时间:2023-08-10 09:21:59
引言:寻求写作上的突破?我们特意为您精选了4篇统计学分析数据范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
关键词:
大数据;统计学;研究方法
中图分类号:
F27
文献标识码:A
文章编号:16723198(2015)11005201
随着信息技术的日益发展与普及,信息以及数据在社会经济发展过程中发挥的作用越来越重要。现如今,“大数据”时代已经来临,于是如何更有效地利用数据快速做出科学决策也已成为众多企业甚至是国家所共同关注的焦点问题。在数据处理和分析方法方面,《统计学》以及在其基础上发展而来的实证统计方法是当前的主流,这些方法可以帮助数据持有者从大量的数据中挖掘有价值的信息,并为其相关决策提供理论支撑和方法支持。然而,传统的实证统计方法在最新出现的大数据情境下,却呈现出了诸多缺陷,例如传统数据收集方法无法实现大规模(甚至是总体)数据的收集,传统统计方法和分析软件无法处理大规模数据,等等。于是,在将传统统计学方法应用于最新的大数据情境和问题之前,需要首先明确大数据所要求的处理方法与传统的统计学处理方法存在哪些关联和区别,然后才能够决定是否可以应用既有统计学理论和方法来处理某些大数据问题。
1大数据的界定
根据一位美国学者的研究,大数据可以被定义为:it means data that’s too big, too fast, or too hard for existing tools to process。也就是说,该学者认为:在关于大数据的所有定义中,他倾向于将之定义为那类“太大”、“太快”,或现存工具“太难”处理的数据。一般而言,大数据的特征可以概括为四个V:一是量大(Volume);二是流动性大(Velocity),典型的如微博;三是种类多(Variety),多样性,有结构化数据,也有半结构化和非结构化数据;四是价值大(Value),这些大规模数据可以为持有企业或者组织创造出巨大的商业或社会价值。
Victor在其最新著作《大数据时代――生活、工作与思维的大变革》中指出,大数据时代,思维方式要发生3个变革:第一,要分析与事物相关的所有数据,而不是依靠分析少量数据样本;要总体,不要样本。第二,要乐于接受数据的纷繁复杂,而不再追求精确性。第三,不再探求难以捉摸的因果关系,应该更加注重相关关系。这些变革反映出了大数据处理方式与传统统计学分析方法的很多关联以及主要不同。因此,下面我们分别针对两者的联系和区别进行讨论。
2大数据与统计学分析方法的联系
从18世纪中叶至今,统计学已经经历了两百多年的发展历程,不论是基础理论还是社会应用都极其坚实而丰富。大数据作为一种新兴的事物规律认知和挖掘思维,也将会对人类的价值体系、知识体系和生活方式产生重要影响,甚至引发重大改变。作为两种认知世界和事物规律的基本方法,它们在以下两个方面存在紧密关联。
(1)挖掘事物规律的基本思想一致。统计学(statistics)探索事物规律的基本方法是:通过利用概率论建立数学模型,收集所观察系统的数据,进行量化分析和总结,做出推断和预测,为相关决策提供依据和参考。对于大数据,维克托指出,大数据思维的来临使人类第一次有机会和条件,在非常多的领域和非常深入的层次获得和使用全面数据、完整数据和系统数据,深入探索现实世界的规律,获取过去不可能获取的知识。通过这两个定义可以看出,不论是传统的统计学方法还是新兴的大数据分析方法,都是以数据为基础来揭示事物特征以及发展趋势的。
(2)均采用量化分析方式。大数据分析的基础是数据化,也就是一种把各种各样现象转变为可制表分析的量化形式的过程。不论是传统统计学中所应用的数据(定性和定量数据),还是大数据时代即将被转化和采用其他形式数据(如文字、图像等),最终都是通过量化分析方法来揭示数据中所蕴含的事物特征与发展趋势。
3大数据与统计学分析方法的区别
(1)基础数据不同。在大数据时代,我们可以获得和分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机抽样。这意味着,与传统统计学数据相比,大数据不仅规模大,变化速度快,而且数据来源、类型、收集方法都有根本性变化。
①在数据来源方面,在大数据背景下,我们需要的纷繁多样的数据可以分布于全球多个服务器上,因此我们可以获得体量巨大的数据,甚至是关于总体的所有数据。而统计学中的数据多是经由抽样调查而获得的局部数据,因此我们能够掌握的事“小数据量”。这种情况下,因为需要分析的数据很少,所以必须尽可能精确的量化我们的数据。综上,大数据情况下,分析人员可以拥有大量数据,因而不需要对一个现象刨根问底,只需要掌握事物大体的发展方向即可;然而传统的小数据情况下则需要十分注意所获得数据的精确度。
②在数据类型与收集方面,在既往模式下,数据的收集是耗时且耗力的,大数据时代所提出的“数据化”方式,将使得对所需数据的收集变得更加容易和高效。除了传统的数字化数据,就连图像、方位、文本的字、词、句、段落等等,世间万物都可以成为大数据范畴下的数据。届时,一切自然或者社会现象的事件都可以被转化为数据,我们会意识到本质上整个世界都是由信息构成的。
(2)分析范式不同。在小数据时代,我们往往是假想世界是如何运行的,然后通过收集和分析数据来验证这种假想。也就是说,传统统计实证分析的基本范式为:(基于文献)提出理论假设-收集相关数据并进行统计分析-验证理论假设的真伪。然而,在不久的将来,我们将会在大数据背景下探索世界,不再受限制于传统的思维模式和特定领域里隐含的固有偏见,我们对事物的研究始于数据,并可以发现以前不曾发现的联系。换言之,大数据背景下,探索事物规律的范式可以概括为:数据观察与收集――数据分析――描述事物特征/关系。
(3)数据分析方法不同。传统统计学主要是基于样本的“推断分析”,而大数据情境下则是基于总体数据的“实际分析”,即直接得出总体特征,并可以分析出这些特征出现的概率。
(4)分析视角不同。传统的实证统计意在弄清事物之间的内在联系和作用机制,但大数据思维模式认为因果关系是没有办法验证的,因此需要关注的是事物之间的相关关系。大数据并没有改变因果关系,但使因果关系变得意义不大,因而大数据的思维是告诉我们“是什么”而不是“为什么”。换言之,大数据思维认为相关关系尽管不能准确地告知我们某事件为何会发生,但是它会提醒我们这件事情正在发生,因此相关关系的发现就可以产生经济和社会价值了。
4结语
综上,相对于传统而言,大数据思维主要包括三个重大转变。首先,要分析与某事物相关的所有数据,而不是依靠分析捎来能够的数据样本;其次,研究人员应乐于接受数据的纷繁复杂,而不再追求精确性;最后,认知世界的思想发生了转变,不再探求难以捉摸的因果关系,转而关注事物的相关关系。以上三个转变构成了大数据思维的核心。在统计学的进一步应用和发展完善过程中,需要结合以上转变所产生的挑战,思考有效的统计学发展对策。
参考文献
一、SPSS统计软件特性分析
(一)SPSS统计软件应用范围
SPSS(Statistical Product and Service Solutions),是一种“统计产品与服务解决方案”软件。开始时它的全称为“社会科学统计软件包”,但最后被命名为“统计产品与服务解决方案”。它最初用于统计学分析运算、数据挖掘、预测分析和决策支持任务,有Windows和Mac OS X等版本。后来随着SPSS公司对这款软件的更新与改进,它的应用范围也逐渐扩大起来,它在自然科学、技术科学和社会科学等方面都有涉及,并且都收到使用者的好评。世界上许多著名的杂志报刊都对SPSS统计软件的各方面功能做出了很高的评价。
(二)运用SPSS统计软件的实例分析
某高校要对大学生党员素质进行评价,以便于对发展和培养当代大学生的工作实践。他们首先选取了“道德品行”“政治素养”“学习能力”“工作能力”“心理素养”这五个方面对大学生党员素质进行评价,然后要求被调查者根据自己对党员的要求来判断学生党员是否能做到其中一点。其中1表示“非常不同意”、2表示“不同意”、3表示“不能确定”、4表示“同意”、5表示“非常同意”。从发出的300份卷中筛选出有效的188份,然后用SPPS统计软件对分卷信度用克隆巴赫系数测量,该系数表示的是问卷调查结果总变异中由不同被调查者导致的比例占多少,整个问卷和各个子问卷的克隆巴赫系数如下表所示:
为了验证所获得数据的有效性,该试验还进行了Bartlett’s Test和KMO指标验证。Bartlett’s Test检验的sig为0.000说明参与分析的数据来自正态分布的总整体,而KMO的取值在0到1之间,所得到的值越接近1,表明这些变量对因子分析的效果越好,这些因素很好的解释了大学生优秀党员应当从什么地方开始培养,而SPSS统计软件则是验证了这些因素的有效性和可信度,为大学生党员的培养工作提供科学依据。
二、大学生职业素质评价模型构建
(一)大学生素质评价模型研究背景
随着时代的前进和科学技术的发展,现代年轻人的思维也追上了时代的最前端。步入大学殿堂的“90后”一代年轻人,他们追求自我和个性的特点越来越显著,教育工作者对大学生职业素质的培养与分析也遇到了挑战。如何根据大学生的特点来构建素质评价模型是新一代教育工作者需要考虑的问题。
(二)SPSS统计软件对大学生职业素质评价模型构建的作用
对大学生职业素质评价要从学习能力、工作能力、政治思想、心理素质四个因素考虑,这四个因素涵盖了大学生的外在处事能力和内部思想,是对一个人的综合职业素质比较全面的评价。大学生的职业素质评价模型由这四个因素构成。运用SPSS统计软件对这几个因素进行分析,可以看出这些因素对职业素质评价所占比重的大小,然后根据各个因素所占的比重构建大学生职业素质评价模型,得出科学的评价方法和评价重点。
(三)SPSS软件对大学生职业素质评价情况分析
运用SPSS统计软件对大学生职业素质进行数据统计分析,可以了解到我国当代大学生需要培养的职业素质,也可以看出在校大学生对自身优秀职业素质的期盼和要求。大学生的职业素质涵盖了学习、工作、政治、心理等四大方面,以大学的具体生活为基础,由校园小范围扩大到社会这个大范围,具有很强的现实指导意义。运用SPSS统计软件,可以得出大学生职业素质评价的重点,让大学生充分了解到自己达标和不达标的地方,加以改正。
三、结论
对大学生的职业素质进行评价是大学生发展阶段中的必要条件。大学教育的目的在于让大学生成长和发展,让他们掌握更多的知识技能,认清自己与社会外界的关系,有助于自己以后的工作和生活。而在SPSS统计软件的分析下,可以看到大学生的职业道德素质由多种原因共同决定,因此我们可以知道,只有多方面的对大学生进行教育,才能使大学生形成良好的职业道德素质,做一个对社会、对国家有用的人。
【中图分类号】C81【文献标志码】A【文章编号】1673-1069(2020)06-0071-02
1引言
统计学作为企业经营管理的重要手段,在企业经营过程中统计工作是否落实到位,对于企业可持续发展目标的实现而言具有重要影响,尤其在当前多元化市场竞争环境下,企业规模化发展虽然推动了国民经济的进一步发展,但与此同时企业市场竞争也愈演愈烈,实现持续性经营,确保统计学应用效益的最大化,是目前推动产业可持续发展的重要战略基础。
2大数据时代内容的基本概述
简单来讲,所谓的“大数据”是指在当前信息化产业时代背景下,无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是互联网公司在日常运营中生成、累积的用户网络行为数据,是需要新处理模式才能有效处理的海量、高增长率和多样化信息资产。随着近年来信息技术的不断发展和广泛应用,“大数据”时代是“互联网+”技术应用下时代未来发展的趋势。就目前来看,与传统信息数据相比,大数据具有数据量大、数据多元以及数据价值高的显著特点,伴随城市化、工业化建设进程的不断加快,如何有效地对大数据进行处理,成为现阶段基层产业结构和相关主管部门的核心发展方向,也是促进企业进一步发展的重要基础。
数据实质上是存储于计算机内的各种信息集合,在当前全球化、市场化不断发展的新产业时代背景下,商业模式的巨大转变,在改变人们关注度的同时,也为企业的进一步发展奠定了良好基础,最终为企业预期发展目标的实现创造了良好条件。对于大数据的处理,倘若采取传统的处理技术,不仅难以达到预期的处理目标,更极易导致一系列其他问题的产生,最终对企业整体发展造成了极为不利的影响,为此在大数据发展的同时,技术领域也取得了显著突破,目前常见的管理技术主要有——数据仓库技术、数据安全技术、数据分析、数据挖掘和模型预测,其中,数据分析、数据挖掘与大数据关系最为密切。
3新形势下统计学存在的主要问题
3.1企业对于统计管理工作的重视度不足
在经济全球化和一体化建设进程不断加快的新市场经济常态下,企业规模和数量的不断增加,在加剧企业市场竞争力的同时,如何有效地提升企业工作质量和工作效率是现阶段企业的核心发展方向,但由于部分企业受传统发展以及管理理念根深蒂固的影响,企业管理和发展重心始终集中于企业经济效益,忽视了对统计管理的关注度,致使单位在统计管理工作方面的人力和物力投入不足,各项管理工作受到一定影响的同时,企业的整体发展也受到了一定影响。
3.2统计管理人员自身专业素养有待提高
统计管理人員作为统计管理工作的实践者,其自身专业能力和综合素养水平的高低,对于统计管理工作质量和工作效率具有重要影响,但随着当下统计管理工作量的增加,部分企业为满足人员配置需求,不断地降低人员选拔标准,导致聘用人员无论是专业能力还是综合素养都有待完善。作为一项专业、系统的管理工作,统计管理不仅要求管理人员拥有细心、踏实、耐心等基本素质,还要具备一定的计算机操作能力,但随着企业规模和数量的持续增加,统计管理人员身兼数职、待遇不高等问题的存在,导致管理人员自身专业能力有所欠缺,业务操作等方面也存在一定不足,最终对统计管理造成了极为不利的影响。
3.3数据库硬件设施、设备不完善
信息化产业时代背景下,“互联网+”技术的广泛应用,在便捷人们日常生活,提高企业生产效益的同时,将其应用到其他领域中,在一定程度上也为各单位的转型升级注入了新的发展动力。统计管理是企业管理作业的重要内容,在很大程度上数据管理库自身硬件设施、设备的完善度对于统计管理工作质量和效率具有直接影响,但对于某些偏远地区亦或经济发展相对缓慢的区域,统计管理设备、设施的落后性在影响现代化科技管理手段应用效益的同时,统计管理作业也始终未能得到突破性进展,企业发展也由此受到了一定影响。
4新形势下统计管理工作的创新策略探析
4.1加强对统计管理重要性的宣传力度,提高对统计管理工作的重视
统计管理作为企业管理的重要组成部分,其管理工作质量和工作效率对企业发展而言也具有一定影响,而为实现企业可持续发展的目标,确保统计管理工作落实到实处是极为必要的。通过上述分析可知,管理人员对于统计管理工作的不重视是影响统计管理工作效益的重要因素,为有效地改善当前管理现状,一方面基层产业机构需加大对统计管理重要性的宣传力度,在不断提高人们对于“统计学应用效益”高度认同的同时,为统计管理工作的顺利开展奠定良好基础。而另一方面企业还需加强对统计管理工作人员的教育力度,在不断增强统计管理人员工作责任感和使命感的基础上,为预期管理目标的实现创造良好条件。
4.2积极和有关大数据公司或机构进行合作
要想在大数据时代背景下进一步优化和提高统计管理工作,就必须将大数据有关技术和统计管理的实际工作紧密结合起来,因此必须解放思想,打破行业限制,积极寻求和有关大数据公司或者机构进行合作开发,开发出真正适合统计管理工作的大数据技术和工具,大数据无法使用单台计算机进行操作和处理,必须采用分布式架构技术等,其也必然和云计算的有关分布式处理、云存储以及虚拟技术等密不可分,因此统计管理必须要积极寻求多方合作,积极将大数据的有关技术引入统计管理的实际工作中去。
4.3不断优化和完善统计管理模式
在当前企业规模和数量持续增加的新产业时代背景下,数据的形成过程较为烦琐,且数量也较为庞大,为从根本上有效提高管理的科学性、高效性和有效性,不断地优化统计管理模式和管理手段也是极为必要的。通过大量调研数据分析可知,在进行统计管理过程中,信息技术的不断发展和传播渠道的日趋增多,在很大程度上为企业统计管理创造了良好条件,但由于部分企业在计算机信息技术应用过程中,未将现代化技术应用到电子统计管理中,导致管理信息化水平较低的同时,预期管理目标也难以实现,为有效地解决上述问题,将数据信息化纳入到工作日程中,为单位的数据管理部门配置专门的信息化设备,是现阶段提高统计管理信息化水平,促进企业进一步发展的重要战略手段。
4.4将各项统计管理工作细节落实到位
在统计管理作业过程中,从根本上有效地提高企业的经济效益、确保各项统计工作细节落实到位也是现阶段基层产业机构和相关主管部门的重要工作内容,换言之,在当前多元化市场竞争环境下,要想从根本上提升统计管理工作质量,提高企業整体的经济效益,以会计管理工作为中心,确保各项细节管理工作落实到位是十分必要的。要想确保管理工作效益的最大化发挥,提升企业经济效益,企业需将会计的发展目标与企业的发展方向相结合,在确保两者“统一性”的基础上,以会计管理工作为中心对企业经营进行系统化管理,最终为企业可持续发展目标的实现奠定良好基础。
4.5确保预算统计管理工作落实到位
统计意识的培养是小学学习最重要的目标之一. 统计意识的首要方面是能有意识地从统计的角度思考有关问题,当遇到有关问题时能想到去整理分析数据,即发展学生的统计意识. 发展学生的统计意识最主要的方式就是让学生体会到统计是有用的. 基于以上目标,在学生根据原始数据提出自己的问题后,教师引导学生体会解决问题必须对这些数据进行整理,就产生了整理统计的需要,有了需要学生就会考虑选用方法进行整理统计,然后通过教师的点拨,学生在小组内自主完成数据的整理统计,学生参与度和统计结果正确率都比较高. 根据统计结果,同学自己提出的问题迎刃而解. 这样的设计,让学生带着解决问题的需要,投入到数据的整理统计中,在经历统计的过程中培养了学生的统计意识. 如以下设计:
(一)呈现情境,提出问题
师:同学们,2008年北京奥运会中国以51枚金牌数居金牌榜榜首. 大家看,这是第二奥运中国体育代表团金牌榜. 根据金牌榜提供的信息,你能提出什么问题?
生1:中国游泳项目获多少枚金牌?
……
(二)分类统计,解决问题
师:老师发现同学们提到的问题都与中国各种项目获金牌数情况有关,所以我们先来解决这个问题“中国各种项目获金牌数的情况是怎样的”. 解决这个问题需要用到哪方面的知识啊?(统计知识)对,我们需要对原始数据进行整理、统计. 你打算怎样统计?
生:用统计表,根据体育项目进行分类统计. (板贴:统计表)
师:这名同学想到了根据体育项目进行分类统计,你们同意吗?除了用统计表表示统计结果,还可以用什么来表示?(条形统计图)
师:大家看,在金牌榜上出现的体育项目既多又分散,比如说水上项目就有游泳、跳水、划艇等,我们可以把某些项目进行归类,请看大屏幕(课件出示分类标准).
师:下面小组内进行分类统计,可以选用统计表,也可以选取统计图来表示统计结果.
生:(分小组活动).
……
二、关注扇形统计图的产生,让学生通过数据分析体会学习扇形统计图的必要性
让学生体会引入扇形统计图的必要性是认识扇形统计图的开始,有利于激发学生对新知的求知欲. 因此,在教学中我有意识地将切入点回归到学生要解决的问题上,在引导对条形统计图进行分析后,教师抓住学生前面提到的“举重项目获金牌数占金牌总数的百分之几”这一问题让学生来解决,随即出现一组含有百分数的统计表,然后教师提出“要清楚地表示出这些信息,我们还可以用这样的统计图”,大屏幕出示做好的扇形统计图. 这样一来,扇形统计图的引入水道渠成,既加强了与数据整理统计的联系,又为扇形统计图特征和作用的理解做了有力的铺垫. 如下面的设计:
……
师:刚才我们用统计表和条形统计图表示出了各种项目获金牌数的情况(课件出示统计表和条形统计图),之前有名同学还提到这样一个问题(课件出示单式统计表):举重项目获金牌数占金牌总数的百分之几,这个问题怎么解决啊?(课件出示复式统计表空栏)
生:用举重项目金牌数除以总金牌数.
师:怎样列算式?
生:8 ÷ 51.
师:非常好!体操项目呢?它获的金牌数占金牌总数的百分之几?
师:像这样,用每种项目获得的金牌数除以金牌总数就能得到这样一组百分数. (课件出示复式统计表加百分数)
师:同学们,对于中国各种项目获金牌情况,我们还可以用这样的统计图来表示(课件出示扇形统计图)
三、关注扇形统计图的直观优势,让学生读懂数据
当前是一个信息时代,读图时代. 让学生从统计图中获取信息,根据统计图中的数据进行分析、预测和推断,是发展学生数据意识具体的教学策略. 统计图的特点是形象直观,便于比较观察,那么在指导学生读图的时候,应当突出图的直观优势. 教学前我首先思考了“扇形统计图的直观优势在哪里”这样一个问题. 通过研读教材我发现,扇形统计图的特征应该从百分数的意义和扇形大小两方面去理解,在读图过程中也应侧重这两方面,且要将数与形两方面进行有机结合. 课堂上在教学扇形统计图特征时有意识地引导学生读懂数据,注重了对百分数意义的理解和它所在的扇形的大小,特别在比较大小时,我们既可以通过百分数大小来比较,又可以通过扇形大小这一直观优势进行比较. 另外,注意让学生结合生活情境,根据统计图中的数据进行推断、预测,体验数学的价值所在. 通过读图,学生切实体会到了扇形统计图的作用. 如下设计:
师:见过这种统计图吗?(没见过)那知不知道它叫什么统计图?(扇形统计图). 大家可真聪明,它就叫扇形统计图. (板贴课题:扇形统计图)
师:知道它为什么叫扇形统计图吗?
生:圆内有大大小小的扇形.
师:大家都发现了,扇形统计图中有扇形. 谁能到前面来指一指图中哪儿有扇形?(生指扇形统计图中的扇形)
师:正像这名同学所指的,圆内确实有大大小小不同的扇形. 你能看出哪个扇形最大吗?(生指水上项目所在扇形)
师:为什么表示水上项目的这个扇形画得最大?
生:因为水上项目获得金牌数占金牌总数的百分比最大. 师:最小的呢?为什么呢?
师:在这个扇形统计图中有两个大小一样的扇形,你发现了吗?
师:为什么这两个扇形可以画得一样大呢?
……
四、关注素材的决策功能,体现统计中数据分析的价值所在
统计教学中,学生不仅要读懂简单的数据,更重要的是要根据统计图和实际情况,分析统计图中数据的合理性,作出某些判断和决策,并从中得到某些启示. 针对初教时研课提出的问题,我们设计了部分开放性的练习,如:我从媒体中找到一些数据,鼓励学生读懂媒体中的统计图,并引导学生体会这些数据带给我们的启示,等等. 这样一来,使得统计教学更具价值性.
……
师:下面让我们来关注学校的红领巾广播站. 学校广播站每周播音2小时. 下图表示各个节目的播音时间情况.
师:哪个节目的播音时间最长?你是怎么知道的?
师: “学法交流”的播音时间是24分钟,占每周播音时间的百分之几?
生:24除以120等于20%.
师:这是求一个数是另一个数的百分之几.
师:如果老师请你做我们学校广播站的策划者,你对栏目内容和时间有什么好建议?