时间:2023-08-17 15:53:25
引言:寻求写作上的突破?我们特意为您精选了12篇城市轨道交通安全分析范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
Abstract: the safety risk analysis is the urban rail transit construction, operation of the importance of safety guarantee. Based on the related risk management theory, from the preliminary hazard analysis of rail transit projects of the risk analysis, and with practice, provide several typical risk analysis evaluation method. The research results of the rail transit projects for future risk analysis evaluation is a certain significance.
Keywords: urban rail traffic safety evaluation the preliminary hazard analysis evaluation method
中图分类号:S782.15文献标识码:A文章编号:
前言
城市轨道交通对于缓解交通压力,节约资源能源,实现交通可持续发展有着重要意义。进入2012年,各大城市纷纷开始轨道交通的规划建设。据统计,目前已有29个城市轨道交通项目规划获得了批复。根据相关计划,至2015年前后,全国规划建设的轨道交通线路有96条,建设线路总长将达2500多公里,总投资超过1万亿元,标志着轨道交通行业已经步入了黄金期。随着轨道交通的蓬勃发展,随之而来的各种负面影响也日益增多。为了保证轨道交通的安全和运输能力,对轨道交通项目进行合理的风险分析与评价显得愈加重要。
1 城市轨道交通风险管理的理念
随着轨道交通项目的快速发展,在其建设和运营过程中的风险和安全问题日益突出。由于轨道交通项目具有投资大、建设周期长、技术复杂、影响范围广的特点,所以简单的风险分析和规避已不能满足其发展需求,必须要树立风险管理的理念。
项目风险管理[1]是指对项目风险管理组织对可能遇到的风险进行规划、辨识、估计、评价、应对的过程,以科学的管理方法控制和处理项目风险,防治和减少损失,减轻或消除风险的不利影响,以最低的成本取得对项目安全保障的满意结果,保障项目的顺利进行。风险分析包括两个方面的内容[2]:一是将积极因素所产生的项目风险管理流程影响最大化;二是使消极因素产生的影响最小化。本文所述的风险分析只要是指第二方面的内容。
城市轨道交通项目的风险分析与评价虽然逐渐被重视,但是还为形成一套成熟的理论,目前的评价分析方法[3]大多是借鉴铁路工程经济评价或者建设项目经济评价的方法,这两者的侧重点有所不同,但是均与城市轨道交通实际不符,另外针对项目安全的评价研究也较少。本文是针对影响项目安全的风险进行分析评价,并对典型风险给予相应的评价方法。
2 预先危险性分析
预先危险性分析[5](PreliminaryHazardAnalysis,简称PHA)是在进行某项工程活动(包括设计、施工、生产、维修等)之前,对系统存在的各种危险因素(类别、分布)、出现条件和事故可能造成的后果进行宏观、概略分析的系统安全分析方法。其目的是早期发现系统的潜在危险因素,确定系统的危险等级,提出相应的防范措施,防止这些危险因素发展成为事故,避免考虑不周所造成的损失,属定性评价。即:讨论、分析、确定系统存在的危险、有害因素,及其触发条件、现象、形成事故的原因事件、事故类型、事故后果和危险等级,有针对性地提出应采取的安全防范措施。
2.1预先危险性分析法的功能主要有:
(1)大体识别与系统有关的主要危险;
(2)鉴别产生危险的原因;
(3)估计事故出现对系统产生的影响;
(4)对已经识别的危险进行分级,并提出消除或控制危险性的措施。
2.2预先危险性分析步骤
(1)对分析系统的生产目的、工艺过程以及操作条件和周围环境进行充分的调查了解;
(2)收集以往的经验和同类生产中发生过的事故情况,判断所要分析对象中是否也会出现类似情况,查找能够造成系统故障、物质损失和人员伤害的危险性;
(3)根据经验、技术诊断等方法确定危险源;
(4)识别危险转化条件,研究危险因素转变成事故的触发条件;
(5)进行危险性分级,确定危险程度,找出应重点控制的危险源;
(6)制定危险防范措施。
分析的结果最终以表格的形式表示。
2.3危险、有害因素的危险性等级
PHA分析的结果用危险性等级来表示。危险性可划分为四个等级,见表1。
表1 危险性等级划分表
3 风险的分析评价和处置对策
3.1火灾风险分析方法
对火灾风险采用FDS(Fire Dynamics Simulator 火灾动力学模拟)评价方法。FDS一种火灾驱动流体流动的计算流体动力学软件,其原理是火灾的场模拟计算,场模拟是利用计算机求解火灾过程中状态参数的空间及其随时间变化的模拟方式,场是指状态参数如速度、温度、各组分的浓度等的空间分布。场模拟的理论依据是自然界普遍成立的质量守恒、动量守恒、能量守恒以及化学反应的定律等。火灾过程中状态参数的变化也遵循着这些规律,因而可以用场模拟方法求解火灾过程。FDS通过大涡模型对连续方程、动量、能量方程以及压力收敛方程进行求解,可得到温度、压力、气体成分、可见度等参数的空间分布。
火灾风险分析采用大涡场模拟模拟软件FDS version 3进行数值模拟,对车站隧道火灾情况进行模拟,其分析评价内容为:
1)针对典型站台和通道结构,研究火灾的发生和发展,获得站台的通道内不同局部位置的温度和烟浓度分布等;
2)研究不同传热状况(辐射、对流、导热等)下典型站台和通道内的热效应和作用区域;
3)火灾条件下烟气的动态扩散和传递特征,获得烟气在站台和通道内的分布规律和对人员的影响;
4)火灾、烟气条件下典型站台和通道内的人员疏散模拟;
5)基于对典型站台和通道内火灾和烟气的发生、发展、扩散和传递的规律的研究,获得防范安全事故、人员疏散和救援的操作预案。
3.2地压稳定性风险分析评价
主要运用三维有限元计算程序对地下车站及隧道进行分析,分析典型地铁站及隧道的稳定性情况,并提出相应的安全技术对策措施。
其内容和目的是建立反映典型隧道围岩状态的三维模型,模拟围岩的力学状态和变形破坏状态;确定典型车站和隧道的工作边界条件及周边材料参数;运用三维有限元仿真,计算显示车站、隧道在正常运行状态下的应力、变形情况;根据计算提出必要的安全技术措施建议。
评价采用Itasca公司的FLAC3D程序,该程序为国际公认的三维岩土分析程序,可以进行非线性及线弹性计算,并可以很方便的模拟施工过程。
3.3人员疏散模拟分析评价
城市轨道交通应对突发事件的能力一般采用人员疏散速度来衡量,可以通过人员疏散模拟来进行评价。评价方法为BuildingExodus模型,即模拟人员疏散的精细网格模型。该模型针对大型空间及大量人群逃生设计,适用于模拟大型超级市场、医院、电影院、车站、机场航站楼、危险建筑物、学校等场所。可输入各种人员行为特征(如逃生人员生理、心理、行为属性),及火灾危险特性(如浓烟、温度、毒气危害属性)等逃生影响参数进行模拟,以展现更符合实际情况的较佳化人员逃生模拟结果。Exodus输入紧急情况下有关人类行为的各种信息,资料来源包括火灾的影像记录、已公布的调查报告和与受伤害者的交谈资料等。在建筑空间充分利用前提下,以拥挤人群、内部存在座椅等障碍物与设有警报设备等状况下进行疏散模拟。同时考虑逃生者年龄、性别、生理状况与熟悉度等属性阐述,进而了解每位逃生者开始疏散位置与出口的路径、人群拥挤程度及持续时间、逃生者反应时间与达到出口时间、出口使用人数、疏散行动时间与每个出口流量记录等信息。对于其它未考虑的影响参数,以最不利状况进行模拟。
3.4大客流输运模拟评价
本评价主要针对典型地铁突发大客流情况下的进出站控制、售检票、疏散通道、行车组织等措施进行模拟研究分析和验证。
评价采用模拟仿真的方法,利用基于个体的人员动力学模型,建立地铁车站疏运模型,设定客流量时间曲线、进出站通道、闸机、售检票模式、限流方案等,对最大极端客流和实际客流进行数值模拟分析。评价方案如图1所示。
图1 数值模拟方案
现阶段国内外针对大客流输运公认的模拟软件为人员动力学模型Legion进行模拟仿真研究。Legion模型为人员疏散的矢量模型,最大的特点就是基于个体行为(agent-based)和矢量连续空间(Vector)解析,能够兼顾人员个体行为描述、人员规模和空间区域三个方面,可适用于大规模大区域的人群模拟仿真。模型以每个行人个体为单位,行人的每一步在行走平面路线和方向上都通过计算机算法计算,即每个行人个体有决定自身行动的决策权,在决策时考虑周围环境(建筑及障碍物等)和与其他行人相互作用和影响,进行信息交流,做出相应的决策。该模型主要用于研究人群疏散行为、疏散时间、疏散策略与技术等。
4 结语
城市轨道交通作为重要的公共交通工具,其安全性直接关系到广大乘客的生命安全。进行科学的安全风险分析评价是必要的,也是必须的。本文结合风险管理的基本理论,对城市轨道交通的安全风险分析,从预风险的辨识即预先危险性分析着手进行研究,并就典型风险提供了分析评价方法,对今后轨道交通风险分析具有一定的借鉴意义。
参考文献
[1] 朱军,冯爱民等. 城市轨道交通项目前期风险分析研究[J]. 都市快轨交通,2004(6)8-11.
[2] 裘丽强. 城市轨道交通工程风险管理探讨[J]. 工程管理,2012,114-115
[3] 何迪旋. 轨道交通项目风险评价研究[D]. 北京. 北京交通大学. 2008,9-18
随着我国经济的进步,城市化进程不断加快,轨道交通伴随着城市发展快速扩张。迄今为止,我国已有30余个大中城市初步建立了轨道交通,部分城市新建,大量城市拟建规划中。大量投入使用的轨道交通一方面方便了市民的出行,另一方面也给城市轨道交通运营安全带来了极大的挑战,自我国各城市轨道交通运营以来,大大小小的安全事故不断发生,建立一套科学、系统的城市轨道交通安全管理体系十分必要。
一、我国城市轨道交通系统安全管理工作的现状及不足
1.我国城市轨道交通安全管理工作的现状。无论是学术界还是开展城市轨道交通运营的企业,其对于轨道交通运营安全管理的探索均处于初级阶段。目前,绝大部分轨道交通运营企业的安全管理模式都是单向的、观点性的,没有上升到理论的高度,因此,也就难以形成系统的、有针对性和实际价值的操作方案。从现阶段我国轨道交通安全管理组织机构的层面看,我国各大城市轨道交通基本都设有三级安全管理模式,即设立一级安全管理委员会,隶属于地铁公司总部,设立二级安全领导小组,由车辆、维修、车务等专业部分管辖,设立基层安全员由车间、班组管辖。其中,安全管理委员会是最高领导机构,地铁公司总部的安全管理网络包括总部领导、部门领导、车间领导、安全监察员,车辆、维修、车务等生产部门设置专职安全监察员岗位,并指定安全监察室为常设部门。2.我国轨道交通安全管理工作的问题。虽然很多城市实行了轨道交通三级安全管理,但仍然不能避免轨道交通事故的发生。就目前来看,我国城市轨道交通事故主要有两类,即一般性事故和险性事故。一般性事故的起因主要是乘客,乘客若未能按照安全乘车规则乘坐就有可能引发一般性事故,险性事故的起因则主要是工作人员的疏忽。本文将人、设备、环境作为事故的直接原因,将管理缺陷作为事故的间接原因,以布尔代数原理为基础,借助事故树的条件或门,得到如下公式:T=X1(X2+X3+X4)=X1X2+X1X3+X1X4式中,T——事故;X1——事故的管理原因;X2——事故的人为原因;X3——事故的设备原因;X4——事故的环境原因。在上述四个因素中,任何一项因素都与安全事故的发生有所联系。但观察得出,管理因素同其他三项因素不同,其能够制约其他因素,人为原因、设备原因、环境原因三项因素中的任何一项同管理因素相结合都会导致事故发生。也就是说,即便其他因素没有问题,只要管理存在混乱、缺陷、失误,同样会导致事故发生,使人与设备均暴露于不安全状态下。由此可见,管理问题是各项影响因素中最关键的,其直接关系到安全事故的发生概率。在现代企业科学管理理念的指导下,笔者认为我国城市轨道交通系统安全管理工作的不足主要有以下几点:(1)生产与安全脱节。个别员工以及部分一线生产部门对安全工作没有形成足够的重视,总认为安全管理是安全员、监察员、领导层的事,这使得地铁运行无法同安全管理紧密结合。轨道交通作为实体经济的重要组成,安全管理对于生产运营的意义重大,企业理所应当将其作为生产管理的重要部分,使其同生产运营一同发展,即实现系统安全管理。(2)对安全问题的处理不全面、不彻底。一旦出现安全问题,安全管理部门不能按照既定的系统、结构、功能追溯原因,也不能将安全问题与管理工作相统一,轨道交通安全管理长期处于“头痛医头、脚痛医脚”的局面。(3)没有抓住信息流进行安全指导工作,安全管理的总体思路仍然以静态管理为主,这已经不适应现代企业安全管理的理念。在变化的环境中,安全管理需要依靠信息流,其不仅能够反映以往重大事故的信息及历史经验资料,还应包括及时收集的运营过程中的安全信息,这样才能方便安全管理人员对轨道交通运营实现全过程动态控制。(4)安全管理日常工作的重心仍停留在“事故处理”上,缺乏“事故预测”。轨道交通安全管理工作的重心应从“事故处理”转向“事故预测”,即更加注重事前的安全因素评估、预测上,而非事后的原因追查。(5)近年来,轨道交通路网规模越来越大,这也使得安全管理的范围变得越来越大,与此同时,规章制度、人员的变化也陆续发生,这些变化如果不能拿出应对措施,极易产生管理漏洞。就目前来看,轨道交通安全管理仍存在安全考核不到位、规章制度不健全等问题,轨道交通运营企业需要根据实际情况对安全标准和制度进行修改、补充或重新制定。
二、安全管理系统的运行机理
建立轨道交通安全管理系统的首要任务就是树立正确的认知,即澄清以往的错误认识,抛弃安全管理系统属于运营管理子系统的理念和思维。事实上,安全管理系统是针对生产运营系统本身而言的,其目的是解决安全问题,并非是由生产系统分离出的子系统。我们要在这一认知前提下,对与生产系统密切相连的安全系统进行改造,对其中可能出现的安全问题进行处理。这里的安全系统同生产系统是有机整体,其是由与生产系统相关的若干因素共同构成的特定功能的有机整体,其中心任务在于对生产运营的安全状况进行监控和管理。控制论理论下,安全管理是多回路反馈控制系统的组成部分,其中,事故属于被控制对象,本文的研究重点即为事故的控制。整个安全管理系统的最终目的是提高生产系统安全系数,减少因安全因素不稳定造成的事故。从安全管理系统的角度来讲,轨道交通安全管理系统需要在获得安全信息和影响安全管理因素的基础上,确定管理目标,并将目标按照管理层次进行分解,从而制定出分层实施计划和整体计划。计划制定后,要由安全执行机构予以落实,监察部门需要对生产管理系统中出现的信息进行监督和反馈,并依据其具体情况对安全状态进行评估、控制。一般来讲,安全管理系统对生产运营系统的功能主要反映在以下两条路径:一是微观控制反馈回路。这一功能路径由“安全状态检测”、“安全状态调查”、“隐患处理”、“组织实施”等一系列环节组成。其中,“安全状态检测”和“安全状态调查”能够对当前生产运营的实际安全状况进行反映,“隐患处理”和“组织实施”能够控制人、设备、管理、环境等因素。二是宏观控制反馈回路。这一功能路径包括“安全状态检测”、“安全状态调查”、“原始信息收集”、“安全状态综合评价分析”、“人员安全培训与教育”、“设备更新改造”、“环境改良”、“管理制度与方法完善”、“计划制定”、“组织实施”等环节。这一路径能够评价、预测整个生产运营系统现在或未来的安全状态,并针对其安全状态调整安全计划以及安全管理工作的组织实施。
三、城市轨道交通安全管理体系的组成
轨道交通安全体系包括保证系统、控制系统、信息系统,这三项系统是安全管理体系运行的前提和根本,能够为整个体系提供制度保证和组织保证。1.保证系统。保证系统具体包括组织保证、制度保证、教育保证。1.1组织保证。安全管理需要企业各层次、各部门积极有效的配合,这样方能实现管理制度、管理计划、管理决策的落实。这种配合不仅需要部门间的横向配合,还需要纵向上的承接与联系。1.2制度保证。安全生产责任制是安全管理工作的前提和依据,其体现了全面管理的思想。具体到轨道交通企业,安全管理规章制度是以岗位安全生产责任制为实施细则的,这能保证轨道交通运营安全的责任落实到人,确保每个岗位都有一个明确的安全责任。该责任制的横向涉及每个生产运营与安全管理部门,纵向涉及最高管理者到基层作业人员。1.3教育培训。安全教育是安全管理工作能够科学开展的重要保障,积极有效的安全教育能够使职工尽快适应工作环境,掌握与环境有关的工作常识,避免产生人为的不安全行为。因此,安全教育与培训工作值得引起领导层的重视。2.控制系统。控制系统能够按照预先计划和标准,对被控制过程中发生的实际值和计划值进行比较、检查、监督,并对差值进行引导和修正,以确保主体在变化的环境下实现目标。就目前来看,我国轨道交通安全管理仍处于事后管理阶段,即单一反馈控制,其是一种“问题型”的管理方案,管理者只能在出现事故或有事故苗头后采取防范措施,这远不能适应当前轨道交通路网规模的扩大化需求。因此,构建新型的城市轨道交通安全管理体系就需要将前反馈和后反馈相结合,做到超前控制,针对运营系统本身的属性和变化制定管理方案,在出现可能影响安全运行之前就对影响因素进行评价、干预,并采取必要措施。具体来讲,轨道交通安全管理的控制系统主要包括目标确定、安全涉及、过程控制、事故处理四部分。2.1目标管理。安全目标值的确定应当根据轨道交通的建设时间、使用情况、安全状况等统计数据或指标,同时也要参照国际同行业标准,尤其是先进企业的安全目标值。目标值一旦确定不可随意更改,且要下放分解到公司、车站、中心枢纽等各部门,落实到岗位。2.2安全设计文件。控制系统所包含的安全设计文件主要有:(1)员工信息、事故资料;(2)安全管理目标;(3)安全管理组织;(4)安全生产策划;(5)安全保证计划;(6)运营现场与安全控制;(7)事故隐患控制。2.3过程控制。生产安全是由一系列过程组成的,过程控制能够通过生产管理各个阶段的安全检查结果反映全系统的安全状态,帮助安全管理部门根据所获取的状态信息对安全进行评价,做出决策,制定改进方案。2.4事故处理。事故处理事控制系统的最后分支,事故调查、分析、处理中形成的经验是安全制度设计、安全计划更改的重要依据。3.信息系统。建立性能良好的信息系统能够为安全管理提供必要的信息数据,辅助管理活动。3.1信息系统应具备的内容。轨道交通安全管理体系中的信息系统应当包括如下内容:(1)利用生产管理信息网络对安全信息进行准确收集并传递到各级管理层和各部门;(2)建立安全统计分析、事故档案管理、隐患控制系统、安全责任系统等子系统;(3)建立计算机分析辅助系统;(4)建立安全管理办公自动化平台;(5)建立应急预案数据库。3.2信息系统的总体结构与功能。轨道交通安全管理体系中信息系统的结构及其功能主要有以下几种:(1)隐患子系统,功能为收集隐患情况,对风险进行分析、分级、归类;(2)安全责任子系统,功能为记录安全责任的落实情况,统计和评价安全监察员反馈的各种信息;(3)安全统计分析子系统,功能为收集日常运行报表,建立安全生产计划表;(4)事故管理子系统,功能为归纳、整理事故的数据、文字以及轨道交通相关图纸、法令、技术规范,方便随时调用;(5)安全档案子系统,功能为收集各级安全组织、安全管理人员情况,记录安全教育情况。
四、结语
城市轨道交通安全管理体系由保证系统、控制系统、信息系统组成,保证系统是安全管理的前提,控制系统为核心,信息系统则是保障。任何一种新的管理思想、理念或是模式的推行都需要一定时间和过程,城市轨道交通安全管理体系也在不断的深化和改进中,人们将继续探索,新的理论也将不断完备、充实。
参考文献:
[1]崔艳萍,唐祯敏,武旭.城市轨道交通行车安全保障信息系统的研究[J].中国安全科学学报,2004,14(5):95~98.
[2]李毅雄.应用系统原理提高地铁安全管理水平[A].中国土木工程学会隧道及地下工程学会地下铁道专业委员会第十四届学术交流会论文集[C].北京:中国科学技术出版社,2001:481~483.
1、列车自动监控系统ATS。ATS系统由控制中心、车站和基地设备组成,可实现列车的自动识别、自动追踪、自动调整,进路的自动控制或人工控制等。
2、微机联锁系统SICAS。SICAS系统由工作站、联锁计算机、元件接口模块(EIM)和相关的轨旁设备组成,具有3取2的冗余功能,可实现轨道空闲处理、进路控制、道岔控制和信号机控制等功能。
3、列车自动防护系统TGMT。TGMT是基于移动闭塞分隔列车原理,即通过车―地间周期传递列车位置信息和地―车间传递移动授权来实现,整个系统可分为车载子系统和轨旁子系统。可实现ATP轨旁功能、通信功能、ATP车载功能和ATO车载功能。
4、列车位置监测系统TDF。TDF主要是依靠计轴设备来实现对列车的检测功能。计轴设备包括计轴点装置和运算单元。计轴点装置将从现场采集的数据传送到运算单元进行处理、比较进入区段的轴数和离开区段的轴数、监控线路区段,给出线路空闲或占用指示。
5、无线系统RCS。无线通信系统主要用于列车设备和地面设备的通信,列车的状态信息和控制指令采用无线通信网络进行传输。其采用IEEE802.11协议,由商业化WLAN商业标准部件建立,具有安装和维护容易,成本低廉等特点。从设备层面来看,无线系统可以分为轨旁设备与车载设备两部分,其中RCS的安全风险主要集中在车地无线通信网网络上。
二、车地无线通信安全问题
车地无线通信采用WLAN技术,WLAN由于其自身的网络开放性,带来了多项安全性问题[4][5]:
1、扫描攻击。WLAN通常使用2.4GHz频率,任何一台无线设备都可以扫描甚至连接上WLAN,整个WLAN系统就很容易被非法分子窃听。
2、中间人攻击。WLAN的会话双方采用的是单向认证,攻击者在会话中间抓包,可以读取到敏感信息,如果数据包没加密,就很容易对包进行恶意篡改,篡改之后再转发给会话另一方,从而达到攻击对方的目的。
3、DOS攻击。DOS攻击即拒绝服务攻击,主要有两种表现形式。第一种是攻击者向AP发出大量的身份请求,使得AP无法处理合法用户发出的身份请求,从而造成WLAN用户得不到正常服务;第二种是攻击者使用与WLAN相同的频率如2.4GHz对WLAN进行干扰,占据大量的网络资源,使得WLAN用户获取不到应有的服务。
4、非法AP攻击。攻击者设置一个信号强度强于WLAN网络AP的非法AP,使得用户连接到非法AP,这样,攻击者通过抓包软件就可以获取到敏感信息,如用户名、口令、身份证号、手机号等信息。
三、可行的防护措施
1、口令认证。WLAN的AP所设口令不能是弱口令,弱口令很容易被黑客暴力攻破。这是最基本的防护措施,做得好就避免了扫描攻击。
2、使用IEEE802.1x。是IEEE802.11的增强版,提高了安全性,要求用户事先安装相应的客户端软件才能连接至WLAN网络。
轨道交通的安全包括消防安全、行车安全、综合治理安全等诸多方面。为了更好地避免事故的发生,对轨道交通运营安全的影响因素进行分析,有针对性的着手来做好安全预防工作,对个轨道交通运营企业都是至关重要的。
一、单因素影响分析
(一)人员影响因素分析
1.人在保障运营安全方面的重要性。在安全问题中,认识矛盾的主要方面,因为即使是高度自动化的系统也避免不了人的介入,不可能完全不受人的操纵和控制。德国安全专家库尔曼认为,人是一种安全因素和防护对象,机器是一种安全因素,环境是一种安全因素和应予保护的财富。在人—机—环境系统中只有人向安全问题提出挑战,一个掌握足够技能和装备的人能够发现并纠正系统故障,并使其恢复到正常状态。不幸的是,绝大多数事故的发生均与人的不安全行为有关。交通运营安全与许多活动有关,所有各项活动都依赖于高效、安全和可靠的人的行为。人对运营安全的特殊作用可归纳为下述三点:(1)人的主导性;(2)人的主观能动性;(3)人的创造性。
2.运营安全的人的素质要求。如图1所示。
图1 运营安全的人的素质要求示意图
(二)设备影响因素分析
1.与运营安全有关的设备类型。(1)运营基础设备包括:固定设备——线路、车站、信号设备等,移动设备——电动车辆、移动通信设备等。(2)运营安全技术设备包括:安全监控设备,安全监测设备,自然灾害预确报与防治设备,事故救援设备等。
2.设备影响因素主要体现在设备本身的质量和设备适用于养护方面。
(三)环境因素影响分析
影响运营安全的环境条件包括内部小环境和外部大环境两部分。
1.内部小环境。交通运营系统是一个非常复杂的宏观大系统。它由系统硬件、系统工作人员、组织机构以及社会经济因素等相互作用而构成的社会——技术系统。
2.外部大环境。影响运营安全的外部环境包括自认环境和社会环境。自然环境是指自然界提供的、人类一时尚不能改变的生产环境。其对运营安全的影响很大,比如洪水、雷电、地震等。影响运营安全的环境因素如图2所示。
图2 影响运营安全的环境因素
(四)管理因素的影响
1.交通运营安全管理包含以下几方面的含义:(1)运营安全管理的目的是消灭和减少运营事故及其损失。(2)运营安全管理的主题是运营系统的估计管理人员。(3)运营安全管理的对象是人、才、物、信息等。(4)运营安全管理的方法是计划、组织、指挥、协调和控制。(5)运营安全管理的本质是充分发挥人的积极性和创造性,调动一切积极因素,促使各种矛盾向有利于运营安全的方面转化。
2.管理对运营安全的重要性主要体现在以下三个方面:
(1)有助于提高运营系统内部人员、设备和环境的安全性。(2)管理具有协调运营系统内的人、机、环境之间关系的功能。(3)管理具有优化运营系统人—机—环境整体安全功能的能力。影响运营安全的管理因素如图3所示。
图3 影响运营安全的管理因素
二、各影响因素之间的关系
轨道交通运营系统是一个在时间上、空间上分布很广的开放的动态系统,运营安全影响因素错综复杂,涉及面很广,从系统论的观点出发,与运营安全有关的因素可划分为四类:人,机器,环境,管理。各影响因素之间的关系如图4所示。
中图分类号:K915 文献标识码: A
总所周知,轨道交通地铁日均客流量非常大,较高的客流量导致车门系统故障频发。如何才能对现有车门系统状况进行合理的预判,以保证在最大使用效率的基础上,尽量降低车门系统的故障发生频率成为本文研究的重点。
1. 车门系统及故障
按照车门的运动轨迹以及与车体的安装方式,城市轨道交通车辆车门一般分为塞拉门、外挂门和内藏门三种。
1.1塞拉门的特点
塞拉门区分为内塞拉门和外塞拉门。城轨客车一般采用外塞拉门。塞拉门在开启状态时, 车门移动到侧墙的外侧; 在关闭状态时车门外表面与车体外墙成一平面, 这不仅使车辆外观美观, 而且有利于减小列车在高速行驶时的空气阻力和降低空气涡流产生的噪声。
塞拉门系统优点:1) 由于车门在关闭状态时, 门页外表面与车体侧墙成同一平面, 所以使列车外观平滑, 整体和谐美观,列车在高速运行时空气阻力小,也不会产生空气涡流而产生噪声;2) 具有良好的密封性能, 对传入客室内噪声有较好的屏蔽作用, 同时可降低客室空调的能耗;3) 采用塞拉门能使车内有效宽度增加,载客量也会增加。缺点:1)由于塞拉门多了一个塞紧动作,结构比较复杂,价格比外挂门约高20%。2)故障率高。
1.2外挂门的特点
外挂门的门页,车门悬挂机构以及传动机构的部分部件安装于车体侧墙外侧,电子门控制单元和驱动电机装于车体侧墙的内侧。外挂门主要由门页、直流驱动电机、车门悬挂机构、丝杆/螺母机械传动机构和电子门控单元等组成。此外,车门还装有车门关闭行程开关S2,锁闭行程开关S1,切除开关S3以及紧急解锁开关S4。车门关闭后触发限位开关S2和锁闭开关S1,给出“门锁闭”信号。如果车门出现故障,可以通过方孔钥匙作用于行程开关S3将该车门切除。当紧急手柄动作后,触发限位开关S4,门被紧急解锁,当列车静止或者输出零速信号时,车门才可以手动打开。系统通过电机驱动丝杆和螺母机械传动机构实现门叶的开/关动作。
外挂门的优点:与其他形式的车门相比,采用外挂门形式的列车的车内空间相对较大。缺点:外挂门由于门翼始终位于车体侧墙的外侧,因此在车辆运行过程中会产生一定的运行阻力,其次密封性较差,车厢内与隧道间易产生窜风,噪声大且舒适性差。
1.3内藏门的特点
内藏门对开式滑门简称内藏门。车门开/关时,门叶在车辆侧墙的外墙板与内饰板之间的夹层内移动。内藏门主要由门叶、车门导轨、传动组件、门机械锁闭机构、紧急解锁机构、气动控制系统以及电气控制系统等组成。车门关闭后,锁闭系统动作,保证车门安全可靠地锁闭。车门系统装有车门锁闭S1、车门关闭行程开关S2,车门切除开关S3、紧急解锁行程开关S4,实现车门的电气控制。系统通过中央控制阀来控制压缩空气的流向和流量,实现双作用驱动气缸的前进和后退,再通过钢丝绳、绳轮和驱动支架等组成的机械传动机构完成车门的开/关动作。
内藏门优点:驱动机构相对较为简单、质量较轻、手动开关/门所需力量较小、实用,可以抵抗大客流,故障率低;缺点,密封性不好,美观性差些。
限于篇幅有限,本文仅以内藏门为例对本文所提算法进行说明。内藏门的故障因素统计表如表 1所示:
表1 内藏门故障因素统计表
2. 车门系统安全性模糊聚类算法
2.1. 模糊聚类决策变量的确定
在城市轨道交通车辆的实际运行中,并不是所有的车门故障因素都对车门拥有相同权重的影响。为了简化计算,我们一般选取适当的阀值来简化车门系统故障的制约因素。本文中我们将阀值选为 10%。因此,内脏门故障因素的模糊聚类决策变量为尺寸配合、锁闭开关、S钩、门槛条和驱动气缸。其中,门槛条和驱动气缸为定性决策变量,其他为定量决策变量。
2.2. 计算模糊聚类决策变量的标准值
2.2.1. 定性决策变量的标准值的计算
对于门槛条和驱动气缸为定性决策变量的处理是利用语言模糊评价来衡量的。比如,门槛条的五个语言标度分别是“优”,“良”,“中”,“差”,“废”,相对应的模糊语言描述如表 2-1 所示,其中表示该因素的阀值且从而将定性变量转化为定量的数据,如公式(1)。
2.2.2. 定量决策变量的标准值的计算
由于因素尺寸配合、锁闭开关、S钩采用的量纲是不一致的要对其进行标准化计算。具体如公式(2)
2.3. 车门系统安全性模糊聚类算法步骤
循环遍历待检测数据组 A 中影响车门系统安全性的全部因素,建立模糊相似矩阵,通过计算模糊相似矩阵来实现车门系统安全性模糊聚类算法。具体步骤如下:
步骤一,取任意一个事故聚点数据,输入模糊相似矩阵 L,初始化聚点数变量 j=1;
步骤二,初始化循环变量 i=1;
步骤三,任取检查数据组 A 中因素开始循环,删除模糊相似矩阵 中与检查数据组 A 相关的行;
步骤四,若所有待检测数据组因素都被检测,则程序停止;反之,j=j+1,,返回步骤二。
3. 基于模糊聚类的车门系统安全性预判算法
输入:检测数据组 A(因素 1 标准值,因素 2标准值,…,因素 n 标准值)
输出:预判还能使用的次数(100的整数倍)
4. 实验
本文的实验数据来自 2014 年某市地铁二号线内藏车门故障及日常维护中的检测数据。其中,将全年的 103 次车门系统故障后的检测数据做为聚点,日常维护中的检测数据做为分析数据,选取 6 组距离较为典型的数据进行预判分析。这6组数据分别为:甲组和乙组与事故聚点的距离,丙组和丁组与事故聚点的距离,戊组和已组与事故聚点的距离。分别对这六组数据进行车门系统还能使用的次数的预判,结果如表 4-1 所示:
表4-1六组数据预判结果
5. 结束语
从实验结果中,不难看出本算法的预判结果与实际值还是有一定的差异的。本算法的不足之处主要在于:一方面,模糊聚类的阀值需要经过大量的数据分析才能获得较好的结果,而本文的选择的数据量偏小导致阀值的选取存在一定的偏差;另一方面,本文在预判现有车门系统还能使用的次数,是在假设不在发生其他事故因素的前提下,采用线性拟合的方式计算,这中假设与实际情况存在着差异导致实验结果存在着偏差。这两方面正是本文今后工作中要研究的方向。
参考文献:
[1] 朱小娟.上海地铁车辆客室车门可靠性技术研究 [J] 城市轨道交通研究 ,2006.
中图分类号:U231文献标识码: A
引言
行车调度是地铁运输组织指挥系统的中枢神经,保障运营安全与质量,确保运营生产的顺利实施。同时负责运营事故以及其他运营突发事件的处置、抢险指挥与协调工作,以减少影响与损失,迅速恢复正常运行为前提,及时采取一切有效措施控制事件发展态势。所以行车调度工作在地铁安全保障工作中,以灵活、安全、高效、及时性维持着地铁的安全运行,为人们的安全提供有力的保障。综合分析近年来我国地铁发生的安全事故,主要原因是我国对地铁安全保障措施不到位、认识不全面,所以加强行车调度人员知识教育,加强地铁安全保障系统建设、健全地铁安全保障制度,是我们应该面临的首要问题。因此研究地铁安全保障系统,了解行车调度工作,对于改善地铁运营的安全现状,预防事故和降低事故损失都具有十分重要的意义。
一、地铁安全保障的复杂性、特殊性和必要性
从国铁近些年大力建设行车安全监控网络信息系统和推广应用的成功经验来看,建立高度自动化、网络化和系统化的行车安全保障系统将为大准铁路公司稳定、持续、协调、快速的发展提供强有力的技术支撑,为强化企业安全管理提供先进、有效的技术手段。从上海铁路局建设行车安全综合监控系统的成功经验来看,实现行车安全监控综合信息化将对保障运输安全产生特别突出的效果,可为生产和综合经营提供极为有利的信息和决策依据。
行车安全保障系统的用户主要包括车务段、机务段、工务段、供电务、车辆段、信号段、通信段的基层站段相关生产作业人员、调度指挥人员和公司生产管理人员。其中,基层站段相关生产作业人员主要是负责远程监控,响应系统预警信息进行现场复核,及时处理安全隐患,按上级管理要求提交处理反馈报告。调度指挥人员负责远程监控直接影响行车的严重预警,根据预警性质和报警级别,按照预定的行车管制措施实施行车控制,防止行车事故发生。公司各部门生产管理人员关注与其管理职责相关的监测预警信息,监督基层生产作业人员对预警事件的响应和处理情况,分析导致安全隐患的相关因素,提出针对性改进措施,提交安全分析报告;其中,质量安全部的生产管理人员负责综合安全管理,负责全面的监督、控制和指导。
随着世界各国各大城市经济的快速发展,地铁的普及范围越来越广,然而地铁作为一个人员密集的公共场所,综合国内外地铁事故已经屡见不鲜:2006 年西班牙巴伦西亚发生严重的地铁出轨事故,直接导致41 人死亡,47人受伤,1995年东京地铁3 条线路的5节车厢同时发生被称为“沙林”的神经性毒气泄露事件,造成 12 人死亡,5 000 多人受伤,14 人终身残疾。我国更是因为地铁建造、人员管理不当引起人员掉入电轨伤亡地铁停运等情况多不可数。其中分析很大一部分原因是由于人为和工作人员管理不当造成的。
我们国际作为世界第一人口大国,特别是一些发达地区人员更是密集。随着我国地铁在各大城市的不断发展和建造,安全保障我们更是应该放在第一位来考虑。但是由于地铁的环境位置特殊,处于地上和地下的中间位置,空间封闭,人员集中量大,为安全保护工作带来困难,此外因为地铁建造的构造复杂性,人员安全意识不足,工作人员的管理不到位,也为地铁保护工作形成不小的障碍。由此可见,地铁作为我们日常生活中的交通工具,在受到人们青睐的同时,安全隐患更应该引起我们的重视。
二、组建地铁安全保障体系,打造全方位安全平台
地铁安全保障体系包括完善的地铁运行规章制度和管理、行车调度人员知识教育、地铁行车安全保障系统等几个方面。笔者从加强地铁的硬件和软件设施提出建议,全方面的为人们安全保障打下基础。
1、地铁运行规章制度和管理
地铁作为一个人员密集的公共场所,在我国因为不遵守地铁规章制度而发生的安全事故应经不在少数,以北京地铁因为拥挤将人挤下地铁轨道导致被地铁轧死事件为例,这也说明我国的地铁运行规章制度不够完善,人们对安全意识不够。
特别是对于行车调度人员,在工作过程当中,出现一些突况,必须按照“列车行运图”指挥列车,并且及时上报处理,这就严格要求行车调度人员准确的判断性和严格的规章制度标准,以上海地铁追尾事故为例,就是因为有关人员未能严格执行相关管理规定,导致事故发生。
2、调度工作人员知识教育
综合国内外的安全事故,很大一部分原因是人员的过失行为造成。所以在制定相应的规章制度的同时,还应该对相应的工作人员进行安全保障教育培训,使工作者们能够进一步的熟悉地铁环境,遇到一些突况,工作人员能够及时作出反应,组织和帮助乘客们以最有效的方式脱离危险。行车调度工作人员掌握地铁安全运行,这就要求工作人员对地铁各项设施的熟练认识和操作,加强人员工作教育是预防安全事故的基础保证。公司应该从理论入手与实践结合,对工作人员严格把关,避免工作过程当中出现的失误,导致地铁无法正常运行。
3、地铁安全保障系统
在城市轨道交通系统中,信号系统是一个集行车指挥和列车运行控制为一体的非常重要的机电系统,它直接关系到地铁的运营安全、运营效率以及服务质量。它保证乘客和列车的安全,实现列车快速、高密度、有序运行的功能,主要包括卡斯柯、西门子、庞巴迪等信号系统。信号系统在地铁安全中占有重要的地位,出现信号系统故障会造成地铁晚点、行车间隔较大、列车舒适度较差等问题,关键设备故障还会造成危及行车安全的大事故。同时地铁安全监测系统主要包括地铁行车安全监测系统;设备检修质量保证系统;安全监测计算机网络系统等几个部分。在科技不断发展的时代,地铁也逐步走向信息化时代,利用计算机网络技术,全方位的对地铁设施进行监控,通过数据监控达到安全保障的效果,工作人员不仅能够很好地对地铁设备有一个全方位的监测,数据不合格能够及时更换设备,对地铁消防设施以及应急措施也得到全方位的把控。
结束语
地铁作为现在时代的一种交通工具,因为受环境、设施复杂等制约,安全保障问题我们不可忽视。我们应该吸取以往安全事故的经验和教训,避免和减少安全事故的发生,保障地铁的行车安全。在科技文化不断发展的年代,利用科技手段不断完善地铁安全保障系统,在科技文化不断发展的年代,利用科技手段不断完善地铁安全保障系统。地铁安全保障系统的建立,加大对地铁系统设备检测的力度,进一步优化自身的管理流程和管理架构,以促进我国地铁安全系统的不断提高。
参考文献
[1]陈铁,管旭日,孙力彤.城市轨道交通综合安全管理体系研究[J].城市轨道交通研究,2004(01).
[2]路美丽,刘维宁,李兴高.风险管理在城市地铁工程中的应用初探[J].中国安全科学学报,2005(05).
1.1建立公司RAMS管理体系
RAMS管理的涉及面很广,它与公司设计开发、生产制造、质量管理和采购部(子系统供方管理)发生联系,当前也与公司的培训部门有关。因此,需要成立一个公司级的RAMS领导机构。它是全公司开展RAMS工作的基础和保障。该领导机构建议以总经理或总工程师为首,由设计开发部门、工艺技术部门、质量管理部门、采购部门(子系统供方管理)的负责人或骨干组成,日常业务可由质量管理部管理。RAMS管理组织架构如表1所示。
1.2对供应商的RAMS监管
根据列车故障信息统计,约70%以上的列车故障来源于子系统供方。以系统集成为主的公司,应加强子系统供方的监管,并要有相应专业背景的工作团队。
1.2.1推荐的分包商每个公司都有专门的供方管理机构,也有专用的《供方管理程序》,需要在供方选择、评估、确定的流程中增加RAMS和全寿命周期费用(LCC)要求。
1.2.2对供应商的RAMS管理(1)与供应商签订的技术合同(协议)中,应详述RAMS工作要求,将系统的总体RAM(可靠性、可用性、可维修性)指标分配给各子系统,保证总体RAM目标理论上满足要求。(2)要求供应商及时开展RAMS工作,协调、监督并审核供应商的RAMS活动和提交文件。(3)项目执行过程中,供应商应定期(如每月)参加RAMS工作会议,推进RAMS工作,使RAMS工作与项目同步,保证其与供应商之间的接口有良好的沟通。(4)对子系统提供的RAM指标进行总体预计和分析,通过预计发现系统薄弱环节,改进有潜力的子系统,以保证总体RAM指标满足要求。最终,总体RAM指标应满足设计最低可接受值。RAM指标通过,设计定型完成。
1.2.3供应商的RAMS工作鉴于当前国内轨道交通行业的现状,不建议对子系统RAM指标进行单独的验证。建议子系统RAM指标随整车运营考核,每月月末进行RAM评估,连续12个月达到子系统RAMS指标视为合格;子系统RAMS指标未达到要求的,子系统供方应进行改进,直至达到RAM指标。
1.3内部RAMS审核
内审是在公司内部推行RAMS工作的一项重要手段。适时进行RAMS审核,可发现问题,实施跟踪,纠正不合格项,并验证纠正措施的实施。审核内容分为例行审核、动态审核和追加审核。为方便推进RAMS工作和不增加额外的工作量,此项工作建议与质量内审结合进行。
2列车的安全性
2.1安全风险管理
随着轨道交通安全性标准(GB/T21562—2008,IEC62278:2002,EN50126)的出台,安全风险管理将成为轨道交通提升安全性不可缺少的设计及管理技术。传统安全管理与现代风险管理的对比见表2。
2.2安全性分析方法
2.2.1隐患识别收集和汇总公司产品或同类产品在国内外已发生的安全事故信息,组织相关技术人员进行初步的分析,建立主要隐患清单(见表3),供技术人员设计时考虑。在隐患识别方面,应重点考虑单点故障及重要安全电路(如车门控制、车门环路、制动环路等)导致的隐患。
2.2.2隐患登记及减轻措施方案根据隐患清单建立公司内或同行业的《隐患登记册》。隐患登记的主要内容包括:编号、部件、隐患类别、隐患说明、可能原因、影响或后果、原有风险等级、建议减轻措施、剩余风险等级、管控单位、减轻措施类别、验证减轻措施方法、状态完成情况等。建议采用表格形式,方便设计师填写和RAMS工程师跟进管理。
2.2.3风险等级评估风险分析按照GB/T21562—2008及IEC62278:2002方法执行。采用“频率-后果”矩阵的形式,评估风险分析结果、风险分类和风险验收。风险矩阵见表4。表中,R1表示必须消除的风险;R2表示当风险减少不可行时,应经轨道交通主管部门或安全规章主管部门同意后方可接受;R3表示采用充分控制并经轨道交通主管部门同意后方可接受;R4表示有或无轨道交通主管部门同意都可接受的风险。
2.2.4隐患的减轻措施由RAMS工程师组织设计师、工艺师等提出减轻风险的措施,首先考虑设计,其次是制造,最后考虑运营及维修方面。各阶段考虑的主要内容为:(1)设计———冗余,保护设施,材料分析,负载分析计算;(2)制造———工艺标准,检测,验收,试验;(3)运营———危害的处理程序,警告标志,员工训练;(4)维修———定期维修,检查,测试设备,维修程序。
2.2.5验证减轻措施每一个隐患减轻措施都应有对应的安全验证方法。由RAMS工程师对其进行跟踪管理和落实,并对完成状态进行统计和通报,直到所有减轻措施正式完成。安全验证的主要方法包括:(1)实验室内进行的试验;(2)供货商厂内进行的试验;(3)调试试验;(4)型式试验;(5)模拟试验。
2.2.6安全原则及规范要求的符合性评估首先应列举所采用的设计原则、运营安全原则、工业守则或法例。在设计完成前,应逐条评估系统设计是否符合相关的安全要求。已识别的安全要求或功能,应在试验阶段对其进行安全验证,证明设计符合所需的安全功能或标准要求。安全验证可包括在安全关键设备的型式试验和调试试验中。在车辆试运营前,应完成全部安全验证工作,并确认完全符合所需的安全功能和标准要求。以上内容建议用表格形式完成,形象直观,便于管理。
2.2.7安全分析报告内容安全分析报告通常包括以下两部分内容:第一部分,安全原则及规范要求的符合性评估;第二部分,故障树分析(FTA)报告。
2.3安全性小结
产品安全是公司运作的前提和基础,在设计过程中应有一票否决权。如果产品存在风险等级不能接受的安全隐患,那就无从谈起产品的性能、可靠性、维修性等。产品安全性工作复杂、繁琐,许多细节往往容易被忽略。应将安全工作视为公司的“国防、公安”,将其作为重点工作来抓,如果只是当成“保安”工作来抓,产品安全性工作将很难开展或大打折扣。
3列车的可靠性、可用性及可维修性(RAM)
3.1列车系统RAM分析及方法
3.1.1子系统的可靠性分配对全车各组成子系统进行分类,建立全车的基本可靠性模型和框图。该模型为全串联模型。结合可靠性框图,根据列车的合同指标平均无故障时间(MTBF),对整车的可靠性指标进行逐级分配,完成从整体到局部的分解。可靠性分配常用公式为:λi=Ki•λs式中:λi———子系统故障率;λs———整车故障率;Ki———子系统故障率百分比。对有产品故障数据库的公司,建议用比例法进行分配;对暂时没有产品故障数据库的公司,建议用评分法计算故障百分比。可靠性分配使各供应商和各开发人员明确设计要求,保证总体RAM目标理论上满足要求。
3.1.2故障模式及影响分析故障模式及影响分析(FMEA)是在产品设计或工艺设计过程中,通过对产品所有组成单元或工序潜在的各种故障模式及其影响进行分析,提出可能采取的预防改进措施,以提高产品安全性和可靠性的一种设计方法或工艺分析方法。它是一种预防性技术,是事先的行为,也是开展故障导向安全设计的基础。FMEA为系统的可靠性预计和安全性评价提供依据。建议车辆公司参考汽车行业的FMEA表格建立适合本公司的FMEA表。FMEA分析过程注意事项如下:(1)应建立产品分层架构表或工序表(这样不会造成漏件或漏工序);(2)应建立产品的故障模式库(有助于设计师分析时考虑全面);(3)必须由设计师、工艺师填写FMEA表(有助于FMEA技术在设计、工艺中应用);(4)对FMEA表中提出的设计、工艺改进措施,应进行审查和验证。
3.1.3系统的可靠性预计可靠性预计是针对产品成熟期的可靠性水平进行的,设计完成时,应完成产品的可靠性预计。预计时应考虑设计、工艺改进的潜力和整个研发过程中的可靠性增长。
3.2列车系统RAM预计实例
轨道交通车辆系统极为复杂,元器件数量过多,任务可靠性框图也较复杂。本文介绍一种实用预计方法。(1)建立产品RAM预计表:建立表5所示的产品RAM预计表,按子系统部件组件零件,建立整车的分层架构,分层至可更换组件层面(表5的第二列)。(2)填写产品RAM预计表:设计师填写产品RAM预计表,并在产品故障影响栏中(掉线、晚点)作出标记,纳入任务可靠性考虑,并作为任务可靠性预计的依据。(3)掉线(或延误)任务可靠性预计:应用元件计数法,将表5中掉线(或延误)栏中标记为Y的工作失效率相加,将影响列车掉线(或晚点)的元器件工作失效率相加,计算整车的掉线(或延误)λ或MTBF。根据现车统计,掉线(或延误)的MTBF约为10000h。(4)基本可靠性预计:根据表5中的数据,应用元件计数法,将所有零部件故障率相加,计算整车的λ或MTBF。根据现车统计,整车的MTBF在100~200h之间。(5)维修性预计:根据表5中的数据,按以下公式,利用EXCEL表格可很方便地计算平均修复时间(MTTR,式中表示为tMTTR)。tMTTRs=∑ni=1(tMTTRi•λi•Ni)∑ni=1(λi•Ni)式中:Ni———设备数量。(6)备品备件预计:根据表5中产品每年的故障数,建立备品备件库,避免浪费。(7)可用性计算:通过上述计算得到MTBF和MTTR,按公式可计算列车的可用性。车辆的可用性约为96%。
3.3可靠性试验
实际工程中,部分产品会出现在型式试验和寿命试验中表现良好、但在实际运营中故障率较高的情况。因此,建议对关键电子设备进行必要的高加速寿命试验(HALT)。HALT是一种发现缺陷的工序,它通过设置逐级递增的加严的环境应力,来加速暴露试验样品的缺陷和薄弱点,并从设计、工艺和用料等诸方面进行分析和改进,从而达到提升可靠性的目的。其最大的特点是设置高于样品设计运行极限的环境应力,从而使暴露故障的时间大大短于正常可靠性应力条件下所需的时间。
3.4RAM验证
RAM验证期一般从上线运营开始计算,为期2年。此阶段列车故障信息收集相对容易和全面,可靠性增长形象直观,容易接受,效果明显(见图1)。RAM验证期前半年为车辆早期故障期,半年后车辆故障率趋于稳定,进入车辆故障率的稳定期。上线运营后,每月月末应计算车辆可靠性指标,将车辆运营的实际故障率与车辆合同值进行比较(如图1所示),待车辆运营实际故障率持续低于合同要求值连续12个月,车辆可靠性通过考核。同时,通过故障曲线可以评估本型号车辆的可靠性水平。
4故障报告及纠正措施系统