空航天装备等;2科技重大突破创新的成果落地应用后形成的新产业,如增量制造(3D打印)、生物制造、微纳制造等。
(1)信息化和工业化深度融合
新工业革命的兴起为我国探索资源消耗低、环境污染少的工业新类型和生产新方法带来了契机,新一代智能化技术、新能源、新材料等新科技正快速形成产业规模市场,该市场有利于发展循环生产和循环经济,实现经济效益与环境效益、社会效益的均衡发展。新工业革命以智能化微制造科技为关键科技支撑体系、以深层次循环式生产为主导,促使生产力和生产方式向更深层次和更广范围拓展。我国未来的现代产业体系应该更多地建立在新的工业生产方式、新的生产组织方式和新的生产制造模式基础上。
(2)发展战略新兴产业
战略性新兴产业[63]以重大科学技术突破性发展为基础,对社会发展具有重大引导带动作用,而且知识密集、资源消耗小、发展潜力巨大并且综合效益好,能增强我国的自主创新和可持续发展能力,更深入地参与国际竞争。发展战略新兴产业目前面临知识科技创新、组织管理创新、体制政策创新三大重要创新任务。我国十分重视战略新兴产业,2010年10月18日颁布了《关于加快培育和发展战略性新兴产业的决定》,准备用20年左右时间,使节能环保能源产业、新一代电子信息技术、高端装备制造业等七大战略性新兴产业的创新能力和发展水平达到世界领先;在《“十二五”国家战略性新兴产业发展规划》中提出了七大战略性新兴产业的发展方向和任务,以重大技术突破和重大发展需求为基础,将知识技术密集型、引领作用强、发展潜力好和综合效益大的新兴产业作为发展重点,建立战略性新兴产业重点领域产业联盟,大力发展可再生新能源、生物技术、智慧物联网、云计算、普适人机交互等新技术,并且注重智力资源的开发、新能源和互联网的应用,将创新放在关键的位置。
(3)为新工业革命创造环境条件
新工业革命创造环境条件包括至关重要的制度改革、政策环境和商业模式等,新工业革命带来的不是个别政策的微量调整,而是系统化大规模变革问题。首先建立创新激励机制和知识产权保护,集聚大量的高端创新人才,将技术和管理、软科学和硬科学结合在一起协同创新,增强市场化导向和创新激励机制;其次加强政策引导企业技术创新及技术改造,鼓励企业和科研院所建立各种模式的创新联盟,促进产业集聚和资源整合;最后通过法律强制、财政资金支持、税收优惠等措施引导和支持企业突破核心关键技术,支持新技术新产品的推广应用。与新的制造技术相适应的企业管理方式和社会制度基础决定了其在制造业领域应用的广度和深度,同时也在一定程度上决定了AMT能在多大程度上转化为制造业的产业竞争力。
1 先进机械制造技术的重要性和必要性
机械制造业是国民经济的基础性产业,是国民经济发展的支柱,机械制造业的发展关系着国民经济各个部门的发展,随着市场竞争的日益激烈和科学技术的不断进步,制造业也必须面临着由人力、物力为主的粗矿型向先进制造模式转变。因此,先进机械制造技术的发展有着时代的必然性。
2 先进机械制造技术的发展现状
2.1 机械制造技术的设计相对西方发达国家比较落后
随着技术的发展,西方发达国家不断更新着设计的数据和准则,尤其是在计算机辅助管理的技术上面应用比较纯熟,这也是我国与发达国家相比比较薄弱的环节,我国的计算机辅助管理技术还比较落后。
2.2 机械制造技术的管理水平落后
在机械制造技术方面我国落后发达国家比较多,美国、英国、日本等工业比较发达的国家都特别注重计算机的管理。他们通过一定的组织和管理制度,不断创新产品的生产模式,从而在不断地实践中制造灵敏、生产准时,能够与产品生产同步的技术管理方案。
2.3 制造工艺落后
在中国,纳米技术、电磁技术、激光技术、复合技术等还属于高新技术,仍在研究阶段,甚至有些高新制造工艺还没有开发,在工业中的应用也没有得到广泛的发展。但是,在发达国家这些企业已经开始娴熟地应用于大型企业。
2.4 机制自动化的进程比较落后
发达国家的自动化技术不断更新,并且广泛应用于工业生产之中,如数控机床、柔性制造等自动化技术,成功实现了产品的柔性化与集成化。但是,中国在这一方面的技术还比较落后,只有少数企业开始试用这些技术,大多数的企业还在沿用传统的技术。
3 先进机械制造技术的特点
3.1 先进机械制造技术是系统性技术
传统制造技术通常是指将各种原材料变成成品的加工工艺,但是现代机械制造技术在应用范围上与传统技术有很大的不同,其特别强调计算机技术、新材料技术、信息技术、现代系统管理技术、传感技术与自动化技术在产品的设计、制造生产、组织管理与销售等各个环节的应用。先进机械制造技术既不是对传统的技术的完全继承也不是对传统制造技术的全盘否定,而是将传统机械技术与高新技术相结合,使得机械制造技术成为能够驾驭生产物质流、能量流、信息流的一个系统性工程。
3.2 先进机械制造技术是实用性技术
先进机械制造技术是一项面向工业的实用性技术,它涉及到产品开发生产销售的各个方面,并将这些方面结合成有机的整体。从产品的市场调研开发涉及到产品的生产准备加工制造、售后服务等环节都有所涉及,覆盖了产品生命周期的整个过程。先进机械制造技术是以提高企业的经济效益和核心竞争力为中心,注重生产最好的实践效果,促进企业与国家的经济增长。
3.3 先进机械制造技术是全球性技术
先进制造技术是为了适应越来越激烈的市场竞争而出现的,是伴随着市场全球化而诞生的,因此,其本身就带有一定的全球性色彩。先进机械制造技术是不断地吸收各种高新技术而形成的,是针对一定的应用目标而发展的,因此,先进机械制造技术在不同的时期不同的国家和地区其发展的目标和内容、发展的特点都不尽相同。通过国家之间产品与技术的交流、投资的深化,从而实现了国家和地区间机械制造技术的跨越式发展。一个国家如果拥有先进的机械制造水平,那么这个国家的制造业就能够在全球形成自己的核心竞争力。
3.4 先进机械制造技术具备节能,环保技术
环境污染己成为世界首要难题,人类的生存环境日益严峻,以后的机械产品在噪声、排放指标、可靠性等方面如果达不到一定的环保标准很可能被世界市场拒之门外。因此,先进机械制造技术必须具备节能,环保的能力,不以性环境为代价,相反更应该起到保护环境,维护生态平衡的作用,尤其是发动机这样对环境影响比较大的部件,必须要采用新的减振技术,同时还要积极采用一些新的环保材料来减少机械产品的噪音、排放指标等,达到环保节能的目的。
4 先进机械制造技术的发展趋势
4.1 先进机械制造技术朝着柔性化的方向发展
技术柔性化具体指工业装备与工业线路能够更好地适应产品与工业更新换代的需要。近年来,超精密加工技术的发展促进了新科学技术的进步,推动了各种新技术的发展。超精密加工技术主要包括精密特种加工、超精密切削、超精密研磨等三个方面,通过超精密加工技术的使用能够促进产品的小型化,提高产品生产的稳定性、可靠性和产品质量,增加装配之间的互换性。促进自动化配置,提高生产效率。
环境问题又为柔性化赋予了新的含义,要求产品从生产到销售要尽量绿色无污染,最大限度地减少对自然资源的利用与损害。
4.2 先进机械制造技术朝着灵捷化方向发展
灵捷化是指机械制造厂的机制能够灵活转向,减少产品从研发生产到推向市场之间的时间。随着经济的发展,市场环境不确定性因素越来越高,面对这样风云突变的市场,企业生产的灵活性与机敏性变得相当重要。在传统的制造模式中,产品在正式生产之前要经历一个设计、试制、修改设计的过程,经过这样一个长时间的试验之后才能进行规模化的生产。先进机械制造技术引进了虚拟设计的环节,对产品的生产过程进行模拟和检验。通过虚拟检验技术对产品的可加工性、加工方法、工艺的合理性等进行检测,寻找出产品生产过程中存在的问题,以优化产品的生产工艺,提高产品的质量,将产品的生产成本和生产周期都降到最低。虚拟化是通过计算机仿真技术来模拟真实的系统,来发现产品设计、生产中不可避免的缺陷和错误,保证产品的设计科学工艺合理,使得企业的生产系统能够快速响应市场的变化需求。
4.3 先进机械制造技术朝着智能化的方向发展
随着计算机技术的不断进步,智能化已经成为工业生产柔性自动化新的发展和延伸。人类随着社会的进步,要逐渐地从复杂的计算等脑力劳动中脱离出来,来从事更多的创造性劳动,智能化既是人类智慧的结晶也是人类脱离脑力劳动的成果。智能化使得产品的生产系统具有更完善的判断力与适应能力,推动着现代生产技术朝着集智能化、柔性化、自动化、集成化为一身的方向发展,很多生产系统都是由人类专家与智能机器人共同组成的人机一体化系统。在生产的过程中,通过计算机来模拟人类的智能活动,对生产进行分析、判断、推理和决策,取代人脑工作的部分。
5 先进机械制造技术的人才建设 人才建设是先进机械制造技术发展的基础,尤其要加强研究人才与技术操作人才的培养,各单位可以根据实际情况建设一个具有国际先进水平的机械制造技术实验基地及人才培养基地,加大对于人才培养的投入。定期对员工进行知识与技术的培训,扩宽他们的专业面,注重通识教育,结合实践进行能力培养,帮助他们形成T型的知识能力体系,不断提高工程制造技术队伍的水平。同时,企业还可以与高等院校、科研单位密切合作,培养自己的先进制造业研究人才,加快制造业的研究开发进程。
产业革命在目前产业发展的现状和趋势下,被赋予了更多的含义,它不仅包括科学技术的革新,还包括产业结构的调整和新型发展路径的形成等一系列会对产业发展形成重大深远影响的变革。当前,河南产业结构调整剧烈、新兴产业迅猛发展以及产业间的趋同发展效应明显,具体表现为以下两个方面:
(一)以先进制造业为首的传统工业的转型升级
产业革命的发生通常最先是以工业的技术革新为标志,作为传统工业的重要组成部分,制造业一般都是最先进行技术革命的,而先进制造业作为未来制造业的发展趋势,越来越广泛的被制造业企业使用。先进制造业相对传统制造业而言,具有巨大的优势,主要体现在以下五个方面:
1.信息化:先进制造业主要采用电子计算机和互联网等设备第一时间接收外部最新产业发展方向和行业产品信息,反馈给设计研发中心,对产品的外观、功能、功耗等方面进行实时改进,将信息传输给生产线,实现产品及时的更新换代。
2.自动化:先进制造业的生产线大多采用自动生产机器人来辅助人力生产,生产机器人已广泛应用于汽车、机械、造船、航天等领域,生产自动化可大幅度地提高生产效率,保障生产安全,解决生产劳动力不足的问题。
3.智能化:以智能机床和3D打印机为代表的智能化设备已经占据了制造企业厂房的重要位置,随着这些设备在生产当中的大规模普及,企业可以为消费者制造出他们想要的个性化产品,从而进一步扩大消费群体,取得更高的收益。
4.柔性化:柔性生产,是指主要依靠有高度柔性的以计算机数控机床为主的制造设备来实现多品种、小批量的生产方式。柔性生产线可以根据市场供求关系的变化实时作出针对性的调整,实现小批量精准生产,为企业获得最大收益。可以实现“供—产—销”一条龙的高效流畅的供应链体系,达到全产业链的高效运行。
5.生态化:相对于传统制造业,先进制造业由于采用了更加环保和高效的生产设备,降低了长时间持续性的环境污染,做到了工业生产和自然环境的共同发展,实现了人与自然的和谐统一。河南目前大多数工业企业仍然处于传统制造业阶段,先进制造业发展水平较低,工信部公布的2015年智能制造专项项目中,河南仅有宇通客车、许继电器两家企业入围。
(二)大力发展以新型服务业为代表的新兴产业
新的产业革命使原有在产业内部发展的下属子产业由于获得了技术和管理上的巨大进步,逐渐发展壮大并最终成为独立的新兴产业,使现有的产业布局发生重大变化,显著改变了产业未来的发展趋势和走向。以生产业为例,生产业是指为保持工业生产过程的连续性、促进工业技术进步、产业升级和提高生产效率提供保障服务的服务行业。河南生产业虽起步较晚,但近年来发展迅速,生产业增加值和占第三产业增加值比重逐年提高,2013年全省生产业增加值为5830.52亿元,2014年已经增加到了6687.43亿元,不考虑价格因素比上年增长14.7%,而生产业增加值占第三产业增加值的比重呈现出逐年稳步提高的态势,2013年生产业增加值占第三产业增加值的50.81%,2014年上升到了51.59%,增加了0.78个百分点。除生产业外,生物医药、3D打印、光伏制造等新兴产业不仅更加丰富了现有产业的组成,同时也提升了产业的核心竞争力和可持续发展性。
二、企业在新一轮产业革命背景下的管理创新研究
以往历次产业革命都无一例外地引发了企业管理方式的革新,而新一轮产业革命同样影响着企业管理体系和管理模式。外部整体产业发展和市场经营的大环境发生重大变化,企业原有的管理体系逐渐表现出水平滞后、效率低下等缺点,已不能完全适应新的产业发展趋势,在这种情况下,只有在原有的管理体系上进行创新,创造出新型的、能够更加适应产业发展环境的管理方式,才能在本轮产业革命中立足。本文从组织结构设计和管理机制两方面提出三种新型的管理模式进行探讨。
(一)嵌入式组织结构管理体系
相对于产业间频繁的互动发展,企业之间由于生产流程、管理体系之间有较大差异,加之保密等因素的存在,致使企业的运行相对外界仍然是封闭的,依然是以单独个体的形式存在,即使是有亲密合作关系的企业之间也仅限于较浅层面的交流,导致企业间的合作发展效率低下,阻碍了共同发展的进程。在这种情况下,针对企业间互动发展的嵌入式组织结构管理体系应运而生。嵌入式组织结构管理体系应用于企业的管理体系中,特别是有合作关系的企业之间的互动发展,很好地解决了由于管理体系的封闭性带来的阻隔问题,嵌入式组织结构可以是事业部、职能部门甚至是整个管理层的嵌入模式的多种方式,形式多样、灵活多变,可以实现一个企业直接地对合作企业管理体系的监管、调整、重组等一系列活动,这种互动发展的模式可以使生产业企业更好地与生产企业母体进行对接,消除彼此之间的差异和磨合,实现高效的生产。目前,嵌入式组织结构管理体系主要应用于联系紧密的产业,如生产业与制造业的互动发展、食品行业的全产业链生产等领域,今后还会逐步向更多的产业推进,形成产业互动发展的未来趋势。
(二)自适应式柔性管理体系
柔性管理是从企业的经营方面出发,对事业部、职能部门进行柔性化改革,实现各部门对企业整体战略调整的自动适应。以事业部为例,事业部制组织结构最早起源于美国通用汽车公司,是由通用汽车公司总裁艾尔弗雷德•斯隆于1924年提出,故被称为“斯隆模型”,又称“联邦分权化”,是一种高度(层)集权下的分权管理体制。事业部制,就是按照企业的主营业务包括按产品、地区、市场等来划分部门,设立若干个事业部。事业部是在企业宏观的领导下,拥有完全经营自,实行独立经营、独立核算的部门,既是具有利润生产和经营管理职能的受公司控制的利润中心,同时也是产品责任单位或市场责任单位,对产品设计、生产制造及销售活动负有统一领导的职权。经过数十年的发展,事业部已经在传统工业领域的管理体系中占据统治地位,进入了发展的稳定期,但随着新一轮的产业革命特别是先进制造业的异军突起,传统的事业部体系受到强烈的冲击,事业部一成不变的规模和流程客观上阻碍了以适应市场需求为导向的灵活应变的生产方式,事业部制也急需像先进制造业一样采用柔性化的管理体系。柔性事业部可以通过自身的调整自动适应整体的管理体系,不仅能与管理层实现同步发展,自身的战略调整甚至还可以反向引导管理层进行相应的调整,产生促使管理层进行调整的“外溢改革效应”,企业整体互动发展,以实现企业的最终发展目标。柔性事业部与先进制造业在形态、路径和机理等方面高度相似,已率先应用到了先进制造业企业的管理体系当中,今后还会扩张到其他行业和领域,发挥其应有作用。
(三)基于业务流程的管理控制体系
现代企业以事业部制为主体的组织结构设计虽然较之前的职能制组织结构在管理效率上有了很大的提高,但是仍然存在一些缺陷,其中对企业发展影响最大的就是各事业部内部由于有自己的职能部门,可以以一个独立的、封闭式的体系运行,久而久之容易形成各自为政的局面,对其他事业部的协调性下降,甚至对领导层的指令的执行力也有所下降,企业内部体系松散,整体性和凝聚力差,导致企业运行效率下降。究其根本原因,并非事业部这种形态的结构性缺陷,而是在宏观层面上缺少根据将各事业部以及事业部与领导层之间衔接起来的纽带,加强各部门之间的联系和沟通,提高部门间的协调性,而企业基于业务流程的管控体系的出现可以较好地解决这一问题。以制造业企业为例,业务流程从最高级别的董事会开始,将分属各事业部当中的职能部门如研发部门、营销部门通过流程指令串联起来,并严格按照从最初战略的制定到最终产品的销售这一流程的先后顺序来执行,涵盖了战略流程、经营流程和保障流程,而同时也将公司级流程、部门级流程和岗位级流程串联起来,由于各事业部之间的职能部门已经通过流程紧密的联接在一起,事业部之间的协调也顺理成章地通畅了,大大提高了沟通效率,减少了无谓损耗,最终为企业创造了更多价值。基于业务流程的管理控制系统目前已经在制造业企业特别是高端制造业企业中开始采用,今后会有更多的企业采用这一先进的管控体系。
1.1对工业工程技术的认识
工业工程是一门通过对人、原材料、机器设备组成的系统的设计和改进,从而提高生产率并降低成本的技术。也就是指把工业专业知识和系统工程有机地结合起来,去研究如何使生产要素组成生产力更高和更有效运行的系统,以实现提高生产率为目标,为管理提供科学依据;其学科特点是强调系统观念与工程意识,侧重于从技术角度去研究解决生产过程中的合理化效率、效益问题,使管理与技术密切结合;其任务和目标是研究将人员、物料、设备、能源、信息等要素进行有效合理的组合与配置,并不断改善,实现更有效运行,为管理活动提供技术上的支持与保证,以达到系统效益与生产率的实现和提高[2]。
工业工程技术包括并行工程、成组技术、虚拟制造、快速原型制造、准时制生产、精益生产、敏捷制造以及工作研究等等。国内外实践证明,在企业广泛推行“工作研究”,可以大大提高生产效率和产品质量,减少物质和劳动消耗,降低成本。这种既能改善生产环境又能减轻工人劳动强度的技术,正是企业孜孜以求的挖潜降耗、科学实行以岗定人和按产定员的有效途径[3]。因此,工作研究作为工业工程体系中最重要的基础技术,是以提高生产率和整体效益为目标的,是从方法、设备、工具和材料四者入手,以达到“最佳的方法、最好的动作和最大效率”的技术[4]。
1.2产品与过程集成的内涵
产品与过程集成不像制造业近20年中不断出现的许多新理论、新学说、新技术、新方法,不是又一种新的制造模式或新技术,它体现于诸多特定的技术和理论之中[5]。产品与过程集成代表了一种理念、原则、方法论和思维方式,是一种从实践中来又回到实践中去的指导思想,一种组织制造业生产活动的基本观念,它超越具体的制造模式或技术。也可以说,集成产品技术与过程技术植根于诸多的技术和理论,又高于这些技术和理论。
产品与过程集成的深层次内涵是超越产品与过程本身,而着眼于全面的系统集成。事实上,产品与过程集成的概念已经不限于狭义的技术,而是涵盖更广阔的领域。多层面的产品与过程集成包括产品与过程技术的集成、产品规划与过程规划的集成、产品设计与过程设计的集成、产品系统与过程系统的集成、产品管理与过程管理的集成、产品组织与过程组织的集成等[5]。另外,产品与过程集成的概念同样可以扩展到制造活动与销售、供应、分包等活动的集成关系。例如,在整机厂和配套厂的关系中,产品与过程集成的原则可以体现在早期参与和同步工程两个方面,使得主要为配合整机厂产品技术而开发过程技术的配套厂能够发挥更积极主动的作用,从而提高合作的深度和有效性。产品与过程集成所代表的超越制造模式或技术、全面的系统集成内涵正是工业工程技术的核心内容和实质所在。
1.3典型工业工程技术实施产品与过程集成层出不穷的各种面向下游的设计技术中,有许多是过程导向的设计技术,如为制造而设计、为装配而设计、为回收而设计、为检测而设计、为维护而设计等,都是推进产品与过程集成的基础技术。其核心思想是设计和制造的有机结合,例如:尽早建立设计—制造团队、确定符合制造过程及技术的设计要求、共同评估成本和有风险的环节、制造工程师从概念设计开始参与设计各阶段的评估、共同决定需要通过模型或模拟来确定的设计环节等[6]。
1.3.1并行工程(ConcurrentEngineering)
并行工程是集成地、并行地设计产品及其相关过程(包括制造过程和支持过程)的系统方法(1988年美国国家防御分析研究所提出)。目标:提高质量、降低成本、缩短产品开发周期和产品上市时间。具体做法:在产品开发初期,组织多种职能协同工作的项目组,使有关人员从一开始就获得对新产品需求的要求和信息,积极研究涉及本部门的工作业务,并将所需要求提供给设计人员,使许多问题在开发早期就得到解决,从而保证设计的质量,避免大量的返工浪费[7]。所以,并行工程强调面向过程,强调系统集成与整体优化。并行工程是工业工程的重要技术之一,它出色地实现和体现了产品与过程的集成。有的文献因此直接把并行工程解释为“集成产品与过程开发”(IntegratedProduct-ProcessDevelopment,IPPD);有的把过程再造、制造竞争力、系统工程、生命周期管理等都理解为集成产品开发的两个同步工程转轮上的组成辐条[8]。
1.3.2成组技术(GroupTechnology)
成组技术是指建立在以相似性原理基础上合理组织生产技术准备和产品生产过程的一种方法。成组技术也称群组技术,它将企业的多种产品、部件和零件,按照一定的相似性准则(如形状、结构、加工工艺等相似)分类编组,合理地组织生产[9]。成组技术的核心是成组工艺,它不以单一产品为生产对象,而是将成组哲理用于设计、制造和管理等整个生产系统,按照若干产品零件结构和加工工艺的相似性进行处理。实施步骤:零件分类成组、制订零件的成组加工工艺、设计成组工艺装备、组织成组加工生产线,从而扩大批量、减少品种,改变多品种小批量生产方式,便于采用高效方法、提高劳动生产率,以获得最大的经济效益。在机械制造工程中,成组技术是计算机辅助制造的基础。成组技术同样是产品与过程集成的完整体现。以产品技术与过程技术的集成为指导思想的成组生产布局,能够将产品技术和过程技术最好地结合起来,在相对独立的工作单元中,做到最大限度的灵活、快捷、高效率,既适用于多品种生产,也适合于一定数量的成批生产[10]。成组技术将是今后一段时期内现代工厂布局的主要发展方向。
1.3.3虚拟制造(VirtualManufacturing)
虚拟制造又叫拟实制造,是20世纪80年代后期美国首先提出来的一种新思想,它是利用信息技术、仿真技术、计算机技术等对现实制造活动中的人、物、信息及制造过程进行全面的仿真,并及时地、并行地、模拟出产品未来制造过程乃至产品全生命周期的各种活动对产品设计的影响,预测、检测、评价产品性能和产品的可制造性等,从而更加有效地、经济地、柔性地组织生产,增强决策与控制水平,有力地降低由于前期设计给后期制造带来的回溯更改,达到产品的开发周期和成本最小化、产品设计质量的最优化、生产效率的最大化[11]。
基于虚拟现实技术的虚拟制造技术是在一个统一模型之下对设计和制造等过程进行集成,这里很难区分产品设计阶段和过程设计阶段、设计主导阶段或是生产主导阶段[12]。虚拟制造将与产品制造相关的各种过程与技术集成在三维的、动态的仿真真实过程的实体数字模型之上,以高度综合的特征融合了各种先进制造技术、组织和理念,使产品与过程的集成得到了完美的体现。因此,信息技术、虚拟技术等为完美实施产品与过程的集成创造了前所未有的理想环境。另外,快速原型制造技术、准时制生产、制造资源管理、精益生产、敏捷制造等都以产品与过程的集成为重要原则和基础,为产品与过程的集成创造了先进的新手段,对生产过程、制造系统整体优化、改进企业组织管理工作提供了重要生产方法。
2产品与过程集成是制药装备产业创新发展的必然方向
2.1产品与过程集成是制造业发展的必然方向纵观制造业发展的历程,在手工制造时代,“做什么”和“怎么做”是一体化的,考虑这两个问题的主体是统一的。后来经过采用机器、发展大规模生产、建造流水线、实施专业化,设计者与制造者脱离。这样,在分工提高效率的同时,也带来了许多新问题,而且随着产品的复杂化、多样化,产生了越来越多的矛盾、脱节和对立。于是人们开始致力于弥补这些缺陷,实施协同配合、及时调度、同步交叉、加强反馈。事实上,当今发展的先进制造模式都是以集成的思路来处理这一矛盾的。
回顾制造业发展轨迹,不难发现,从“一体”经过“分离”,再走向“集成”,是螺旋式上升的发展[13]。产品与过程集成,是当今受到普遍重视的方向。虽然在提法上有时用的是设计和工艺、设计和制造、设计和过程、产品和制造的集成等,其实质和确切含义都是产品与过程集成。产品与过程集成不是简单的叠加,其目的不只是缩短周期,而是体现三大作用:(1)协调配合———相互沟通、减少矛盾、减少差错和返工;(2)缩短周期———早期介入、强化反馈、及早准备、提前完成;
(3)相互提高———互相支撑和加强、了解并充分发挥自身及对方的长处和优势[13]。因此,产品与过程集成是系统优化的能力倍增,是质的升级,是制造业发展的必然方向。
2.2产品与过程集成提高制药装备企业素质和增强企业竞争力
在国家产业结构调整时期,狠抓内部管理,苦练基本功,已成为许多企业扭亏增效的突破口。但现在问题的关键是如何抓管理、如何练内功?尽管有些企业在这方面已积累了不少经验,并取得了可观的成效,但总体来看,企业管理上仍然存在一些较严重的问题:如产品合格率低、成本上升、技术优势弱等[14]。出现这些问题的根源是企业的管理松懈以及随意性管理。为了解决上述问题,达到提高企业素质和增强企业竞争力的目的,我国制药装备企业必须要有一套科学的方法体系作保证,这就是工业工程技术所推进的产品与过程的集成。科学技术是第一生产力,是企业核心竞争力的重要表现。企业发展空间有多大,取决于它的科技实力,所以我国制药装备企业必须十分注重科技开发,在思想观念上要牢牢树立科技生存观、科技发展观;坚持把发展科学技术这个“第一生产力”作为企业生存和发展的大计;坚持把科技人才作为企业最重要的资源来爱护;确保企业装备、技术、人才的科技含量[15]。工业工程作为一门边缘交叉学科,是综合性的应用知识体系。我国制药装备企业应通过实施以产品与过程集成为重要原则和基础的并行工程、成组技术、虚拟制造、快速原型制造、精益生产等技术,通过实施现场管理,优化生产流程、改进操作方法、重新组合生产要素(人、机、料、方法、环境、检测、能源和信息等),不断改进和有效运行质量体系,生产出顾客满意的制药机械产品或提供顾客满意的服务,追求生产系统整体效益,降低成本、提高质量和生产率,从而达到增强市场竞争力的目的。
2.3产品与过程集成提高制药装备企业研发与创新能力
1.1对工业工程技术的认识
工业工程是一门通过对人、原材料、机器设备组成的系统的设计和改进,从而提高生产率并降低成本的技术。也就是指把工业专业知识和系统工程有机地结合起来,去研究如何使生产要素组成生产力更高和更有效运行的系统,以实现提高生产率为目标,为管理提供科学依据;其学科特点是强调系统观念与工程意识,侧重于从技术角度去研究解决生产过程中的合理化效率、效益问题,使管理与技术密切结合;其任务和目标是研究将人员、物料、设备、能源、信息等要素进行有效合理的组合与配置,并不断改善,实现更有效运行,为管理活动提供技术上的支持与保证,以达到系统效益与生产率的实现和提高[2]。工业工程技术包括并行工程、成组技术、虚拟制造、快速原型制造、准时制生产、精益生产、敏捷制造以及工作研究等等。国内外实践证明,在企业广泛推行“工作研究”,可以大大提高生产效率和产品质量,减少物质和劳动消耗,降低成本。这种既能改善生产环境又能减轻工人劳动强度的技术,正是企业孜孜以求的挖潜降耗、科学实行以岗定人和按产定员的有效途径[3]。因此,工作研究作为工业工程体系中最重要的基础技术,是以提高生产率和整体效益为目标的,是从方法、设备、工具和材料四者入手,以达到“最佳的方法、最好的动作和最大效率”的技术[4]。
1.2产品与过程集成的内涵
产品与过程集成不像制造业近20年中不断出现的许多新理论、新学说、新技术、新方法,不是又一种新的制造模式或新技术,它体现于诸多特定的技术和理论之中[5]。产品与过程集成代表了一种理念、原则、方法论和思维方式,是一种从实践中来又回到实践中去的指导思想,一种组织制造业生产活动的基本观念,它超越具体的制造模式或技术。也可以说,集成产品技术与过程技术植根于诸多的技术和理论,又高于这些技术和理论。产品与过程集成的深层次内涵是超越产品与过程本身,而着眼于全面的系统集成。事实上,产品与过程集成的概念已经不限于狭义的技术,而是涵盖更广阔的领域。多层面的产品与过程集成包括产品与过程技术的集成、产品规划与过程规划的集成、产品设计与过程设计的集成、产品系统与过程系统的集成、产品管理与过程管理的集成、产品组织与过程组织的集成等[5]。另外,产品与过程集成的概念同样可以扩展到制造活动与销售、供应、分包等活动的集成关系。例如,在整机厂和配套厂的关系中,产品与过程集成的原则可以体现在早期参与和同步工程两个方面,使得主要为配合整机厂产品技术而开发过程技术的配套厂能够发挥更积极主动的作用,从而提高合作的深度和有效性。产品与过程集成所代表的超越制造模式或技术、全面的系统集成内涵正是工业工程技术的核心内容和实质所在。
1.3典型工业工程技术实施产品与过程集成
层出不穷的各种面向下游的设计技术中,有许多是过程导向的设计技术,如为制造而设计、为装配而设计、为回收而设计、为检测而设计、为维护而设计等,都是推进产品与过程集成的基础技术。其核心思想是设计和制造的有机结合,例如:尽早建立设计—制造团队、确定符合制造过程及技术的设计要求、共同评估成本和有风险的环节、制造工程师从概念设计开始参与设计各阶段的评估、共同决定需要通过模型或模拟来确定的设计环节等[6]。
1.3.1并行工程(ConcurrentEngineering)
并行工程是集成地、并行地设计产品及其相关过程(包括制造过程和支持过程)的系统方法(1988年美国国家防御分析研究所提出)。目标:提高质量、降低成本、缩短产品开发周期和产品上市时间。具体做法:在产品开发初期,组织多种职能协同工作的项目组,使有关人员从一开始就获得对新产品需求的要求和信息,积极研究涉及本部门的工作业务,并将所需要求提供给设计人员,使许多问题在开发早期就得到解决,从而保证设计的质量,避免大量的返工浪费[7]。所以,并行工程强调面向过程,强调系统集成与整体优化。并行工程是工业工程的重要技术之一,它出色地实现和体现了产品与过程的集成。有的文献因此直接把并行工程解释为“集成产品与过程开发”(IntegratedProduct-ProcessDevelopment,IPPD);有的把过程再造、制造竞争力、系统工程、生命周期管理等都理解为集成产品开发的两个同步工程转轮上的组成辐条[8]。
1.3.2成组技术(GroupTechnology)
成组技术是指建立在以相似性原理基础上合理组织生产技术准备和产品生产过程的一种方法。成组技术也称群组技术,它将企业的多种产品、部件和零件,按照一定的相似性准则(如形状、结构、加工工艺等相似)分类编组,合理地组织生产[9]。成组技术的核心是成组工艺,它不以单一产品为生产对象,而是将成组哲理用于设计、制造和管理等整个生产系统,按照若干产品零件结构和加工工艺的相似性进行处理。实施步骤:零件分类成组、制订零件的成组加工工艺、设计成组工艺装备、组织成组加工生产线,从而扩大批量、减少品种,改变多品种小批量生产方式,便于采用高效方法、提高劳动生产率,以获得最大的经济效益。在机械制造工程中,成组技术是计算机辅助制造的基础。成组技术同样是产品与过程集成的完整体现。以产品技术与过程技术的集成为指导思想的成组生产布局,能够将产品技术和过程技术最好地结合起来,在相对独立的工作单元中,做到最大限度的灵活、快捷、高效率,既适用于多品种生产,也适合于一定数量的成批生产[10]。成组技术将是今后一段时期内现代工厂布局的主要发展方向。
1.3.3虚拟制造(VirtualManufacturing)
虚拟制造又叫拟实制造,是20世纪80年代后期美国首先提出来的一种新思想,它是利用信息技术、仿真技术、计算机技术等对现实制造活动中的人、物、信息及制造过程进行全面的仿真,并及时地、并行地、模拟出产品未来制造过程乃至产品全生命周期的各种活动对产品设计的影响,预测、检测、评价产品性能和产品的可制造性等,从而更加有效地、经济地、柔性地组织生产,增强决策与控制水平,有力地降低由于前期设计给后期制造带来的回溯更改,达到产品的开发周期和成本最小化、产品设计质量的最优化、生产效率的最大化[11]。基于虚拟现实技术的虚拟制造技术是在一个统一模型之下对设计和制造等过程进行集成,这里很难区分产品设计阶段和过程设计阶段、设计主导阶段或是生产主导阶段[12]。虚拟制造将与产品制造相关的各种过程与技术集成在三维的、动态的仿真真实过程的实体数字模型之上,以高度综合的特征融合了各种先进制造技术、组织和理念,使产品与过程的集成得到了完美的体现。因此,信息技术、虚拟技术等为完美实施产品与过程的集成创造了前所未有的理想环境。另外,快速原型制造技术、准时制生产、制造资源管理、精益生产、敏捷制造等都以产品与过程的集成为重要原则和基础,为产品与过程的集成创造了先进的新手段,对生产过程、制造系统整体优化、改进企业组织管理工作提供了重要生产方法。
2产品与过程集成是制药装备产业创新发展的必然方向
2.1产品与过程集成是制造业发展的必然方向纵观制造业发展的历程,在手工制造时代,“做什么”和“怎么做”是一体化的,考虑这两个问题的主体是统一的。后来经过采用机器、发展大规模生产、建
造流水线、实施专业化,设计者与制造者脱离。这样,在分工提高效率的同时,也带来了许多新问题,而且随着产品的复杂化、多样化,产生了越来越多的矛盾、脱节和对立。于是人们开始致力于弥补这些缺陷,实施协同配合、及时调度、同步交叉、加强反馈。事实上,当今发展的先进制造模式都是以集成的思路来处理这一矛盾的。回顾制造业发展轨迹,不难发现,从“一体”经过“分离”,再走向“集成”,是螺旋式上升的发展[13]。产品与过程集成,是当今受到普遍重视的方向。虽然在提法上有时用的是设计和工艺、设计和制造、设计和过程、产品和制造的集成等,其实质和确切含义都是产品与过程集成。产品与过程集成不是简单的叠加,其目的不只是缩短周期,而是体现三大作用:(1)协调配合———相互沟通、减少矛盾、减少差错和返工;(2)缩短周期———早期介入、强化反馈、及早准备、提前完成;(3)相互提高———互相支撑和加强、了解并充分发挥自身及对方的长处和优势[13]。因此,产品与过程集成是系统优化的能力倍增,是质的升级,是制造业发展的必然方向。
2.2产品与过程集成提高制药装备企业素质和增强企业竞争力
在国家产业结构调整时期,狠抓内部管理,苦练基本功,已成为许多企业扭亏增效的突破口。但现在问题的关键是如何抓管理、如何练内功?尽管有些企业在这方面已积累了不少经验,并取得了可观的成效,但总体来看,企业管理上仍然存在一些较严重的问题:如产品合格率低、成本上升、技术优势弱等[14]。出现这些问题的根源是企业的管理松懈以及随意性管理。为了解决上述问题,达到提高企业素质和增强企业竞争力的目的,我国制药装备企业必须要有一套科学的方法体系作保证,这就是工业工程技术所推进的产品与过程的集成。科学技术是第一生产力,是企业核心竞争力的重要表现。企业发展空间有多大,取决于它的科技实力,所以我国制药装备企业必须十分注重科技开发,在思想观念上要牢牢树立科技生存观、科技发展观;坚持把发展科学技术这个“第一生产力”作为企业生存和发展的大计;坚持把科技人才作为企业最重要的资源来爱护;确保企业装备、技术、人才的科技含量[15]。工业工程作为一门边缘交叉学科,是综合性的应用知识体系。我国制药装备企业应通过实施以产品与过程集成为重要原则和基础的并行工程、成组技术、虚拟制造、快速原型制造、精益生产等技术,通过实施现场管理,优化生产流程、改进操作方法、重新组合生产要素(人、机、料、方法、环境、检测、能源和信息等),不断改进和有效运行质量体系,生产出顾客满意的制药机械产品或提供顾客满意的服务,追求生产系统整体效益,降低成本、提高质量和生产率,从而达到增强市场竞争力的目的。
2.3产品与过程集成提高制药装备企业研发与创新能力
中国制造2025战略规划以来,中药制造业对采用先进制药技术有了强烈愿望,中药工程科技创新驱动力正在形成。为实现“制药强国”建设目标,我们应该以更高的站位和更宽的视野谋划中药制药工程科技创新发展战略,牵引中药产业技术创新升级,建立全面提高国家药品标准的支撑技术体系,占据国际天然药物制造业的科技制高点,进而使我国倡导并制定的中药工业技术标准成为全球规则。
具有现代工业形态的我国第一代中药制药技术创始于
20世纪70年代,以水煮醇沉等工艺的“机械化和半机械化”为技术特征,可称为“中药工业1.0”,20世纪90年代出现了第二代中药制药技术,以中药制药设备的“管道化自动化和半自动化”为技术特征,可谓“中药工业2.0”;21世纪初笔者率先提议运用高新技术改造中药传统制造方式,重视发展中药制药工程技术,应尽快实现中药工业数字化网络化自动化及智能化等技术突破,提高产品质量及资源利用度并降低物耗(即提质增效),引导中药制造业步上先进产业台阶这可视作提出“中药工业3.0”构想:面对“云计算”和大数据时代的到来,笔者提出创新发展以制药工艺“精密化、数字化及智能化”为主要技术特征的第三代中药制药技术,实现中药制药技术的升级换代,迎接第三次工业革命。2013年7月在天津举办的国家人社部高级研修项目“现代中药制药质量控制技术高级研修班”上,笔者分别介绍了新一代中药制药技术及中药数字制药;同年8月在中国工程院主办的第165场中国工程科技论坛上,笔者在专题报告“从数字制药到智慧制药;大数据时代的制药工程科技”中提议:大力发展数字制药技术,打造数字化中药先进制造平台,并推动中药工业从数字制药迈向智慧制药时代;在2015年4月召开的第201场中国工程科技论坛上,笔者阐述了“对制药工程科技创新与中国医药工业4.0的思考”。本文根据国际先进制药技术最新进展,对笔者以往论述进行整理和归纳,结合我国制药强国建设中现实情况,进一步思考中药制药技术创新升级策略,提出发展“中药工业4.0”的战略性构想和技术路线图。
1中药制药工程科技前瞻分析
中医药是实现“健康中国梦”的重要支撑力量,中成药是中华民族贡献给人类的拥有特定临床优势的药品,中药工业是在我国生物医药领域中具有重要战略地位的核心产业,确保中药产品安全、有效和质量可控是医药工业界肩负的重大使命。为切实提高中药产品质量,必须将制药工艺与制药工程技术创新研究延展前移到中药新药研发阶段;而对于已上市中成药品种,应当实施制药技术升级改造,这也是制定中药配方颗粒制备工艺标准及生产技术规程中必须重视的问题。如何使用化学组成差异度较大的药材原料制造质量一致性较好的中药产品是世界性难题,唯有通过中药制药工程科技创新才有可能破解。
1.1中药工业的历史遗题 受制于药品原研时代在医药知识、工艺技术、制药设备以及药品监管政策等诸多方面的历史局限,大部分中成药品种的制药技术较落后,存在粗放、缺控、零乱、低效、高耗等问题,导致相关药品标准难以提升,这是做大做强中药产品必须直面的关键性挑战。
1.2中药工业的新动能 数字化是当今世界的技术潮流,前所未有的巨量数据喷涌给人们带来大数据时代的空前机会。笔者认为,应尽快推动大数据技术在制药业的应用,当前须对药品生产全过程注入“数字技术NDA”,即实施制药车间数字化改造,收集、管理、分析及利用制药过程数据;倘若大量使用工业传感器和智能检测仪表甚至分析仪器等过程检测设备,将使制药过程数据呈指数级增长,积累形成制药工业大数据,这是极为重要的信息资产,具有不可估量的知识资源价值,从而引发颠覆性的制药技术理念和模式创新;应采用数字技术将制药工艺系统与生产管理系统相融合,由此提升制药过程管控技术水平,依据真实数据而不是经验及直觉做出控制和管理决策,这将为制药过程质量控制、制药工艺品质优化、降低生产成本及节能减排、药品质量风险管控、生产车间管理及企业经营决策等提供强有力的技术支撑,为中药工业跨越发展提供新动能。
1.3中药工业的重大挑战 中药制药车间的现实技术表现远达不到人们理想的要求,更不是理论上完善的技术设计,设计和建造优质中药产品生产线已成为中药制药工程界的紧要任务。中药制药过程的分段式工艺布局形成了“各自为政”的割裂式控制现状,积累的大量数据分散在各自的“信息孤岛”,无法有效用于制药过程控制与管理决策,导致实现中药生产全程质量控制目标的技术难度极大;另一方面,药品要求的均质性与药材以及制药工艺过程的异质性形成了中药制造的复杂性,如果不对制药过程进行全面而深刻的持续性跟踪考察与系统研究,就难以透彻地认知控制药品质量的各项要素;再者,不同种类的中药工业数据都是以彼此独立的方式收集,对众多来源的庞大数据集群进行整合及自动化分析存在难以想象的困难,考验着业界的智慧和能力,上述这些都是设计和建造数字化制药工厂所面对的艰巨挑战。
目前,中药制药工程界技术概念陈旧落后,没有围绕制药过程质量控制这一提高药品质量的关键核心技术开展系统深入的研究。在中药生产车间技术改造中,有人将制药工艺设备自动化说成是数字制药,甚至出现将近红外光谱检测等同于在线质量检测并等同于过程质量控制的怪象,严重误导中药企业,造成花大钱没有解决质量控制实际问题的不良后果。因此,如何引领我国中药工业迈向数字制药时代面临极严峻的技术挑战
1.4中药制药工程科技战略思考 面对新一轮工业革命的机遇与挑战,应当认清中药产业乃至全球医药产业大格局,着眼于未来国际制药业竞争,思考中药工业战略性定位,注重中药制药技术的后发优势,进行前瞻性技术布局,制定中药制药工程科技创新的大战略(grand strategy),即开展中药工业大设计(grand design)。布局未来需要我们显示战略勇气和智慧,也需具备全球眼光及产业战略思维。通过启动中药制药工程科技创新的引擎就能激发中药产业发展的新活力,建立撬动显著提升中药产品质量和生产效能的“新支点”。
当制药工业跨入大数据世界,依赖经验对制药过程进行操控和管理的传统方式将沦为落伍。谁拥有药物“智”造的核心技术,便拥有了改变医药产业格局的话语权,仍采用陈旧制药技术的企业将可能淘汰出局
时不待我,中药制造业应集结千帆竞发的聚合之势,加快推进中药工业数字化和信息化,谋势而动,顺势而为,乘势而上,借梯登高,迎接和把握国际制造业科技变革大趋势,借助数字化网络化智能化制药技术提高药品标准,实施中药工业技术标准国际化战略,造就一批中药企业成为附加值更高的价值链环节
中药制造业应当采用制药工业物联网及医药大数据等领先一步的前沿技术,建设智能制药的“未来工厂”,将中药产业从粗放型向智慧性升级
1.5中药制造业的“未来工厂”德国工业4.0所引发的工业革命悄然而至,其技术特征是将信息物理融合系统(GPS)广泛应用于制造业,构建智能工厂并实现智能制造,这标志着世界即将进入以智能制造为核心的智能经济时代制造中药的“未来工厂”应瞄准国际前沿技术水平,以制药工业物联网为核心,将所有结构性与非结构性数据整合进“大数据仓库,”构建功能强大的中药工业信息智能管理系统通过大数据分析从巨量数据中提炼出有价值信息,同时通过可视化技术将数据转变成明晰易懂的制药过程信息,并进一步转化为知识,应用于改善过程管控模式、提高药品质量、避免生产事故、减少质量风险、降低能耗和物耗、预测制药过程结果、增加生产效力等。
中药制造由多个单元工艺组合而成,导致其制药过程数据集合以分段式的复杂多维空间为基本特征。因此“未来工厂”应在信息技术的主导下多段融合,建立多维多段一体的全过程管控模式,重构制药过程控制与管理体系。运用数据挖掘工具发现制药过程动态规律、各类关联和最佳控制模式,构建预测模型以优化控制和管理决策,弥补操作和管理经验的不足,提高生产精益化程度,进而持续提升中药产品质量和生产效能,实现智能制药和绿色制造目标。
2中药制药工程领域若干概念、术语及定义
中药制药界许多概念、术语或技术名词在中药制药工程理论上尚无明确的定义,某些术语含义不确切,在有歧义时仍含混使用,导致不同的人使用同一个名词时,其词意差别很大,易引发技术困惑或误导,甚至影响某些先进技术方法的声誉,阻碍了先进制药技术在中药产业的应用与发展。因此,极有必要厘清这些概念、术语或技术名词的真实含义,对其涵义作准确的定义。
2.1中药制药过程管控 通常简称过程管控,包括过程控制与过程管理两大方面,制药过程控制主要包括:①提取浓缩、干燥、纯化、制剂等工艺的制药设备控制,②制药工艺品质控制,③制药过程质量控制,④中药产品质量检验,⑤质量风险控制。制药过程管理主要包括:①GMP管理,②以设备为中心的全员生产管理,③IS010012测量管理,④AQ/T9006企业安全生产管理,⑤IS014000环境保护管理等。
2.2在线检测 这是一个常被混淆的技术名词。在线检测系指在生产线上检测制药过程参数,而过程参数通常包括工艺参数、状态参数、质控参数、物料属性参数及环境参数等不同类别参数(如密度,pH,水温,乙醇浓度,蒸气压力,气温,流量等)。显然,在线检测不等同于在线检测药品质量或检测药用物料质量,更不意味着在线质量控制。
2.3质量在线检测 通常是指在生产线上检测药用物料质量。在不至于混淆的情况下,有时也将检测与药品质量相关的过程参数称之为质量在线检测。有必要指出,物料质量属性并不等同于质控参数,质控参数不一定是药用物料成分当检测的物料属性参数与药品质量无关时,则无法表征药用物料质量;即检测物料属性参数并不一定能检测出药用物料质量。因此,在使用近红外光谱等过程分析仪器检测药材或某工艺环节的药用物料质量前,必须全面深入研究哪些成分与药品质量相关,以及这些成分含量的范围。
2.4过程质量监测 一般是指不仅检测药用物料质量参数,而且在给定的范围内进行观察和判断质量状况,通常设置越限报警功能。因此,检测与监测的工业意义不同,监测质量比检测质量更为重要,难度也更大。
2.5过程质量监控 一般是指不仅检测药用物料质量参数,而且将这些质量参数调控在给定的范围内。显然,近红外光谱在线检测并不一定能在制药过程中准确检测出药用物质,也难以应用于监测过程质量;过程质量监控需要多种技术方法的融合才能实现,仅靠单一的近红外光谱检测技术无法控制中药产品质量,不少企业盲目投资建设近红外在线检测系统失败的主因就在于此。
2.6过程质量控制 一般是指在中药生产全程中通过调节各种关键的过程参数来控制药品质量,使制药工艺流程制造出来的中药产品符合特定的质量要求。
由上述定义可知,在线检测方法包括工业传感器、过程检测仪表及过程分析仪器等;不能将在线检测视作为在线质量检测,也不能将在线质量检测等同于过程质量监测,更不能视作为过程质量控制;过程质量监测不等同于过程质量监控,也不能视作为过程质量控制。
3中药数字制药技术概述
中药数字制药是采用统一的数字化技术,不仅对制药工艺参数、质控参数、状态参数、物料属性参数、环境参数等过程参数进行数字化检测、控制及储存,而且对药材原料及制药过程中药用物料进行数字化检测,监测各类过程参数与药用物质在制药过程中的变化轨迹,综合判断过程状态并控制工艺进程,从而控制中药产品质量;同时,对CMP,计量器材,安全生产,生产车间,环保,仓储及物流等实施数字化管理按照制造业国际上目前通行的观点,可称之为“中药工业3.0”。
中药数字制药的主要技术特征是:原料药材数字化、药用物质数字化、制药过程各类参数的数字化(包括工艺参数、状态参数及质控参数等)、单元工艺模型化及定量化、生产车间各类管理体系数字化、全过程测管控信息一体化、各类信息集成管理和综合应用。
中药数字制药技术包括:①提取、浓缩、干燥、纯化、制剂等工艺的制药设备自动控制技术;②制药工艺模型化及定量化/制药工艺品质优化技术;③复制药过程各类参数在线检测技术;④制药过程质量数字化控制技术;⑤制药过程分析建模/PAT技术;⑥制药过程测管控信息一体化技术;⑦质量风险数字化管理及控制技术;⑧药效物质数字化辨析技术;⑨数字GMP系统;⑩精益生产MIS系统;⑾药品质量检验LTMS系统;⑿数字化仓储系统等。经过十余年的努力,本团队已建立中成药二次开发核心技术体系(包括中药数字制药技术),促进了中药产业的数据制药时代到来。
笔者认为:在中药数字制药技术体系建设中,单元工艺建模是前提,数字化设备是基础,全过程测管控信息融合是关键,管控质量风险是底线,药用物质全程监测是核心,数据集成管理及应用是根本,数字CMP管理是保障。中药制药工程界应当在中药制药工艺模型化和定量化方面聚焦发力,根据单元工艺流程将制药过程质量控制序贯化、精准化和规范化并具备预测性,将精益生产理念渗透到中药制造过程的每一个工艺环节,打造“数字化透明”的中药制造平台,实现制药过程数字追溯,为持续性提升中药产品质量奠定技术基础。
4中药智能制造技术概述
21世纪的工业信息科学将像20世纪的硅信息科学一样具有变革性意义,将产生全新的产业技术并使药物制造方式发生根本性改变伴随着数字制药技术广泛应用而产生的以各种形式存储的海量数据可创造丰硕的知识财富和经济价值,这就需要制药工业的大数据分析师“点石成金”。超大规模的信息交互与多维融合必将引发制药过程控制模式和生产管理方式的深刻变革,在制药过程高度信息化前提下实现知识发现管理和应用,牵引“数字化透明”中药制造平台向智能化发展,从而升华形成中药智能制造技术,即中药工业4.0。
中药智慧制药的主要技术特征是,使用大量的工业传感器过程检测仪表以及过程分析仪器等组成一张庞大而灵敏的可反映制药过程全貌的感知网,并将信息技术与制药技术深度融合,进而实现人与人、人与机器机器与机器生产管理与过程控制等之间互通互联,通过制药设备、生产管理、质量检测等与过程控制系统网络化联接,形成集聚了原料/制药生产/药品流通/临床使用等中药产品全生命周期信息的智能网络,使制药过程的每一个工艺细节均被注入“智慧基因”通过赋予中药制造平台学习和思考能力,用充满智慧的数据整合、分析与挖掘,从多种来源的中药工业数据中寻找关联,发现制药过程规律,洞察引起药品质量波动的因素,不仅实现制药工艺精湛控制,而且达到管理精益化要求,实现优质保量低耗绿色高效能制药。
中药智能制造技术主要包括:①制药信息处理、信息解释、信息利用、知识发现与管理等关键技术;②测管控信息融合智能管理技术;③中药产品质量智能预测技术;④质量风险智能预警及预控技术;⑤制药过程智能预测控制技术;⑥制药过程轨迹智能追踪分析技术;⑦水、汽、电系统智能优化管理技术;⑧精益生产智能管理技术等。
5中药工业4.0技术路径
制药工业数据储备、数据分析、数据建模、数据挖掘及可视化能力将成为医药产业未来最重要的核心竞争力。工业信息感知技术的发展,使获取制药过程全貌的数据描述成为可能,通过分析各类数据集群间关联关系,不仅能认知制药工艺各环节输入/输出的药用物料变化规律,而且可以揭示在生产全过程中物质、能量、信息等变换规律,发掘出中药工业数据的内在价值,创新定义数据制药技术,开辟获取中药工艺知识的新路径,重新建构中药工业技术格局,这是建设中药工业4.0的战略价值所在。
目前,我国有些地方已出现智能制造园区及智能工厂建设热潮,许多地方政府在规划未来5年建设上千个智能工厂或车间,但至今未见制药企业参与,以工业互联网为代表的信息技术如何进入制药工业领域仍面临巨大困难。一方面工业互联网和大数据在制药业并无技术应用基础,缺乏制药信息工程技术人才,容易出现只做“表面文章”而没有促进企业提质增效现象;另一方面,很多制药企业生存艰难,无暇顾及新概念技术,缺乏应用新技术的积极性或足够资金。我国中药制造业仍处于工业2.0进程中,传统制药工艺与现代制药技术共生,落后与先进并存。
根据中药工业的上述现实情况,笔者认为在实现中药工业4.0战略目标的征程中应实行分步走策略,倡议在现阶段首先大力推进中药数字制药技术的广泛应用,促进中药工业化与信息化融合,以应用目标牵引,构建“信息主导、系统集成”的中药数字制造技术平台,为实施中药工业4.0技术升级工程建设夯实数字化基础,创造必要的技术条件。人才是第一资源,组建科技创新团队是我国中药工业跨越发展的关键,应当构建成长性环境以及多样性、包容性学术生态,使中药制药工程科技创新力量成为中药产业可持续发展的发动机和推动力。
关键词 制造业;竞争力;结构;评价
【基金项目】山东省软科学项目(2012RKB01045);山东青年政治学院博士科研启动基金项目。
【作者简介】周青梅,山东青年政治学院副教授,博士,研究方向:收入分配、产业经济学。
一、引言
制造业是经济发展的基石,在一定程度上决定了一个国家经济发展的水平。对制造业发展程度进行准确的判断和评价,才能明确制造业发展和结构调整的方向和着力点。
一般来说,一个国家或地区制造业发展水平高,意味着制造业比较“先进”。在产业转型问题研究中,“先进制造业”是一个较为普遍的提法。先进制造业是相对于传统制造业而言的,所谓的“先进”体现在产业、技术和管理几个层面,即在生产体系中处于高端,具有较高的附加值和技术含量的制造业,通常指高技术产业或新兴产业。
随着经济发展,对先进制造业内涵的认识也在不断深入。先进制造业本质上体现的是传统产业的升级换代和科学技术的创新发展,工业化和信息化贯穿先进制造业发展全过程。就阶段性目标而言,先进制造业包括制造业竞争力逐步增强、结构进一步优化升级、布局更加合理、技术创新能力、外向度、可持续发展能力不断提高等内容。先进制造业不仅要求制造业产业本身发展水平高,还指其结构符合合理化、高度化的标准。这两个方面共同构成了先进制造业的基本内容。
二、制造业产业竞争力测评的理论与方法
制造业作为一个产业,其发展程度如何,即是否先进可以从不同的角度来评价,但先进制造业必定是竞争力强、有竞争优势的产业。就竞争力而言,目前有多种提法、多种评价方法和指标。本文基于不同的层次,从制造业国内竞争力、国际竞争力①及企业与产品竞争力的角度对制造业发展的理论与方法问题做一研究。
(一) 制造业竞争力理论及其发展
制造业竞争力是制造业产业发展的系统能力。
制造业竞争力理论的基础是产业竞争力理论。
1.产业竞争力理论的形成。产业竞争力理论是一个包含竞争优势、核心竞争力、国际竞争力等在内的庞大理论体系,是战后国际经济变革背景下各种经济学、管理学理论融合的产物,包括产业集聚、产业转移、区位优势等影响区域经济发展的各种因素。产业竞争力的理论基础是亚当·斯密的“绝对成本说”和李嘉图的“比较成本说”,后来,赫克歇尔-俄林对传统比较优势理论进行了补充,指出国家之间要素禀赋的差异决定着贸易的流动方向。此后的学者主要致力于产业结构理论研究,产业竞争力理论没有更大的进展。
直到20世纪80~90年代,迈克尔·波特在反传统国际贸易理论的基础上对全球竞争进行了研究,认为更应该关注的是为什么某个国家在某个产业特别有竞争力,而不再是某个国家为什么有竞争力。从1980年到1990年间,他连续发表了《竞争战略——分析产业和竞争者的技术》、《竞争优势——创造和维持优良绩效》、《全球产业中的竞争》、《国家的竞争优势》四部著作,提出了国家竞争优势的“钻石理论”。这一理论也成为此后产业竞争力理论体系中最具影响力的理论。
该理论认为,产业的国际竞争力主要取决于生产要素,需求因素,相关性产业,企业战略、结构和同业竞争四个主要因素,以及政府行为和机遇两个辅助因素,它们构成了“钻石模型”的主体框架。该理论从管理学的角度系统阐释了国家竞争优势模型、五种作用力模型、企业“价值链”以及国家竞争优势的发展阶段,形成了一个涵盖国家、产业和企业不同层面竞争力主体的国际竞争力理论体系。
“钻石理论”一经提出就产生了巨大影响,此后的相关研究多围绕这一理论模型进行拓展,致力于弥补该理论模型在解释现实问题时的缺陷。推动该理论应用发展研究的组织主要是世界经济论坛和瑞士洛桑国际管理发展学院。
2.产业竞争力理论进展。产业竞争力理论以波特钻石理论为标志和主要贡献,20世纪80年代形成后,其发展主要沿着两个方向进行,一个是理论上的拓展,一个是方法上的不断突破。
理论上的进展主要体现为对波特理论的补充与修正,针对“钻石模型”在研究国际竞争力时忽视外部因素影响的问题,克鲁格曼和邓宁等人加入了跨国因素,形成了较为完善的“双钻石模型”,并将理论拓展到企业竞争力、国家竞争力的研究领域。更多的研究是方法上的,是以钻石理论为基础结合各国实际进行实证检验。20世纪80年代后,西方发达国家制造业受到来自日本的强力竞争,制造业的发展问题引起更多重视,实证研究开始增多。
将现代计量经济学分析方法引入产业竞争力理论研究,就形成了产业竞争力的计量分析理论。产业竞争力计量分析的一般思路是:首先,建立评价指标体系,对各指标合理赋权,建立模型;其次,搜集数据进行分析,得到量化评估结果。计量分析必须解决两个关键问题:一是指标的选取和指标体系的建立;二是对各指标科学地赋予权重。
评价指标方面,一般来说,可以分为两大类:一类是显示性指标,用市场占有率和利润率反映竞争力结果;另一类是分析性指标,这类指标反映竞争力形成的直接和间接原因。直接原因指标主要反映生产率和企业营销管理效率等,间接原因指标大体相当于Porter的“国家竞争优势四要素”。从形成过程看,最早有Buck-ley 等人建立的绩效衡量、竞争潜力衡量和竞争过程衡量三大体系。绩效衡量包括利润、增长率、市场份额等指标,其中市场份额指标一般采用显示性比较优势(RCA)指标,国内的研究也较为普遍地使用了这一指标。
在指标赋权方面,可以直接采用传统经验赋权方法,也可以运用统计学中的赋权理论,即现代统计学中的主成分分析法。
(二) 分层次的评价方法
1.制造业产业国内竞争力评价。衡量一个产业的竞争力一般采用多指标综合分析,研究的主要思路都是通过构建评价指标体系,依据评价结果进行区域间或产业间的比较。
反映制造业国内竞争力的指标有很多。最早的指标体系研究仍是基于Porter的产业竞争力理论,主要选取了相对劳动生产率指标、与出口相联系的R&D投入密度、全要素生产率TFP等指标来衡量产业的竞争优势。
国内有学者构建了包括制造业实力竞争力、成长竞争力、市场竞争力、成本竞争力、创新竞争力、投资竞争力和管理竞争力7大要素,共49个指标的制造业竞争力评价框架,详细描述了地区制造业竞争力水平和态势。以实力竞争力为例,它是根据产值规模指数、资产规模指数、职工规模指数、区位熵等来衡量制造业的规模和实力。
具体的测评方法与分析工具有很多,一般可以分为单因素方法和综合评价法,常见的有成本收益法(Siggel,1998)、区位熵方法、单一比较法、加权综合法、CMS模型、投入产出法、主成分分析法(因子分析法)、聚类分析法、数据包络分析(DEA)、组合分析等。
较早进行实证检验的有J.Fagerberg (1995)、Marion & Kim(1997)、Lourdes Moreno (1997) ,他们分别运用OECD国家、美国和西班牙的数据,建立计量模型对产业竞争力问题进行了研究。
分析制造业的发展程度可以从制造业对就业的贡献、制造业增加值比率和制造业对出口的贡献三个角度来进行。在工业化阶段,制造业的增加值应占40%~35%;后工业化阶段,亦应保持在30%~25%之间,这应视为规律性的产出结构。这一比例是制造业产业结构调整中必须十分重视的。
一些研究从产业效率角度,构建了包括人均固定资产净值在内的12个反映制造业财务绩效的指标体系,用因子分析法得到产业绩效的主因子得分,构建面板数据模型,考察制造业竞争力和产业绩效的关系。或者从产业投入、产业产出、经济绩效和技术水平指标方面构建评价指标体系,用混合回归或DEA方法测算制造业的竞争力和影响因素。
在分析方法上,对各省(市区) 及省际间制造业竞争力进行比较研究和综合评价,多用主成分分析法。主成分分析法利用降维的思想,把多指标通过线性变换转化为少数几个重要的综合指标。把给定的一组相关变量通过线性变换转成另一组不相关变量,这些新的变量按照方差依次递减的顺序排列。主成分分析法是一种多元统计分析方法,首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。
偏离-份额(SS) 分析法也常用于地区间竞争力的比较研究。此方法由美国著名经济学家丹尼尔.B.克雷默于1942年首先提出,后由E.S.邓恩和埃德加.M.胡佛在应用中做了进一步的发展与完善,到了20 世纪80 年代初,由Dumn 集各家之长,总结成现在普遍采用的形式。偏离-份额分析法是把区域经济变量与标准区域(通常指一个国家)联系起来比较,将区域自身经济总量(G)在某一时期的变动分解为三个分量,即份额分量(RS)、结构偏离偏离分量(PS) 和竞争力偏离分量(DS),它们之间的关系是:G= RS+ PS+ DS。三个分量可以作为评价区域经济竞争力强弱、确定区域未来经济发展方向和产业结构调整原则的标准。
另外,增长速度也可以显示制造业的增长情况,所以经济增长速度也是反映制造业竞争力强弱的一个主要指标,是分析制造业在不同发展阶段发展特征的主要依据。
2.制造业国际竞争力评价与分析。制造业国际竞争力是以一个国家为主体的制造业发展程度及综合素质。20世纪80年代以后,随着经济全球化的出现和信息化的飞速发展,揭示产业国际竞争力演变规律的方法也逐渐形成。
制造业国际竞争力指标体系,可以简单地依据跨国公司数量及其表现来度量,也可以使用进出口数据(包括显性比较优势指数RCA、贸易竞争指数TC、国际市场占有率MS、产业内贸易指数IIT等)、生产率数据、产业环境数据(研发投入和工业集中度)和利润指标数据进行国际竞争力的评价。其发展历程从一开始的少数几个粗放指标发展到多而杂的多指标,最后又回到了更加精确的少指标的研究。
显性比较优势指数(RCA) 是衡量一国产业在国际市场竞争力最具说服力的指标,指一个国家某种商品出口额占其出口总值的份额与世界出口总额中该类商品出口额所占份额的比率。RCA 值接近1表示中性的相对比较利益,无所谓相对优势或劣势可言;RCA值大于1,表示该产业商品有出口相对优势,具有一定的国际竞争力;RCA值小于1,则表示国际竞争力相对较弱。
贸易竞争指数(TC) 是一国或地区进出口贸易的差额占其进出口贸易总额的比重。TC指数取值范围为(-1,1),TC 值越大,表明竞争优势越强,反之则竞争优势越小。
国际市场占有率(MS)是地区产业出口额占世界该产业出口总额的比重,反映某一区域产业或产品的国际竞争力或竞争地位的变化。
制造业国际竞争力的研究方法主要有关键指标、多边比较和综合指数等方法。一般是从宏观数据角度出发,用生产效率、劳动成本、产品市场、自主创新等在内的指标体系,借助多指标综合指数和多元统计方法,通过多边比较方法对制造业竞争的关键指标与主要国家(地区)进行比较。
3.制造业企业或产品竞争力分析。从微观角度看,制造业竞争力与企业生产效率、市场运行效率有关。企业绩效评价是最为常用的评价企业竞争力的指标体系,西方国家企业绩效评价理论研究经过不断深入和发展,目前已形成比较完善的绩效评价方法和技术。
反映企业绩效的一个重要指标是产品市场份额。市场份额是产品销售量(或销售额)在市场中所占的比重。市场份额支撑着产业利润,但是市场份额只能反映制造业的“大”,而不能反映其“强”的程度。市场份额高并不必然意味着企业的利润和效率高,也不意味着企业竞争力与国际竞争力强。所以市场份额指标存在一定的局限性,不能单独计量制造业的竞争力。要更好地说明问题,还应该同时运用效率指标。
制造业发展水平的高低最终可归结为生产效率是否提升。从理论经济学的角度来定义,竞争力的本质就是经济效率或者生产率,在经济学意义上,无论如何定义企业竞争力,都不会离开效率含义。
效率或效益是产出和投入的比例,包括制造业全要素生产率(TFP)、企业经营效率、技术效率等指标的测算与比较。效率是产业竞争力的最终结果,不管是改善竞争环境、提高生产率还是增加市场份额,最终的指向都是利润的实现。
总资产贡献率、资金利税率、销售利税率、产值利税率、利润增长率和全员劳动生产率等指标也可以从资源利用效率和利润创造能力方面反映制造业企业的效益水平。
但就像市场份额不能单独计量制造业的竞争力一样,纯粹的效率指标也无法全面评价制造业企业的竞争力。生产率只是影响企业业绩的因素之一,并不能反映企业或产业在创新、生产和竞争力方面的所有情况。除劳动生产率、综合生产率等指标外,还必须运用质量、创新或产品开发速度等指标,但是这些指标的数据很难获得。不过,这些因素都能通过市场份额占有的高低反映出来。所以,为了全面计量制造业的竞争力,同时运用市场份额指标和效率指标是必要的。
创新特别是技术创新能力是评价或测算制造业企业竞争力的一个重要指标,包括技术创新和原始创新能力等指标。创新是竞争优势的主要来源,具有竞争优势的产业一般是技术密集型产业。Porter认为,科技进步能有效提高制造业产品的质量和性能,使产品在竞争中具有质量和品牌优势;科技进步是新产品开发的重要基础,并导致管理和组织制度创新。
学术界普遍认为影响制造业先进性的最重要因素是技术和获利能力,两者紧密相连,彼此促进。先进技术能够创造出满足消费者需求的新产品,增加经济利益;企业利润增加也会加强技术的持续改进,保持良性循环。制造模式和社会效益对制造业先进性的影响不可忽视。
当然,制造业产业国内竞争力、国际竞争力与企业或产品竞争力之间存在内在的一致性,企业或产品竞争力强的制造业一般来说国内竞争力也强,国内竞争力不强的企业国际竞争力也不会强。
三、制造业产业结构优化绩效的理论与评价方法
(一) 制造业结构变动理论
制造业结构是产业结构在制造业领域的具体化,制造业结构变动反映了其内部各行业的兴衰变化。在资源、环境、政策、体制、贸易等内外部条件作用下,各要素在行业之间进行更加有利的配置,可以推进行业之间产值、效率等的提升。
国外对产业结构问题的研究主要着眼于产业结构的演变规律。产业结构理论在20世纪50~60年代开始较快发展。这一时期对产业结构理论研究做出突出贡献的代表人物包括列昂惕夫、库兹涅茨、A.刘易斯、赫希曼、罗斯托、钱纳里、霍夫曼、希金斯及一批日本学者等。但是专门针对制造业结构变动的研究非常少,仅有一些散见的或附带性的成果。
霍夫曼对工业结构演变问题做了开创性研究,提出了揭示一个国家或区域的工业化进程中工业结构演变规律的霍夫曼定理。霍夫曼使用了近20个国家的时间序列资料,分析了制造业中消费资料工业和资本资料工业的比例关系,提出了“霍夫曼比例”或“霍夫曼系数”。并得出结论,在工业化过程中霍夫曼比例会不断下降,工业将会向重化工业发展。
列昂惕夫对投入产出进行了研究,把复杂经济体系中部门之间的相互联系数量化,通过结构系数向量反映各个部门的生产过程结构。这是有关制造业部门关系最早的量化描述,但是他并没有指明制造业结构变动的方向。
同一时期,钱纳里运用51个国家的数据计算得出了不同经济发展水平下制造业各部门相对比重变化的“标准值”,发现随着收入水平的提高,制造业内部结构中投资品所占比重逐步增大,消费品比重则趋于下降。
20世纪80年代以后,Eli Berman等探讨了美国制造业结构的变动,认为劳动力需求从非熟练工人到熟练工人的变化和技术进步导致了美国制造业结构的重大变动。
在我国,随着工业化的不断推进,对制造业结构变动的研究开始增多,但多为比较分析与对策研究。多数研究认为我国制造业发展中存在结构低级化问题,据此提出调整升级的方向及对策。
(二) 制造业结构变动绩效的评价方法
制造业结构变动绩效包括结构的高度化和合理化两方面含义,对结构变动绩效进行测量,建立长效监测机制,可以为制造业结构优化升级过程中的制度变革和政策调整提供依据。
产业组织理论认为,结构的优化会产生正向的增长效应,实现产业资源的高效配置和利用。制造业结构的调整与升级,就是提升制造业竞争力的过程,是生产要素从初级向高级、从一般性技术向专业性技术的演化过程,是不断提高产业效益的过程。
从指标体系上来看,判断产业结构优化程度或变动绩效的内容有很多,包括行业结构、生产结构、技术结构、要素结构、产品结构、产业组织结构等。一些学者使用霍夫曼比例、产业高加工度系数、智力密集型产业产值比重、生态环保产业的发展水平等指标来测评制造业结构水平,丰富了对此类问题的研究。
从方法上看,目前对制造业结构变动绩效进行测度的方法很多。这些方法多是基于传统的柯布—道格拉斯生产函数,特别是建立在此函数基础上的索洛余值法。
1.全要素生产率(TFP) 方法。全要素生产率是制造业结构变动绩效测度中应用较多的指标,通过核算其增长情况,可以反映制造业的高级化与合理化程度。
估算TFP的方法很多,主要围绕两个方面进行:一个是参数估计法,即索洛余值法或生产函数法。这种方法是构建反映技术发展及要素配置的生产函数,包括传统的生产函数和随机前沿生产函数,利用制造业的面板数据来计算TFP增长;另一个是非参数指数法,数据包络分析是其中较为完备的方法,是生产率研究领域的新探索。比较常用的还有Malmquist指数法、HMB指数方法和Tobit回归等方法。
2.其他方法。常用的有两种,一种是“标准结构法”,这是非常便捷、直观也被广泛使用的比较方法。它选用一定的参照系,将本地制造业结构与其他国家的平均高度进行比较。常用的参照系有:钱纳里的“产业结构标准模式”、库兹涅茨的“标准结构”和“钱纳里—塞尔昆模型”等。另一种是“相似性系数法”,是联合国工发组织国际工业研究中心提出的度量方法。它以某一参照国的制造业结构为标准,用相似性系数表示两个分类单位间的相似程度。相似系数通常介于0和1之间,相似系数越趋近于1,说明两个区域的产业结构越相似;相似系数越趋近于0,则两个区域的产业结构越不相同。
具体研究中,可以利用重工业化、高加工度化、技术密集化、高附加值化、生态化和规模化作为衡量制造业结构升级的指标,利用基于熵权的多目标决策方法对制造业结构升级的水平进行综合测度。也可以建立包括分类指标层、基本指标层和权重层的制造业产业结构高度化水平测评指标体系,作为综合评价制造业结构优化程度的依据。
当然,目前的不同方法各有其局限性,如柯布—道格拉斯生产函数隐含着要素同质和生产非开放的假设,对制造业结构变动中的效率增长评价有较大分歧,制造业结构变动是否引起效率改善也有争议。
四、我国制造业发展程度的评价
目前,国内外对制造业竞争力及结构优化升级的研究已经形成了大量的成果。从已有的研究可以看出,对制造业的发展程度和结构调整的绩效评价尚未形成一致意见。
就我国而言,由全球四大会计所之一的德勤公司全球制造业组与美国竞争力委员会联合的《2013全球制造业竞争力指数》显示,中国的制造业竞争力指数在当前以及未来五年仍将位居榜首。但是总体来看,技术水平落后、产品质量不高、企业组织结构和产业集中度低、管理水平和效率低下是我国制造业领域存在的主要问题。这也表明,我国是一个制造业大国,但不是强国,国际竞争力不够。“大”和“强”之间的差距体现在利润、技术、速度以及很多方面。
一些研究以“竞争阶段”概念为基础,从理论上论证了国内市场对提升产业国际竞争力的影响,认为国内过于分散的市场结构不利于形成产品的出口竞争力即国际竞争力。市场竞争强度与产业国际竞争力之间存在着一个类似于倒U型的关系。
从企业角度看,与发达国家相比,我国的制造业企业规模、经济效益和分工协作都有不小的差距,其国际竞争力最薄弱的两方面问题是生产效率竞争力和管理效率竞争力。虽然从资产、销售收入与固定资产投资指标考察,我国的制造业已经完成了向重工业化的转型,资金、技术密集型制造业已经成为主力,但是经济效益并没有优于劳动密集型制造业,效益的提升也滞后于结构的转型。
从结构调整角度看,制造业的升级就是要优化制造行业结构,提高制造业生产效率和技术水平,增加产品的附加值,构筑起现代制造业体系,增强国际竞争力。
从系统论的观点看,优化制造业结构会提高效益水平。结构调整带来效率的提升,这是结构调整的根本意义所在。评价结构调整推进的效率变化是结构调整研究的重要内容,但目前的研究对此问题有较大的分歧和争议。
最近的研究显示,我国制造业生产率的提高更多地来自于各个行业内部的增长效应,而与产业结构变动的关联度不高,制造业的结构变动并没有导致显著的“结构红利假说”。改革开放30多年来,虽然产业结构变迁对中国经济增长的贡献一度十分显著,但随着市场化程度的提高,贡献呈不断下降趋势,结构调整的方向和措施需要修正。
结构调整没有带动效率提升,原因是制造业内部资源并没有向高生产率增长率的行业流动。这与市场的不完善和国内外的需求因素有关,也与制造业技术水平较差有关,因为效率很大程度上取决于企业的技术水平。显然,我国制造业调整的空间还比较大。
综上,影响我国制造业发展水平的突出问题是效率低下,根据“结构-行为-绩效”研究范式,效率和技术又由制造业所处的市场结构来决定。所以,要从技术创新、结构升级、效率提升的角度推进先进制造业的发展,需要在市场结构层面寻找问题的根源。
注释
①即国际化水平,依据跨国公司的表现来测度。
参考文献
[1]黄烨菁.何为“先进制造业”?——对一个模糊概念的学术梳理[J].学术月刊,2010,(7):87.
[2]Porter M. E.The competitive advantage of nations[M].NewYork:The Free Press,1990.
[3]Dunning J. H. Reappraising the eclectic paradigm in the ageofalliance apitalism[J].Journal of International Business Stud-ies,1995,26(3).
[4]Buckley P. J. ,Christopher L, & Prescott K. Measures of inter-national competitiveness: a critical survey[J].Journal of MarketingManagement,1988,4(2):175-200.
[5]赵彦云,张明倩.中国制造业产业竞争力评价分析[J].经济理论与经济管理,2005,(8):23-30.
[6]Fagerberg J. Technology and competitiveness[J].Oxford Reviewof Economic Policy,1996,12(3):39-51.
[7]Marion B., & D. Kim.Concentration changes in selected foodmanufacturing industries: the influence of Mergers and Ac-quisitions vs[J].Internal Growth,Agribusiness: An In-ternational Journal,1991,7(5):416-431.
[8] 武海峰.我国制造业的发展程度及对策[J].山东社会科学,2003,(2):126-129.
[9]王玉,许俊斌,南洋.中国各地区制造业竞争力及其影响因素的实证研究[J].财经研究,2011,(2) : 93-103.
[10]毛伟,居占杰.中国沿海地区制造业竞争力及影响因素研究[J].南京财经大学学报,2012,(11):18-22.
[11]张海星,许芬.辽宁装备制造业竞争力评价与财税扶持政策[J].财经问题研究,2008,(10):106-107.
[12]王章豹,郝峰.基于因子分析和黄金分割法的我国装备制造业区域产业创新力综合评价研究[J].工业技术经济,2010,(1):2-7.
[13]杜小军,刘婧.基于因子分析的区域制造业竞争力研究—以山东省为例[J].改革与战略,2010,(12):127-129.
[14]甄峰,赵彦云.中国制造业产业国际竞争力:2007 年国际比较研究[J].中国软科学,2008,(10):48-53.
[15]郑海涛,任若恩.多边比较下的中国制造业国际竞争力研究[J].经济研究,2005,(12):77-88.
[16]金碚等.竞争力经济学[M].广东经济出版社,2003.
[17]程翠凤.基于因子分析法的江苏制造业上市公司收益质量评价[J].财会月刊,2011,(5):36-38.
[18]郭巍,林汉川,付子墨.我国先进制造业评价指标体系的构建[J].科技进步与对策,2011,(6):126-129.
[19]王志华,陈圻.江苏制造业结构升级水平的综合测度[J].生态经济,2012,(4):99-102.
[20]伦蕊.工业产业结构高度化水平的基本测评[J].经济学研究,2005,(2):69-74.
[21]周怀峰.大国国内贸易需求提升产品国际竞争力的机理分析[J].财贸研究,2007,(4):34-38.