高等数学实际应用范文

时间:2023-08-20 14:41:14

引言:寻求写作上的突破?我们特意为您精选了4篇高等数学实际应用范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

高等数学实际应用

篇1

中图分类号:G4

文献标识码:A

文章编号:16723198(2015)22018102

在《高等数学》教学中尝试引入微课程教学,将课程中的一些难点、重点及相关习题做成微课程视频,提供给学生做课前预习和课后练习使用,这样学生就可以利用业余时间自主的选择学习,而宝贵的课堂时间可以用于深入讲解、讨论等活动,让学生真正的掌握高等数学知识,培养学生的数学逻辑推理能力和数学素养,真正的实现学生自主学习。

1微课程的起源及其特点

微课程的雏形最早见于美国北爱荷华大学(University of Novthern lowa)教授LeRoy A. Mc Grew1993年所提出的60秒课程(60-Second Course),他将课程设计为3部分:概念引入、解释和结合生活举例。1960年,美国阿依华大学附属学校基于学校资源、教师能力与学生兴趣,提出了以主题模块组织起来的相对独立与完整的小规模课程,即微课程。1998年,新加坡教师培训机构NIE(National Institute Of Education)为实施新加坡教育部发起的教育IT主体计划(Masterplan for IT in Education),开始进行微型课程研究项目,目的是培训教师构建一两个学时、30-60分钟的微型课程。2001年,麻省理工学院微型视频课程实施Open Course Ware计划,推出了微型教学视频。

关于微课程的概念,我国的学者给出了不同的见解。黎加厚教授通过研究认为:“微课程”是指时间在10分钟以内,有确切的教学目标,内容短小,集中说明一个问题的小课程。而张静然研究则认为:微课程是一线教师自已开发、时间控制在五分钟以内的微小课程,源于教师的教育教学实际,为教师所需,为教师所用,解决了工作中的棘手问题;微课程不仅是一种教师成长的工具,更是一种教师成长的新范式。我国最先提出“微课”的胡铁生先生则认为:微课是从新课程标准及教学实际需要出发,以微小的视频为主要载体,反映教师在课堂教学过程中针对某个知识点而开展教与学活动的各种教学资源重新合成。

综上,通过对国内外关于微课程概念的梳理,虽然微课程概念的定义没有统一起来,但上述提到的微课程具有以下几个特点:(1)以微视频为核心;(2)时间比较短,一般控制在10分钟以内;(3)一般围绕一个知识点、一个难点或重点进行讲解;(4)融合了文本、音频、视频、动画等元素;(5)微课程是一个完整的教学活动,有知识的讲解和配套的练习。

2高等数学应用微课程的教学案例――以数列的极限为例

本文以《高等数学》同济六版教材的第一章第二节数列的极限为例,制作了单课程的微视频,上传至教学班级的公用邮箱,供学生作为课前预习的主要资料。我所教授的教学班级共90人,含有两个自然班。学生大部分来自江浙沪地区,其中理科生占80%,文科生占20%。我将班级按照宿舍分组,4人一组,共22组(其中两组是5人一组)。课前布置微视频作为预习作业,课上按照小组进行讨论,分析还有哪些问题没有解决,引导学生自己推导出数列极限的定义,并完成一定的课后习题。以下是数列极限微课程的设计方案及学习任务单。

2.1数列极限的历史微课程设计方案

2.2数列极限的历史微课程学习任务单

2.3数列极限的概念微课程设计方案

2.4数列极限的概念微课程学习任务单

3单个微课程的评价

如何评价微课程的好坏?评价微课程优劣的标准是什么?我认为学生是微课程的最终使用者,因此一门微课程有没有价值,关键要看满没满足学生的相关需求,学生喜欢不喜欢,与传统课程相比,有没有更加促进学生各方面能力的发展?以下是通过课后访谈收集到的资料“学生眼中的微课程”:

我:你喜欢这种微课程吗?对你的预习有没有帮助?

S1:首先我要给老师一个赞,一开始打开书准备预习数列的极限这节,前前后后看了几遍,也不知道说的是什么。数列极限的概念太抽象了,中学时虽然学过求极限,但是对于极限的概念一点都没有涉及到。但是通过看微课程的视频,尤其老师举的数列极限那个具体实例,我一下就明白了数列极限概念的本质所在,即当n趋于无穷大的时候,与极限a的距离要想有多近就有多近。

我与S5的对话:

我:这个微课程的视频对你预习有没有帮助?看你的表情是不是遇到什么困难了?

S5:老师我觉得好难,总看视频就是不懂,那个数列极限的定义怎么出来的?到底是常数还是可以变的?它和与a之间的距离有什么关系?反正一开始就没看懂,看后面的推导过程就更烦。老师,视频内容能不能再讲详细些呀?

看到S5焦虑不安的眼神,我仔细了解了一下S5的具体情况。原来S5是文科生,数学基础本就比较薄弱。中学时极限的内容接触很少,更重要的是文科生的思维方式和理科生的思维方式完全不同,难怪她一时半会很难理解这么抽象深奥的概念。

我与S6的对话:

我:在课堂上,我可以看得出你们小组的表现最棒,将数列极限的概念和几何意义分析的最为透彻。你们喜欢用这种微课程的形式进行学习吗?与传统的上课形式相比,你认为微课程对你学习帮助最大的方面是什么?

S6:非常喜欢!如果课前预习只是枯燥的看书,我肯定是看不下去的。但是微课程的视频不同,它有动画,有图形,有例子,重点部分还用不同颜色的字体标识出来,非常形象生动。我们组的同学一连看了三遍,虽然第一遍的时候大家都不是很懂,但是到第三遍的时候,有两个同学已经搞懂了数列极限的定义是怎么回事了。然后他们把心得和同组的其他同学一起分享,最后大家集思广益把课后习题都给做出来了,竟然和老师上课讲的方法差不多,真是太高兴了。那可是证明题啊,中学时最怕的题目。希望以后老师多做些微课程的视频,那样我们可以自己看,这样上三节数学课也不会觉得那么累了。

S6说话的时候,喜悦之情溢于言表。一看就知道这是通过自己努力攻克难关的那种喜悦之情。成就感对于塑造学生学习的自信心,激发学生的学习热情,将所学知识内化为自己的一部分起着难以估量的作用。看来微课程在教学中的尝试对于大部分同学还是乐于接受的。

4单个微课程的反思

4.1需要构建与微课程相关知识的系列微课程

在与学生的访谈中发现,学生的层次不同,基础知识不同,对课程的接受程度也不同。单个微课程可能只能满足那些数学基础比较扎实的同学的需要,而对于基础薄弱、知识出现断层的同学,单个微课程起的效果不是很理想。因此以后应该开发相关知识点的系列微课程,不需要的同学在播放视频的时候可以直接跳过,而需要的同学可以从前到后仔细观看。这样才能满足不同层次学生的需求,达到所有学生根据自己的需要主动的进行学习。

4.2小组的结构分配不合理

当初组建小组的时候,只考虑了学习方便的原则,而没有考虑学习基础的好坏。使得有的小组四个同学数学基础都很好,很快就完成了任务学习单上的要求,课上讨论的时候也非常积极,观点也很正确。而有的小组几乎都是文科生,基础相对比较薄弱,微课程视频看了几遍也没有弄明白课程内容,就更不用谈解决课后习题了。结果造成课上时间的浪费,老师大部分时间都在为他们解决问题。因此以后分组时要首先考虑数学基础的好坏,按照成绩优、良、中、差分组,然后再考虑学习方便的原则。这样才能充分发挥小组相互合作,互帮互助的作用。

4.3缺少难点、重点的归纳总结

微课程仅仅介绍了数列极限的定义及其推导方法,但对于这一概念哪里需要注意,哪部份是重点、难点并没有强调,也没有特别指出。因此,以后制作微课程时,最后一定总结概括一下,并重点强调难点、重点所在,使得学生印象更为深刻。

参考文献

篇2

[中图分类号] G642 [文献标识码] A [文章编号] 2095-3437(2017)05-0038-03

在高等教育转型改革的背景下,应用技术大学人才培养的目标是高级技术应用型人才,此类人才有其自身独特的知识、能力及素养,其特色是定“性”在行业,定“向”在应用,定“格”在复合,定“点”在实践,如何在人才培养方案中具体的体现出来,是应用型本科院校必须认真思考和需要解决的首要问题。高等数学是高等学校的一门公共基础课,在高校的课程体系中占有十分特殊的地位,如何在高等数学教学中,体现专业特色,发挥好学科的支撑作用是应用型本科院校高等数学教学改革的一个重点。随着新建本科院校招生规模逐步稳定,数学课程课时逐渐压缩,专业要求差异凸现,高等数学的教学难度越来越大,基础课教学课时逐步压缩,学习内容不能适应专业要求是应用型本科院校特别是新建本科院校面临的一个普遍问题。由于生源的差异、学生接受能力差异,导致学生“吃不饱”与“囫囵吞枣”并存,严重制约了学生学习数学的兴趣,再者学生的职业目标的多元化,使传统的教学模式已经远远不能满足应用型人才培养的需要,为此厦门理工学院高等数学教学部在高等数学的课程改革方面做了一些有意义的尝试。我校从2009年开始,在经管和理工两个大学科,根据学生数学基础水平的高低将学生群体划分成不同的级别,有针对性地进行高等数学的分级教学,从教学内容、教学方法、教学评价等方面进行了培养学生科学素养的实践和探索,取得了一些效果和经验。本文结合厦门理工学院2009―2014年的分级教学的实践,对应用型本科院校分级教学的必要性、分级原则、实施方案和教学效果等进行了分析和探讨,对进一步完善分级分类教学方案提出了一些建议。

一、分级教学的原则方案

遵循“以人为本、以学生为中心”的教学理念,为了体现“知识面较宽,基础较扎实”“应用性较强”的特色教学,根据学生数学基础的掌握程度以及学习能力和理解能力的强弱,理工类和经管类的高等数学教学分别分为A、B两个层次进行教学,A层次分别在理工类和经管类专业筛选10%~15%左右的学生按大学科组班,教学面向数学基础较好、立志于考研的学生,特点是起点高,内容深,进度快,目的是通过参加本层次课程的学习,使学生获得坚实的数学基础与丰富的应考能力和经验,为学生报考研究生奠定坚实基础。A层次理工类高等数学课时为186学时,教材选用同济大学《高等数学》(第五版);经管类专业高等数学课时为168学时,教材选用武汉理工大学大学编写的《微积分》(第二版)。B层次定位于为专业服务,在教学中要注重三基训练,要求学生掌握高等数学中的“基本概念”“基本性质”和“基本方法”,并且要求学生夯实基础,要使学生达到“基本要求”目标,使学生具备专业所需的数学知识和能力,培养学生提出问题、解决问题的能力。B层次理工类专业高等数学为168学时,教材选用同济大学出版社出版的理工类《高等数学》教材,经管类专业高等数学为140学时,教材选用中国人民大学编写的《微积分》教材。为调动学生的学习积极性,第一学期期末考试后,根据学生成绩和学生意愿适当调整A、B层次分级名单。A层次班的学生,根据自身的学习情况,在第二学期的第一周可以提出申请退出A层次班的学习,回到B层次班学习,同样B层次的学生中期末考试成绩在90分以上者也可以提出申请,经分级教学团队推荐、教务处同意,可转入A层次教学班学习;对于基础比较薄弱、学习上有一定困难的学生,从第一学期期中考试结束后开始,根据自愿原则,利用课外时间,由高等数学教研部负责编班,和任课教师通过“一帮一”方式,增加辅导课,帮助这部分同学完成高等数学的学习任务。

二、考核办法

成绩以课程考试为主,平时考核(含作业、测验、期中考试、考勤等)为辅,考、评实行分级,总评成绩的比例为:课程考试占70%,平时成绩占20%, 期中考试占10%,A、B层次的考试由学校委员会通过试题库命题,参加A层次教学班的学生考试合格者,比B层次教学班学生多1个学分,考试不及格者,参加B层次班补考,补考及格者,学习成绩按B层次班的成绩学分计入,并参加第二学期B层次班的学习和考试。补考未及格者按B层次班的重修办法执行。 B层次学生亦可申请A层次考试,A层次学生原则上不能申请B层次考试。针对不同级别的学生的不同特点采用不同内容不同难度的试题,试题分为基础模块、发展模块和提高模块,在基础模块中补充了部分中学的基础知识,在提高模块中增加建模、数学竞赛和考研的内容。试卷按基础题A层次占30%,B层次占50%;中等题A层次占40%,B层次占40%;提高题A层次占30%,B层次占10%的比例在试题库中随机生成。这样的试题难度既能够适应学生的要求,又能够体现学生的水平。

三、教W改革的试点情况

2009年3月我们申请了厦门理工学院质量工程课题“高等数学教学团队建设”。该项目获批后,我们积极着手进行工作,首先从高等数学分级教学改革入手,结合A、B层次的目标要求对原高等数学内容进行优化整合,重点对B层次班级突出满足专业要求的目的,培养学生科学计算能力和实际动手能力,能应用数学软件解决本专业中的实际问题。2009―2014年,我们先后对全校9个学院28个专业18299名新生的高等数学课程实施分级教学试点,每学年通过高考数学成绩以及数学摸底考试,挑选出三个理工类A层次班级,一个经管类A层次班级,其余划归B层次班级。在第一学期和第二学期对两个层次用具有一定广度、深度和题量的试卷进行测试。为了避免传统利用正态分布的定性分析方法,我们将平均分、相对误差、效度值三个量化指标引入考试效果的评价中,通过对三个指标的数值进行定量分析,得出了分级教学试行效果。平均分是表示全班学生掌握所考课程内容平均水平的重要标志,通过学生个体与平均分的差值分析,可以反映单个学生与全体学生现有的总体学习水平的差距,基础课程通过性考试平均分应控制在70或80分。相对误差δ衡量平均分与80分的相差程度可以用相对误差表示,其计算公式为:δ = ×100%,式中δ为相对误差,P为平均分数,其评价标准如表1所示,即相对误差越小评价结果越好,相对误差越大评价结果越差。此外综合评价考试成绩时,不同班级有可能平均分接近,但各个学生得分分布情况却大不一样。因此我们考察以平均分80分为基准,标准差±10分的成绩分布与正态分布的接近程度,以此衡量平均分的有效程度。我们引入效度的计算公式

S= × ×100%,nmin= min{n1,n2},nman= man{n1,n2},式中S 为效度,N为全班人数,是全班考试成绩在60~80分之间的人数,分别为全班考试成绩为70~79分与80~90分的人数,其评价标准根据值按表1进行。当效度值在50%~80%之间时,说明大部分学生的考试成绩集中于平均分左右,其评价结果为好;当效度值在20%~49%之间时,说明部分学生的考试成绩偏离平均分,其评价结果为中;当效度值小于等于20%或大于等于80%时,说明多数学生的考试成绩偏离平均分,其评价结果为差。

我们随机选取机械工程学院车辆工程专业在2009-2013年连续五个年级10个学期的高等数学期末考试卷面成绩,通过计算平均分数、相对误差、效度分析5年来的分级教学考试效果,考试成绩分布情况统计结果如表2所示。

表2说明2009―2010学年学生成绩大部分在59分以下。随着学年的增长,59分以下部分的人数逐渐减少,70~89分部分的人数逐渐增加,其中在2012―2013学年稍有波动。虽然学生成绩不及格率偏高,但由每年不及格率逐渐减少以及70~89分的人数逐渐增多,可知学生成绩分布正中心在逐渐向右,与厦门理工的招生分数逐步提高是正相关的。

表3表明有4个学年的平均分在70分左右,达到了基础课程通过性考试对于平均分的要求,表明学生整体掌握课程学习内容与经过课程学习所达到的综合能力为良好。从相对误差与效度进行分析,5个学年中有3个学年的考试成绩相对误差数值小于3%,远优于相对误差评价标准中小于10%为好的标准; 5个学年都达到了20%~49%的中级效度标准,未出现评价效度差的情况。通过对相对误差、效度值两个指标的量化分析,表明考试成绩在平均分70分附近分布均匀,成绩分布较为理想。

第二学期高等数学的考试情况通过表4可以发现,5个学年中不及格人数普遍偏多,未能达到以通过性考试评价学生学习效果的预期目标,从另外一个角度也说明学生第一学期一元函数微积分的基础不够扎实。表5显示,只有两个学年的平均分在70分左右,其他3个学年的平均分都在60分左右或60分以下,未能达到基础课程通过性考试对于平均分的要求,表明学生整体掌握课程学习内容与经过课程学习所具有的综合能力还没达到预期的目标。对考试结果的相对误差与效度进行分析,我们发现5个学年中有两个学年的考试成绩相对误差数值小于10%,为好的标准,5个学年都达到了20%~49%的中级效度标准,未出现评价效度差的情况。

四、分级教学的若干思考

分层递进、重点突破的课程教学战略比较适用于新建本科院校的实际情况,对于教学质量的提高发挥了积极作用。通过5年来的实践,我们欣喜的看到学生的学习态度发生了比较大的变化,到课率比过去明显提高,抄袭作业现象有所减少,学生主动参加辅导的人数不断增加。从平均分、相对误差、效度上看,实施分层教学后及格率、优良率还是平均分都有明显的提高,而标准差不超过14,是比较理想的结果,达到了预期目标。在分级教学的实践中还存在一些不利因素直接影响着分级教学的实施:一方面是对分级教学缺乏共识,部分教师不愿意教B层次班级,认为“吃力不讨好”, 事倍功半;另一方面分级教学导致不少学生认为自己是差生、低人一等。如果不及时加以正确引导,就会挫伤一部分学生的学习积极性,加重学生两极分化。最后要注意以考试成绩作为评价标准的公平性问题,对不同层次的学生采用完全相同的考卷与教学内容的差异化导致有失公平,而且针对不同层次学生的不同的教学要求难以体现;反之由成绩决定的学生是否能够评优以及奖学金等级评定等一系列的问题又会对学生产生负面影响,这些都是需要在实践中不断进行调整。

[ 参 考 文 献 ]

[1] 马知恩.工科数学系列课程教学改革研究报告[M].北京:高等教育出版社,2002.

[2] 姚翔飞.工科高等数学分级教学模式的探讨[J].高教论坛,2008(3):85-87.

篇3

中图分类号:G423文献标识码:A

随着社会的发展,应用数学已经越来越深入、广泛地渗入到科学技术、经济生活以及现实世界的各个领域,尤其在现代经济领域中的应用更加广泛,很多数学知识,在现代经济发展、经济分析中起着举足轻重的作用。许多经济学的概念、理论都与数学密切相关。

传统的数学教学内容体系上要求面面俱到,理论上追求严谨,不能适应当今科技快速发展、知识日新月异的时代要求,财经类的学生往往觉得“数学学了没用”,认为高等数学脱离了他们的生活,从而产生厌学情绪;而老师虽然知道数学在人才培养中的重要作用,但却苦于无法用实例说服学生,找不到合适的案例,自然也就无法解决学生对数学的厌学问题,那么高等数学到底有什么用呢,下面就数学在经济领域中的应用简单举例说明。

1 复合函数在经济方面的应用

兑换货币值是日常生活中常见问题,把这种推算过程用复合函数来表示,思路则很清楚。

例如:某人准备从中国去韩国旅游,将10000人民币以1:170的比率换成韩元,但临时因故去不了, 只好又将换好的韩元以1:0.0059的比率换回人民币。问此次人民币再换成人民币的过程损失多少?

分析:如果首先以人民币数X作为变量, 韩元数Y作因变量,则人民币换成韩元的公式是:;又以韩元数Y作自变量,人民币Z作因变量,则韩元换成人民币的公式是: ,则从拿出人民币到收回人民币的过程是一个复合函数,所以此人约损失了元。

2 极限值在经济方面的应用

在投资经营某活动中,是按连续复利的方法来计算利息,能比较全面地反映资金的时间价值。

设本金为,年利率,按复利计息,第n年末本利和为:,若一年按t期计息,当时,于是得到连续复利计算公式:。

3 微分的近似计算在经济方面的应用

在自变量的改变量较小的条件下求函数的增量可近似地用函数的微分来代替,以简化问题的计算。

例如某公司生产某种产品,月产量为,月收入(元),若每月产量从200件增加到250件时,收入改变多少?

分析与解答:公司月产量增加件, 用来估计收入的增加量(元),即公司以后每月的收入大约增加1000 元。

4 利用导数求解经济函数最优值

经济的核心问题是增加利润,降低成本。成本利润、收入需求、价格等经济量,是经济问题中必须考虑的因素。为了达到利润最大、成本最小,就要把握最合适价格、最佳销售量,而这常用到求函数的最大、最小值问题,线性规划、非线性规划问题等经济学中最常见的最优化问题。其实质就是求能够使目标函数达到极值的选择变量的值。

例如一房地产公司有50套公寓要出租.当租金定为每月180元时,公寓会全部租出去,当租金每月增加10元时,就有一套公寓租不出去,而租出去的房子每月需花费20元的维修费,问房租定为多少时可获得最大收入?

分析:可设租金每月元,租出去的公寓有,总收入为,又,令,则得,由于=,因此是函数的唯一极大值点,所以是函数的最大值点,即房租定为每月350元可获得最大收入,最大收入为(元)。

5 边际分析

边际概念是研究经济学核心命题的基本概念,通常指经济变量的变化率。边际是当在某一给定值的附近发生微小变化时的变化情况,它反映了的瞬间变化。利用导数研究经济变量的边际变化的方法, 称为边际分析。利用导数研究经济变量的边际变化的方法是经济理论中的一个重要方法,有极为重要的意义。

例如已知生产某产品的总成本函数(元),求生产1200个单位产品时的边际成本值,并解释其经济意义。

边际成本函数为;时的边际成本为(元)。

边际成本的经济意义是当生产达到1200个单位产品时,如果再多生产1个产品所追加的成本为3元。

6 弹性分析

弹性分析也是经济分析中常用的一种方法,主要用于对生产、供给、需求等问题的研究。弹性概念用来定量描述一个经济变量对另一个经济变量的变化的相对反应速度。

例如已知某商品的需求函数为,求时的需求弹性,并说明其经济意义;

分析:需求弹性函数:。

当时的需求弹性:。

篇4

0 前言

MATLAB软件是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,代表了当今国际科学计算软件的先进水平。在高等数学的学习过程中,如果能利用MATLAB软件的可视化效果能将抽象问题直观化,复杂问题简单化,定能使学习效率大大提升,增强学习兴趣。同样,如果将此方法引入到教学当中,将会取得事半功倍的效果。

1 MATLAB软件画图功能在高等数学可视化方面的应用

1.1 二维曲线作图

友情链接